Anonymous-LaEx commited on
Commit
38f4bb9
1 Parent(s): 3e0fce3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - Logistics
5
+ - Last-mile Delivery
6
+ - Spatial-Temporal
7
+ - Graph
8
+ size_categories:
9
+ - 10M<n<100M
10
+ ---
11
+
12
+ Dataset Download: https://huggingface.co/datasets/Anonymous-LaEx/Anonymous/tree/main
13
+ Code Link:https://anonymous.4open.science/r/Anonymous-64B3/
14
+
15
+ # 1 About Dataset
16
+ **LaEx** is a publicly available last-mile delivery dataset with millions of packages from industry.
17
+ It has three unique characteristics: (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation.
18
+ (2) Comprehensive information, it offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen.
19
+ (3) Diversity: the dataset includes data from various scenarios, such as package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations.
20
+ ![LaDe.png](./img/LaEx.png)
21
+
22
+
23
+
24
+ # 2 Download
25
+ LaEx is composed of two subdatasets: i) [LaEx-D](https://huggingface.co/datasets/Anonymous-LaEx/Anonymous/tree/main/delivery), which comes from the package delivery scenario.
26
+ ii) [LaEx-P](https://huggingface.co/datasets/Anonymous-LaEx/Anonymous/tree/main/pickup), which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.
27
+
28
+ LaEx can be used for research purposes. Before you download the dataset, please read these terms. And [Code link](https://anonymous.4open.science/r/Anonymous-64B3/). Then put the data into "./data/raw/".
29
+ The structure of "./data/raw/" should be like:
30
+ ```
31
+ * ./data/raw/
32
+ * delivery
33
+ * delivery_sh.csv
34
+ * ...
35
+ * pickup
36
+ * pickup_sh.csv
37
+ * ...
38
+ ```
39
+
40
+ Each sub-dataset contains 5 csv files, with each representing the data from a specific city, the detail of each city can be find in the following table.
41
+
42
+
43
+ | City | Description |
44
+ |------------|----------------------------------------------------------------------------------------------|
45
+ | Shanghai | One of the most prosperous cities in China, with a large number of orders per day. |
46
+ | Hangzhou | A big city with well-developed online e-commerce and a large number of orders per day. |
47
+ | Chongqing | A big city with complicated road conditions in China, with a large number of orders. |
48
+ | Jilin | A middle-size city in China, with a small number of orders each day. |
49
+ | Yantai | A small city in China, with a small number of orders every day. |
50
+
51
+
52
+ # 3 Description
53
+ Below is the detailed field of each sub-dataset.
54
+ ## 3.1 LaEx-P
55
+ | Data field | Description | Unit/format |
56
+ |----------------------------|----------------------------------------------|--------------|
57
+ | **Package information** | | |
58
+ | package_id | Unique identifier of each package | Id |
59
+ | time_window_start | Start of the required time window | Time |
60
+ | time_window_end | End of the required time window | Time |
61
+ | **Stop information** | | |
62
+ | lng/lat | Coordinates of each stop | Float |
63
+ | city | City | String |
64
+ | region_id | Id of the Region | String |
65
+ | aoi_id | Id of the AOI (Area of Interest) | Id |
66
+ | aoi_type | Type of the AOI | Categorical |
67
+ | **Courier Information** | | |
68
+ | courier_id | Id of the courier | Id |
69
+ | **Task-event Information** | | |
70
+ | accept_time | The time when the courier accepts the task | Time |
71
+ | accept_gps_time | The time of the GPS point closest to accept time | Time |
