The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 6 new columns ({'pickup_gps_time', 'time_window_end', 'pickup_time', 'time_window_start', 'pickup_gps_y', 'pickup_gps_x'}) and 4 missing columns ({'delivery_gps_time', 'delivery_gps_x', 'delivery_gps_y', 'delivery_time'}).
This happened while the csv dataset builder was generating data using
hf://datasets/Anonymous-LaEx/Anonymous-LaDe/pickup/pickup_cq.csv (at revision b45ecd9b563f125aa766d2c26fb0085f8a8d16eb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
order_id: int64
region_id: int64
city: string
courier_id: int64
accept_time: string
time_window_start: string
time_window_end: string
aoi_id: int64
aoi_type: int64
pickup_time: string
pickup_gps_time: string
accept_gps_time: string
ds: int64
x: double
y: double
pickup_gps_x: double
pickup_gps_y: double
accept_gps_x: double
accept_gps_y: double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2513
to
{'order_id': Value(dtype='int64', id=None), 'region_id': Value(dtype='int64', id=None), 'city': Value(dtype='string', id=None), 'courier_id': Value(dtype='int64', id=None), 'aoi_id': Value(dtype='int64', id=None), 'aoi_type': Value(dtype='int64', id=None), 'accept_time': Value(dtype='string', id=None), 'accept_gps_time': Value(dtype='string', id=None), 'delivery_time': Value(dtype='string', id=None), 'delivery_gps_time': Value(dtype='string', id=None), 'ds': Value(dtype='int64', id=None), 'x': Value(dtype='float64', id=None), 'y': Value(dtype='float64', id=None), 'delivery_gps_x': Value(dtype='float64', id=None), 'delivery_gps_y': Value(dtype='float64', id=None), 'accept_gps_x': Value(dtype='float64', id=None), 'accept_gps_y': Value(dtype='float64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 6 new columns ({'pickup_gps_time', 'time_window_end', 'pickup_time', 'time_window_start', 'pickup_gps_y', 'pickup_gps_x'}) and 4 missing columns ({'delivery_gps_time', 'delivery_gps_x', 'delivery_gps_y', 'delivery_time'}).
This happened while the csv dataset builder was generating data using
hf://datasets/Anonymous-LaEx/Anonymous-LaDe/pickup/pickup_cq.csv (at revision b45ecd9b563f125aa766d2c26fb0085f8a8d16eb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
order_id
int64 | region_id
int64 | city
string | courier_id
int64 | aoi_id
int64 | aoi_type
int64 | accept_time
string | accept_gps_time
string | delivery_time
string | delivery_gps_time
string | ds
int64 | x
float64 | y
float64 | delivery_gps_x
float64 | delivery_gps_y
float64 | accept_gps_x
float64 | accept_gps_y
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2,031,782
| 10
|
Chongqing
| 73
| 50
| 14
|
10-22 10:26:00
|
10-22 10:26:00
|
10-22 17:04:00
|
10-22 17:04:00
| 1,022
| 0.899804
| 0.745919
| 0.899373
| 0.747651
| 0.899825
| 0.747352
|
4,285,071
| 10
|
Chongqing
| 3,605
| 50
| 14
|
09-07 10:13:00
|
09-07 10:13:00
|
09-09 15:44:00
|
09-09 15:44:00
| 907
| 0.89981
| 0.74593
| 0.89981
| 0.74593
| 0.899822
| 0.747365
|
4,056,800
| 10
|
Chongqing
| 3,605
| 50
| 14
|
06-26 09:49:00
|
06-26 09:49:00
|
06-27 16:03:00
|
06-27 16:03:00
| 626
| 0.89981
| 0.745928
| 0.89981
| 0.745926
| 0.899823
| 0.747365
|
3,589,481
| 10
|
Chongqing
| 3,605
| 50
| 14
|
09-11 11:01:00
|
09-11 11:01:00
|
09-13 17:14:00
|
09-13 17:14:00
| 911
| 0.89981
| 0.745951
| 0.89981
| 0.74595
| 0.899825
| 0.747355
|
2,752,329
| 10
|
Chongqing
| 3,605
| 50
| 14
|
10-01 09:52:00
|
10-01 09:52:00
|
10-01 18:30:00
|
10-01 18:30:00
