AdaptLLM commited on
Commit
8a503fc
1 Parent(s): be6575d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -14
README.md CHANGED
@@ -41,9 +41,23 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
41
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
42
  </p>
43
 
44
- ## How to Use
 
45
 
46
- ### Loading Data
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  You can load datasets using the `datasets` library:
48
  ```python
49
  from datasets import load_dataset
@@ -53,29 +67,34 @@ task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Re
53
 
54
  # Load the dataset for the chosen task
55
  data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
56
- ```
57
 
58
- ### Mapping Categories to Indices
59
- The mapping between category names and indices for `Food101`, `FoodSeg103`, and `Nutrition5K` datasets is provided in the following files:
60
- - **Food101**: `food101_name_to_label_map.json`
61
- - **FoodSeg103**: `foodSeg103_id2label.json`
62
- - **Nutrition5K**: `nutrition5k_ingredients.py`
 
63
 
64
- ### Examples of Usage
 
 
65
 
66
- #### Food101
 
 
67
  ```python
68
  import json
69
 
70
  # Load the mapping file
71
  map_path = 'food101_name_to_label_map.json'
72
  name_to_label_map = json.load(open(map_path))
 
73
 
74
  # Reverse mapping: label to name
75
- label_to_name_map = {value: key.replace('_', ' ') for key, value in name_to_label_map.items()}
76
  ```
77
 
78
- #### FoodSeg103
79
  ```python
80
  import json
81
 
@@ -94,16 +113,117 @@ id2name_map = {int(key): value for key, value in id2name_map.items()}
94
  name2id_map = {value: key for key, value in id2name_map.items()}
95
  ```
96
 
97
- #### Nutrition5K
98
  ```python
99
  from nutrition5k_ingredients import all_ingredients
100
 
101
  # Create mappings
102
  id2name_map = dict(zip(range(0, len(all_ingredients)), all_ingredients))
103
  name2id_map = {value: key for key, value in id2name_map.items()}
104
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
 
 
 
107
 
108
 
109
  ## Citation
 
41
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
42
  </p>
43
 
44
+ ## Resources
45
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
46
 
47
+ | Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
48
+ |:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
49
+ | [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
50
+ | [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
51
+ | [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
52
+ | [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
53
+ | [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
54
+ | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
55
+ | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
56
+
57
+ **Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
58
+
59
+
60
+ ## 1. Download Data
61
  You can load datasets using the `datasets` library:
62
  ```python
63
  from datasets import load_dataset
 
67
 
68
  # Load the dataset for the chosen task
69
  data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
 
70
 
71
+ print(list(data)[0])
72
+ ```
73
+
74
+ The mapping between category names and indices for `Food101`, `FoodSeg103`, and `Nutrition5K` datasets is provided in the following files:
75
+ <details>
76
+ <summary> Click to expand </summary>
77
 
78
+ - Food101: `food101_name_to_label_map.json`
79
+ - FoodSeg103: `foodSeg103_id2label.json`
80
+ - Nutrition5K: `nutrition5k_ingredients.py`
81
 
82
+ #### Example Usages:
83
+
84
+ **Food101**
85
  ```python
86
  import json
87
 
88
  # Load the mapping file
89
  map_path = 'food101_name_to_label_map.json'
90
  name_to_label_map = json.load(open(map_path))
91
+ name_to_label_map = {key.replace('_', ' '): value for key, value in name_to_label_map.items()}
92
 
93
  # Reverse mapping: label to name
94
+ label_to_name_map = {value: key for key, value in name_to_label_map.items()}
95
  ```
96
 
97
+ **FoodSeg103**
98
  ```python
99
  import json
100
 
 
113
  name2id_map = {value: key for key, value in id2name_map.items()}
114
  ```
115
 
116
+ **Nutrition5K**
117
  ```python
118
  from nutrition5k_ingredients import all_ingredients
119
 
