csikasote's picture
End of training
036f4b1 verified
|
raw
history blame
2.94 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - genbed
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-nyagen-combined-model
    results: []

mms-1b-nyagen-combined-model

This model is a fine-tuned version of facebook/mms-1b-all on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1727
  • Wer: 0.2465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.9978 0.1364 100 0.6384 0.5015
0.482 0.2729 200 0.2777 0.3713
0.3907 0.4093 300 0.2484 0.3481
0.3782 0.5457 400 0.2290 0.3232
0.3316 0.6821 500 0.2222 0.3148
0.3158 0.8186 600 0.2127 0.3042
0.3199 0.9550 700 0.2106 0.2932
0.3223 1.0914 800 0.2013 0.2826
0.3075 1.2278 900 0.1975 0.2709
0.3015 1.3643 1000 0.1942 0.2762
0.3049 1.5007 1100 0.1895 0.2729
0.3029 1.6371 1200 0.1888 0.2718
0.2626 1.7735 1300 0.1866 0.2683
0.2803 1.9100 1400 0.1830 0.2615
0.2725 2.0464 1500 0.1814 0.2626
0.2732 2.1828 1600 0.1783 0.2641
0.249 2.3192 1700 0.1828 0.2560
0.2423 2.4557 1800 0.1762 0.2480
0.2668 2.5921 1900 0.1732 0.2458
0.2653 2.7285 2000 0.1727 0.2460
0.2614 2.8649 2100 0.1749 0.2533
0.2474 3.0014 2200 0.1733 0.2438
0.2317 3.1378 2300 0.1767 0.2447

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0