csikasote's picture
End of training
c38ed4a verified
|
raw
history blame
2.83 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - lozgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-lozgen-male-model
    results: []

mms-1b-lozgen-male-model

This model is a fine-tuned version of facebook/mms-1b-all on the LOZGEN - LOZ dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3107
  • Wer: 0.3264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.7665 0.7634 100 3.1610 0.9990
2.6476 1.5267 200 2.2410 0.8953
1.5694 2.2901 300 0.5585 0.7599
0.6761 3.0534 400 0.4566 0.6319
0.5793 3.8168 500 0.4013 0.4822
0.5392 4.5802 600 0.3795 0.4554
0.4809 5.3435 700 0.3730 0.4333
0.4813 6.1069 800 0.3597 0.4230
0.4484 6.8702 900 0.3432 0.3925
0.4418 7.6336 1000 0.3391 0.3947
0.4322 8.3969 1100 0.3339 0.3841
0.3963 9.1603 1200 0.3294 0.3669
0.4104 9.9237 1300 0.3217 0.3635
0.3777 10.6870 1400 0.3177 0.3610
0.3785 11.4504 1500 0.3236 0.3539
0.3682 12.2137 1600 0.3144 0.3468
0.3654 12.9771 1700 0.3122 0.3529
0.3509 13.7405 1800 0.3088 0.3463
0.3412 14.5038 1900 0.3146 0.3347
0.3344 15.2672 2000 0.3108 0.3416
0.3351 16.0305 2100 0.3107 0.3264

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0