boris commited on
Commit
e93a26e
1 Parent(s): bc441b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -129
README.md CHANGED
@@ -16,135 +16,6 @@ This model was ported to JAX using [a checkpoint trained on ImageNet](https://he
16
 
17
  The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`.
18
 
19
- * Example notebook, heavily based in work by [Suraj](https://huggingface.co/valhalla): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb)
20
-
21
- * Batch encoding using JAX `pmap`, complete example including data loading with PyTorch:
22
-
23
- ```python
24
- # VQGAN-JAX - pmap encoding HowTo
25
-
26
- import numpy as np
27
-
28
- # For data loading
29
- import torch
30
- import torchvision.transforms.functional as TF
31
- from torch.utils.data import Dataset, DataLoader
32
- from torchvision.datasets.folder import default_loader
33
- from torchvision.transforms import InterpolationMode
34
-
35
- # For data saving
36
- from pathlib import Path
37
- import pandas as pd
38
- from tqdm import tqdm
39
-
40
- import jax
41
- from jax import pmap
42
-
43
- from vqgan_jax.modeling_flax_vqgan import VQModel
44
-
45
- ## Params and arguments
46
-
47
- # List of paths containing images to encode
48
- image_list = '/sddata/dalle-mini/CC12M/10k.tsv'
49
- output_tsv = 'output.tsv' # Encoded results
50
- batch_size = 64
51
- num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary
52
-
53
- # Load model
54
- model = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
55
-
56
- ## Data Loading.
57
-
58
- # Simple torch Dataset to load images from paths.
59
- # You can use your own pipeline instead.
60
- class ImageDataset(Dataset):
61
- def __init__(self, image_list_path: str, image_size: int, max_items=None):
62
- """
63
- :param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now.
64
- :param image_size: Image size. Source images will be resized and center-cropped.
65
- :max_items: Limit dataset size for debugging
66
- """
67
- self.image_list = pd.read_csv(image_list_path, sep='\t', header=None)
68
- if max_items is not None: self.image_list = self.image_list[:max_items]
69
- self.image_size = image_size
70
-
71
- def __len__(self):
72
- return len(self.image_list)
73
-
74
- def _get_raw_image(self, i):
75
- image_path = Path(self.image_list.iloc[i][0])
76
- return default_loader(image_path)
77
-
78
- def resize_image(self, image):
79
- s = min(image.size)
80
- r = self.image_size / s
81
- s = (round(r * image.size[1]), round(r * image.size[0]))
82
- image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)
83
- image = TF.center_crop(image, output_size = 2 * [self.image_size])
84
- image = np.expand_dims(np.array(image), axis=0)
85
- return image
86
-
87
- def __getitem__(self, i):
88
- image = self._get_raw_image(i)
89
- return self.resize_image(image)
90
-
91
- ## Encoding
92
-
93
- # Encoding function to be parallelized with `pmap`
94
- # Note: images have to be square
95
- def encode(model, batch):
96
- _, indices = model.encode(batch)
97
- return indices
98
-
99
- # Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute.
100
- def superbatch_generator(dataloader, num_tpus):
101
- iter_loader = iter(dataloader)
102
- for batch in iter_loader:
103
- superbatch = [batch.squeeze(1)]
104
- try:
105
- for _ in range(num_tpus-1):
106
- batch = next(iter_loader)
107
- if batch is None:
108
- break
109
- # Skip incomplete last batch
110
- if batch.shape[0] == dataloader.batch_size:
111
- superbatch.append(batch.squeeze(1))
112
- except StopIteration:
113
- pass
114
- superbatch = torch.stack(superbatch, axis=0)
115
- yield superbatch
116
-
117
- def encode_dataset(dataset, batch_size=32):
118
- dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
119
- superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count())
120
-
121
- num_tpus = jax.device_count()
122
- dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
123
- superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)
124
-
125
- p_encoder = pmap(lambda batch: encode(model, batch))
126
-
127
- # Save each superbatch to avoid reallocation of buffers as we process them.
128
- # Keep the file open to prevent excessive file seeks.
129
- with open(output_tsv, "w") as file:
130
- iterations = len(dataset) // (batch_size * num_tpus)
131
- for n in tqdm(range(iterations)):
132
- superbatch = next(superbatches)
133
- encoded = p_encoder(superbatch.numpy())
134
- encoded = encoded.reshape(-1, encoded.shape[-1])
135
-
136
- # Extract paths from the dataset, save paths and encodings (as string)
137
- start_index = n * batch_size * num_tpus
138
- end_index = (n+1) * batch_size * num_tpus
139
- paths = dataset.image_list[start_index:end_index][0].values
140
- encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))
141
- batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string})
142
- batch_df.to_csv(file, sep='\t', header=(n==0), index=None)
143
-
144
- dataset = ImageDataset(image_list, image_size=256)
145
- encoded_dataset = encode_dataset(dataset, batch_size=batch_size)
146
- ```
147
-
148
  ### Related Models in the Hub
149
 
150
  * [DALL路E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL路E.
 
16
 
17
  The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`.
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ### Related Models in the Hub
20
 
21
  * [DALL路E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL路E.