| 1,001
| 0.899807
| 0.745968
| 0.899791
| 0.745965
| 0.899824
| 0.747355
|
659,996
| 10
|
Chongqing
| 3,605
| 50
| 14
|
08-08 19:01:00
|
08-08 19:01:00
|
08-11 10:50:00
|
08-11 10:50:00
| 808
| 0.89981
| 0.745984
| 0.899809
| 0.745987
| 0.899823
| 0.747364
|
4,481,765
| 10
|
Chongqing
| 3,605
| 50
| 14
|
09-30 10:00:00
|
09-30 10:00:00
|
09-30 16:38:00
|
09-30 16:38:00
| 930
| 0.899807
| 0.745968
| 0.899792
| 0.74597
| 0.899825
| 0.747351
|
2,365,752
| 10
|
Chongqing
| 3,605
| 50
| 14
|
09-30 10:00:00
|
09-30 10:00:00
|
09-30 18:38:00
|
09-30 18:38:00
| 930
| 0.899809
| 0.74593
| 0.899792
| 0.74597
| 0.899825
| 0.747352
|
20,671
| 10
|
Chongqing
| 3,605
| 50
| 14
|
05-20 10:06:00
|
05-20 10:06:00
|
05-21 15:30:00
|
05-21 15:30:00
| 520
| 0.89981
| 0.745926
| 0.89981
| 0.745925
| 0.899822
| 0.747361
|
965,648
| 10
|
Chongqing
| 3,605
| 50
| 14
|
08-10 10:52:00
|
08-10 10:52:00
|
08-12 15:50:00
|
08-12 15:50:00
| 810
| 0.899802
| 0.745927
| 0.899801
| 0.745923
| 0.899823
| 0.747364
|
4,486,215
| 10
|
Chongqing
| 3,605
| 50
| 14
|
10-17 09:39:00
|
10-17 09:39:00
|
10-19 16:58:00
|
10-19 16:58:00
| 1,017
| 0.899802
| 0.745963
| 0.899802
| 0.745964
| 0.899824
| 0.747353
|
1,984,854
| 10
|
Chongqing
| 3,605
| 50
| 14
|
10-03 10:05:00
|
10-03 10:05:00
|
10-03 18:06:00
|
10-03 18:06:00
| 1,003
| 0.899809
| 0.745938
| 0.899792
| 0.745968
| 0.899825
| 0.747351
|
2,334,342
| 10
|
Chongqing
| 3,605
| 50
| 14
|
10-05 10:21:00
|
10-05 10:21:00
|
10-07 15:18:00
|
10-07 15:18:00
| 1,005
| 0.899807
| 0.745968
| 0.899792
| 0.745966
| 0.899825
| 0.747354
|
2,395,322
| 10
|
Chongqing
| 3,605
| 50
| 14
|
05-13 09:22:00
|
05-13 09:22:00
|
05-15 09:11:00
|
05-15 09:11:00
| 513
| 0.899806
| 0.745967
| 0.899807
| 0.745964
| 0.899862
| 0.747386
|
629,776
| 10
|
Chongqing
| 3,605
| 50
| 14
|
07-26 10:21:00
|
07-26 10:21:00
|
07-27 16:35:00
|
07-27 16:35:00
| 726
| 0.89981
| 0.745948
| 0.899811
| 0.745952
| 0.899822
| 0.747362
|
397,825
| 10
|
Chongqing
| 3,605
| 50
| 14
|
07-07 09:53:00
|
07-07 09:53:00
|
07-09 16:26:00
|
07-09 16:26:00
| 707
| 0.899805
| 0.745969
| 0.899806
| 0.745967
| 0.899822
| 0.747364
|
2,742,862
| 10
|
Chongqing
| 3,605
| 50
| 14
|
10-16 10:02:00
|
10-16 10:02:00
|
10-18 15:26:00
|
10-18 15:26:00
| 1,016
| 0.899802
| 0.745942
| 0.899802
| 0.745945
| 0.899824
| 0.747352
|
1,952,141
| 10
|
Chongqing
| 1,326
| 67
| 14
|
05-08 09:11:00
|
05-08 09:11:00
|
05-10 16:10:00
|
05-10 16:10:00
| 508
| 0.900489
| 0.754335
| 0.89986
| 0.747391
| 0.899861
| 0.74739
|
3,667,238
| 10
|
Chongqing
| 1,326
| 126
| 14
|
05-05 09:03:00
|
05-05 09:03:00
|
05-06 14:28:00
|
05-06 14:28:00
| 505
| 0.902729
| 0.751889
| 0.89986
| 0.747391
| 0.899861
| 0.747388
|
1,734,009
| 10
|
Chongqing
| 1,326
| 126
| 14
|
06-27 08:42:00
|
06-27 08:42:00
|
06-29 16:22:00
|
06-29 16:22:00
| 627
| 0.902258
| 0.751994
| 0.89986
| 0.747386
| 0.899823
| 0.747366
|
3,098,203
| 10
|
Chongqing
| 1,635
| 296
| 14
|
07-10 08:33:00
|
07-10 08:33:00
|
07-10 13:24:00
|
07-10 13:24:00
| 710
| 0.899823
| 0.747025
| 0.899824
| 0.746997
| 0.899823
| 0.747366
|
356,619
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-09 09:04:00
|
09-09 09:04:00
|
09-09 10:49:00
|
09-09 10:49:00
| 909
| 0.899838
| 0.746963
| 0.899837
| 0.746991
| 0.899823
| 0.747364
|
1,484,207
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-19 08:29:00
|
10-19 08:29:00
|
10-19 10:11:00
|
10-19 10:11:00
| 1,019
| 0.899848
| 0.746972
| 0.899865
| 0.746982
