|
--- |
|
language: |
|
- ko |
|
tags: |
|
- trocr |
|
- image-to-text |
|
license: mit |
|
metrics: |
|
- wer |
|
- cer |
|
widget: |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/random_2.jpg |
|
example_title: 랜덤 문장 1 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/random_6.jpg |
|
example_title: 랜덤 문장 2 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/chatbot_3.jpg |
|
example_title: 챗봇 1 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/chatbot_5.jpg |
|
example_title: 챗봇 2 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/news_1.jpg |
|
example_title: 뉴스 1 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/news_3.jpg |
|
example_title: 뉴스 2 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/nsmc_1.jpg |
|
example_title: 영화 리뷰 1 |
|
- src: https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/nsmc_2.jpg |
|
example_title: 영화 리뷰 2 |
|
--- |
|
|
|
# TrOCR for Korean Language (PoC) |
|
|
|
## Overview |
|
|
|
TrOCR has not yet released a multilingual model including Korean, so we trained a Korean model for PoC purpose. Based on this model, it is recommended to collect more data to additionally train the 1st stage or perform fine-tuning as the 2nd stage. |
|
|
|
## Collecting data |
|
|
|
### Text data |
|
We created training data by processing three types of datasets. |
|
|
|
- News summarization dataset: https://huggingface.co/datasets/daekeun-ml/naver-news-summarization-ko |
|
- Naver Movie Sentiment Classification: https://github.com/e9t/nsmc |
|
- Chatbot dataset: https://github.com/songys/Chatbot_data |
|
|
|
For efficient data collection, each sentence was separated by a sentence separator library (Kiwi Python wrapper; https://github.com/bab2min/kiwipiepy), and as a result, 637,401 samples were collected. |
|
|
|
### Image Data |
|
|
|
Image data was generated with TextRecognitionDataGenerator (https://github.com/Belval/TextRecognitionDataGenerator) introduced in the TrOCR paper. |
|
Below is a code snippet for generating images. |
|
```shell |
|
python3 ./trdg/run.py -i ocr_dataset_poc.txt -w 5 -t {num_cores} -f 64 -l ko -c {num_samples} -na 2 --output_dir {dataset_dir} |
|
``` |
|
|
|
## Training |
|
|
|
### Base model |
|
The encoder model used `facebook/deit-base-distilled-patch16-384` and the decoder model used `klue/roberta-base`. It is easier than training by starting weights from `microsoft/trocr-base-stage1`. |
|
|
|
### Parameters |
|
We used heuristic parameters without separate hyperparameter tuning. |
|
- learning_rate = 4e-5 |
|
- epochs = 25 |
|
- fp16 = True |
|
- max_length = 64 |
|
|
|
## Usage |
|
|
|
### inference.py |
|
|
|
```python |
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer |
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") |
|
model = VisionEncoderDecoderModel.from_pretrained("daekeun-ml/ko-trocr-base-nsmc-news-chatbot") |
|
tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/ko-trocr-base-nsmc-news-chatbot") |
|
|
|
url = "https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/news_1.jpg" |
|
response = requests.get(url) |
|
img = Image.open(BytesIO(response.content)) |
|
|
|
pixel_values = processor(img, return_tensors="pt").pixel_values |
|
generated_ids = model.generate(pixel_values, max_length=64) |
|
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_text) |
|
``` |
|
|
|
All the code required for data collection and model training has been published on the author's Github. |
|
- https://github.com/daekeun-ml/sm-kornlp-usecases/tree/main/trocr |