|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: results |
|
results: [] |
|
library_name: transformers |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0398 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
This model was trained for the Kaggle competition [Cleaned vs Dirty V2](https://www.kaggle.com/competitions/platesv2). |
|
Despite good results in training, the model shows poor results on test data, and should not be used in this competition. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 20 | 0.0907 | 1.0 | |
|
| No log | 2.0 | 40 | 0.0468 | 1.0 | |
|
| No log | 3.0 | 60 | 0.0398 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |