metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- natbed
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bem-natbed-combined-model
results: []
xls-r-1b-bem-natbed-combined-model
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the NATBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.7026
- Wer: 0.7512
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.0296 | 0.2503 | 100 | 2.8071 | 1.0 |
1.5792 | 0.5006 | 200 | 1.1184 | 0.9645 |
1.1422 | 0.7509 | 300 | 1.0389 | 0.9606 |
0.9883 | 1.0013 | 400 | 1.0494 | 0.9989 |
0.8999 | 1.2516 | 500 | 0.8692 | 0.8683 |
0.9135 | 1.5019 | 600 | 0.8564 | 0.8430 |
0.8898 | 1.7522 | 700 | 0.8451 | 0.8522 |
0.9089 | 2.0025 | 800 | 0.8857 | 0.8485 |
0.8292 | 2.2528 | 900 | 0.8662 | 0.8580 |
0.7921 | 2.5031 | 1000 | 0.7964 | 0.7969 |
0.7983 | 2.7534 | 1100 | 0.7896 | 0.7951 |
0.7946 | 3.0038 | 1200 | 0.7667 | 0.7947 |
0.7488 | 3.2541 | 1300 | 0.8180 | 0.8495 |
0.7428 | 3.5044 | 1400 | 0.7548 | 0.7688 |
0.7256 | 3.7547 | 1500 | 0.7258 | 0.7596 |
0.741 | 4.0050 | 1600 | 0.7665 | 0.7718 |
0.6775 | 4.2553 | 1700 | 0.7922 | 0.7775 |
0.6795 | 4.5056 | 1800 | 0.7026 | 0.7512 |
0.683 | 4.7559 | 1900 | 0.7051 | 0.7225 |
0.6838 | 5.0063 | 2000 | 0.7196 | 0.7503 |
0.6005 | 5.2566 | 2100 | 0.7032 | 0.7424 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0