72
+ | accept_gps_lng/lat | Coordinates when the courier accepts the task | Float |
73
+ | pickup_time | The time when the courier picks up the task | Time |
74
+ | pickup_gps_time | The time of the GPS point closest to pickup_time | Time |
75
+ | pickup_gps_lng/lat | Coordinates when the courier picks up the task | Float |
76
+ | **Context information** | | |
77
+ | ds | The date of the package pickup | Date |
78
+
79
+
80
+ ## 3.2 LaEx-D
81
+ | Data field | Description | Unit/format |
82
+ |-----------------------|--------------------------------------|---------------|
83
+ | **Package information** | | |
84
+ | package_id | Unique identifier of each package | Id |
85
+ | **Stop information** | | |
86
+ | lng/lat | Coordinates of each stop | Float |
87
+ | city | City | String |
88
+ | region_id | Id of the region | Id |
89
+ | aoi_id | Id of the AOI | Id |
90
+ | aoi_type | Type of the AOI | Categorical |
91
+ | **Courier Information** | | |
92
+ | courier_id | Id of the courier | Id |
93
+ | **Task-event Information**| | |
94
+ | accept_time | The time when the courier accepts the task | Time |
95
+ | accept_gps_time | The time of the GPS point whose time is the closest to accept time | Time |
96
+ | accept_gps_lng/accept_gps_lat | Coordinates when the courier accepts the task | Float |
97
+ | delivery_time | The time when the courier finishes delivering the task | Time |
98
+ | delivery_gps_time | The time of the GPS point whose time is the closest to the delivery time | Time |
99
+ | delivery_gps_lng/delivery_gps_lat | Coordinates when the courier finishes the task | Float |
100
+ | **Context information** | | |
101
+ | ds | The date of the package delivery | Date |
102
+
103
+
104
+ # 4 Leaderboard
105
+ Blow shows the performance of different methods in Shanghai.
106
+ ## 4.1 Route Prediction
107
+
108
+ Experimental results of route prediction. We use bold and underlined fonts to denote the best and runner-up model, respectively.
109
+
110
+ | Method | HR@3 | KRC | LSD | ED |
111
+ |--------------|--------------|--------------|-------------|-------------|
112
+ | TimeGreedy | 57.65 | 31.81 | 5.54 | 2.15 |
113
+ | DistanceGreedy | 60.77 | 39.81 | 5.54 | 2.15 |
114
+ | OR-Tools | 66.21 | 47.60 | 4.40 | 1.81 |
115
+ | LightGBM | 73.76 | 55.71 | 3.01 | 1.84 |
116
+ | FDNET | 73.27 ± 0.47 | 53.80 ± 0.58 | 3.30 ± 0.04 | 1.84 ± 0.01 |
117
+ | DeepRoute | 74.68 ± 0.07 | 56.60 ± 0.16 | 2.98 ± 0.01 | 1.79 ± 0.01 |
118
+ | Graph2Route | 74.84 ± 0.15 | 56.99 ± 0.52 | 2.86 ± 0.02 | 1.77 ± 0.01 |
119
+
120
+
121
+ ## 4.2 Estimated Time of Arrival Prediction
122
+
123
+ | Method | MAE | RMSE | ACC@30 |
124
+ | ------ |--------------|--------------|-------------|
125
+ | LightGBM | 17.48 | 20.39 | 0.85 |
126
+ | SPEED | 23.75 | 27.86 | 0.73 |
127
+ | KNN | 21.28 | 25.36 | 0.75 |
128
+ | MLP | 21.54 ± 2.20 | 25.05 ± 2.46 | 0.79 ± 0.04 |
129
+ | FDNET | 18.47 ± 0.25 | 21.44 ± 0.28 | 0.84 ± 0.01 |
130
+
131
+
132
+ ## 4.3 Spatio-temporal Graph Forecasting
133
+
134
+
135
+ | Method | MAE | RMSE |
136
+ |-------|-------------|-------------|
137
+ | HA | 4.63 | 9.91 |
138
+ | DCRNN | 3.69 ± 0.09 | 7.08 ± 0.12 |
139
+ | STGCN | 3.04 ± 0.02 | 6.42 ± 0.05 |
140
+ | GWNET | 3.16 ± 0.06 | 6.56 ± 0.11 |
141
+ | ASTGCN | 3.12 ± 0.06 | 6.48 ± 0.14 |
142
+ | MTGNN | 3.13 ± 0.04 | 6.51 ± 0.13 |
143
+ | AGCRN | 3.93 ± 0.03 | 7.99 ± 0.08 |
144
+ | STGNCDE | 3.74 ± 0.15 | 7.27 ± 0.16 |
145
+
146
+