csikasote's picture
Update metadata with huggingface_hub
68797ab verified
metadata
base_model: openai/whisper-large-v3
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-large-v3-natbed-native-model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: natbed
          type: natbed
          config: en
          split: test
        metrics:
          - type: wer
            value: 43.06
            name: WER

whisper-large-v3-natbed-native-model

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8157
  • Wer: 53.5669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4403 0.7013 250 0.8207 61.9634
0.7263 1.4025 500 0.7642 56.5183
0.6316 2.1038 750 0.7486 54.5928
0.4615 2.8050 1000 0.7218 51.1206
0.3381 3.5063 1250 0.7561 52.2569
0.2662 4.2076 1500 0.8242 52.5095
0.1788 4.9088 1750 0.8157 53.5669

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1