comments
Browse files- utils/keck_filtering.ipynb +22 -0
utils/keck_filtering.ipynb
CHANGED
@@ -28,6 +28,12 @@
|
|
28 |
"import numpy as np\n",
|
29 |
"import shutil\n",
|
30 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"def get_all_fits_files(root_dir):\n",
|
32 |
" # Use glob to recursively find all .fits files\n",
|
33 |
" pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
|
@@ -103,6 +109,12 @@
|
|
103 |
"latitudes = list(df['dec'])\n",
|
104 |
"longitudes = list(df['ra'])\n",
|
105 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
"n_points = len(latitudes)\n",
|
107 |
"\n",
|
108 |
"# Repeat each point n_points times for lat1, lon1\n",
|
@@ -160,6 +172,11 @@
|
|
160 |
"KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
|
161 |
"THRESH = KECK_FOV * 2\n",
|
162 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
163 |
"clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
|
164 |
"labels = clustering.fit_predict(angular_separations_matrix)"
|
165 |
]
|
@@ -196,6 +213,11 @@
|
|
196 |
"RA_NAME = 'ra'\n",
|
197 |
"DEC_NAME = 'dec'\n",
|
198 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
199 |
"def max_subset_with_min_distance(points, min_distance):\n",
|
200 |
" subset = []\n",
|
201 |
" for i, row in points.iterrows():\n",
|
|
|
28 |
"import numpy as np\n",
|
29 |
"import shutil\n",
|
30 |
"\n",
|
31 |
+
"\"\"\"\n",
|
32 |
+
"Use this code after downloading imagery using\n",
|
33 |
+
"keck_downloading file.\n",
|
34 |
+
"\n",
|
35 |
+
"\"\"\"\n",
|
36 |
+
"\n",
|
37 |
"def get_all_fits_files(root_dir):\n",
|
38 |
" # Use glob to recursively find all .fits files\n",
|
39 |
" pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
|
|
|
109 |
"latitudes = list(df['dec'])\n",
|
110 |
"longitudes = list(df['ra'])\n",
|
111 |
"\n",
|
112 |
+
"\"\"\"\n",
|
113 |
+
"Code to compute all angular separations between pairwise images from single RA DEC\n",
|
114 |
+
"values.\n",
|
115 |
+
"\n",
|
116 |
+
"\"\"\"\n",
|
117 |
+
"\n",
|
118 |
"n_points = len(latitudes)\n",
|
119 |
"\n",
|
120 |
"# Repeat each point n_points times for lat1, lon1\n",
|
|
|
172 |
"KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
|
173 |
"THRESH = KECK_FOV * 2\n",
|
174 |
"\n",
|
175 |
+
"'''\n",
|
176 |
+
"Initial agglomerative clustering.\n",
|
177 |
+
"Since we don't have WCS info, the above threshold is very conservative.\n",
|
178 |
+
"'''\n",
|
179 |
+
"\n",
|
180 |
"clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
|
181 |
"labels = clustering.fit_predict(angular_separations_matrix)"
|
182 |
]
|
|
|
213 |
"RA_NAME = 'ra'\n",
|
214 |
"DEC_NAME = 'dec'\n",
|
215 |
"\n",
|
216 |
+
"\"\"\"\n",
|
217 |
+
"Only select images that are at least THRESH apart from each other.\n",
|
218 |
+
"\n",
|
219 |
+
"\"\"\"\n",
|
220 |
+
"\n",
|
221 |
"def max_subset_with_min_distance(points, min_distance):\n",
|
222 |
" subset = []\n",
|
223 |
" for i, row in points.iterrows():\n",
|