dahara1's picture
Update README.md
36dec03
|
raw
history blame
3.1 kB
metadata
inference: false
language:
  - ja

weblab-10b-instruction-sft-GPTQ

original model weblab-10b-instruction-sft which is a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters.

This model is A quantized(miniaturized) version of the original model.

There are currently two well-known quantization methods.
(1)GPTQ(This model)
The size is smaller and the execution speed is faster, but the inference performance may be a little worse.
You need autoGPTQ library to use this model.

(2)llama.cpp(matsuolab-weblab-10b-instruction-sft-gguf) created by mmnga. You can use cpu only machine. but little bit slow especialy long text.

sample code

At least one GPU is currently required due to a limitation of the Accelerate library.
So this model cannot be run with the huggingface space free version.
Try it on Google Colab Under development

pip install auto-gptq
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

quantized_model_dir = "dahara1/weblab-10b-instruction-sft-GPTQ"
model_basename = "gptq_model-4bit-128g"

tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)

model = AutoGPTQForCausalLM.from_quantized(
        quantized_model_dir,
        model_basename=model_basename,
        use_safetensors=True,
        device="cuda:0")


prompt_text = "スタジオジブリの作品を5つ教えてください"
prompt_template = f'以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{prompt_text}\n\n### 応答:'

tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
print(tokenizer.decode(output[0]))

Other documents

https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md

Benchmark

The results below are preliminary. The blank part is under measurement.
Also, the score may change as a result of tuning after this.

  • Japanese benchmark

    • We used Stability-AI/lm-evaluation-harness + gptq patch for evaluation.
    • The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.
    • model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.
    • The number of few-shots is 3,3,3,2.
    Model Average JCommonsenseQA JNLI MARC-ja JSQuAD
    weblab-10b-instruction-sft 78.78 74.35 65.65 96.06 79.04
    weblab-10b 66.38 65.86 54.19 84.49 60.98
    weblab-10b-instruction-sft-GPTQ - 74.53 41.70 - 72.69