csikasote's picture
End of training
2cb4256 verified
|
raw
history blame
2.37 kB
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- BembaSpeech
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-bem-female-sv
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cicasote/huggingface/runs/tuxgh6td)
# mms-1b-bem-female-sv
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BEMBASPEECH - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2132
- Wer: 0.3557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.3992 | 200 | 0.3566 | 0.5019 |
| No log | 0.7984 | 400 | 0.2620 | 0.4029 |
| 1.7214 | 1.1976 | 600 | 0.2546 | 0.4100 |
| 1.7214 | 1.5968 | 800 | 0.2359 | 0.3965 |
| 0.2801 | 1.9960 | 1000 | 0.2322 | 0.3810 |
| 0.2801 | 2.3952 | 1200 | 0.2305 | 0.3746 |
| 0.2801 | 2.7944 | 1400 | 0.2258 | 0.3336 |
| 0.2528 | 3.1936 | 1600 | 0.2262 | 0.4309 |
| 0.2528 | 3.5928 | 1800 | 0.2164 | 0.3514 |
| 0.2351 | 3.9920 | 2000 | 0.2215 | 0.3894 |
| 0.2351 | 4.3912 | 2200 | 0.2165 | 0.3624 |
| 0.2351 | 4.7904 | 2400 | 0.2132 | 0.3557 |
### Framework versions
- Transformers 4.43.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1