File size: 40,444 Bytes
535e3c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6233
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: 'as permitted by applicable law , in no event shall groupon , its
    subsidiaries or affiliates or any of their respective employees , officers , directors
    , agents , merchants , partners , third-party content providers or licensors ,
    or any of their officers , directors , employees , or agents , be liable for any
    direct or indirect lost profits or lost business damages , indirect , incidental
    , special , consequential , or punitive damages arising out of , related to ,
    or in connection with any of the following : -lrb- a -rrb- your use of the site
    , the content , user content , including , without limitation , any personal information
    , and any other information either contained in the site or submitted by you to
    the site ; -lrb- b -rrb- your inability to use the site ; -lrb- c -rrb- modification
    or removal of content submitted on the site ; -lrb- d -rrb- the merchant offerings
    , products , and other available programs accessible or available through the
    site ; -lrb- e -rrb- any products or services purchased or obtained directly from
    a merchant ; -lrb- f -rrb- these terms of use ; or -lrb- g -rrb- any improper
    use of information you provide to the site , including , without limitation ,
    any personal information .'
  sentences:
  - since the clause states that the provider is not liable for any loss resulting
    from the use of the service and or of the website, including lost profits, lost
    opportunity, lost business or lost sales
  - since the clause states that the provider is not liable for any special, direct
    and/or indirect, punitive, incidental or consequential  damage, including negligence,
    harm or failure
  - since the contract or access may be terminated where the user fails to maintain
    a prescribed level of reputation.
- source_sentence: however , vivino reserves the right to -lrb- i -rrb- remove , suspend
    , edit or modify any content in its sole discretion , including without limitation
    any user submissions at any time , without notice to you and for any reason -lrb-
    including , but not limited to , upon receipt of claims or allegations from third
    parties or authorities relating to such content or if vivino is concerned that
    you may have violated these terms of use -rrb- , or for no reason at all and -lrb-
    ii -rrb- to remove , suspend or block any user submissions from the service .
  sentences:
  - Since the clause states that the provider has the right to remove content and
    material if they constitute a violation of third party rights, including trademarks
  - 'since the clause states that except as required by law, or to the fullest extent
    permissible by applicable law the provider is not liable, or that the users are
    solely responsible for ensuring that the Terms of Use/Service are in compliance
    with all laws, rules and regulations '
  - since the clause states that the compensation for liability or aggregate liability
    is limited to, or should not exceed, a certain total amount, or that the sole
    remedy is to stop using the service and cancel the account, or that you can't
    recover any  damages or losses
- source_sentence: we will not incur any liability or responsibility if we choose
    to remove , disable or delete such access or ability to use any or all portion
    -lrb- s -rrb- of the services .
  sentences:
  - 'since the clause states that except as required by law, or to the fullest extent
    permissible by applicable law the provider is not liable, or that the users are
    solely responsible for ensuring that the Terms of Use/Service are in compliance
    with all laws, rules and regulations '
  - since the clause states that the provider is not liable under different theories
    of liability, including tort law, contract law,  strict liability, statutory liability,
    product liability and other liability theories
  - since the clause mentions the contract or access may be terminated but does not
    state the grounds for termination.
- source_sentence: in such event , supercell shall not be required to provide refunds
    , benefits or other compensation to users in connection with such discontinued
    service .
  sentences:
  - since the clause states that the provider is not liable even if he was, or should
    have been, aware or have been advised about the possibility of any damage or loss
  - since the contract or access can be terminated where the user fails to adhere
    to its terms, or community standards, or the spirit of the ToS or community terms,
    including inappropriate behaviour, using cheats or other disallowed practices
    to improve their situation in the service, deriving disallowed profits from the
    service, or interfering with other users' enjoyment of the service or otherwise
    puts them at risk, or is investigated under any suspision of misconduct.