| 0.899824
| 0.747355
|
2,628,104
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-28 10:08:00
|
10-28 10:08:00
|
10-28 16:36:00
|
10-28 16:36:00
| 1,028
| 0.899821
| 0.747019
| 0.899823
| 0.746997
| 0.899825
| 0.747355
|
3,602,373
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-04 08:51:00
|
10-04 08:51:00
|
10-04 13:45:00
|
10-04 13:45:00
| 1,004
| 0.899821
| 0.747022
| 0.899822
| 0.746996
| 0.899824
| 0.747354
|
4,241,487
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-12 08:50:00
|
09-12 08:50:00
|
09-12 10:36:00
|
09-12 10:36:00
| 912
| 0.899843
| 0.74697
| 0.899851
| 0.746975
| 0.899825
| 0.747355
|
15,020
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-28 10:05:00
|
10-28 10:05:00
|
10-28 11:58:00
|
10-28 11:58:00
| 1,028
| 0.899844
| 0.746969
| 0.89985
| 0.746973
| 0.899825
| 0.747351
|
3,619,671
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-14 08:47:00
|
10-14 08:47:00
|
10-14 13:33:00
|
10-14 13:33:00
| 1,014
| 0.89982
| 0.747019
| 0.899823
| 0.746999
| 0.899825
| 0.747351
|
2,800,580
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-13 08:33:00
|
09-13 08:33:00
|
09-13 13:49:00
|
09-13 13:49:00
| 913
| 0.899814
| 0.74704
| 0.899823
| 0.746991
| 0.899824
| 0.747355
|
4,480,417
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-08 09:17:00
|
06-08 09:17:00
|
06-08 15:17:00
|
06-08 15:17:00
| 608
| 0.899817
| 0.747019
| 0.899821
| 0.746997
| 0.899823
| 0.747362
|
1,778,761
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-29 09:33:00
|
05-29 09:33:00
|
05-29 15:09:00
|
05-29 15:09:00
| 529
| 0.899813
| 0.747026
| 0.899817
| 0.747102
| 0.899823
| 0.747363
|
1,442,393
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-27 09:33:00
|
10-27 09:33:00
|
10-27 16:03:00
|
10-27 16:03:00
| 1,027
| 0.899814
| 0.747029
| 0.899812
| 0.747026
| 0.899824
| 0.747354
|
3,800,594
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-19 08:32:00
|
10-19 08:32:00
|
10-19 13:56:00
|
10-19 13:56:00
| 1,019
| 0.899836
| 0.746962
| 0.899787
| 0.747069
| 0.899824
| 0.747356
|
2,074,315
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-18 08:39:00
|
10-18 08:39:00
|
10-18 10:37:00
|
10-18 10:37:00
| 1,018
| 0.899831
| 0.747023
| 0.899836
| 0.746993
| 0.899825
| 0.747355
|
1,227,214
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-26 08:56:00
|
08-26 08:56:00
|
08-26 10:44:00
|
08-26 10:44:00
| 826
| 0.899836
| 0.746962
| 0.899835
| 0.746985
| 0.899822
| 0.747364
|
2,999,896
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-09 09:20:00
|
09-09 09:20:00
|
09-09 16:22:00
|
09-09 16:22:00
| 909
| 0.899826
| 0.746967
| 0.899823
| 0.746998
| 0.899823
| 0.747364
|
1,626,606
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-14 08:40:00
|
08-14 08:40:00
|
08-14 09:55:00
|
08-14 09:55:00
| 814
| 0.899835
| 0.746985
| 0.899837
| 0.746991
| 0.899823
| 0.747364
|
308,445
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-21 08:52:00
|
05-21 08:52:00
|
05-21 14:16:00
|
05-21 14:16:00
| 521
| 0.899811
| 0.74705
| 0.899822
| 0.746996
| 0.899822
| 0.747361
|
4,192,593
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-19 10:24:00
|
05-19 10:24:00
|
05-19 11:51:00
|
05-19 11:51:00
| 519
| 0.899826
| 0.746968
| 0.899835
| 0.747
| 0.899823
| 0.747363
|
3,766,518
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-02 11:06:00
|
06-02 11:06:00
|
06-02 14:50:00
|
06-02 14:50:00
| 602
| 0.899848
| 0.74697
| 0.899837
| 0.746984
| 0.899823
