BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cristuf/bge-base-financial-matryoshka")
# Run inference
sentences = [
'During fiscal 2022, GameStop Corp increased its valuation allowances by approximately $70.2 million in various jurisdictions.',
"How much did GameStop Corp's valuation allowances increase during fiscal 2022?",
'How does Gilead ensure an inclusive and diverse workforce?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7186 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.8714 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.7186 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.1743 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.7186 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.8714 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8138 |
cosine_mrr@10 | 0.783 |
cosine_map@100 | 0.7867 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7114 |
cosine_accuracy@3 | 0.8314 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.7114 |
cosine_precision@3 | 0.2771 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.7114 |
cosine_recall@3 | 0.8314 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8124 |
cosine_mrr@10 | 0.7799 |
cosine_map@100 | 0.7832 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8614 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1723 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8614 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.8043 |
cosine_mrr@10 | 0.7722 |
cosine_map@100 | 0.7759 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6857 |
cosine_accuracy@3 | 0.8071 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.6857 |
cosine_precision@3 | 0.269 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.6857 |
cosine_recall@3 | 0.8071 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.7909 |
cosine_mrr@10 | 0.7569 |
cosine_map@100 | 0.7609 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.66 |
cosine_accuracy@3 | 0.7757 |
cosine_accuracy@5 | 0.8129 |
cosine_accuracy@10 | 0.8671 |
cosine_precision@1 | 0.66 |
cosine_precision@3 | 0.2586 |
cosine_precision@5 | 0.1626 |
cosine_precision@10 | 0.0867 |
cosine_recall@1 | 0.66 |
cosine_recall@3 | 0.7757 |
cosine_recall@5 | 0.8129 |
cosine_recall@10 | 0.8671 |
cosine_ndcg@10 | 0.7616 |
cosine_mrr@10 | 0.7281 |
cosine_map@100 | 0.7331 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.36 tokens
- max: 439 tokens
- min: 9 tokens
- mean: 20.41 tokens
- max: 51 tokens
- Samples:
positive anchor Japan's revenue for the year 2023 reached 2,367.0 million.
What was the revenue attributed to Japan in the year 2023?
Our four reportable segments are: •the Data Center segment, which primarily includes server CPUs, GPUs, APUs, DPUs, FPGAs, SmartNICs, AI accelerators and Adaptive SoC products for data centers; •the Client segment, which primarily includes CPUs, APUs, and chipsets for desktop, notebook and handheld personal computers; •the Gaming segment, which primarily includes discrete GPUs, semi-custom SoC products and development services; and •the Embedded segment, which primarily includes embedded CPUs, GPUs, APUs, FPGAs, SOMs, and Adaptive SoC products.
What are the different segments that AMD reports financially?
For detailed information about the company's legal proceedings, see Note 4 to the consolidated financial statements, included under the caption 'Contingencies' in the Annual Report on Form 10-K.
Where can detailed information about the company's legal proceedings be found in its financial statements?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5267 | - | - | - | - | - |
0.9746 | 12 | - | 0.7446 | 0.7639 | 0.7765 | 0.7039 | 0.7725 |
1.6244 | 20 | 0.6742 | - | - | - | - | - |
1.9492 | 24 | - | 0.7606 | 0.7795 | 0.7828 | 0.7297 | 0.7839 |
2.4365 | 30 | 0.4469 | - | - | - | - | - |
2.9239 | 36 | - | 0.7643 | 0.7758 | 0.7834 | 0.7332 | 0.7845 |
3.2487 | 40 | 0.3712 | - | - | - | - | - |
3.8985 | 48 | - | 0.7609 | 0.7759 | 0.7832 | 0.7331 | 0.7867 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for cristuf/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.719
- Cosine Accuracy@3 on dim 768self-reported0.830
- Cosine Accuracy@5 on dim 768self-reported0.871
- Cosine Accuracy@10 on dim 768self-reported0.910
- Cosine Precision@1 on dim 768self-reported0.719
- Cosine Precision@3 on dim 768self-reported0.277
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.719
- Cosine Recall@3 on dim 768self-reported0.830