|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- automatic-speech-recognition |
|
- bemgen |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xls-r-1b-bemgen-male-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-1b-bemgen-male-model |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BEMGEN - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3453 |
|
- Wer: 0.4416 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.3604 | 100 | 3.5018 | 1.0 | |
|
| No log | 0.7207 | 200 | 2.8616 | 1.0 | |
|
| No log | 1.0793 | 300 | 1.1005 | 0.9874 | |
|
| No log | 1.4396 | 400 | 0.6285 | 0.8360 | |
|
| 5.4329 | 1.8 | 500 | 0.5177 | 0.7589 | |
|
| 5.4329 | 2.1586 | 600 | 0.4120 | 0.5989 | |
|
| 5.4329 | 2.5189 | 700 | 0.3998 | 0.5496 | |
|
| 5.4329 | 2.8793 | 800 | 0.3715 | 0.5654 | |
|
| 5.4329 | 3.2378 | 900 | 0.3351 | 0.4872 | |
|
| 0.644 | 3.5982 | 1000 | 0.3334 | 0.5015 | |
|
| 0.644 | 3.9586 | 1100 | 0.3192 | 0.4796 | |
|
| 0.644 | 4.3171 | 1200 | 0.3246 | 0.4594 | |
|
| 0.644 | 4.6775 | 1300 | 0.3242 | 0.4612 | |
|
| 0.644 | 5.0360 | 1400 | 0.3203 | 0.4442 | |
|
| 0.3852 | 5.3964 | 1500 | 0.3453 | 0.4416 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|