whisper-medium-bem / README.md
csikasote's picture
Update metadata with huggingface_hub
48e9488 verified
|
raw
history blame
2.52 kB
metadata
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-medium-bem
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: bembaspeech
          type: bembaspeech
          config: bem
          split: test
        metrics:
          - type: wer
            value: 34.84
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: BembaSpeech
          type: BembaSpeech
          config: en
          split: test
        metrics:
          - type: wer
            value: 34.84
            name: WER

whisper-medium-bem

This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3519
  • Wer: 33.5877

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6509 0.34 500 0.4872 50.9031
0.5212 0.67 1000 0.3972 40.5156
0.3957 1.01 1500 0.3451 36.4793
0.2956 1.34 2000 0.3421 37.3866
0.2987 1.68 2500 0.3206 34.5374
0.1665 2.02 3000 0.3290 34.1135
0.1557 2.35 3500 0.3334 35.0462
0.1345 2.69 4000 0.3374 33.8506
0.0617 3.02 4500 0.3445 33.6216
0.0661 3.36 5000 0.3519 33.5877

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2