120
  # Create mappings
121
  id2name_map = dict(zip(range(0, len(all_ingredients)), all_ingredients))
122
  name2id_map = {value: key for key, value in id2name_map.items()}
123
+ ```
124
+ </details>
125
+
126
+
127
+ ## 2. Evaluate Any MLLM Compatible with vLLM on the Food Benchmarks
128
+
129
+ We provide a guide to directly evaluate MLLMs such as LLaVA-v1.6 ([open-source version](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)), Qwen2-VL-Instruct, and Llama-3.2-Vision-Instruct.
130
+ **The dataset loading script is embedded in the inference code, so you can directly run the following commands to evaluate MLLMs.**
131
+
132
+ To evaluate other MLLMs, refer to [this guide](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for modifying the `BaseTask` class in the [vllm_inference/utils/task.py](https://github.com/bigai-ai/QA-Synthesizer/blob/main/vllm_inference/utils/task.py) file.
133
+ Feel free reach out to us for assistance!
134
+
135
+ ### 1) Setup
136
+
137
+ Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).
138
+
139
+ As recommended in the official vLLM documentation, install vLLM in a **fresh new** conda environment:
140
+
141
+ ```bash
142
+ conda create -n vllm python=3.10 -y
143
+ conda activate vllm
144
+ pip install vllm # Ensure vllm>=0.6.2 for compatibility with Llama-3.2. If Llama-3.2 is not used, vllm==0.6.1 is sufficient.
145
+ ```
146
+
147
+ Clone the repository and navigate to the inference directory:
148
+
149
+ ```bash
150
+ git clone https://github.com/bigai-ai/QA-Synthesizer.git
151
+ cd QA-Synthesizer/vllm_inference
152
+ RESULTS_DIR=./eval_results # Directory for saving evaluation scores
153
+ ```
154
+
155
+ ### 2) Evaluate
156
+
157
+ Run the following commands:
158
+
159
+ ```bash
160
+ # Specify the domain: choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
161
+ # 'food' runs inference on all food tasks; others run on individual tasks.
162
+ DOMAIN='food'
163
+
164
+ # Specify the model type: choose from ['llava', 'qwen2_vl', 'mllama']
165
+ # For LLaVA-v1.6, Qwen2-VL, and Llama-3.2-Vision-Instruct, respectively.
166
+ MODEL_TYPE='qwen2_vl'
167
+
168
+ # Set the model repository ID on Hugging Face. Examples:
169
+ # "Qwen/Qwen2-VL-2B-Instruct", "AdaptLLM/food-Qwen2-VL-2B-Instruct" for MLLMs based on Qwen2-VL-Instruct.
170
+ # "meta-llama/Llama-3.2-11B-Vision-Instruct", "AdaptLLM/food-Llama-3.2-11B-Vision-Instruct" for MLLMs based on Llama-3.2-Vision-Instruct.
171
+ # "AdaptLLM/food-LLaVA-NeXT-Llama3-8B" for MLLMs based on LLaVA-v1.6.
172
+ MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct
173
+
174
+ # Set the directory for saving model prediction outputs:
175
+ OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
176
+
177
+ # Run inference with data parallelism; adjust CUDA devices as needed:
178
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
179
+ ```
180
+
181
+ Detailed scripts to reproduce our results:
182
+
183
+ <details>
184
+ <summary> Click to expand </summary>
185
+
186
+ ```bash
187
+ # Choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
188
+ # 'food' runs inference on all food tasks; others run on a single task
189
+ DOMAIN='food'
190
+
191
+ # 1. LLaVA-v1.6-8B
192
+ MODEL_TYPE='llava'
193
+ MODEL=AdaptLLM/food-LLaVA-NeXT-Llama3-8B # HuggingFace repo ID for AdaMLLM-food-8B
194
+ OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
195
+
196
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
197
+
198
+ # 2. Qwen2-VL-2B
199
+ MODEL_TYPE='qwen2_vl'
200
+ MODEL=Qwen/Qwen2-VL-2B-Instruct # HuggingFace repo ID for Qwen2-VL
201
+ OUTPUT_DIR=./output/Qwen2-VL-2B-Instruct_${DOMAIN}
202
+
203
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
204
+
205
+ MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct # HuggingFace repo ID for AdaMLLM-food-2B
206
+ OUTPUT_DIR=./output/AdaMLLM-food-Qwen-2B_${DOMAIN}
207
+
208
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
209
+
210
+ # 3. Llama-3.2-11B
211
+ MODEL_TYPE='mllama'
212
+ MODEL=meta-llama/Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for Llama3.2
213
+ OUTPUT_DIR=./output/Llama-3.2-11B-Vision-Instruct_${DOMAIN}
214
+
215
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
216
+
217
+ MODEL=AdaptLLM/food-Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for AdaMLLM-food-11B
218
+ OUTPUT_DIR=./output/AdaMLLM-food-Llama3.2-2B_${DOMAIN}
219
+
220
+ CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
221
+ ```
222
+ </details>
223
 
224
 
225
+ ### 3) Results
226
+ The evaluation results are stored in `./eval_results`, and the model prediction outputs are in `./output`.
227
 
228
 
229
  ## Citation