| 0.747364
|
3,003,321
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-29 10:02:00
|
10-29 10:02:00
|
10-29 15:58:00
|
10-29 15:58:00
| 1,029
| 0.89982
| 0.747024
| 0.899823
| 0.746996
| 0.899824
| 0.747354
|
3,235,537
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-14 09:07:00
|
06-14 09:07:00
|
06-14 13:25:00
|
06-14 13:25:00
| 614
| 0.899817
| 0.747016
| 0.899823
| 0.746995
| 0.899822
| 0.747366
|
2,633,460
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-25 09:45:00
|
10-25 09:45:00
|
10-25 15:51:00
|
10-25 15:51:00
| 1,025
| 0.899818
| 0.747017
| 0.899823
| 0.746997
| 0.899825
| 0.747356
|
868,940
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-25 10:51:00
|
05-25 10:51:00
|
05-25 13:41:00
|
05-25 13:41:00
| 525
| 0.899835
| 0.746986
| 0.899837
| 0.746986
| 0.899823
| 0.747366
|
1,028,189
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-23 09:14:00
|
10-23 09:14:00
|
10-23 11:05:00
|
10-23 11:05:00
| 1,023
| 0.899837
| 0.746962
| 0.899869
| 0.746934
| 0.899824
| 0.747354
|
2,225,872
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-08 08:58:00
|
10-08 08:58:00
|
10-08 14:59:00
|
10-08 14:59:00
| 1,008
| 0.89982
| 0.74702
| 0.899822
| 0.746996
| 0.899825
| 0.747354
|
2,283,695
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-20 08:23:00
|
10-20 08:23:00
|
10-20 09:40:00
|
10-20 09:40:00
| 1,020
| 0.899825
| 0.74697
| 0.899835
| 0.746987
| 0.899824
| 0.747353
|
2,837,284
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-16 09:30:00
|
10-16 09:30:00
|
10-16 14:03:00
|
10-16 14:03:00
| 1,016
| 0.89982
| 0.747024
| 0.899824
| 0.746997
| 0.899825
| 0.747353
|
1,563,847
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-16 09:31:00
|
10-16 09:31:00
|
10-16 10:50:00
|
10-16 10:50:00
| 1,016
| 0.899848
| 0.746971
| 0.899864
| 0.746987
| 0.899824
| 0.747352
|
4,386,436
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-31 09:24:00
|
10-31 09:24:00
|
10-31 11:20:00
|
10-31 11:20:00
| 1,031
| 0.899849
| 0.746972
| 0.899863
| 0.746984
| 0.899825
| 0.747351
|
3,997,837
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-30 08:39:00
|
09-30 08:39:00
|
09-30 13:36:00
|
09-30 13:36:00
| 930
| 0.899814
| 0.747041
| 0.899823
| 0.746997
| 0.899824
| 0.747355
|
3,277,016
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-02 11:26:00
|
06-02 11:26:00
|
06-02 14:44:00
|
06-02 14:44:00
| 602
| 0.899825
| 0.746966
| 0.899838
| 0.746991
| 0.899822
| 0.747363
|
377,057
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-21 09:17:00
|
09-21 09:17:00
|
09-21 14:23:00
|
09-21 14:23:00
| 921
| 0.89982
| 0.74702
| 0.899822
| 0.746997
| 0.899825
| 0.747356
|
807,845
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-27 09:57:00
|
10-27 09:57:00
|
10-27 16:37:00
|
10-27 16:37:00
| 1,027
| 0.899821
| 0.747023
| 0.899822
| 0.746997
| 0.899824
| 0.747352
|
4,266,115
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-31 09:17:00
|
10-31 09:17:00
|
10-31 11:14:00
|
10-31 11:14:00
| 1,031
| 0.899848
| 0.746972
| 0.899837
| 0.746995
| 0.899825
| 0.747353
|
870,510
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-31 09:23:00
|
10-31 09:23:00
|
10-31 15:38:00
|
10-31 15:38:00
| 1,031
| 0.899817
| 0.747017
| 0.899812
| 0.747041
| 0.899825
| 0.747355
|
2,897,786
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-26 10:00:00
|
10-26 10:00:00
|
10-26 15:45:00
|
10-26 15:45:00
| 1,026
| 0.899821
| 0.747007
| 0.899822
| 0.746998
| 0.899825
