rithwiks commited on
Commit
8633944
1 Parent(s): b4967a6
Files changed (1) hide show
  1. utils/keck_filtering.ipynb +22 -0
utils/keck_filtering.ipynb CHANGED
@@ -28,6 +28,12 @@
28
  "import numpy as np\n",
29
  "import shutil\n",
30
  "\n",
 
 
 
 
 
 
31
  "def get_all_fits_files(root_dir):\n",
32
  " # Use glob to recursively find all .fits files\n",
33
  " pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
@@ -103,6 +109,12 @@
103
  "latitudes = list(df['dec'])\n",
104
  "longitudes = list(df['ra'])\n",
105
  "\n",
 
 
 
 
 
 
106
  "n_points = len(latitudes)\n",
107
  "\n",
108
  "# Repeat each point n_points times for lat1, lon1\n",
@@ -160,6 +172,11 @@
160
  "KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
161
  "THRESH = KECK_FOV * 2\n",
162
  "\n",
 
 
 
 
 
163
  "clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
164
  "labels = clustering.fit_predict(angular_separations_matrix)"
165
  ]
@@ -196,6 +213,11 @@
196
  "RA_NAME = 'ra'\n",
197
  "DEC_NAME = 'dec'\n",
198
  "\n",
 
 
 
 
 
199
  "def max_subset_with_min_distance(points, min_distance):\n",
200
  " subset = []\n",
201
  " for i, row in points.iterrows():\n",
 
28
  "import numpy as np\n",
29
  "import shutil\n",
30
  "\n",
31
+ "\"\"\"\n",
32
+ "Use this code after downloading imagery using\n",
33
+ "keck_downloading file.\n",
34
+ "\n",
35
+ "\"\"\"\n",
36
+ "\n",
37
  "def get_all_fits_files(root_dir):\n",
38
  " # Use glob to recursively find all .fits files\n",
39
  " pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
 
109
  "latitudes = list(df['dec'])\n",
110
  "longitudes = list(df['ra'])\n",
111
  "\n",
112
+ "\"\"\"\n",
113
+ "Code to compute all angular separations between pairwise images from single RA DEC\n",
114
+ "values.\n",
115
+ "\n",
116
+ "\"\"\"\n",
117
+ "\n",
118
  "n_points = len(latitudes)\n",
119
  "\n",
120
  "# Repeat each point n_points times for lat1, lon1\n",
 
172
  "KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
173
  "THRESH = KECK_FOV * 2\n",
174
  "\n",
175
+ "'''\n",
176
+ "Initial agglomerative clustering.\n",
177
+ "Since we don't have WCS info, the above threshold is very conservative.\n",
178
+ "'''\n",
179
+ "\n",
180
  "clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
181
  "labels = clustering.fit_predict(angular_separations_matrix)"
182
  ]
 
213
  "RA_NAME = 'ra'\n",
214
  "DEC_NAME = 'dec'\n",
215
  "\n",
216
+ "\"\"\"\n",
217
+ "Only select images that are at least THRESH apart from each other.\n",
218
+ "\n",
219
+ "\"\"\"\n",
220
+ "\n",
221
  "def max_subset_with_min_distance(points, min_distance):\n",
222
  " subset = []\n",
223
  " for i, row in points.iterrows():\n",