whisper-small-toi

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1668
  • Wer: 63.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.568 1.47 500 2.1883 72.0402
0.2614 2.95 1000 2.1071 67.1034
0.0811 4.42 1500 2.3456 67.5012
0.0383 5.9 2000 2.4961 67.9691
0.021 7.37 2500 2.6259 68.8348
0.0077 8.85 3000 2.6423 66.6823
0.0046 10.32 3500 2.8497 65.9336
0.0005 11.8 4000 2.8305 64.6467
0.0014 13.27 4500 2.9174 66.0739
0.0003 14.75 5000 2.9358 63.2663
0.0002 16.22 5500 2.9820 63.8278
0.0002 17.7 6000 3.0369 64.7403
0.0001 19.17 6500 3.0641 63.3832
0.0005 20.65 7000 3.0512 63.1493
0.0001 22.12 7500 3.0924 63.5002
0.0001 23.6 8000 3.1215 65.0679
0.0001 25.07 8500 3.1336 64.6233
0.0001 26.55 9000 3.1513 63.7108
0.0001 28.02 9500 3.1620 63.5938
0.0001 29.5 10000 3.1668 63.5938

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.