| 0.747355
|
1,478,138
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-18 08:34:00
|
09-18 08:34:00
|
09-18 14:33:00
|
09-18 14:33:00
| 918
| 0.89982
| 0.747022
| 0.899822
| 0.746999
| 0.899824
| 0.747352
|
3,939,876
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-27 09:57:00
|
10-27 09:57:00
|
10-27 12:01:00
|
10-27 12:01:00
| 1,027
| 0.899868
| 0.746957
| 0.899871
| 0.746984
| 0.899825
| 0.747355
|
2,273,200
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-03 09:49:00
|
09-03 09:49:00
|
09-03 14:34:00
|
09-03 14:34:00
| 903
| 0.89982
| 0.747023
| 0.899823
| 0.746997
| 0.899823
| 0.747364
|
1,411,013
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-12 08:54:00
|
10-12 08:54:00
|
10-12 10:26:00
|
10-12 10:26:00
| 1,012
| 0.899832
| 0.747021
| 0.899837
| 0.74699
| 0.899825
| 0.747356
|
2,623,086
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-03 08:47:00
|
10-03 08:47:00
|
10-03 10:26:00
|
10-03 10:26:00
| 1,003
| 0.899856
| 0.746971
| 0.899865
| 0.746923
| 0.899825
| 0.747354
|
3,349,653
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-07 08:44:00
|
08-07 08:44:00
|
08-07 09:51:00
|
08-07 09:51:00
| 807
| 0.899849
| 0.746967
| 0.899865
| 0.746923
| 0.899823
| 0.747366
|
102,905
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-22 10:28:00
|
10-22 10:28:00
|
10-22 17:07:00
|
10-22 17:07:00
| 1,022
| 0.899821
| 0.74702
| 0.899824
| 0.746998
| 0.899825
| 0.747354
|
4,206,100
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-17 08:50:00
|
10-17 08:50:00
|
10-17 13:57:00
|
10-17 13:57:00
| 1,017
| 0.899816
| 0.747017
| 0.899822
| 0.746996
| 0.899824
| 0.747355
|
1,529,956
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-18 08:47:00
|
10-18 08:47:00
|
10-18 14:28:00
|
10-18 14:28:00
| 1,018
| 0.89982
| 0.747022
| 0.899823
| 0.746998
| 0.899825
| 0.747353
|
1,621,057
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-29 09:48:00
|
10-29 09:48:00
|
10-29 11:38:00
|
10-29 11:38:00
| 1,029
| 0.899849
| 0.74697
| 0.899836
| 0.746989
| 0.899825
| 0.747356
|
3,443,201
| 10
|
Chongqing
| 1,635
| 296
| 14
|
07-14 09:04:00
|
07-14 09:04:00
|
07-14 10:38:00
|
07-14 10:38:00
| 714
| 0.899859
| 0.746968
| 0.899862
| 0.746982
| 0.899822
| 0.747365
|
199,430
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-28 09:05:00
|
09-28 09:05:00
|
09-28 10:30:00
|
09-28 10:30:00
| 928
| 0.899836
| 0.746962
| 0.899838
| 0.746992
| 0.899824
| 0.747355
|
4,240,373
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-10 09:06:00
|
10-10 09:06:00
|
10-10 10:54:00
|
10-10 10:54:00
| 1,010
| 0.899849
| 0.74697
| 0.899838
| 0.746991
| 0.899825
| 0.747355
|
2,566,777
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-23 09:16:00
|
10-23 09:16:00
|
10-23 14:54:00
|
10-23 14:54:00
| 1,023
| 0.89982
| 0.747022
| 0.899822
| 0.746999
| 0.899824
| 0.747353
|
4,181,188
| 10
|
Chongqing
| 1,635
| 296
| 14
|
07-16 09:27:00
|
07-16 09:27:00
|
07-16 11:05:00
|
07-16 11:05:00
| 716
| 0.899838
| 0.746964
| 0.899837
| 0.74699
| 0.899823
| 0.747361
|
1,736,306
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-29 08:46:00
|
08-29 08:46:00
|
08-29 14:18:00
|
08-29 14:18:00
| 829
| 0.89982
| 0.747019
| 0.899824
| 0.746997
| 0.899823
| 0.747362
|
595,517
| 10
|
Chongqing
| 1,635
| 296
| 14
|
07-04 09:04:00
|
07-04 09:04:00
|
07-04 11:32:00
|
07-04 11:32:00
| 704
| 0.899825
| 0.746968
| 0.899837
| 0.746992
| 0.899823
| 0.747365
|
4,191,331
