dahe827's picture
End of training
e991cf0 verified
|
raw
history blame
3.07 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased-airlines-news-multi-label
    results: []

bert-base-uncased-airlines-news-multi-label

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2807
  • F1: 0.7124
  • Roc Auc: 0.8100
  • Accuracy: 0.6766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 118 0.2992 0.2412 0.5680 0.5234
No log 2.0 236 0.2628 0.5603 0.7177 0.6255
No log 3.0 354 0.2785 0.5691 0.7044 0.6426
No log 4.0 472 0.2674 0.6309 0.7619 0.6340
0.2379 5.0 590 0.2640 0.6535 0.7768 0.6340
0.2379 6.0 708 0.2929 0.6596 0.7683 0.6596
0.2379 7.0 826 0.2778 0.7059 0.8189 0.6681
0.2379 8.0 944 0.2807 0.7124 0.8100 0.6766
0.0507 9.0 1062 0.3381 0.6688 0.7921 0.6511
0.0507 10.0 1180 0.3160 0.6919 0.8259 0.6468
0.0507 11.0 1298 0.3206 0.7063 0.8045 0.6936
0.0507 12.0 1416 0.3273 0.6943 0.8060 0.6766
0.0115 13.0 1534 0.3408 0.6794 0.7986 0.6638
0.0115 14.0 1652 0.3488 0.6817 0.7971 0.6681
0.0115 15.0 1770 0.3469 0.6962 0.8085 0.6766
0.0115 16.0 1888 0.3517 0.6795 0.7966 0.6596
0.0045 17.0 2006 0.3537 0.6814 0.8011 0.6596
0.0045 18.0 2124 0.3566 0.6857 0.8021 0.6638
0.0045 19.0 2242 0.3587 0.6795 0.7966 0.6596
0.0045 20.0 2360 0.3596 0.6795 0.7966 0.6596

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1