|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Whisper model.""" |
|
|
|
import math |
|
import os.path |
|
import random |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from dataclasses import dataclass |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
SequenceClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_whisper import WhisperVQConfig |
|
from .generation_whisper import WhisperGenerationMixin |
|
|
|
if is_flash_attn_2_available(): |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_HIDDEN_STATES_START_POSITION = 1 |
|
|
|
_CONFIG_FOR_DOC = "WhisperConfig" |
|
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" |
|
|
|
|
|
@dataclass |
|
class QuantizedBaseModelOutput(BaseModelOutput): |
|
quantized_token_ids: Optional[torch.LongTensor] = None |
|
|
|
|
|
def vector_quantize(inputs, codebook): |
|
embedding_size = codebook.size(1) |
|
inputs_flatten = inputs.reshape(-1, embedding_size) |
|
codebook_sqr = torch.sum(codebook ** 2, dim=1) |
|
inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True) |
|
|
|
distances = torch.addmm(codebook_sqr + inputs_sqr, |
|
inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0) |
|
|
|
_, indices_flatten = torch.min(distances, dim=1) |
|
codes_flatten = torch.index_select(codebook, dim=0, |
|
index=indices_flatten) |
|
codes = codes_flatten.view_as(inputs) |
|
return codes, indices_flatten, distances |
|
|
|
|
|
def mse_loss_with_mask(input, target, mask): |
|
loss = torch.nn.functional.mse_loss(input, target, reduction='none') |
|
loss = loss.mean(dim=-1) |
|
loss = loss * mask |
|
return loss.sum() / mask.sum() |
|
|
|
|
|
class CausalConv1d(nn.Conv1d): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=True, |
|
**kwargs |
|
): |
|
super(CausalConv1d, self).__init__( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=0, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
**kwargs |
|
) |
|
|
|
self.left_padding = dilation * (kernel_size - 1) |
|
|
|
def forward(self, inp): |
|
x = torch.nn.functional.pad(inp.unsqueeze(2), (self.left_padding, 0, 0, 0)).squeeze(2) |
|
|
|
return super(CausalConv1d, self).forward(x) |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor: |
|
"""Returns sinusoids for positional embedding""" |
|
if channels % 2 != 0: |
|
raise ValueError( |
|
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." |
|
) |
|
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) |
|
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1) |
|
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1) |
|
|
|
|
|
|
|
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): |
|
""" |
|
Shift input ids one token to the right. |
|
""" |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() |
|
shifted_input_ids[:, 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
|
|
def _compute_mask_indices( |
|
shape: Tuple[int, int], |
|
mask_prob: float, |
|
mask_length: int, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
min_masks: int = 0, |
|
) -> np.ndarray: |
|
""" |
|
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for |
|
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on |
|
CPU as part of the preprocessing during training. |
|
|
|
Args: |
|
shape: The shape for which to compute masks. This should be of a tuple of size 2 where |
|
the first element is the batch size and the second element is the length of the axis to span. |
|
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of |
|
independently generated mask spans of length `mask_length` is computed by |
|
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the |
|
actual percentage will be smaller. |
|
mask_length: size of the mask |
|
min_masks: minimum number of masked spans |
|
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of |
|
each batch dimension. |
|
""" |
|
batch_size, sequence_length = shape |
|
|
|
if mask_length < 1: |
|
raise ValueError("`mask_length` has to be bigger than 0.") |
|
|
|
if mask_length > sequence_length: |
|
raise ValueError( |
|
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" |
|
f" and `sequence_length`: {sequence_length}`" |
|
) |
|
|
|
|
|
epsilon = np.random.rand(1).item() |
|
|
|
def compute_num_masked_span(input_length): |
|
"""Given input length, compute how many spans should be masked""" |
|
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) |
|
num_masked_span = max(num_masked_span, min_masks) |
|
|
|
|
|
if num_masked_span * mask_length > sequence_length: |
|
num_masked_span = sequence_length // mask_length |
|
|
|
|
|
if input_length - (mask_length - 1) < num_masked_span: |
|
num_masked_span = max(input_length - (mask_length - 1), 0) |
|
|
|
return num_masked_span |
|
|
|
|
|
input_lengths = ( |
|
attention_mask.sum(-1).detach().tolist() |
|
if attention_mask is not None |
|
else [sequence_length for _ in range(batch_size)] |
|
) |
|
|
|
|
|
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) |
|
spec_aug_mask_idxs = [] |
|
|
|
max_num_masked_span = compute_num_masked_span(sequence_length) |
|
|
|
if max_num_masked_span == 0: |
|
return spec_aug_mask |
|
|
|
for input_length in input_lengths: |
|
|
|
num_masked_span = compute_num_masked_span(input_length) |
|
|
|
|
|
spec_aug_mask_idx = np.random.choice( |
|
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False |
|
) |
|
|
|
|
|
|
|
|
|
if len(spec_aug_mask_idx) == 0: |
|
|
|
|
|
|
|
dummy_mask_idx = sequence_length - 1 |
|
else: |
|
dummy_mask_idx = spec_aug_mask_idx[0] |
|
|
|
spec_aug_mask_idx = np.concatenate( |
|
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] |
|
) |
|
spec_aug_mask_idxs.append(spec_aug_mask_idx) |
|
|
|
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) |
|
|
|
|
|
spec_aug_mask_idxs = np.broadcast_to( |
