Spaetzle-v85-7b
Spaetzle-v85-7b is a merge of the following models using LazyMergekit:
- cstr/Spaetzle-v84-7b
- cstr/Spaetzle-v81-7b
- cstr/Spaetzle-v80-7b
- cstr/Spaetzle-v79-7b
- cstr/Spaetzle-v71-7b
Evaluation
EQ-Bench (v2_de): 65.32, Parseable: 171.0
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
Spaetzle-v85-7b | 44.35 | 75.99 | 67.23 | 46.55 | 58.53 |
From Intel/low_bit_open_llm_leaderboard:
Metric | Value |
---|---|
ARC-c | 62.63 |
ARC-e | 85.56 |
Boolq | 87.77 |
HellaSwag | 66.66 |
Lambada | 70.35 |
MMLU | 61.61 |
Openbookqa | 37.2 |
Piqa | 82.48 |
Truthfulqa | 50.43 |
Winogrande | 78.3 |
Average | 68.3 |
From Occiglot Euro LLM Leaderboard
Model | 🇪🇺 Average ⬆️ | 🇩🇪 DE | 🇬🇧 EN | 🇬🇧ARC EN | 🇬🇧TruthfulQA EN | 🇬🇧Belebele EN | 🇬🇧HellaSwag EN | 🇬🇧MMLU EN | 🇩🇪ARC DE | 🇩🇪TruthfulQA DE | 🇩🇪Belebele DE | 🇩🇪HellaSwag DE | 🇩🇪MMLU DE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mistral-community/Mixtral-8x22B-v0.1 | 68.3 | 66.81 | 72.87 | 70.56 | 52.29 | 93.89 | 70.41 | 77.17 | 63.9 | 29.31 | 92.44 | 77.9 | 70.49 |
cstr/Spaetzle-v85-7b | 63.26 | 61.11 | 71.94 | 70.48 | 67.16 | 90.33 | 68.54 | 63.17 | 58.43 | 36.93 | 84.22 | 70.62 | 55.36 |
cstr/Spaetzle-v60-7b | 63.32 | 60.95 | 71.65 | 69.88 | 66.24 | 90.11 | 68.43 | 63.59 | 58 | 37.31 | 84.22 | 70.09 | 55.11 |
VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct | 64.49 | 60.07 | 74.71 | 74.49 | 66.19 | 91.67 | 74.55 | 66.65 | 59.37 | 29.57 | 88.56 | 66.43 | 56.44 |
seedboxai/Llama-3-KafkaLM-8B-v0.1 | 62.27 | 59.67 | 69.75 | 69.03 | 58.14 | 90.78 | 64.35 | 66.43 | 57.66 | 30.33 | 85.89 | 66.88 | 57.58 |
cstr/llama3-8b-spaetzle-v33 | 62.75 | 59.56 | 70.68 | 69.54 | 59.31 | 91.44 | 66.04 | 67.06 | 57.06 | 28.55 | 87.56 | 66.7 | 57.92 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 23.23 | ± | 2.65 |
acc_norm | 22.44 | ± | 2.62 | ||
agieval_logiqa_en | 0 | acc | 37.33 | ± | 1.90 |
acc_norm | 37.94 | ± | 1.90 | ||
agieval_lsat_ar | 0 | acc | 25.22 | ± | 2.87 |
acc_norm | 23.04 | ± | 2.78 | ||
agieval_lsat_lr | 0 | acc | 49.41 | ± | 2.22 |
acc_norm | 50.78 | ± | 2.22 | ||
agieval_lsat_rc | 0 | acc | 64.68 | ± | 2.92 |
acc_norm | 63.20 | ± | 2.95 | ||
agieval_sat_en | 0 | acc | 77.67 | ± | 2.91 |
acc_norm | 78.16 | ± | 2.89 | ||
agieval_sat_en_without_passage | 0 | acc | 46.12 | ± | 3.48 |
acc_norm | 45.15 | ± | 3.48 | ||
agieval_sat_math | 0 | acc | 35.45 | ± | 3.23 |
acc_norm | 34.09 | ± | 3.20 |
Average: 44.35%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 63.82 | ± | 1.40 |
acc_norm | 64.76 | ± | 1.40 | ||
arc_easy | 0 | acc | 85.90 | ± | 0.71 |
acc_norm | 82.32 | ± | 0.78 | ||
boolq | 1 | acc | 87.61 | ± | 0.58 |
hellaswag | 0 | acc | 67.39 | ± | 0.47 |
acc_norm | 85.36 | ± | 0.35 | ||
openbookqa | 0 | acc | 38.80 | ± | 2.18 |
acc_norm | 48.80 | ± | 2.24 | ||
piqa | 0 | acc | 83.03 | ± | 0.88 |
acc_norm | 84.17 | ± | 0.85 | ||
winogrande | 0 | acc | 78.93 | ± | 1.15 |
Average: 75.99%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 50.80 | ± | 1.75 |
mc2 | 67.23 | ± | 1.49 |
Average: 67.23%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 54.74 | ± | 3.62 |
bigbench_date_understanding | 0 | multiple_choice_grade | 68.29 | ± | 2.43 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 39.53 | ± | 3.05 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 22.28 | ± | 2.20 |
exact_str_match | 12.26 | ± | 1.73 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 32.80 | ± | 2.10 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 23.00 | ± | 1.59 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 59.00 | ± | 2.84 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 45.60 | ± | 2.23 |
bigbench_navigate | 0 | multiple_choice_grade | 51.10 | ± | 1.58 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 70.10 | ± | 1.02 |
bigbench_ruin_names | 0 | multiple_choice_grade | 52.68 | ± | 2.36 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 33.57 | ± | 1.50 |
bigbench_snarks | 0 | multiple_choice_grade | 71.27 | ± | 3.37 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 74.54 | ± | 1.39 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 40.00 | ± | 1.55 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 21.52 | ± | 1.16 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 18.86 | ± | 0.94 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 59.00 | ± | 2.84 |
Average: 46.55%
Average score: 58.53%
🧩 Configuration
models:
- model: cstr/Spaetzle-v84-7b
# no parameters necessary for base model
- model: cstr/Spaetzle-v80-7b
parameters:
density: 0.65
weight: 0.2
- model: cstr/Spaetzle-v79-7b
parameters:
density: 0.65
weight: 0.2
- model: cstr/Spaetzle-v81-7b
parameters:
density: 0.65
weight: 0.2
- model: cstr/Spaetzle-v71-7b
parameters:
density: 0.65
weight: 0.2
merge_method: dare_ties
base_model: cstr/Spaetzle-v84-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v85-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.