YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Introduction

This repo contains pre-trained model using https://github.com/k2-fsa/icefall/pull/213.

It is trained on train-clean-100 subset of the LibriSpeech dataset. Also, it uses the S subset from GigaSpeech as extra training data.

How to clone this repo

sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21

cd icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21
git lfs pull

Catuion: You have to run git lfs pull. Otherwise, you will be SAD later.

The model in this repo is trained using the commit 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc.

You can use

git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc

to download icefall.

You can find the model information by visiting https://github.com/k2-fsa/icefall/blob/2332ba312d7ce72f08c7bac1e3312f7e3dd722dc/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py#L198.

In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.

The decoder architecture is modified from Rnn-Transducer with Stateless Prediction Network. A Conv1d layer is placed right after the input embedding layer.


Description

This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using icefall. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d.

The commands for training are:

cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh

export CUDA_VISIBLE_DEVICES="0,1"

./transducer_stateless_multi_datasets/train.py \
  --world-size 2 \
  --num-epochs 60 \
  --start-epoch 0 \
  --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
  --full-libri 0 \
  --max-duration 300 \
  --lr-factor 1 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25
  --giga-prob 0.2

The tensorboard training log can be found at https://tensorboard.dev/experiment/qUEKzMnrTZmOz1EXPda9RA/

The command for decoding is:

epoch=57
avg=17

## greedy search
for epoch in 57; do
  for avg in 17; do
    for sym in 1 2 3; do
    ./transducer_stateless_multi_datasets/decode.py \
      --epoch $epoch \
      --avg $avg \
      --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
      --bpe-model ./data/lang_bpe_500/bpe.model \
      --max-duration 100 \
      --context-size 2 \
      --max-sym-per-frame $sym
    done
  done
done

## modified beam search

epoch=57
avg=17
./transducer_stateless_multi_datasets/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless_multi_datasets/exp-100-2 \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --decoding-method modified_beam_search \
  --beam-size 4

You can find the decoding log for the above command in this repo (in the folder log).

The WERs for the test datasets are

test-clean test-other comment
greedy search (max sym per frame 1) 6.34 16.7 --epoch 57, --avg 17, --max-duration 100
greedy search (max sym per frame 2) 6.34 16.7 --epoch 57, --avg 17, --max-duration 100
greedy search (max sym per frame 3) 6.34 16.7 --epoch 57, --avg 17, --max-duration 100
modified beam search (beam size 4) 6.31 16.3 --epoch 57, --avg 17, --max-duration 100

File description

  • log, this directory contains the decoding log and decoding results
  • test_wavs, this directory contains wave files for testing the pre-trained model
  • data, this directory contains files generated by prepare.sh
  • exp, this directory contains only one file: preprained.pt

exp/pretrained.pt is generated by the following command:

./transducer_stateless_multi_datasets/export.py \
  --epoch 57 \
  --avg 17 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --exp-dir transducer_stateless_multi_datasets/exp-full

HINT: To use pretrained.pt to compute the WER for test-clean and test-other, just do the following:

cp icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
  /path/to/icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets/exp/epoch-999.pt

and pass --epoch 999 --avg 1 to transducer_stateless_multi_datasets/decode.py.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.