|
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) |
|
) |
|
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) |
|
|
|
|
|
offsets = np.arange(mask_length)[None, None, :] |
|
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( |
|
batch_size, max_num_masked_span * mask_length |
|
) |
|
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets |
|
|
|
|
|
if spec_aug_mask_idxs.max() > sequence_length - 1: |
|
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 |
|
|
|
|
|
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) |
|
|
|
return spec_aug_mask |
|
|
|
|
|
class WhisperPositionalEmbedding(nn.Embedding): |
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
super().__init__(num_positions, embedding_dim) |
|
|
|
def forward(self, input_ids, past_key_values_length=0, position_ids=None): |
|
if position_ids is None: |
|
return self.weight[past_key_values_length: past_key_values_length + input_ids.shape[1]] |
|
else: |
|
return self.weight[position_ids] |
|
|
|
|
|
class WhisperAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = True, |
|
is_causal: bool = False, |
|
layer_idx: Optional[int] = None, |
|
config: Optional[WhisperVQConfig] = None, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
self.config = config |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim ** -0.5 |
|
self.is_decoder = is_decoder |
|
self.is_causal = is_causal |
|
|
|
if layer_idx is None and is_decoder: |
|
logger.warning_once( |
|
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " |
|
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
self.layer_idx = layer_idx |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_output = torch.matmul(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class WhisperFlashAttention2(WhisperAttention): |
|
""" |
|
Whisper flash attention module. This module inherits from `WhisperAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if isinstance(past_key_value, StaticCache): |
|
raise ValueError( |
|
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " |
|
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" |
|
) |
|
|
|
if output_attentions: |
|
raise ValueError("WhisperFlashAttention2 attention does not support output_attentions") |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
|
|
|
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
causal_mask, |
|
tgt_len, |
|
dropout=self.dropout, |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, -1) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class WhisperSdpaAttention(WhisperAttention): |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
if output_attentions or layer_head_mask is not None: |
|
|
|
logger.warning_once( |
|
"WhisperModel is using WhisperSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" |
|
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states, |
|
key_value_states=key_value_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
cache_position=cache_position, |
|
) |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
|
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False |
|
|
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
WHISPER_ATTENTION_CLASSES = { |
|
"eager": WhisperAttention, |
|
|
|
"sdpa": WhisperSdpaAttention, |
|
} |
|
|
|
|
|
|
|
class WhisperVQEncoderLayer(nn.Module): |
|
def __init__(self, config: WhisperVQConfig, is_causal=False): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
|
|
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( |
|
embed_dim=self.embed_dim, |
|
num_heads=config.encoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
config=config, |
|
is_causal=is_causal |
|
) |
|
self.is_causal = is_causal |
|
if self.is_causal: |
|
assert isinstance(self.self_attn, WhisperSdpaAttention), "Causal attention is only supported for SDPA" |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_head_mask: torch.Tensor, |
|
output_attentions: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
hidden_states, attn_weights, _ = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask if not self.is_causal else None, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
if hidden_states.dtype == torch.float16 and ( |
|
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() |
|
): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class WhisperDecoderLayer(nn.Module): |
|
def __init__(self, config: WhisperVQConfig, layer_idx: int = None): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
|
|
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( |
|
embed_dim=self.embed_dim, |
|
num_heads=config.decoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
is_causal=True, |
|
layer_idx=layer_idx, |
|
config=config, |
|
) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.encoder_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( |
|
self.embed_dim, |
|
config.decoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
layer_idx=layer_idx, |
|
config=config, |
|
) |
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` |
|
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of |
|
size `(decoder_attention_heads,)`. |
|
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
cross_attn_weights = None |
|
if encoder_hidden_states is not None: |
|
residual = hidden_states |
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( |
|
hidden_states=hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
present_key_value = (present_key_value, cross_attn_present_key_value) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, cross_attn_weights) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class WhisperPreTrainedModel(PreTrainedModel): |
|
config_class = WhisperVQConfig |
|
base_model_prefix = "model" |
|
