markoarnauto's picture
Upload README.md with huggingface_hub
e259987 verified
---
datasets: wikitext
license: other
license_link: https://llama.meta.com/llama3/license/
---
This is a quantized model of [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/)
using the following configuration:
- 4bit
- Act order: True
- Group size: 128
## Usage
Install **vLLM** and
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server):
```
python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-8B-Instruct-GPTQ
```
Access the model:
```
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Meta-Llama-3-8B-Instruct-GPTQ",
"prompt": "San Francisco is a"
} '
```
## Evaluations
| __English__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
|:--------------|:---------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|
| Avg. | 66.97 | 67.0 | 63.52 |
| ARC | 62.5 | 62.5 | 54.6 |
| Hellaswag | 70.3 | 70.3 | 69.5 |
| MMLU | 68.11 | 68.21 | 66.46 |
| | | | |
| __French__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
| Avg. | 57.73 | 57.7 | 53.33 |
| Hellaswag_fr | 61.7 | 62.2 | 59.3 |
| ARC_fr | 53.3 | 53.1 | 46.4 |
| MMLU_fr | 58.2 | 57.8 | 54.3 |
| | | | |
| __German__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
| Avg. | 53.47 | 53.67 | 49.0 |
| ARC_de | 49.1 | 49.0 | 41.6 |
| Hellaswag_de | 55.0 | 55.2 | 53.3 |
| MMLU_de | 56.3 | 56.8 | 52.1 |
| | | | |
| __Italian__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
| Avg. | 56.73 | 56.67 | 51.3 |
| Hellaswag_it | 61.3 | 61.3 | 58.4 |
| MMLU_it | 57.3 | 57.0 | 53.0 |
| ARC_it | 51.6 | 51.7 | 42.5 |
| | | | |
| __Safety__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
| Avg. | 61.42 | 61.42 | 61.53 |
| RealToxicityPrompts | 97.2 | 97.2 | 97.2 |
| TruthfulQA | 51.65 | 51.58 | 51.98 |
| CrowS | 35.42 | 35.48 | 35.42 |
| | | | |
| __Spanish__ | __[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)__ | __[Meta-Llama-3-8B-Instruct-GPTQ-8b](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ-8b)__ | __[Meta-Llama-3-8B-Instruct-GPTQ](https://huggingface.co/cortecs/Meta-Llama-3-8B-Instruct-GPTQ)__ |
| Avg. | 59 | 58.63 | 54.6 |
| ARC_es | 54.1 | 53.8 | 46.9 |
| Hellaswag_es | 63.8 | 63.3 | 60.3 |
| MMLU_es | 59.1 | 58.8 | 56.6 |
We did not check for data contamination.
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000`.
## Performance
| | requests/s | tokens/s |
|:------------|-------------:|-----------:|
| NVIDIA L4x1 | 3.96 | 1887.55 |
| NVIDIA L4x2 | 4.87 | 2323.34 |
| NVIDIA L4x4 | 5.61 | 2674.18 |
Performance measured on [cortecs inference](https://cortecs.ai).