blob_id
stringlengths
40
40
repo_name
stringlengths
5
127
path
stringlengths
2
523
length_bytes
int64
22
3.06M
score
float64
3.5
5.34
int_score
int64
4
5
text
stringlengths
22
3.06M
55884a59514464a78f8002779532a7eb01b8331c
sudajzp/jzp-s-python
/FBNQ_py/Fib_circle.py
854
3.84375
4
#coding utf-8 ''' 斐波那契数列-循环法 ''' def Fib_circle(): while True: # 去掉while循环,只用for循环 num_1 = 0 num_2 = 1 fib_array = [0] # 用于存储计算出的FB数列值 m = input('你想要查找的起始项:') n = input('你想要查找的结束项:') if m.isdigit() and n.isdigit(): # 在这个实现函数中,不要进行检验。每个函数只做一个事情 m = int(m) # 将输入化为整数型 n = int(n) for i in range(n): num_1, num_2 = num_2, num_1 + num_2 fib_array.append(num_1) print(f'你要查找的数列为{list(enumerate(fib_array[m:], m))}') break else: print('请输入有效的正整数') if __name__ == '__main__': Fib_circle()
bbdbe92fa64d8a4006a4a6f7ef2ffc862ffaadb2
waffle-iron/osmaxx
/osmaxx/utils/directory_changer_helper.py
1,710
3.609375
4
import shutil import os class changed_dir: # pragma: nocover # noqa -> disable=N801 """ Changes into a arbitrary directory, switching back to the directory after execution of the with statement. directory: the directory that should be changed into. create_if_not_exists: set this to False, if the chgdir should fail loudly. If set to `True`, tries to create the directory if it doesn't exist fallback_to_tempdir_as_last_resort: assumes create_if_not_exists is also True creates a tmp directory as last resort, and does work there. Defaults to False. """ def __init__(self, directory, create_if_not_exists=True): self.old_dir = os.getcwd() self.new_dir = directory self.success = None self.create_if_not_exists = create_if_not_exists def __enter__(self): try: try: # see if we can enter the directory os.chdir(self.new_dir) self.success = True except OSError: if self.create_if_not_exists: try: # see if we can create it os.mkdir(self.new_dir) os.chdir(self.new_dir) self.success = True except OSError: raise else: raise finally: return self def __exit__(self, type, value, traceback): os.chdir(self.old_dir) try: if not self.success: shutil.rmtree(self.new_dir) except: pass return isinstance(value, OSError)
dadbdd33b087e16ffcbb985b8b28e1e215f5fc53
Sandro37/Introducao_ao_python-CURSO-Digital_Innovation-One
/aula02.py
1,172
4.25
4
#O que são variáveis e como manipulá-las através # de operadores aritméticos e interação com o osuário valorA = int(input("Entre com o primeiro valor: ")) valorB = int(input("Entre com o segundo valor: ")) soma = valorA + valorB subtracao = valorA - valorB multiplicacao = valorA * valorB divisao = valorA / valorB restoDivisao = valorA % valorB print(soma) print(subtracao) print(multiplicacao) print(divisao) print(restoDivisao) print("soma: " + str(soma)) print("________________________________________") print("Soma: {}".format(soma)) print("Substração: {}".format(subtracao)) print("Multiplicação: {}".format(multiplicacao)) print("Divisão: {}".format(divisao)) print("Resto da divisão: {}".format(restoDivisao)) print("________________________________________________________________") x = '1' soma2 = int(x) + 1 print("Soma convertida = {}".format(soma2)) print("________________________________________________________________") print("soma: {soma}. \nSubtração: {sub}\nMultiplicacao: {multiplicacao}\nDivisão: {div}\nResto da Divisão: {resto}".format(soma=soma, sub=subtracao,multiplicacao=multiplicacao,div=divisao,resto=restoDivisao))
4f532cd9216766b1dfdb41705e9d643798d70225
Sandro37/Introducao_ao_python-CURSO-Digital_Innovation-One
/aula05.py
1,138
4.125
4
#como organizar os dados em uma lista ou tupla # e realizar operações com elas lista = [12,20,1,3,5,7] lista_animal = ['cachorro', 'gato', 'elefante'] # print(lista_animal[1]) soma = 0 for x in lista: soma += x print(soma) print(sum(lista)) print(max(lista)) print(min(lista)) print(max(lista_animal)) print(min(lista_animal)) # nova_lista = lista_animal * 3 # # print(nova_lista) if 'gato' in lista_animal: print('Existe um gato na lista') else: print('Não existe um gato na lista') if 'lobo' in lista_animal: print('Existe um lobo na lista') else: print('Não existe um lobo na lista. Será incluido') lista_animal.append('lobo') print(lista_animal) lista_animal.pop() print(lista_animal) lista_animal.remove('elefante') print(lista_animal) #ordenando lista lista_animal.sort() lista.sort() print(lista_animal) print(lista) # reverse lista_animal.reverse() lista.reverse() print(lista_animal) print(lista) # tuplas (imutável) tupla = (1,10,12,14,20,185) print(len(tupla)) tupla_animal = tuple(lista_animal) print(tupla_animal) lista_numerica = list(tupla) print(lista_numerica)
425854801551920590427c26c97c6cc791ee7d43
lxy1992/LeetCode
/Python/interview/找零问题.py
799
3.671875
4