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-04 08:57:00
|
09-04 08:57:00
|
09-04 10:16:00
|
09-04 10:16:00
| 904
| 0.899844
| 0.746968
| 0.899859
| 0.746916
| 0.899823
| 0.747364
|
101,246
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-19 09:44:00
|
06-19 09:44:00
|
06-19 17:08:00
|
06-19 17:08:00
| 619
| 0.899857
| 0.746969
| 0.899867
| 0.746928
| 0.899823
| 0.747363
|
3,298,992
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-12 08:53:00
|
10-12 08:53:00
|
10-12 10:33:00
|
10-12 10:33:00
| 1,012
| 0.899857
| 0.746971
| 0.899869
| 0.746934
| 0.899825
| 0.747355
|
3,899,253
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-24 09:27:00
|
10-24 09:27:00
|
10-24 11:07:00
|
10-24 11:07:00
| 1,024
| 0.899869
| 0.746953
| 0.899869
| 0.747003
| 0.899825
| 0.747351
|
100,963
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-03 10:20:00
|
06-03 10:20:00
|
06-03 16:50:00
|
06-03 16:50:00
| 603
| 0.899843
| 0.74697
| 0.899836
| 0.746989
| 0.899823
| 0.747365
|
1,146,472
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-22 10:30:00
|
10-22 10:30:00
|
10-22 12:04:00
|
10-22 12:04:00
| 1,022
| 0.899849
| 0.74697
| 0.899837
| 0.746994
| 0.899825
| 0.747354
|
252,323
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-03 09:46:00
|
09-03 09:46:00
|
09-03 11:06:00
|
09-03 11:06:00
| 903
| 0.899836
| 0.746962
| 0.899835
| 0.746984
| 0.899823
| 0.747364
|
4,374,564
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-19 08:34:00
|
10-19 08:34:00
|
10-19 10:02:00
|
10-19 10:02:00
| 1,019
| 0.899835
| 0.746989
| 0.899836
| 0.746989
| 0.899824
| 0.747353
|
2,949,356
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-19 08:35:00
|
10-19 08:35:00
|
10-19 10:19:00
|
10-19 10:19:00
| 1,019
| 0.899844
| 0.746969
| 0.899866
| 0.746925
| 0.899824
| 0.747353
|
3,860,525
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-19 08:31:00
|
10-19 08:31:00
|
10-19 13:32:00
|
10-19 13:32:00
| 1,019
| 0.899817
| 0.747021
| 0.899823
| 0.747001
| 0.899825
| 0.747352
|
1,086,282
| 10
|
Chongqing
| 1,635
| 296
| 14
|
07-31 08:49:00
|
07-31 08:49:00
|
07-31 13:41:00
|
07-31 13:41:00
| 731
| 0.899824
| 0.746993
| 0.899823
| 0.746998
| 0.899822
| 0.747366
|
3,765,009
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-01 08:50:00
|
09-01 08:50:00
|
09-01 10:02:00
|
09-01 10:02:00
| 901
| 0.899834
| 0.746988
| 0.899836
| 0.746989
| 0.899824
| 0.747365
|
3,191,559
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-11 08:30:00
|
10-11 08:30:00
|
10-11 13:56:00
|
10-11 13:56:00
| 1,011
| 0.899817
| 0.747019
| 0.899823
| 0.746993
| 0.899825
| 0.747352
|
686,728
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-28 08:07:00
|
08-28 08:07:00
|
08-28 13:46:00
|
08-28 13:46:00
| 828
| 0.89982
| 0.74702
| 0.899822
| 0.746994
| 0.899823
| 0.747366
|
3,098,891
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-12 08:52:00
|
10-12 08:52:00
|
10-12 14:27:00
|
10-12 14:27:00
| 1,012
| 0.89982
| 0.747023
| 0.899823
| 0.746995
| 0.899825
| 0.747353
|
673,108
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-29 09:38:00
|
05-29 09:38:00
|
05-29 11:22:00
|
05-29 11:22:00
| 529
| 0.899832
| 0.747015
| 0.899861
| 0.746984
| 0.899824
| 0.747364
|
743,762
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-16 09:11:00
|
09-16 09:11:00
|
09-16 11:24:00
|
09-16 11:24:00
| 916
| 0.899837
| 0.746963
| 0.899837
| 0.746988
| 0.899824
| 0.747353
|
22,134
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-16 09:07:00
