|
--- |
|
datasets: wikitext |
|
license: other |
|
license_link: https://llama.meta.com/llama3/license/ |
|
--- |
|
This is a quantized model of [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/) |
|
using the following configuration: |
|
- 4bit |
|
- Act order: True |
|
- Group size: 128 |
|
|
|
## Usage |
|
Install **vLLM** and |
|
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): |
|
|
|
``` |
|
python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-8B-Instruct-GPTQ |
|
``` |
|
Access the model: |
|
``` |
|
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { |
|
"model": "cortecs/Meta-Llama-3-8B-Instruct-GPTQ", |
|
"prompt": "San Francisco is a" |
|
} ' |
|
``` |
|
|
|
## Evaluations |
|
| __English__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
|:--------------|:---------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------| |
|
| Avg. | 66.97 | 67.0 | 63.52 | |
|
| ARC | 62.5 | 62.5 | 54.6 | |
|
| Hellaswag | 70.3 | 70.3 | 69.5 | |
|
| MMLU | 68.11 | 68.21 | 66.46 | |
|
| | | | | |
|
| __French__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
| Avg. | 57.73 | 57.7 | 53.33 | |
|
| Hellaswag_fr | 61.7 | 62.2 | 59.3 | |
|
| ARC_fr | 53.3 | 53.1 | 46.4 | |
|
| MMLU_fr | 58.2 | 57.8 | 54.3 | |
|
| | | | | |
|
| __German__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
| Avg. | 53.47 | 53.67 | 49.0 | |
|
| ARC_de | 49.1 | 49.0 | 41.6 | |
|
| Hellaswag_de | 55.0 | 55.2 | 53.3 | |
|
| MMLU_de | 56.3 | 56.8 | 52.1 | |
|
| | | | | |
|
| __Italian__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
| Avg. | 56.73 | 56.67 | 51.3 | |
|
| Hellaswag_it | 61.3 | 61.3 | 58.4 | |
|
| MMLU_it | 57.3 | 57.0 | 53.0 | |
|
| ARC_it | 51.6 | 51.7 | 42.5 | |
|
| | | | | |
|
| __Safety__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
| Avg. | 61.42 | 61.42 | 61.53 | |
|
| RealToxicityPrompts | 97.2 | 97.2 | 97.2 | |
|
| TruthfulQA | 51.65 | 51.58 | 51.98 | |
|
| CrowS | 35.42 | 35.48 | 35.42 | |
|
| | | | | |
|
| __Spanish__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ | |
|
| Avg. | 59 | 58.63 | 54.6 | |
|
| ARC_es | 54.1 | 53.8 | 46.9 | |
|
| Hellaswag_es | 63.8 | 63.3 | 60.3 | |
|
| MMLU_es | 59.1 | 58.8 | 56.6 | |
|
|
|
We did not check for data contamination. |
|
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000`. |
|
|
|
## Performance |
|
| | requests/s | tokens/s | |
|
|:------------|-------------:|-----------:| |
|
| NVIDIA L4x1 | 3.96 | 1887.55 | |
|
| NVIDIA L4x2 | 4.87 | 2323.34 | |
|
| NVIDIA L4x4 | 5.61 | 2674.18 | |
|
Performance measured on [cortecs inference](https://cortecs.ai). |