main_input_name = "input_features" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.init_std |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, WhisperVQEncoder): |
|
with torch.no_grad(): |
|
embed_positions = module.embed_positions.weight |
|
embed_positions.copy_(sinusoids(*embed_positions.shape)) |
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): |
|
""" |
|
Computes the output length of the convolutional layers |
|
""" |
|
input_lengths = (input_lengths - 1) // 2 + 1 |
|
|
|
return input_lengths |
|
|
|
|
|
WHISPER_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`WhisperConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
WHISPER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in |
|
`[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids) |
|
|
|
Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If |
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also |
|
be used by default. |
|
|
|
If you want to change padding behavior, you should read |
|
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART |
|
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of |
|
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. |
|
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are |
|
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and |
|
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or |
|
when `config.use_cache=True` |
|
|
|
Two formats are allowed: |
|
- An [`~cache_utils.EncoderDecoderCache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded |
|
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be |
|
input (see `past_key_values`). This is useful if you want more control over how to convert |
|
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache |
|
in the correct position and to infer the complete sequence length. |
|
""" |
|
|
|
WHISPER_ENCODER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of |
|
hidden-states at the output of the last layer of the encoder. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class WhisperVQEncoder(WhisperPreTrainedModel): |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a |
|
[`WhisperEncoderLayer`]. |
|
|
|
Args: |
|
config: WhisperConfig |
|
""" |
|
|
|
def __init__(self, config: WhisperVQConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.dropout = config.dropout |
|
self.layerdrop = config.encoder_layerdrop |
|
|
|
embed_dim = config.d_model |
|
self.num_mel_bins = config.num_mel_bins |
|
self.padding_idx = config.pad_token_id |
|
self.max_source_positions = config.max_source_positions |
|
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 |
|
if config.encoder_causal_convolution: |
|
conv_class = CausalConv1d |
|
else: |
|
conv_class = nn.Conv1d |
|
self.conv1 = conv_class(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) |
|
self.conv2 = conv_class(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) |
|
|
|
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) |
|
self.embed_positions.requires_grad_(False) |
|
if config.quantize_encoder_only: |
|
self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, |
|
is_causal=config.encoder_causal_attention or config.quantize_causal_encoder) |
|
for _ in range(config.quantize_position)]) |
|
else: |
|
self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, is_causal=config.encoder_causal_attention or ( |
|
config.quantize_causal_encoder and layer_id < config.quantize_position)) for layer_id in |
|
range(config.encoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.pooling_layer = None |
|
|
|
self.codebook = None |
|
self.embed_positions2 = None |
|
self.quantize_loss = None |
|
self.num_active_codes = None |
|
self.quantize_ema_count = 0 |
|
|
|
self.save_hidden_dir = None |
|
self.save_hidden_position = None |
|
|
|
self.init_pooling_layer(config) |
|
self.init_quantize_layer(config) |
|
self.post_init() |
|
|
|
def init_pooling_layer(self, config: WhisperVQConfig): |
|
if config.pooling_kernel_size is not None: |
|
if config.pooling_type == "max": |
|
self.pooling_layer = nn.MaxPool1d(kernel_size=config.pooling_kernel_size) |
|
elif config.pooling_type == "avg": |
|
self.pooling_layer = nn.AvgPool1d(kernel_size=config.pooling_kernel_size) |
|
else: |
|
raise NotImplementedError(f"Pooling type {config.pooling_type} not implemented") |
|
|
|
def init_quantize_layer(self, config: WhisperVQConfig, quantize_load_codebook=None): |
|
if config.quantize_vocab_size is not None: |
|
if config.pooling_position is not None: |
|
assert config.quantize_position >= config.pooling_position |
|
self.codebook = nn.Embedding(config.quantize_vocab_size, self.config.d_model) |
|
if quantize_load_codebook is not None: |
|
init_codes = np.load(quantize_load_codebook) |
|
self.codebook.weight.data.copy_(torch.from_numpy(init_codes)) |
|
max_source_positions = self.max_source_positions |
|
if config.pooling_kernel_size is not None: |
|
max_source_positions = math.ceil(max_source_positions / self.config.pooling_kernel_size) |
|
self.embed_positions2 = nn.Embedding(max_source_positions, self.config.d_model) |
|
self.embed_positions2.weight.data.copy_(self.embed_positions.weight.data[:max_source_positions]) |
|
if config.quantize_ema_decay is not None: |
|
self.codebook.weight.requires_grad = False |
|
self.register_buffer("ema_count", torch.ones(config.quantize_vocab_size, dtype=torch.float)) |
|
self.register_buffer("ema_weight", self.codebook.weight.data.clone().float()) |
|
|
|
def _freeze_parameters(self): |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self._requires_grad = False |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.conv1 |
|
|
|
def set_input_embeddings(self, value: nn.Module): |
|
self.conv1 = value |
|
|
|