|
06-16 09:07:00
|
06-16 10:32:00
|
06-16 10:32:00
| 616
| 0.899848
| 0.746969
| 0.899871
| 0.746942
| 0.899823
| 0.747363
|
667,134
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-07 08:43:00
|
06-07 08:43:00
|
06-07 14:46:00
|
06-07 14:46:00
| 607
| 0.899814
| 0.747025
| 0.899788
| 0.747056
| 0.899822
| 0.747365
|
3,310,572
| 10
|
Chongqing
| 1,635
| 296
| 14
|
06-26 08:23:00
|
06-26 08:23:00
|
06-26 09:25:00
|
06-26 09:25:00
| 626
| 0.899849
| 0.746969
| 0.899838
| 0.746995
| 0.899823
| 0.747366
|
4,271,164
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-16 09:03:00
|
05-16 09:03:00
|
05-16 11:28:00
|
05-16 11:28:00
| 516
| 0.899849
| 0.746969
| 0.899869
| 0.746939
| 0.899823
| 0.747365
|
1,501,745
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-30 09:00:00
|
10-30 09:00:00
|
10-30 14:23:00
|
10-30 14:23:00
| 1,030
| 0.899821
| 0.747021
| 0.899823
| 0.746995
| 0.899825
| 0.747354
|
303,794
| 10
|
Chongqing
| 1,635
| 296
| 14
|
08-26 09:01:00
|
08-26 09:01:00
|
08-26 14:52:00
|
08-26 14:52:00
| 826
| 0.89982
| 0.74702
| 0.89982
| 0.747021
| 0.899823
| 0.747366
|
3,771,847
| 10
|
Chongqing
| 1,635
| 296
| 14
|
10-13 09:18:00
|
10-13 09:18:00
|
10-13 15:09:00
|
10-13 15:09:00
| 1,013
| 0.899821
| 0.747023
| 0.899751
| 0.746938
| 0.899825
| 0.747351
|
3,101,905
| 10
|
Chongqing
| 1,635
| 296
| 14
|
05-06 09:02:00
|
05-06 09:02:00
|
05-06 10:15:00
|
05-06 10:15:00
| 506
| 0.899814
| 0.747022
| 0.899805
| 0.747082
| 0.899861
| 0.747387
|
3,077,304
| 10
|
Chongqing
| 1,635
| 296
| 14
|
09-11 09:57:00
|
09-11 09:57:00
|
09-11 15:19:00
|
09-11 15:19:00
| 911
| 0.899821
| 0.747024
| 0.899824
| 0.746996
| 0.899824
| 0.747354
|
Dataset Download: https://huggingface.co/datasets/Anonymous-LaEx/Anonymous-LaDe
Code Link:https://anonymous.4open.science/r/Anonymous-64B3/
1 About Dataset
LaDe is a publicly available last-mile delivery dataset with millions of packages from industry.
It has three unique characteristics: (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation.
(2) Comprehensive information, it offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen.
(3) Diversity: the dataset includes data from various scenarios, such as package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations.

2 Download
LaDe is composed of two subdatasets: i) LaDe-D, which comes from the package delivery scenario. ii) LaDe-P, which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.
LaDe can be used for research purposes. Before you download the dataset, please read these terms. And Code link. Then put the data into "./data/raw/".
The structure of "./data/raw/" should be like:
* ./data/raw/
* delivery
* delivery_sh.csv
* ...
* pickup
* pickup_sh.csv
* ...
Each sub-dataset contains 5 csv files, with each representing the data from a specific city, the detail of each city can be find in the following table.
| City | Description |
|---|---|
| Shanghai | One of the most prosperous cities in China, with a large number of orders per day. |
| Hangzhou | A big city with well-developed online e-commerce and a large number of orders per day. |
| Chongqing | A big city with complicated road conditions in China, with a large number of orders. |
| Jilin | A middle-size city in China, with a small number of orders each day. |
| Yantai | A small city in China, with a small number of orders every day. |
3 Description
Below is the detailed field of each sub-dataset.
