bert-base-cased-airlines-news-multi-label
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3009
- F1: 0.8533
- Jaccard: 0.4071
- Precisions: 0.8126
- Recalls: 0.8999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Jaccard | Precisions | Recalls |
---|---|---|---|---|---|---|---|
No log | 1.0 | 76 | 0.5236 | 0.7888 | 0.1283 | 0.8216 | 0.7804 |
No log | 2.0 | 152 | 0.3180 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
No log | 3.0 | 228 | 0.3117 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
No log | 4.0 | 304 | 0.3106 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
No log | 5.0 | 380 | 0.3110 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
No log | 6.0 | 456 | 0.3095 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 7.0 | 532 | 0.3096 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 8.0 | 608 | 0.3089 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 9.0 | 684 | 0.3094 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 10.0 | 760 | 0.3092 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 11.0 | 836 | 0.3088 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 12.0 | 912 | 0.3082 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3902 | 13.0 | 988 | 0.3086 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 14.0 | 1064 | 0.3089 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 15.0 | 1140 | 0.3088 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 16.0 | 1216 | 0.3081 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 17.0 | 1292 | 0.3076 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 18.0 | 1368 | 0.3079 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3182 | 19.0 | 1444 | 0.3066 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 20.0 | 1520 | 0.3081 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 21.0 | 1596 | 0.3079 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 22.0 | 1672 | 0.3074 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 23.0 | 1748 | 0.3069 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 24.0 | 1824 | 0.3074 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 25.0 | 1900 | 0.3061 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3157 | 26.0 | 1976 | 0.3060 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 27.0 | 2052 | 0.3060 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 28.0 | 2128 | 0.3059 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 29.0 | 2204 | 0.3057 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 30.0 | 2280 | 0.3054 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 31.0 | 2356 | 0.3061 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3139 | 32.0 | 2432 | 0.3062 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 33.0 | 2508 | 0.3055 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 34.0 | 2584 | 0.3054 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 35.0 | 2660 | 0.3051 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 36.0 | 2736 | 0.3054 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 37.0 | 2812 | 0.3047 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 38.0 | 2888 | 0.3042 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.313 | 39.0 | 2964 | 0.3042 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 40.0 | 3040 | 0.3044 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 41.0 | 3116 | 0.3043 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 42.0 | 3192 | 0.3040 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 43.0 | 3268 | 0.3040 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 44.0 | 3344 | 0.3040 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 45.0 | 3420 | 0.3039 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3117 | 46.0 | 3496 | 0.3038 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 47.0 | 3572 | 0.3041 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 48.0 | 3648 | 0.3042 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 49.0 | 3724 | 0.3035 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 50.0 | 3800 | 0.3036 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 51.0 | 3876 | 0.3031 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 52.0 | 3952 | 0.3029 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 53.0 | 4028 | 0.3030 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 54.0 | 4104 | 0.3029 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 55.0 | 4180 | 0.3033 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 56.0 | 4256 | 0.3027 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 57.0 | 4332 | 0.3026 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 58.0 | 4408 | 0.3026 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3101 | 59.0 | 4484 | 0.3023 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 60.0 | 4560 | 0.3029 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 61.0 | 4636 | 0.3024 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 62.0 | 4712 | 0.3022 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 63.0 | 4788 | 0.3024 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 64.0 | 4864 | 0.3025 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.308 | 65.0 | 4940 | 0.3023 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 66.0 | 5016 | 0.3019 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 67.0 | 5092 | 0.3020 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 68.0 | 5168 | 0.3017 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 69.0 | 5244 | 0.3019 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 70.0 | 5320 | 0.3020 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 71.0 | 5396 | 0.3018 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3078 | 72.0 | 5472 | 0.3019 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 73.0 | 5548 | 0.3017 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 74.0 | 5624 | 0.3016 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 75.0 | 5700 | 0.3015 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 76.0 | 5776 | 0.3015 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 77.0 | 5852 | 0.3016 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3081 | 78.0 | 5928 | 0.3014 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 79.0 | 6004 | 0.3014 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 80.0 | 6080 | 0.3014 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 81.0 | 6156 | 0.3013 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 82.0 | 6232 | 0.3013 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 83.0 | 6308 | 0.3012 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 84.0 | 6384 | 0.3014 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3066 | 85.0 | 6460 | 0.3012 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 86.0 | 6536 | 0.3012 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 87.0 | 6612 | 0.3012 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 88.0 | 6688 | 0.3011 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 89.0 | 6764 | 0.3011 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 90.0 | 6840 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 91.0 | 6916 | 0.3011 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3076 | 92.0 | 6992 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 93.0 | 7068 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 94.0 | 7144 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 95.0 | 7220 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 96.0 | 7296 | 0.3009 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 97.0 | 7372 | 0.3010 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.3059 | 98.0 | 7448 | 0.3009 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.306 | 99.0 | 7524 | 0.3009 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
0.306 | 100.0 | 7600 | 0.3009 | 0.8533 | 0.4071 | 0.8126 | 0.8999 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dahe827/bert-base-cased-airlines-news-multi-label
Base model
google-bert/bert-base-cased