def get_block_causal_attention_mask(self, attention_mask, block_size=50): |
|
dtype = self.dtype |
|
batch_size, seq_length = attention_mask.shape |
|
causal_mask = torch.torch.tril( |
|
torch.ones(1, seq_length, seq_length, dtype=torch.bool, device=attention_mask.device)) |
|
block_square_mask = [] |
|
for start in range(0, seq_length, block_size): |
|
end = min(start + block_size, seq_length) |
|
length = end - start |
|
block_square_mask.append(causal_mask.new_ones((length, length))) |
|
block_square_mask = torch.block_diag(*block_square_mask) |
|
block_causal_mask = causal_mask | block_square_mask |
|
block_causal_mask = block_causal_mask & attention_mask[:, None, :] |
|
block_causal_mask = block_causal_mask.to(dtype=dtype) |
|
block_causal_mask = (1.0 - block_causal_mask) * torch.finfo(dtype).min |
|
block_causal_mask = block_causal_mask.unsqueeze(1) |
|
return block_causal_mask |
|
|
|
def forward( |
|
self, |
|
input_features, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
quantized_token_ids=None |
|
): |
|
r""" |
|
Args: |
|
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be |
|
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a |
|
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into |
|
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding |
|
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
attention_mask (`torch.Tensor`)`, *optional*): |
|
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, |
|
but it is not used. By default the silence in the input log mel spectrogram are ignored. |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size, feature_size, seq_length = input_features.shape |
|
seq_length = seq_length // (self.conv1.stride[0] * self.conv2.stride[0]) |
|
|
|
attention_mask = attention_mask[:, :: self.conv1.stride[0] * self.conv2.stride[0]] |
|
if self.config.quantize_causal_block_size is not None: |
|
extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, |
|
block_size=self.config.quantize_causal_block_size) |
|
else: |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, (batch_size, seq_length)) |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) |
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) |
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1) |
|
embed_pos = self.embed_positions.weight |
|
|
|
hidden_states = inputs_embeds + embed_pos[:seq_length] |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
assert attention_mask.shape[-1] == hidden_states.shape[1] |
|
|
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layers) |
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
to_drop = False |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
to_drop = True |
|
|
|
if to_drop: |
|
layer_outputs = (None, None) |
|
else: |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
extended_attention_mask, |
|
(head_mask[idx] if head_mask is not None else None), |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
extended_attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
if idx + 1 == self.config.pooling_position and self.config.pooling_kernel_size is not None: |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
if hidden_states.shape[-1] % self.config.pooling_kernel_size != 0: |
|
hidden_states = torch.nn.functional.pad(hidden_states, ( |
|
0, self.config.pooling_kernel_size - hidden_states.shape[-1] % self.config.pooling_kernel_size)) |
|
hidden_states = self.pooling_layer(hidden_states).permute(0, 2, 1) |
|
attention_mask = attention_mask[:, ::self.config.pooling_kernel_size] |
|
if self.config.quantize_causal_block_size is not None: |
|
extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, block_size=self.config.quantize_causal_block_size // self.config.pooling_kernel_size) |
|
else: |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, ( |
|
batch_size, seq_length // self.config.pooling_kernel_size)) |
|
|
|
if idx + 1 == self.config.quantize_position and self.config.quantize_vocab_size is not None: |
|
if quantized_token_ids is not None: |
|
hidden_states = self.codebook(quantized_token_ids) |
|
else: |
|
hidden_quantized, indices_flat, distances = vector_quantize(hidden_states, self.codebook.weight) |
|
quantized_token_ids = indices_flat.reshape(batch_size, hidden_quantized.shape[1]) |
|
if self.training: |
|
encodings = torch.nn.functional.one_hot(indices_flat, self.config.quantize_vocab_size).float() |
|
encodings = encodings * attention_mask.reshape(-1, 1) |
|
n = torch.sum(encodings, dim=0) |
|
torch.distributed.all_reduce(n, op=torch.distributed.ReduceOp.SUM) |
|
self.num_active_codes = n.nonzero().shape[0] |
|
if self.config.quantize_ema_decay: |
|
hidden_flat = hidden_states.detach().float().reshape(-1, hidden_states.shape[-1]) |
|
with torch.autocast(device_type='cuda', dtype=torch.float32): |
|
dw = torch.matmul(encodings.t(), hidden_flat) |
|
torch.distributed.all_reduce(dw, op=torch.distributed.ReduceOp.SUM) |
|
self.ema_count = self.ema_count * self.config.quantize_ema_decay + ( |
|
1 - self.config.quantize_ema_decay) * n |
|
total_count = torch.sum(self.ema_count) |
|
self.ema_count = (self.ema_count + 1e-5) / ( |
|
total_count + self.config.quantize_vocab_size * 1e-5) * total_count |
|
self.ema_weight = self.ema_weight * self.config.quantize_ema_decay + ( |
|
1 - self.config.quantize_ema_decay) * dw |
|
self.codebook.weight.data = self.ema_weight / self.ema_count.unsqueeze(1) |
|
self.quantize_loss = self.config.quantize_loss_scale * self.config.quantize_commit_coefficient * mse_loss_with_mask( |
|
hidden_states, hidden_quantized.detach(), attention_mask) |
|
self.quantize_ema_count += 1 |
|
if self.config.quantize_restart_interval is not None and self.quantize_ema_count % self.config.quantize_restart_interval == 0: |
