|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
tags: |
|
- jamba |
|
- mamba |
|
- moe |
|
--- |
|
|
|
# Please refrain from using this model yet. It's not any weight at all. |
|
|
|
# A experts weights of [Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) |
|
|
|
Required Weights for follow-up research. |
|
|
|
The original model is **[AI21lab's Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)**, which requires an **>80GB VRAM**. Unfortunately, this almonst was not available via Google Colab or cloud computing services. Thus, attempts were made to perform **MoE (Mixture of Experts) splitting**, using the following resources as a basis: |
|
- **Original Model:** [Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) |
|
- **MoE Layer Separation**: Consult [this script](https://github.com/TechxGenus/Jamba-utils/blob/main/dense_downcycling.py) written by [@TechxGenusand](https://github.com/TechxGenusand) and use [TechxGenus/Jamba-v0.1-9B](https://huggingface.co/TechxGenus/Jamba-v0.1-9B). |
|
|
|
|
|
<br><br><br><br><br><br> |
|
|
|
|
|
# Original Model Card from **[AI21lab's Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)**. |
|
|
|
|
|
## Usage |
|
|
|
The code used in **[AI21lab's Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)**. |
|
|
|
### Presequities |
|
|
|
To use Jamba, ensure you have `transformers` version 4.40.0 or higher installed (version 4.39.0 or higher is required): |
|
```bash |
|
pip install transformers>=4.40.0 |
|
``` |
|
|
|
For optimized Mamba implementations, install `mamba-ssm` and `causal-conv1d`: |
|
```bash |
|
pip install mamba-ssm causal-conv1d>=1.2.0 |
|
``` |
|
Ensure the model is on a CUDA device. |
|
|
|
You can run the model without optimized Mamba kernels, but it's **not** recommended due to significantly lower latencies. To do so, specify `use_mamba_kernels=False` when loading the model. |
|
|
|
### Run the model |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("danielpark/asp-9b-inst-base") |
|
tokenizer = AutoTokenizer.from_pretrained("danielpark/asp-9b-inst-base") |
|
|
|
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"] |
|
|
|
outputs = model.generate(input_ids, max_new_tokens=216) |
|
|
|
print(tokenizer.batch_decode(outputs)) |
|
# ["In the recent Super Bowl LVIII, the Kansas City Chiefs emerged victorious, defeating the San Francisco 49ers in a thrilling overtime showdown. The game was a nail-biter, with both teams showcasing their skills and determination.\n\nThe Chiefs, led by their star quarterback Patrick Mahomes, displayed their offensive prowess, while the 49ers, led by their strong defense, put up a tough fight. The game went into overtime, with the Chiefs ultimately securing the win with a touchdown.\n\nThe victory marked the Chiefs' second Super Bowl win in four years, solidifying their status as one of the top teams in the NFL. The game was a testament to the skill and talent of both teams, and a thrilling end to the NFL season.\n\nThe Super Bowl is not just about the game itself, but also about the halftime show and the commercials. This year's halftime show featured a star-studded lineup, including Usher, Alicia Keys, and Lil Jon. The show was a spectacle of music and dance, with the performers delivering an energetic and entertaining performance.\n"] |
|
``` |
|
|
|
When using `transformers<4.40.0`, ensure `trust_remote_code=True` for running the new Jamba architecture. |
|
|
|
<details> |
|
<summary><strong>Loading the model in half precision</strong></summary> |
|
|
|
The published checkpoint is saved in BF16. To load it into RAM in BF16/FP16, specify `torch_dtype`: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
import torch |
|
model = AutoModelForCausalLM.from_pretrained("danielpark/asp-9b-inst-base", |
|
torch_dtype=torch.bfloat16) # you can also use torch_dtype=torch.float16 |
|
``` |
|
|
|
When using half precision, enable the [FlashAttention2](https://github.com/Dao-AILab/flash-attention) implementation of the Attention blocks. To use it, ensure the model is on a CUDA device. Since the model is too big to fit on a single 80GB GPU, parallelize it using [accelerate](https://huggingface.co/docs/accelerate/index): |
|
```python |
|
from transformers import AutoModelForCausalLM |
|
import torch |
|
model = AutoModelForCausalLM.from_pretrained("danielpark/asp-9b-inst-base", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto") |
|
``` |
|
|
|
</details> |
|
<details><summary><strong>Load the model in 8-bit</strong></summary> |
|
|
|
**Using 8-bit precision, up to 140K sequence lengths can fit on a single 80GB GPU.** Quantize the model to 8-bit using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/index). To exclude Mamba blocks from quantization to prevent model quality degradation: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig |
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True, |
|
llm_int8_skip_modules=["mamba"]) |
|
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
quantization_config=quantization_config) |
|
``` |
|
</details> |
|
|
|
### Fine-tuning example |
|
|
|
Jamba is a base model that can be fine-tuned for custom solutions (including for chat/instruct versions). Fine-tune it using any technique of your choice. Here's an example of fine-tuning with the [PEFT](https://huggingface.co/docs/peft/index) library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
from peft import LoraConfig |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("danielpark/asp-9b-inst-base") |
|
model = AutoModelForCausalLM.from_pretrained("danielpark/asp-9b-inst-base", device_map='auto') |
|
|
|
dataset = load_dataset("Abirate/english_quotes", split="train") |
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=4, |
|
logging_dir='./logs', |
|
logging_steps=10, |
|
learning_rate=2e-3 |
|
) |
|
lora_config = LoraConfig( |
|
r=8, |
|
target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"], |
|
task_type="CAUSAL_LM", |
|
bias="none" |
|
) |
|
trainer = SFTTrainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
peft_config=lora_config, |
|
train_dataset=dataset, |
|
dataset_text_field="quote", |
|
) |
|
|
|
trainer.train() |
|
``` |
|
|
|
|
|
## Further |
|
Check [ai21labs/Jamba-tiny-random](https://huggingface.co/ai21labs/Jamba-tiny-random), which has 128M parameters (instead of 52B), and is initialized with random weights and did not undergo any training. |