Llamoe-test / README.md
damerajee's picture
Upload folder using huggingface_hub
fd40f56 verified
|
raw
history blame
2.58 kB
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - meta-llama/Llama-2-7b-hf
  - syzymon/long_llama_code_7b_instruct
  - georgesung/llama2_7b_chat_uncensored
  - togethercomputer/LLaMA-2-7B-32K
base_model:
  - meta-llama/Llama-2-7b-hf
  - syzymon/long_llama_code_7b_instruct
  - georgesung/llama2_7b_chat_uncensored
  - togethercomputer/LLaMA-2-7B-32K

Llamoe-test

Llamoe-test is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: meta-llama/Llama-2-7b-chat-hf
gate_mode: random
dtype: bfloat16
experts_per_token: 2
experts:
  - source_model: meta-llama/Llama-2-7b-hf
    positive_prompts:
      - "should be able to converse properly"
    negative_prompts:
      - "Uncensored in my opinion"
      
  - source_model: syzymon/long_llama_code_7b_instruct
    positive_prompts:
      - "Perform pretty well in coding question"
      
    negative_prompts:
      - "Is quite bad in C++"
      
  - source_model: georgesung/llama2_7b_chat_uncensored
    positive_prompts:
      - "Uncensored"
      
    negative_prompts:
      - "really bad in high school grade math and science"
      
  - source_model: togethercomputer/LLaMA-2-7B-32K
    positive_prompts:
      - "really good in long context question answering"  
      
    negative_prompts:
      - "incorrect or biased content"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "damerajee/Llamoe-test"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])