|
rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size() |
|
segment_vocab_size = self.config.quantize_vocab_size // world_size |
|
start_idx = segment_vocab_size * rank |
|
ema_count_segment = self.ema_count[start_idx: start_idx + segment_vocab_size] |
|
threshold = 1 * ( |
|
self.config.quantize_ema_decay ** self.config.quantize_restart_interval) |
|
update_indices = (ema_count_segment < threshold).nonzero()[:, 0] + start_idx |
|
num_update = update_indices.shape[0] |
|
mask_flat = attention_mask.reshape(-1) > 0 |
|
hidden_selected = hidden_flat[mask_flat] |
|
hidden_update = hidden_selected[random.sample(range(len(hidden_selected)), num_update)] |
|
num_update = torch.as_tensor([num_update], dtype=torch.long, |
|
device=hidden_states.device) |
|
num_update_list = [torch.as_tensor([0], dtype=torch.long, device=hidden_states.device) |
|
for _ |
|
in range(world_size)] |
|
torch.distributed.all_gather(num_update_list, num_update) |
|
update_indices_list = [ |
|
torch.zeros(num.item(), dtype=torch.long, device=hidden_states.device) for num in |
|
num_update_list] |
|
torch.distributed.all_gather(update_indices_list, update_indices) |
|
update_indices = torch.cat(update_indices_list) |
|
hidden_update_list = [ |
|
torch.zeros(num.item(), hidden_flat.shape[-1], dtype=hidden_update.dtype, |
|
device=hidden_states.device) for num in num_update_list] |
|
torch.distributed.all_gather(hidden_update_list, hidden_update) |
|
hidden_update = torch.cat(hidden_update_list) |
|
self.codebook.weight.data[update_indices] = hidden_update |
|
self.ema_count[update_indices] = 1 |
|
self.ema_weight[update_indices] = hidden_update |
|
if torch.distributed.get_rank() == 0: |
|
print(f"restart {len(update_indices)} tokens") |
|
else: |
|
loss = self.config.quantize_loss_scale * ( |
|
self.config.quantize_commit_coefficient * mse_loss_with_mask(hidden_states, |
|
hidden_quantized.detach(), |
|
attention_mask) + mse_loss_with_mask( |
|
hidden_quantized, hidden_states.detach(), attention_mask)) |
|
self.quantize_loss = loss |
|
hidden_states = hidden_states + (hidden_quantized - hidden_states).detach() |
|
else: |
|
hidden_states = hidden_quantized |
|
hidden_states = hidden_states + self.embed_positions2.weight[:hidden_states.shape[1]] |
|
|
|
if idx + 1 == self.save_hidden_position: |
|
import numpy as np |
|
import uuid |
|
to_save = [] |
|
for batch_idx, hidden_state in enumerate(hidden_states): |
|
for seq_idx, hidden in enumerate(hidden_state): |
|
if attention_mask[batch_idx, seq_idx]: |
|
to_save.append(hidden.detach().cpu().numpy()) |
|
np.save(os.path.join(self.save_hidden_dir, f"{str(uuid.uuid4())}.npy"), to_save) |
|
if not self.config.quantize_encoder_only: |
|
hidden_states = self.layer_norm(hidden_states) |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return QuantizedBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, |
|
quantized_token_ids=quantized_token_ids, |
|
) |
|
|
|
|
|
class WhisperVQDecoder(WhisperPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] |
|
|
|
Args: |
|
config: WhisperConfig |
|
""" |
|
|
|
main_input_name = "input_ids" |
|
|
|
def __init__(self, config: WhisperVQConfig): |
|
super().__init__(config) |
|
self.dropout = config.dropout |
|
self.layerdrop = config.decoder_layerdrop |
|
self.padding_idx = config.pad_token_id |
|
self.max_target_positions = config.max_target_positions |
|
self.max_source_positions = config.max_source_positions |
|
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) |
|
self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) |
|
|
|
self.layers = nn.ModuleList( |
|
[WhisperDecoderLayer(config, layer_idx) for layer_idx in range(config.decoder_layers)] |
|
) |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
|
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
position_ids=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
cache_position=None, |
|
): |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
|
|
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
of the decoder.] |
|
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): |
|
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention |
|
on hidden heads. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are |
|
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and |
|
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or |
|
when `config.use_cache=True` |
|
|
|
Two formats are allowed: |
|
- An [`~cache_utils.EncoderDecoderCache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of |
|
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing |
|
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more |
|
control over how to convert `input_ids` indices into associated vectors than the model's internal |
|
embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the |
|
cache in the correct position and to infer the complete sequence length. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
assert encoder_attention_mask.shape[-1] == encoder_hidden_states.shape[1] |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
|
|
return_legacy_cache = False |
|
return_self_attention_cache = False |
|
if use_cache or past_key_values is not None: |
|
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): |
|
return_self_attention_cache = True |
|
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) |
|
elif not isinstance(past_key_values, EncoderDecoderCache): |
|
return_legacy_cache = True |
|
logger.warning_once( |
|
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. " |
|
"You should pass an instance of `EncoderDecoderCache` instead, e.g. " |
|
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." |
|
) |
|
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) |
