Create README.md

#1
by Eithannak - opened
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - liuhaotian/LLaVA-Pretrain
5
+ - liuhaotian/LLaVA-Instruct-150K
6
+ language:
7
+ - en
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ base_model:
14
+ - apple/OpenELM
15
+ - apple/aimv2-large-patch14-224
16
+ pipeline_tag: image-text-to-text
17
+ tags:
18
+ - cpu
19
+ - nano
20
+ - small
21
+ - tiny
22
+ - llava
23
+ model_size: 0.6B parameters
24
+ ---
25
+
26
+ **<center><span style="font-size:2em;">Tiny Llava 4 CPU πŸ›</span></center>**
27
+
28
+ [![License](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)
29
+ [![CPU](https://img.shields.io/badge/CPU-Supported-blue)](https://huggingface.co)
30
+ [![arXiv](https://img.shields.io/badge/arXiv-2402.14289-red)](https://arxiv.org/pdf/2402.14289)
31
+
32
+ ---
33
+
34
+ ### πŸš€ **Model Overview**
35
+ `tiny-llava-open-elm-aimv2` is a lightweight image-text-to-text model that combines **[OpenELM](https://huggingface.co/apple/OpenELM)** as the LLM backbone and **[AIMv2-Large-Patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224)** as the vision encoder. The model has been fine-tuned using **LoRA (Low-Rank Adaptation)** for efficient training. It was developed using the **[TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory)** codebase, which provides a modular framework for lightweight multi-modal models.
36
+
37
+ The model is designed to run efficiently on **CPU**, making it ideal for resource-constrained environments. It is trained and evaluated on **POPE** and **TextVQA** benchmarks. The total model size is **0.6B parameters**.
38
+
39
+ ---
40
+
41
+ ### πŸ“Š **Performance**
42
+
43
+ | Model Name | VQAv2 | GQA | SQA | TextVQA | MM-VET | POPE | MME | MMMU |
44
+ |:-----------------------------------------------------------:|:-----:|:-----:|:-----:|:-------:|:------:|:-----:|:------:|:-----:|
45
+ | [LLaVA-1.5-7B](https://huggingface.co/llava-hf/llava-1.5-7b-hf) | 78.5 | 62.0 | 66.8 | 58.2 | 30.5 | 85.9 | 1510.7 | - |
46
+ | [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
47
+ | [tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B](https://huggingface.co/tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B) | 78.4 | 61.6 | 64.4 | 53.6 | 26.9 | 86.4 | 1339.0 | 31.7 |
48
+ | [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
49
+ | tiny-llava-open-elm-aimv2 | - | - | - | 39.68 | - | 83.93 | - | - |
50
+
51
+ ---
52
+
53
+ ### πŸ”— **References**
54
+ - [OpenELM](https://huggingface.co/apple/OpenELM)
55
+ - [AIMv2-Large-Patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224)
56
+ - [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory)
57
+ - [LoRA Paper (arXiv:2402.14289)](https://arxiv.org/pdf/2402.14289)