Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
Persian
Size:
10K - 100K
ArXiv:
License:
language: | |
- fa | |
license: mit | |
size_categories: | |
- 10K<n<100K | |
task_categories: | |
- token-classification | |
pretty_name: PEYMA-ARMAN-Mixed | |
dataset_info: | |
features: | |
- name: tokens | |
sequence: string | |
- name: ner_tags | |
sequence: | |
class_label: | |
names: | |
'0': B_LOC | |
'1': I_DAT | |
'2': B_PCT | |
'3': I_LOC | |
'4': I_PER | |
'5': I_MON | |
'6': B_ORG | |
'7': B_PRO | |
'8': B_PER | |
'9': O | |
'10': I_PCT | |
'11': I_ORG | |
'12': B_FAC | |
'13': B_DAT | |
'14': B_TIM | |
'15': I_TIM | |
'16': I_EVE | |
'17': B_MON | |
'18': I_PRO | |
'19': B_EVE | |
'20': I_FAC | |
- name: ner_tags_names | |
sequence: string | |
splits: | |
- name: train | |
num_bytes: 21618080 | |
num_examples: 26384 | |
- name: validation | |
num_bytes: 2782070 | |
num_examples: 3296 | |
- name: test | |
num_bytes: 2706143 | |
num_examples: 3296 | |
download_size: 4168673 | |
dataset_size: 27106293 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: validation | |
path: data/validation-* | |
- split: test | |
path: data/test-* | |
# Mixed Persian NER Dataset (PEYMA-ARMAN) | |
This dataset is a combination of [PEYMA](https://arxiv.org/abs/1801.09936) and [ARMAN](https://github.com/HaniehP/PersianNER) Persian NER datasets. It contains the following named entity tags: | |
- Product (PRO) | |
- Event (EVE) | |
- Facility (FAC) | |
- Location (LOC) | |
- Person (PER) | |
- Money (MON) | |
- Percent (PCT) | |
- Date (DAT) | |
- Organization (ORG) | |
- Time (TIM) | |
## Dataset Information | |
The dataset is divided into three splits: train, test, and validation. Below is a summary of the dataset statistics: | |
| Split | B_DAT | B_EVE | B_FAC | B_LOC | B_MON | B_ORG | B_PCT | B_PER | B_PRO | B_TIM | I_DAT | I_EVE | I_FAC | I_LOC | I_MON | I_ORG | I_PCT | I_PER | I_PRO | I_TIM | O | num_rows | | |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------| | |
| Train | 1512 | 1379 | 1334 | 13040 | 446 | 15762 | 266 | 11371 | 1719 | 224 | 1939 | 4600 | 2222 | 4254 | 1314 | 21347 | 308 | 7160 | 1736 | 375 | 747216 | 26417 | | |
| Test | 185 | 218 | 124 | 1868 | 53 | 2017 | 27 | 1566 | 281 | 27 | 245 | 697 | 237 | 511 | 142 | 2843 | 31 | 1075 | 345 | 37 | 92214 | 3303 | | |
| Validation | 161 | 143 | 192 | 1539 | 28 | 2180 | 33 | 1335 | 172 | 30 | 217 | 520 | 349 | 494 | 54 | 2923 | 34 | 813 | 136 | 39 | 96857 | 3302 | | |
### First schema | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['tokens', 'ner_tags', 'ner_tags_names'], | |
num_rows: 26417 | |
}) | |
test: Dataset({ | |
features: ['tokens', 'ner_tags', 'ner_tags_names'], | |
num_rows: 3303 | |
}) | |
validation: Dataset({ | |
features: ['tokens', 'ner_tags', 'ner_tags_names'], | |
num_rows: 3302 | |
}) | |
}) | |
``` | |
### How to load datset | |
```python | |
from datasets import load_dataset | |
data = load_dataset("AliFartout/PEYMA-ARMAN-Mixed") | |
``` | |
Feel free to adjust the formatting according to your needs. |