llama3-8b-spaetzle-v33
These are GGUF quants of cstr/llama3-8b-spaetzle-v33, a merge of the following models:
- cstr/llama3-8b-spaetzle-v31
- cstr/llama3-8b-spaetzle-v28
- cstr/llama3-8b-spaetzle-v26
- cstr/llama3-8b-spaetzle-v20
It attempts a compromise in usefulness for German and English tasks.
It achieves on EQ-Bench v2_de as q4km quants 66.59 (171 of 171 parseable).
𧩠Configuration
models:
- model: cstr/llama3-8b-spaetzle-v20
# no parameters necessary for base model
- model: cstr/llama3-8b-spaetzle-v31
parameters:
density: 0.65
weight: 0.25
- model: cstr/llama3-8b-spaetzle-v28
parameters:
density: 0.65
weight: 0.25
- model: cstr/llama3-8b-spaetzle-v26
parameters:
density: 0.65
weight: 0.15
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v20
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3-8b-spaetzle-v33"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 7