|
|
|
past_key_values_length = 0 |
|
if cache_position is not None: |
|
past_key_values_length = cache_position[0] |
|
elif past_key_values is not None: |
|
past_key_values_length = past_key_values.get_seq_length() |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange( |
|
past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
if input_ids is not None: |
|
positions = self.embed_positions( |
|
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
else: |
|
positions = self.embed_positions( |
|
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
|
|
hidden_states = inputs_embeds + positions.to(inputs_embeds.device) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, |
|
inputs_embeds, |
|
cache_position, |
|
past_key_values.self_attention_cache if past_key_values is not None else None, |
|
output_attentions, |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." |
|
) |
|
use_cache = False |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
|
|
|
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
if attn_mask is not None: |
|
assert attn_mask.size()[0] == (len(self.layers)), ( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
continue |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
head_mask[idx] if head_mask is not None else None, |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, |
|
None, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
cross_attn_layer_head_mask=( |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
), |
|
past_key_value=past_key_values if use_cache else None, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = past_key_values if use_cache else None |
|
if return_self_attention_cache: |
|
next_cache = past_key_values.self_attention_cache |
|
if return_legacy_cache: |
|
next_cache = past_key_values.to_legacy_cache() |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Whisper Model outputting raw hidden-states without any specific head on top.", |
|
WHISPER_START_DOCSTRING, |
|
) |
|
class WhisperVQModel(WhisperPreTrainedModel): |
|
def __init__(self, config: WhisperVQConfig): |
|
super().__init__(config) |
|
|
|
self.encoder = WhisperVQEncoder(config) |
|
self.decoder = WhisperVQDecoder(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.decoder.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.decoder.embed_tokens = value |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def freeze_encoder(self): |
|
""" |
|
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will |
|
not be updated during training. |
|
""" |
|
self.encoder._freeze_parameters() |
|
|
|
def _mask_input_features( |
|
self, |
|
input_features: torch.FloatTensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
""" |
|
Masks extracted features along time axis and/or along feature axis according to |
|
[SpecAugment](https://arxiv.org/abs/1904.08779). |
|
""" |
|
|
|
|
|
if not getattr(self.config, "apply_spec_augment", True): |
|
return input_features |
|
|
|
|
|
batch_size, hidden_size, sequence_length = input_features.size() |
|
|
|
if self.config.mask_time_prob > 0 and self.training: |
|
|
|
mask_time_indices = _compute_mask_indices( |
|
(batch_size, sequence_length), |
|
mask_prob=self.config.mask_time_prob, |
|
mask_length=self.config.mask_time_length, |
|
attention_mask=attention_mask, |
|
min_masks=self.config.mask_time_min_masks, |
|
) |
|
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) |
|
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) |
|
input_features[mask_time_indices] = 0 |
|
|
|
if self.config.mask_feature_prob > 0 and self.training: |
|
|
|
mask_feature_indices = _compute_mask_indices( |
|
(batch_size, hidden_size), |
|
mask_prob=self.config.mask_feature_prob, |
|
mask_length=self.config.mask_feature_length, |
|
min_masks=self.config.mask_feature_min_masks, |
|
) |
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) |
|
input_features[mask_feature_indices] = 0 |
|
|
|
return input_features |
|
|
|
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, |
|
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
quantized_token_ids: Optional[torch.LongTensor] = None |
|
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoFeatureExtractor, WhisperModel |
|
>>> from datasets import load_dataset |
|
|
|
>>> model = WhisperVQModel.from_pretrained("openai/whisper-base") |
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") |
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") |
|
>>> input_features = inputs.input_features |
|
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id |
|
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state |
|
>>> list(last_hidden_state.shape) |
|
[1, 2, 512] |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if encoder_outputs is None: |
|
input_features = self._mask_input_features(input_features, attention_mask=attention_mask) |
|
|
|
encoder_outputs = self.encoder( |
|
input_features, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
quantized_token_ids=quantized_token_ids |
|
) |
|
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
|
|
attention_mask = attention_mask[:, ::self.encoder.conv1.stride[0] * self.encoder.conv2.stride[0]] |
|
if self.encoder.config.pooling_kernel_size is not None: |
|
attention_mask = attention_mask[:, ::self.encoder.config.pooling_kernel_size] |
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_outputs[0], |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=decoder_inputs_embeds, |
|
position_ids=decoder_position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The Whisper Model with a language modeling head. Can be used for automatic speech recognition.", |
|
WHISPER_START_DOCSTRING, |
|
) |
|
class WhisperVQForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedModel): |
