dansul's picture
Pushed by DataDreamer
e56ac07 verified
metadata
base_model: google/t5-v1_1-base
tags:
  - datadreamer
  - datadreamer-0.38.0
  - synthetic
  - gpt-4
  - gpt-4
  - text2text-generation
widget:
  - text: >-
      In the ever-growing field of Natural Language Processing (NLP),
      understanding the nuances and depth of human expression and delivering
      contextualized outputs is an essential yet challenging task. The
      contribution of Deep Learning and Machine Learning methods toward tackling
      complex language processing tasks necessitates ongoing research. This
      paper outlines a novel architecture accounting for semantic bridges in the
      realm of NLP, utilizing sophisticated RNN and LSTM models. We connect
      phrase-level and sentence-level semantics under a unified framework,
      contributing towards generating better contextual understanding of textual
      data and providing detailed insights for tasks such as sentiment analysis
      and topic modeling. Our architecture outperforms most known models in
      these tasks due to its ability to consider longer textual context while
      simultaneously avoiding complications arising from language ambiguity. Our
      results provide inspiring indications on the benefits of capturing
      semantic bridges for more robust language models. We carry rigorous
      evaluations impinging both qualitative and quantitative insights, thereby
      showcasing our model's impressive generalizability to real-world
      applications.
    example_title: Example 1
  - text: "Automatic Natural Language Processing technologies have rapidly evolved in recent years, enabling diverse real-life applications and unveiling new challenging aspects. Considerable recognition should be attributed to neural network architectures such as the transformer and several learning techniques. \r\n\r\nIn this paper, we delve deep into an unexplored paradigm: grounding transformer-based Natural Language Processing in external knowledge bases. While recent efforts have shown significant successes topped with the emerging and rekindled interest in the potential neuro-symbolic connection, several research questions conveniently lurk around practical employment, scalability and explainability.\r\n\r\nSpecifically, we introduce and experimentally validate three algorithms to enhance the knowledge-grounded transformer. Each method encompasses the essence of grounding in external knowledge bases and evolves by saturating this groundedness; scaling across tasks, domains and languages. We believe, with evidence from detailed analysis on performance benchmarks and qualitative evaluation, that our work makes a step towards setting up a novel avenue for scientific researchers. Significantly, we posit that shallow grounding may tackle practical NLP employment, feasible algorithms for vertical scaling loosen up constraints on computational resources, while the Chen’s failure analysis exposes room for future improved models.\n\nBy concluding our results and proposals, we create a vibrant snapshot of the current progress in the research for grounding Transformer models in external knowledge, contributing clearer solutions for scalability issue in neural-based NLP, and knownledge transferable abilities in different tasks and languages. Postulation that our methods can provide vital insight into why some transformer models fail at understanding natural language may offer unique insight to Conversie AI scientists. Our propositions for further exploiting of this neuro-symbolic connection hold promise to further navigation in the realm of explainable artificial intelligence failing to leave out calls to attention towards ensuring ethical AI applications."
    example_title: Example 2
  - text: >-
      In this paper, we explore the latest advancements in Natural Language
      Processing (NLP) capacities using deep learning. The research focusses on
      understanding the interaction dynamics between syntactic comprehension and
      semantic prediction. Initial results identify intriguing checkpoint stages
      that internally modulate systems engaged in semantic prediction, hinting
      towards possible bi-dimensional processing mechanisms, broaching deeper
      parallelisms to cognitive hierarchical structures. Neural network tests
      using transformer models, particularly BERT and GPT-3 further elucidate,
      how such models react to complex multi-layered sentence structures,
      deconstructing their strategical use of syntactic information and
      projectional planning abilities in generating dependable language
      constructs. Ab initio transformations in joint paraphrasing and entity
      substitution procedures enabled optimization in performance when dealing
      with nuanced distinctions in language representation. Recognizing the
      limitations with available reference corpora, careful data augmentation
      techniques were applied to ensure comprehensive coverage and
      interpretations of language structures. Our research supports a
      more-rounded comprehension of how pre-training influences a model's
      linguistic understanding and establishes preliminary steps towards more
      intentional, rationalized decisions while model synthesis. Future work
      would aim at adapting these insights in designing new self-supervised
      learning technologies while deeply benefiting disparate domains, including
      data querying and humanoid artificial intelligence.
    example_title: Example 3
pipeline_tag: text2text-generation

Model Card

Add more information here

Example Usage

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained('dansul/datadreamer-dev-abstracts_to_tweet_model', revision=None) # Load tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained('dansul/datadreamer-dev-abstracts_to_tweet_model', revision=None) # Load model
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id)

inputs = ["In the ever-growing field of Natural Language Processing (NLP), understanding the nuances and depth of human expression and delivering contextualized outputs is an essential yet challenging task. The contribution of Deep Learning and Machine Learning methods toward tackling complex language processing tasks necessitates ongoing research. This paper outlines a novel architecture accounting for semantic bridges in the realm of NLP, utilizing sophisticated RNN and LSTM models. We connect phrase-level and sentence-level semantics under a unified framework, contributing towards generating better contextual understanding of textual data and providing detailed insights for tasks such as sentiment analysis and topic modeling. Our architecture outperforms most known models in these tasks due to its ability to consider longer textual context while simultaneously avoiding complications arising from language ambiguity. Our results provide inspiring indications on the benefits of capturing semantic bridges for more robust language models. We carry rigorous evaluations impinging both qualitative and quantitative insights, thereby showcasing our model's impressive generalizability to real-world applications."]
print(pipe(inputs, max_length=512, do_sample=False))

This model was trained with a synthetic dataset with DataDreamer 🤖💤. The synthetic dataset card and model card can be found here. The training arguments can be found here.