Search is not available for this dataset
text
stringlengths
19.5M
20M
"सुर्खेत (रासस । विसं २०४६ मा तत्कालीन (...TRUNCATED)
"एक सय चालीस मेगावाट क्षमताको तनहुँ जल(...TRUNCATED)
"काठमाडौ मंसिर २० । बिहीबार दोस्रो चरण(...TRUNCATED)
"दारेसलाम । तान्जानियाका राष्ट्रपति (...TRUNCATED)
"काठमाडौं भदौं १४ । नेपालले दोस्रो मैत(...TRUNCATED)
"काठमाडौ चैत्र ३१ । एनसेलले नयाँ वर्ष (...TRUNCATED)
"गएरातिबाट परेको अबिरल बर्षाका कारण ख(...TRUNCATED)
"डडेल्धुरा जातीय भेदभाव तथा छुवाछूतक(...TRUNCATED)
"काठमाडौँ पछिल्लो समय बालबालिका हराउ(...TRUNCATED)
"कोभिड १९ को महामारीबीच पनि ड्युटीमा ख(...TRUNCATED)

Nepali LLM Datasets

This repository contains two configurations of Nepali LLM datasets:

Configurations

1. Scrapy Engine

  • Description: Contains data collected using a web scraping engine.
  • Files: [List any specific files or formats]

2. Nepberta

  • Description: This dataset is derived from the Nepberta project and contains cleaned data specifically related to the project. The dataset contains **cleaned text chunks of size ~50 mb ** of all articles into a single giant string, with each article ending in <|endoftext|>. This long string is then segmented into chunks, each approximately 500 MB in size.
  • Files: contains 23 files each ~500Mb (chunk_1.txt, chunk_2.txt, ... chunk_23.txt)
  • split:train
    • files: chunk_1.txt to chunk_18.txt
  • split:test
    • files: chunk_19.txt to chunk_23.txt

Usage

To load the datasets:

# it loads entire dataset first
from datasets import load_dataset

# Load nepberta configuration
nepberta_dataset = load_dataset("Aananda-giri/nepali_llm_datasets", name="nepberta", split='train') # use `streaming=True` to avoid downloading all the dataset

# length of chunks
len(nepberta_train['text']) # 18 : number of chunks
len(nepberta_train['text'][0])  # length of large text equivalent to 500 MB text

# use streaming=True to avoid downloading entire dataset
nepberta_train = load_dataset("Aananda-giri/nepali_llm_datasets", name="nepberta", streaming=True)['train']

# using next
next(iter(nepberta_train))

# using for loop
for large_chunk in nepberta_train:
  pass
  # code to process large_chunk['text']

# Load scrapy engine data
scrapy_train = load_dataset("Aananda-giri/nepali_llm_datasets", name="scrapy_engine" split="train")
Downloads last month
115
Edit dataset card