  - 'since the clause states that the provider is not liable for any technical problems,
    failure, suspension, disruption, modification, discontinuance, unavailability
    of service, any unilateral change, unilateral termination,  unilateral limitation  including  limits
    on certain features and services or restricttion to  access to parts or all of
    the Service without notice '
- source_sentence: we may change the price of the services at any time and if you
    have a recurring purchase , we will notify you by email at least 15 days before
    the price change .
  sentences:
  - 'Since the clause states that the provider has the right for unilateral change
    of the contract/services/goods/features for any reason at its full discretion,
    at any time '
  - 'Since the clause states that the provider has the right for unilateral change
    of the contract/services/goods/features for any reason at its full discretion,
    at any time '
  - since the clause states that the provider is not liable even if he was, or should
    have been, aware or have been advised about the possibility of any damage or loss
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: eval
      type: eval
    metrics:
    - type: cosine_accuracy
      value: 0.8888888888888888
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7393813133239746
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.8966442953020134
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7284817099571228
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.8608247422680413
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9355742296918768
      name: Cosine Recall
    - type: cosine_ap
      value: 0.9472776717150163
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.8888888888888888
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 0.7393813133239746
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.8966442953020134
      name: Dot F1
    - type: dot_f1_threshold
      value: 0.7284817099571228
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.8608247422680413
      name: Dot Precision
    - type: dot_recall
      value: 0.9355742296918768
      name: Dot Recall
    - type: dot_ap
      value: 0.9472776717150163
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.8888888888888888
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 15.613447189331055
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.896921017402945
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 15.90174674987793
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.8589743589743589
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.938375350140056
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.947924181751851
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.8888888888888888
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 0.7219676971435547
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.8966442953020134
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 0.7369099855422974
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.8608247422680413
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.9355742296918768
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.9472776717150163
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.8888888888888888
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 15.613447189331055
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.896921017402945
      name: Max F1
    - type: max_f1_threshold
      value: 15.90174674987793
      name: Max F1 Threshold
    - type: max_precision
      value: 0.8608247422680413
      name: Max Precision
    - type: max_recall
      value: 0.938375350140056
      name: Max Recall
    - type: max_ap
      value: 0.947924181751851
      name: Max Ap
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cruzlorite/all-mpnet-base-v2-unfair-tos-rationale")
# Run inference
sentences = [
    'we may change the price of the services at any time and if you have a recurring purchase , we will notify you by email at least 15 days before the price change .',
    'Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features for any reason at its full discretion, at any time ',
    'Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features for any reason at its full discretion, at any time ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification
* Dataset: `eval`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.8889     |
| cosine_accuracy_threshold    | 0.7394     |
| cosine_f1                    | 0.8966     |
| cosine_f1_threshold          | 0.7285     |
| cosine_precision             | 0.8608     |
| cosine_recall                | 0.9356     |
| cosine_ap                    | 0.9473     |
| dot_accuracy                 | 0.8889     |
| dot_accuracy_threshold       | 0.7394     |
| dot_f1                       | 0.8966     |
| dot_f1_threshold             | 0.7285     |
| dot_precision                | 0.8608     |
| dot_recall                   | 0.9356     |
| dot_ap                       | 0.9473     |
| manhattan_accuracy           | 0.8889     |
| manhattan_accuracy_threshold | 15.6134    |
| manhattan_f1                 | 0.8969     |
| manhattan_f1_threshold       | 15.9017    |
| manhattan_precision          | 0.859      |
| manhattan_recall             | 0.9384     |
| manhattan_ap                 | 0.9479     |
| euclidean_accuracy           | 0.8889     |
| euclidean_accuracy_threshold | 0.722      |
| euclidean_f1                 | 0.8966     |
| euclidean_f1_threshold       | 0.7369     |
| euclidean_precision          | 0.8608     |
| euclidean_recall             | 0.9356     |
| euclidean_ap                 | 0.9473     |
| max_accuracy                 | 0.8889     |
| max_accuracy_threshold       | 15.6134    |
| max_f1                       | 0.8969     |
| max_f1_threshold             | 15.9017    |
| max_precision                | 0.8608     |
| max_recall                   | 0.9384     |
| **max_ap**                   | **0.9479** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,233 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                             | int                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 63.0 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 41.12 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sentence2                                                                                                                                                                                                                                                                                                         | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>we may revise these terms from time to time and the most current version will always be posted on our website .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features where the notification of changes is left at a full discretion of the provider such as by simply posting the new terms on their website without a notification to the consumer</code> | <code>1</code> |
