predict-plates / README.md
data-silence's picture
Update README.md
e9ca70f verified
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
library_name: transformers
pipeline_tag: image-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0398
- Accuracy: 1.0
## Model description
This model was trained for the Kaggle competition [Cleaned vs Dirty V2](https://www.kaggle.com/competitions/platesv2).
Despite good results in training, the model shows poor results on test data, and should not be used in this competition.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 20 | 0.0907 | 1.0 |
| No log | 2.0 | 40 | 0.0468 | 1.0 |
| No log | 3.0 | 60 | 0.0398 | 1.0 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1