|
base_model_prefix = "model" |
|
_tied_weights_keys = ["proj_out.weight"] |
|
|
|
def __init__(self, config: WhisperVQConfig): |
|
super().__init__(config) |
|
self.model = WhisperVQModel(config) |
|
self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
self.quantize_loss = None |
|
|
|
self.post_init() |
|
|
|
def get_encoder(self): |
|
return self.model.get_encoder() |
|
|
|
def get_decoder(self): |
|
return self.model.get_decoder() |
|
|
|
def get_output_embeddings(self): |
|
return self.proj_out |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.proj_out = new_embeddings |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.get_input_embeddings() |
|
|
|
def freeze_encoder(self): |
|
""" |
|
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will |
|
not be updated during training. |
|
""" |
|
self.model.encoder._freeze_parameters() |
|
|
|
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, |
|
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
quantized_token_ids: Optional[torch.LongTensor] = None |
|
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` |
|
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is |
|
only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration |
|
>>> from datasets import load_dataset |
|
|
|
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") |
|
>>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") |
|
|
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
|
|
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") |
|
>>> input_features = inputs.input_features |
|
|
|
>>> generated_ids = model.generate(inputs=input_features) |
|
|
|
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
>>> transcription |
|
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
decoder_input_ids = shift_tokens_right( |
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
|
|
outputs = self.model( |
|
input_features, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
encoder_outputs=encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
decoder_position_ids=decoder_position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
quantized_token_ids=quantized_token_ids |
|
) |
|
lm_logits = self.proj_out(outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) |
|
if self.training and self.model.encoder.quantize_loss is not None: |
|
loss = loss + self.model.encoder.quantize_loss |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
decoder_input_ids, |
|
past_key_values=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
attention_mask=None, |
|
decoder_attention_mask=None, |
|
cache_position=None, |
|
quantized_token_ids=None, |
|
**kwargs, |
|
): |
|
decoder_position_ids = None |
|
if decoder_attention_mask is not None: |
|
decoder_position_ids = (decoder_attention_mask.cumsum(-1) - 1).clamp(min=0) |
|
|
|
past_length = 0 |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, EncoderDecoderCache): |
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
else: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if decoder_input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = decoder_input_ids.shape[1] - 1 |
|
|
|
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] |
|
|
|
if decoder_position_ids is not None: |
|
decoder_position_ids = decoder_position_ids[:, remove_prefix_length:] |
|
|
|
decoder_position_ids = decoder_position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange( |
|
past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device |
|
) |
|
elif use_cache: |
|
cache_position = cache_position[-decoder_input_ids.shape[1]:] |
|
|
|
|
|
|
|
decoder_input_ids = decoder_input_ids.contiguous() |
|
|
|
if ( |
|
isinstance(past_key_values, EncoderDecoderCache) |
|
and ( |
|
isinstance(past_key_values.self_attention_cache, StaticCache) |
|
or isinstance(past_key_values.cross_attention_cache, StaticCache) |
|
) |
|
and decoder_attention_mask is not None |
|
and decoder_attention_mask.ndim == 2 |
|
): |
|
batch_size, sequence_length = decoder_input_ids.shape |
|
device = decoder_input_ids.device |
|
|
|
dtype = self.proj_out.weight.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
|
|
decoder_attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
decoder_attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=past_key_values.self_attention_cache.get_max_length(), |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=batch_size, |
|
) |
|
|
|
return { |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"past_key_values": past_key_values, |
|
"decoder_input_ids": decoder_input_ids, |
|
"use_cache": use_cache, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"decoder_position_ids": decoder_position_ids, |
|
"cache_position": cache_position, |
|
"quantized_token_ids": quantized_token_ids |
|
} |
|
|
|
def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs): |
|
if self.config.skip_language_detection: |
|
return torch.as_tensor([[generation_config.decoder_start_token_id] for _ in range(batch_size)], |
|
dtype=torch.long, device=self.device).expand(batch_size, -1) |
|
else: |
|
return super()._retrieve_init_tokens(input_features, batch_size, generation_config, config, |
|
num_segment_frames, kwargs) |
|
|
|
|
|
class WhisperDecoderWrapper(WhisperPreTrainedModel): |
|
""" |
|
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is |
|
used in combination with the [`EncoderDecoderModel`] framework. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
config.is_encoder_decoder = False |
|
self.decoder = WhisperVQDecoder(config) |
|
|
|
def get_input_embeddings(self): |
|
