license: cc-by-4.0
pretty_name: Space-based (JWST) 3d data cubes
tags:
- astronomy
- compression
- images
dataset_info:
config_name: tiny
features:
- name: image
dtype:
array3_d:
shape:
- 2048
- 2048
dtype: uint8
- name: ra
dtype: float64
- name: dec
dtype: float64
- name: pixscale
dtype: float64
- name: ntimes
dtype: int64
- name: image_id
dtype: string
splits:
- name: train
num_bytes: 100761802
num_examples: 2
- name: test
num_bytes: 75571313
num_examples: 1
download_size: 201496920
dataset_size: 176333115
SBI-16-3D Dataset
SBI-16-3D is a dataset which is part of the AstroCompress project. It contains data assembled from the James Webb Space Telescope (JWST). Describe data format
Usage
You first need to install the datasets
and astropy
packages:
pip install datasets astropy
There are two datasets: tiny
and full
, each with train
and test
splits. The tiny
dataset has 2 4D images in the train
and 1 in the test
. The full
dataset contains all the images in the data/
directory.
Local Use (RECOMMENDED)
You can clone this repo and use directly without connecting to hf:
git clone https://huggingface.co/datasets/AstroCompress/SBI-16-3D
git lfs pull
Then cd SBI-16-3D
and start python like:
from datasets import load_dataset
import numpy
dataset = load_dataset("./SBI-16-3D.py", "tiny", data_dir="./data/", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np", dtype=numpy.uint16)
Now you should be able to use the ds
variable like:
ds["test"][0]["image"].shape # -> (5, 2048, 2048)
Note of course that it will take a long time to download and convert the images in the local cache for the full
dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.
Use from Huggingface Directly
This method may only be an option when trying to access the "tiny" version of the dataset.
To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
huggingface-cli login
or
import huggingface_hub
huggingface_hub.login(token=token)
Then in your python script:
from datasets import load_dataset
import numpy
dataset = load_dataset("AstroCompress/SBI-16-3D", "tiny", writer_batch_size=1, trust_remote_code=True)
ds = dataset.with_format("np", columns=["image"], dtype=numpy.uint16)
# or torch
import torch
dst = dataset.with_format("torch", columns=["image"], dtype=torch.uint16)
# or pandas
dsp = dataset.with_format("pandas", columns=["image"], dtype=numpy.uint16)
Utils scripts
Note that utils scripts such as eval_baselines.py
must be run from the parent directory of utils
, i.e. python utils/eval_baselines.py
.