|
--- |
|
base_model: indobenchmark/indobert-base-p1 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:12000 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Awalnya merupakan singkatan dari John's Macintosh Project. |
|
sentences: |
|
- Sebuah formasi yang terdiri dari sekitar 50 petugas Polisi Baltimore akhirnya |
|
menempatkan diri mereka di antara para perusuh dan milisi, memungkinkan Massachusetts |
|
ke-6 untuk melanjutkan ke Stasiun Camden. |
|
- Mengecat luka dapat melindungi dari jamur dan hama. |
|
- Dulunya merupakan singkatan dari John's Macintosh Project. |
|
- source_sentence: Boueiz berprofesi sebagai pengacara. |
|
sentences: |
|
- Mereka juga gagal mengembangkan Water Cooperation Quotient yang baru. |
|
- Pada Pemilu 1970, ia ikut serta dari Partai Persatuan Nasional namun dikalahkan. |
|
- Seorang pengacara berprofesi sebagai Boueiz. |
|
- source_sentence: Fakultas Studi Oriental memiliki seorang profesor. |
|
sentences: |
|
- Di tempat lain di New Mexico, LAHS terkadang dianggap sebagai sekolah untuk orang |
|
kaya. |
|
- Laporan lain juga menunjukkan kandungannya lebih rendah dari 0,1% di Australia. |
|
- Profesor tersebut merupakan bagian dari Fakultas Studi Oriental. |
|
- source_sentence: Hal ini terjadi di sejumlah negara, termasuk Ethiopia, Republik |
|
Demokratik Kongo, dan Afrika Selatan. |
|
sentences: |
|
- Hal ini diketahui terjadi di Eritrea, Ethiopia, Kongo, Tanzania, Namibia dan Afrika |
|
Selatan. |
|
- Gugus amil digantikan oleh gugus pentil. |
|
- Dan saya beritahu Anda sesuatu, itu tidak adil. |
|
- source_sentence: Ini adalah wilayah sosial-ekonomi yang lebih rendah. |
|
sentences: |
|
- Ini adalah bengkel perbaikan mobil terbaru yang masih beroperasi di kota. |
|
- Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan yang semuanya |
|
dapat difaktorkan ulang. |
|
- Ini adalah wilayah sosial-ekonomi yang lebih tinggi. |
|
model-index: |
|
- name: SentenceTransformer based on indobenchmark/indobert-base-p1 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: str dev |
|
type: str-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.4564569322733096 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.48195228779003385 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.5026090402544289 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.4959933098737397 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5039005057105697 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.4974503970711054 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.30898798759416635 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.2877933490149207 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.5039005057105697 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.4974503970711054 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: str test |
|
type: str-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.47784323630714065 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5031401179671358 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.5002126701994709 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.49583761101885343 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5003980651640989 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.49610725867890976 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.3399664664461248 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3339252012184323 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.5003980651640989 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.5031401179671358 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on indobenchmark/indobert-base-p1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) <!-- at revision c2cd0b51ddce6580eb35263b39b0a1e5fb0a39e2 --> |
|
- **Maximum Sequence Length:** 32 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("damand2061/negasibert-mnrl") |
|
# Run inference |
|
sentences = [ |
|
'Ini adalah wilayah sosial-ekonomi yang lebih rendah.', |
|
'Ini adalah wilayah sosial-ekonomi yang lebih tinggi.', |
|
'Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan yang semuanya dapat difaktorkan ulang.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `str-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.4565 | |
|
| spearman_cosine | 0.482 | |
|
| pearson_manhattan | 0.5026 | |
|
| spearman_manhattan | 0.496 | |
|
| pearson_euclidean | 0.5039 | |
|
| spearman_euclidean | 0.4975 | |
|
| pearson_dot | 0.309 | |
|
| spearman_dot | 0.2878 | |
|
| pearson_max | 0.5039 | |
|
| **spearman_max** | **0.4975** | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `str-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.4778 | |
|
| spearman_cosine | 0.5031 | |
|
| pearson_manhattan | 0.5002 | |
|
| spearman_manhattan | 0.4958 | |
|
| pearson_euclidean | 0.5004 | |
|
| spearman_euclidean | 0.4961 | |
|
| pearson_dot | 0.34 | |
|
| spearman_dot | 0.3339 | |
|
| pearson_max | 0.5004 | |
|
| **spearman_max** | **0.5031** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 12,000 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.84 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.83 tokens</li><li>max: 32 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| |
|
| <code>Pusat Peringatan Topan Gabungan (JTWC) juga mengeluarkan peringatan dalam kapasitas tidak resmi.</code> | <code>Pusat Peringatan Topan Gabungan (JTWC) hanya mengeluarkan peringatan dalam kapasitas yang tidak resmi.</code> | |
|
| <code>DNP komersial digunakan sebagai antiseptik dan pestisida bioakumulasi non-selektif.</code> | <code>DNP komersial tidak dapat digunakan sebagai antiseptik atau pestisida bioakumulasi non-selektif.</code> | |
|
| <code>Kuncian tulang belakang dan kuncian serviks diperbolehkan dan wajib dalam kompetisi jiu-jitsu Brasil IBJJF.</code> | <code>Kuncian tulang belakang dan kuncian serviks dilarang dalam kompetisi jiu-jitsu Brasil IBJJF.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | str-dev_spearman_max | str-test_spearman_max | |
|
|:------:|:----:|:-------------:|:--------------------:|:---------------------:| |
|
| 1.0 | 188 | - | 0.4906 | 0.5067 | |
|
| 2.0 | 376 | - | 0.4941 | 0.5060 | |
|
| 2.6596 | 500 | 0.0995 | - | - | |
|
| 3.0 | 564 | - | 0.4935 | 0.5055 | |
|
| 4.0 | 752 | - | 0.4959 | 0.5016 | |
|
| 5.0 | 940 | - | 0.4975 | 0.5031 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |