File size: 5,224 Bytes
f8976a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927a2f5
f8976a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from typing import Union, List, Tuple, Dict

class NRELComstock(Dataset):
    
    def __init__(
        self,
        data_array: np.ndarray,
        num_bldg: int = 12,
        lookback: int = 12,
        lookahead:int = 4,
        normalize: bool = True,
        dtype: torch.dtype = torch.float32,
        mean: np.ndarray = None,
        std: np.ndarray = None,
        transformer: bool = True
    ):
        
        if data_array.shape[0] < num_bldg:
            raise ValueError('More buildings than present in file!')
        else:
            self.data = data_array[:num_bldg,:,:]
        self.num_clients = num_bldg
        
        # lookback and lookahead
        self.lookback, self.lookahead = lookback, lookahead
        
        # Calculate statistics
        stacked = self.data.reshape(self.data.shape[0]*self.data.shape[1],self.data.shape[2])
        if (mean is None) or (std is None): # statistics are not provided. Generate it from data
            self.mean = stacked.mean(axis=0,keepdims=True)
            self.std = stacked.std(axis=0,keepdims=True)
        else: # statistics are provided. Use the provided statistics
            self.mean = mean
            self.std = std
            
        if transformer:
            # TRANSFORMER SPECIFIC: do not normalize date and time
            self.mean[0,1], self.std[0,1] = 0., 1.
            self.mean[0,2], self.std[0,2] = 0., 1.
            
        self.ndata = (self.data-self.mean)/self.std # normalized data
        
        # disambiguating between clients
        len_per_client = self.data.shape[1] - lookback - lookahead + 1
        self.total_len = len_per_client * self.num_clients
        self.splits = np.array_split(np.arange(self.total_len),self.num_clients)
        
        # save whether to normalize, and the data type
        self.normalize = normalize
        self.dtype = dtype
        
        # if normalization is disabled, return to default statistics
        if not self.normalize:
            self.mean = np.zeros_like(self.mean)
            self.std = np.ones_like(self.std)
        
    def _client_and_idx(self, idx):
        
        part_size = self.total_len // self.num_clients
        part_index = idx // part_size
        relative_position = idx % part_size
        
        return relative_position, part_index
    
    def __len__(self):
        
        return self.total_len
    
    def __getitem__(self, idx):
        
        tidx, cidx = self._client_and_idx(idx)
        
        if self.normalize:
            x = self.ndata[cidx,tidx:tidx+self.lookback,:]
            y = self.ndata[cidx,tidx+self.lookback+self.lookahead-1,[0]]
        else:
            x = self.data[cidx,tidx:tidx+self.lookback,:]
            y = self.data[cidx,tidx+self.lookback+self.lookahead-1,[0]]\
            
        # Future time and weather indices
        fut_time = self.data[cidx,tidx+self.lookback:tidx+self.lookback+self.lookahead,1:3]
            
        x,y,fut_time,= torch.tensor(x,dtype=self.dtype), torch.tensor(y,dtype=self.dtype), torch.tensor(fut_time,dtype=self.dtype)
        
        return x,y,fut_time
    

def get_data_and_generate_train_val_test_sets(
    data_array: np.ndarray, # data matrix of shape (num_bldg,num_time_points,num_features). NOTE that features 2 and 3 are categorical features to embed time indices
    split_ratios: Union[List,Tuple], # 3-element list containing the ratios of train-val-test
    dataset_kwargs: Tuple # ONLY include num_bldg, lookback, lookahead, normalize, dtype, and transformer keys. See NRELComstock definition above for details.
) -> Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset, np.ndarray, np.ndarray]:
    
    assert len(split_ratios) == 3, "The split list must contain three elements."
    assert all(isinstance(i, (int, float)) for i in split_ratios), "List contains non-numeric elements"
    assert sum(split_ratios) <= 1, "Ratios must not sum upto more than 1."
    
    cum_splits = np.cumsum(split_ratios)
    
    train = data_array[:,:int(cum_splits[0]*data_array.shape[1]),:]
    val = data_array[:,int(cum_splits[0]*data_array.shape[1]):int(cum_splits[1]*data_array.shape[1]),:]
    test = data_array[:,int(cum_splits[1]*data_array.shape[1]):,:]
    
    if 0 in train.shape:
        train_set = None
        raise ValueError("Train set is empty. Possibly empty data matrix or 0 ratio for train set has been input.")
    else:
        train_set = NRELComstock(
            data_array = train,
            **dataset_kwargs
        )
        mean, std = train_set.mean, train_set.std
    if 0 in val.shape:
        val_set = None
    else:
        val_set = NRELComstock(
            data_array = val,
            mean = mean,
            std = std,
            **dataset_kwargs
        )
    if 0 in test.shape:
        test_set = None
    else:
        test_set = NRELComstock(
            data_array = test,
            mean = mean,
            std = std,
            **dataset_kwargs
        )
    
    # return the three datasets, as well as the statistics
    return train_set, val_set, test_set, mean, std