|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- automatic-speech-recognition |
|
- bemgen |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xls-r-1b-bemgen-combined-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-1b-bemgen-combined-model |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BEMGEN - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2509 |
|
- Wer: 0.3923 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.1784 | 100 | 3.4413 | 1.0003 | |
|
| No log | 0.3568 | 200 | 2.9149 | 1.0 | |
|
| No log | 0.5352 | 300 | 0.7768 | 0.9235 | |
|
| No log | 0.7136 | 400 | 0.6057 | 0.9047 | |
|
| 5.3372 | 0.8921 | 500 | 0.4317 | 0.6720 | |
|
| 5.3372 | 1.0696 | 600 | 0.3997 | 0.6704 | |
|
| 5.3372 | 1.2480 | 700 | 0.3611 | 0.6405 | |
|
| 5.3372 | 1.4264 | 800 | 0.3441 | 0.5603 | |
|
| 5.3372 | 1.6048 | 900 | 0.2945 | 0.4914 | |
|
| 0.6459 | 1.7832 | 1000 | 0.3041 | 0.4924 | |
|
| 0.6459 | 1.9616 | 1100 | 0.2805 | 0.4681 | |
|
| 0.6459 | 2.1392 | 1200 | 0.2774 | 0.5108 | |
|
| 0.6459 | 2.3176 | 1300 | 0.2683 | 0.4254 | |
|
| 0.6459 | 2.4960 | 1400 | 0.2644 | 0.4382 | |
|
| 0.4599 | 2.6744 | 1500 | 0.2446 | 0.4142 | |
|
| 0.4599 | 2.8528 | 1600 | 0.2473 | 0.4118 | |
|
| 0.4599 | 3.0303 | 1700 | 0.2492 | 0.3961 | |
|
| 0.4599 | 3.2087 | 1800 | 0.2467 | 0.4070 | |
|
| 0.4599 | 3.3872 | 1900 | 0.2509 | 0.3923 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|