  | <code>neither fitbit , its suppliers , or licensors , nor any other party involved in creating , producing , or delivering the fitbit service will be liable for any incidental , special , exemplary , or consequential damages , including lost profits , loss of data or goodwill , service interruption , computer damage , or system failure or the cost of substitute services arising out of or in connection with these terms or from the use of or inability to use the fitbit service , whether based on warranty , contract , tort -lrb- including negligence -rrb- , product liability , or any other legal theory , and whether or not fitbit has been informed of the possibility of such damage , even if a limited remedy set forth herein is found to have failed of its essential purpose .</code> | <code>since the clause states that the provider is not liable even if he was, or should have been, aware or have been advised about the possibility of any damage or loss</code>                                                                                                                                  | <code>1</code> |
  | <code>the company reserves the right -lrb- but has no obligation -rrb- , at its sole discretion and without prior notice to :</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>Since the clause states that the provider has the right to remove content and material if he believes that there is a case  violation of terms such as acount tranfer, policies, standard, code of conduct</code>                                                                                           | <code>1</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 693 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 693 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                             | string                                                                             | int                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 63.59 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 42.75 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>0: ~48.48%</li><li>1: ~51.52%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sentence2                                                                                                                                                                                                                                                                                                                                                                                | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>you expressly understand and agree that evernote , its subsidiaries , affiliates , service providers , and licensors , and our and their respective officers , employees , agents and successors shall not be liable to you for any direct , indirect , incidental , special , consequential or exemplary damages , including but not limited to , damages for loss of profits , goodwill , use , data , cover or other intangible losses -lrb- even if evernote has been advised of the possibility of such damages -rrb- resulting from : -lrb- i -rrb- the use or the inability to use the service or to use promotional codes or evernote points ; -lrb- ii -rrb- the cost of procurement of substitute services resulting from any data , information or service purchased or obtained or messages received or transactions entered into through or from the service ; -lrb- iii -rrb- unauthorized access to or the loss , corruption or alteration of your transmissions , content or data ; -lrb- iv -rrb- statements or conduct of any third party on or using the service , or providing any services related to the operation of the service ; -lrb- v -rrb- evernote 's actions or omissions in reliance upon your basic subscriber information and any changes thereto or notices received therefrom ; -lrb- vi -rrb- your failure to protect the confidentiality of any passwords or access rights to your account ; -lrb- vii -rrb- the acts or omissions of any third party using or integrating with the service ; -lrb- viii -rrb- any advertising content or your purchase or use of any advertised or other third-party product or service ; -lrb- ix -rrb- the termination of your account in accordance with the terms of these terms of service ; or -lrb- x -rrb- any other matter relating to the service .</code> | <code>since the clause states that the provider is not liable for any information stored or processed within the Services, inaccuracies or error of information, content and material posted, software, products and services on the website, including copyright violation, defamation, slander, libel, falsehoods, obscenity, pornography, profanity, or objectionable material</code> | <code>1</code> |
  | <code>to the fullest extent permitted by law , badoo expressly excludes :</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <code>since the clause states that the provider is not liable even if he was, or should have been, aware or have been advised about the possibility of any damage or loss</code>                                                                                                                                                                                                         | <code>1</code> |
  | <code>notwithstanding any other remedies available to truecaller , you agree that truecaller may suspend or terminate your use of the services without notice if you use the services or the content in any prohibited manner , and that such use will be deemed a material breach of these terms .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>since the clause generally states the contract or access may be terminated in an event of a force majeure, act of God or other unforeseen events of a similar nature.</code>                                                                                                                                                                                                       | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | eval_max_ap |
|:------:|:----:|:-------------:|:------:|:-----------:|
| 0      | 0    | -             | -      | 0.6125      |
| 0.2564 | 100  | 0.9286        | 0.4118 | 0.8794      |
| 0.5128 | 200  | 0.3916        | 0.2868 | 0.9177      |
| 0.7692 | 300  | 0.3414        | 0.2412 | 0.9448      |
| 1.0256 | 400  | 0.2755        | 0.2103 | 0.9470      |
| 1.2821 | 500  | 0.1893        | 0.1892 | 0.9486      |
| 1.5385 | 600  | 0.1557        | 0.1709 | 0.9548      |
| 1.7949 | 700  | 0.1566        | 0.1888 | 0.9479      |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->