|
--- |
|
inference: false |
|
language: |
|
- ja |
|
--- |
|
# weblab-10b-instruction-sft-GPTQ |
|
|
|
original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft) which is a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters. |
|
|
|
This model is A quantized(miniaturized) version of the original model(21.42GB). |
|
|
|
There are currently two well-known quantization version of original model. |
|
(1)GPTQ version(This model. 6.3 GB) |
|
The size is smaller and the execution speed is faster, but the inference performance may be a little worse than original model. |
|
At least one GPU is currently required due to a limitation of the Accelerate library. |
|
So this model cannot be run with the huggingface space free version. |
|
You need autoGPTQ library to use this model. |
|
|
|
(2)llama.cpp version(gguf)([matsuolab-weblab-10b-instruction-sft-gguf](https://huggingface.co/mmnga/matsuolab-weblab-10b-instruction-sft-gguf) 6.03GB) |
|
created by mmnga. |
|
You can use gguf model with llama.cpp at cpu only machine. |
|
But maybe gguf model little bit slower then GPTQ especialy long text. |
|
|
|
|
|
### sample code |
|
|
|
Try it on [Google Colab. Under development](https://github.com/webbigdata-jp/python_sample/blob/main/weblab_10b_instruction_sft_GPTQ_sample.ipynb) |
|
|
|
``` |
|
pip install auto-gptq |
|
``` |
|
|
|
``` |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
|
|
quantized_model_dir = "dahara1/weblab-10b-instruction-sft-GPTQ" |
|
model_basename = "gptq_model-4bit-128g" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir) |
|
|
|
model = AutoGPTQForCausalLM.from_quantized( |
|
quantized_model_dir, |
|
model_basename=model_basename, |
|
use_safetensors=True, |
|
device="cuda:0") |
|
|
|
|
|
prompt_text = "スタジオジブリの作品を5つ教えてください" |
|
prompt_template = f'以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{prompt_text}\n\n### 応答:' |
|
|
|
tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids |
|
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8) |
|
print(tokenizer.decode(output[0])) |
|
``` |
|
|
|
### Other documents |
|
https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md |
|
|
|
### Benchmark |
|
|
|
The results below are preliminary. The blank part is under measurement. |
|
Also, the score may change as a result of tuning after this. |
|
|
|
* **Japanese benchmark** |
|
|
|
- *We used [Stability-AI/lm-evaluation-harness + gptq patch](https://github.com/webbigdata-jp/lm-evaluation-harness) for evaluation.* |
|
- *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.* |
|
- *model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* |
|
- *The number of few-shots is 3,3,3,2.* |
|
|
|
| Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | |
|
| :-- | :-- | :-- | :-- | :-- | :-- | |
|
| weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 | |
|
| weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 | |
|
| *weblab-10b-instruction-sft-GPTQ* | 69.72 | 74.53 | 41.70 | 89.95 | 72.69 | |
|
|