|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- automatic-speech-recognition |
|
- bemgen |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xls-r-1b-bemgen-female-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-1b-bemgen-female-model |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BEMGEN - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2246 |
|
- Wer: 0.3799 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.3527 | 100 | 4.0290 | 1.0090 | |
|
| No log | 0.7055 | 200 | 2.8473 | 1.0 | |
|
| No log | 1.0564 | 300 | 0.6012 | 0.9269 | |
|
| No log | 1.4092 | 400 | 0.4191 | 0.8378 | |
|
| 4.9128 | 1.7619 | 500 | 0.3320 | 0.6424 | |
|
| 4.9128 | 2.1129 | 600 | 0.2716 | 0.5178 | |
|
| 4.9128 | 2.4656 | 700 | 0.2724 | 0.4929 | |
|
| 4.9128 | 2.8183 | 800 | 0.2516 | 0.4788 | |
|
| 4.9128 | 3.1693 | 900 | 0.2385 | 0.4438 | |
|
| 0.4407 | 3.5220 | 1000 | 0.2374 | 0.4345 | |
|
| 0.4407 | 3.8748 | 1100 | 0.2354 | 0.4097 | |
|
| 0.4407 | 4.2257 | 1200 | 0.2205 | 0.3961 | |
|
| 0.4407 | 4.5785 | 1300 | 0.2202 | 0.3897 | |
|
| 0.4407 | 4.9312 | 1400 | 0.2246 | 0.3897 | |
|
| 0.2698 | 5.2822 | 1500 | 0.2339 | 0.3666 | |
|
| 0.2698 | 5.6349 | 1600 | 0.2358 | 0.3735 | |
|
| 0.2698 | 5.9877 | 1700 | 0.2246 | 0.3807 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|