3.1 LaDe-P
| Data field | Description | Unit/format |
|---|---|---|
| Package information | ||
| package_id | Unique identifier of each package | Id |
| time_window_start | Start of the required time window | Time |
| time_window_end | End of the required time window | Time |
| Stop information | ||
| lng/lat | Coordinates of each stop | Float |
| city | City | String |
| region_id | Id of the Region | String |
| aoi_id | Id of the AOI (Area of Interest) | Id |
| aoi_type | Type of the AOI | Categorical |
| Courier Information | ||
| courier_id | Id of the courier | Id |
| Task-event Information | ||
| accept_time | The time when the courier accepts the task | Time |
| accept_gps_time | The time of the GPS point closest to accept time | Time |
| accept_gps_lng/lat | Coordinates when the courier accepts the task | Float |
| pickup_time | The time when the courier picks up the task | Time |
| pickup_gps_time | The time of the GPS point closest to pickup_time | Time |
| pickup_gps_lng/lat | Coordinates when the courier picks up the task | Float |
| Context information | ||
| ds | The date of the package pickup | Date |
3.2 LaDe-D
| Data field | Description | Unit/format |
|---|---|---|
| Package information | ||
| package_id | Unique identifier of each package | Id |
| Stop information | ||
| lng/lat | Coordinates of each stop | Float |
| city | City | String |
| region_id | Id of the region | Id |
| aoi_id | Id of the AOI | Id |
| aoi_type | Type of the AOI | Categorical |
| Courier Information | ||
| courier_id | Id of the courier | Id |
| Task-event Information | ||
| accept_time | The time when the courier accepts the task | Time |
| accept_gps_time | The time of the GPS point whose time is the closest to accept time | Time |
| accept_gps_lng/accept_gps_lat | Coordinates when the courier accepts the task | Float |
| delivery_time | The time when the courier finishes delivering the task | Time |
| delivery_gps_time | The time of the GPS point whose time is the closest to the delivery time | Time |
| delivery_gps_lng/delivery_gps_lat | Coordinates when the courier finishes the task | Float |
| Context information | ||
| ds | The date of the package delivery | Date |
4 Leaderboard
Blow shows the performance of different methods in Shanghai.
4.1 Route Prediction
Experimental results of route prediction. We use bold and underlined fonts to denote the best and runner-up model, respectively.
| Method | HR@3 | KRC | LSD | ED |
|---|---|---|---|---|
| TimeGreedy | 59.81 | 39.93 | 5.20 | 2.24 |
| DistanceGreedy | 61.07 | 42.84 | 5.35 | 1.94 |
| OR-Tools | 62.50 | 44.81 | 4.69 | 1.88 |
| LightGBM | 70.63 | 54.48 | 3.27 | 1.92 |
| FDNET | 69.05 ± 0.47 | 52.72 ± 1.98 | 4.08 ± 0.29 | 1.86 ± 0.03 |
| DeepRoute | 71.66 ± 0.11 | 56.20 ± 0.27 | 3.26 ± 0.08 | 1.86 ± 0.01 |
| Graph2Route | 71.69 ± 0.12 | 56.53 ± 0.12 | 3.12 ± 0.01 | 1.86 ± 0.01 |
| DRL4Route | 72.18 ± 0.18 | 57.20 ± 0.20 | 3.06 ± 0.02 | 1.84 ± 0.01 |
4.2 Estimated Time of Arrival Prediction
| Method | MAE | RMSE | ACC@20 |
|---|---|---|---|
| LightGBM | 17.48 | 20.39 | 0.68 |
| SPEED | 23.75 | 27.86 | 0.58 |
| KNN | 21.28 | 25.36 | 0.60 |
| MLP | 18.58 ± 0.37 | 21.54 ± 0.34 | 0.66 ± 0.02 |
| FDNET | 18.47 ± 0.31 | 21.44 ± 0.34 | 0.67 ± 0.02 |
| RANKETPA | 17.18 ± 0.06 | 20.18 ± 0.08 | 0.70 ± 0.01 |
4.3 Spatio-temporal Graph Forecasting
| Method | MAE | RMSE |
|---|---|---|
| HA | 4.63 | 9.91 |
| DCRNN | 3.69 ± 0.09 | 7.08 ± 0.12 |
| STGCN | 3.04 ± 0.02 | 6.42 ± 0.05 |
| GWNET | 3.16 ± 0.06 | 6.56 ± 0.11 |
| ASTGCN | 3.12 ± 0.06 | 6.48 ± 0.14 |
| MTGNN | 3.13 ± 0.04 | 6.51 ± 0.13 |
| AGCRN | 3.93 ± 0.03 | 7.99 ± 0.08 |
| STGNCDE | 3.74 ± 0.15 | 7.27 ± 0.16 |
- Downloads last month
- 54