return self.decoder.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.decoder.embed_tokens = value |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.decoder(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Whisper decoder with a language modeling head on top (linear layer with weights tied to the input embeddings). |
|
""", |
|
WHISPER_START_DOCSTRING, |
|
) |
|
class WhisperForCausalLM(WhisperPreTrainedModel): |
|
_tied_weights_keys = ["proj_out.weight"] |
|
main_input_name = "input_ids" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
config.is_encoder_decoder = False |
|
self.model = WhisperDecoderWrapper(config) |
|
|
|
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.proj_out |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.proj_out = new_embeddings |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def set_decoder(self, decoder): |
|
self.model.decoder = decoder |
|
|
|
def get_decoder(self): |
|
return self.model.decoder |
|
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
encoder_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
if the model is configured as a decoder. |
|
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional |
|
tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains |
|
pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If |
|
`past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache |
|
in the correct position and to infer the complete sequence length. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") |
|
>>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-large-v2") |
|
|
|
>>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2") |
|
|
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
>>> sample = ds[0]["audio"] |
|
>>> input_features = processor( |
|
... sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" |
|
... ).input_features |
|
|
|
>>> predicted_ids = model.generate(input_features, assistant_model=assistant_model) |
|
|
|
>>> # decode token ids to text |
|
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
>>> transcription |
|
' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if isinstance(encoder_outputs, (BaseModelOutput, tuple, list)): |
|
encoder_outputs = encoder_outputs[0] |
|
|
|
|
|
outputs = self.model.decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_outputs, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
logits = self.proj_out(outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
**kwargs, |
|
): |
|
past_length = 0 |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, (Cache, EncoderDecoderCache)): |
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
else: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange(past_length, past_length + input_ids.shape[1], device=input_ids.device) |
|
elif use_cache: |
|
cache_position = cache_position[-input_ids.shape[1]:] |
|
|
|
return { |
|
"encoder_outputs": encoder_outputs, |
|
"past_key_values": past_key_values, |
|
"input_ids": input_ids, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"cache_position": cache_position, |
|
} |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Whisper Encoder Model with a sequence classification head on top (a linear layer over the pooled output) for tasks |
|
like SUPERB Keyword Spotting. |
|
""", |
|
WHISPER_ENCODER_INPUTS_DOCSTRING, |
|
) |
|
class WhisperForAudioClassification(WhisperPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.encoder = WhisperVQEncoder(config) |
|
num_layers = config.num_hidden_layers + 1 |
|
if config.use_weighted_layer_sum: |
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) |
|
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) |
|
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def freeze_encoder(self): |
|
""" |
|
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will |
|
not be updated during training. Only the projection layers and classification head will be updated. |
|
""" |
|
self.encoder._freeze_parameters() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.encoder.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value: nn.Module): |
|
self.encoder.set_input_embeddings(value) |
|
|
|
@add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_features: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification |
|
>>> from datasets import load_dataset |
|
|
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") |
|
>>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") |
|
|
|
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) |
|
>>> sample = next(iter(ds)) |
|
|
|
>>> inputs = feature_extractor( |
|
... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" |
|
... ) |
|
>>> input_features = inputs.input_features |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(input_features).logits |
|
|
|
>>> predicted_class_ids = torch.argmax(logits).item() |
|
>>> predicted_label = model.config.id2label[predicted_class_ids] |
|
>>> predicted_label |
|
'Afrikaans' |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
if self.config.use_weighted_layer_sum: |
|
output_hidden_states = True |
|
elif output_hidden_states is None: |
|
output_hidden_states = self.config.output_hidden_states |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_features, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if self.config.use_weighted_layer_sum: |
|
hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION] |
|
hidden_states = torch.stack(hidden_states, dim=1) |
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) |
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) |
|
else: |
|
hidden_states = encoder_outputs[0] |
|
|
|
hidden_states = self.projector(hidden_states) |
|
pooled_output = hidden_states.mean(dim=1) |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + encoder_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|