# -*- coding: UTF-8 -*- def coinChange(values, money, coinsUsed): #values T[1:n]数组 #valuesCounts 钱币对应的种类数 #money 找出来的总钱数 #coinsUsed 对应于 前钱币总数i所使 的硬币数 for cents in range(1, money+1): minCoins = cents #从第 个开始到money的所有情况初始 for value in values: if value <= cents: temp = coinsUsed[cents - value] + 1 if temp < minCoins: minCoins = temp coinsUsed[cents] = minCoins print(' 值为:{0} 的最 硬币数 为:{1} '.format(cents, coinsUsed[cents])) if __name__ == '__main__': values = [25, 21, 10, 5, 1] money = 63 coinsUsed = {i: 0 for i in range(money + 1)} coinChange(values, money, coinsUsed)
1da8f86df0eb1737339a4ffc51f9f37e6aaaba24
bui-brian/FinalGradesPrediction-ML
/studentLRM.py
1,620
3.625
4
# Author: Brian Bui # Date: May 1, 2021 # File: studentLRM.py - Student Performance Linear Regression Model # Desc: predicting grades of a student by using a linear regression model # importing all of the necessary ML packages import numpy as np import pandas as pd import sklearn from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # importing the Portuguese language course dataset df = pd.read_csv("student-por.csv", sep=';') # selecting specific attributes we want to use for this model df = df[['G1', 'G2', 'G3', 'studytime', 'failures', 'freetime', 'goout', 'health', 'absences']] # what we are trying to predict: the final grade outputPrediction = 'G3' # creating 2 numpy arrays to hold our x and y values x = np.array(df.drop([outputPrediction], 1)) y = np.array(df[outputPrediction]) # splitting data into testing and training x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size = 0.1) # creating a model and implementing Linear Regression model = LinearRegression().fit(x_train, y_train) accuracy = model.score(x_test, y_test) print('Accuracy of prediction:', accuracy) # score above 80% is good print('\nSlope:', model.coef_) print('\nIntercept:', model.intercept_) # predicting the response prediction = model.predict(x_test) print('\nPredicted response:', prediction) # plotting the model with matplotlib plot = 'G1' #plot = 'G2' #plot = 'studytime' #plot = 'failures' #plot = 'freetime' #plot = 'goout' #plot = 'health' #plot = 'absences' plt.scatter(df[plot], df['G3']) plt.xlabel(plot) plt.ylabel('Final Grade') plt.show()
5db0164f453ff465f1b12d6c90902573c4404578
ritobanrc/cryptography-toolkit
/cryptography_toolkit/tests/test_encryption.py
985
3.6875
4
import unittest from cryptography_toolkit import encrpytion as en class EncryptionTest(unittest.TestCase): def test_reverse_cipher(self): self.assertEqual(en.reverse_cipher("Lorem ipsum dolor sit amet, consectetur adipiscing elit."), ".tile gnicsipida rutetcesnoc ,tema tis rolod muspi meroL") def test_caesar_cipher(self): self.assertEqual(en.caesar_cipher("Lorem ipsum dolor sit amet, consectetur adipiscing elit.", 7), "svylt pwzbt kvsvy zpa htla, jvuzljalaby hkpwpzjpun lspa.") def test_transposition_cipher(self): self.assertEqual(en.transposition_cipher("Common sense is not so common.", 8), "Cenoonommstmme oo snnio. s s c") def test_rot13(self): self.assertEqual(en.rot13_cipher("Lorem ipsum dolor sit amet, consectetur adipiscing elit."), "yberz vcfhz qbybe fvg nzrg, pbafrpgrghe nqvcvfpvat ryvg.") if __name__ == '__main__': unittest.main()
f3a8fa37a1285908b5069546c484b7b5443b37f5
ni26/MAPCP2019U
/Homework/3/fib.py
533
3.984375
4
# coding: utf-8 # In[1]: def fibo(n_int): if n_int == 0: return 0 if n_int == 1: return 1 if n_int >= 2: return (fibo(n_int-1)+fibo(n_int-2)) # In[4]: def fib(n): if isinstance(n,float): print('The input argument {} is not a non-negative integer!'.format(n)) elif isinstance(n,str): print('The input argument {} is not a non-negative integer!'.format(n)) else: return fibo(n) # In[13]: fib ('hi') # In[14]: fib(5.2) # In[5]: fib(12)
a3f1d3d28fb81c256fd37fd3f6da1ded15395248
mhelal/COMM054
/python/evennumberedexercise/Exercise03_12.py
390
3.546875
4
import turtle length = eval(input("Enter the length of a star: ")) turtle.penup() turtle.goto(0, length / 2) turtle.pendown() turtle.right(72) turtle.forward(length) turtle.right(144) turtle.forward(length) turtle.right(144) turtle.forward(length) turtle.right(144) turtle.forward(length) turtle.right(144) turtle.forward(length) turtle.done()
92ead6f875e82d780d89a676e0c602737dafb509
mhelal/COMM054
/python/evennumberedexercise/Exercise03_06.py
175
4.21875
4
# Prompt the user to enter a degree in Celsius code = eval(input("Enter an ASCII code: ")) # Display result print("The character for ASCII code", code, "is", chr(code))
db0efc096311e8d2bd40a9f845af2a4ee2a38caf
mhelal/COMM054
/python/evennumberedexercise/Exercise4_6.py
525
4.3125
4
# Prompt the user to enter weight in pounds weight = eval(input("Enter weight in pounds: ")) # Prompt the user to enter height feet = eval(input("Enter feet: ")) inches = eval(input("Enter inches: ")) height = feet * 12 + inches # Compute BMI bmi = weight * 0.45359237 / ((height * 0.0254) * (height * 0.0254)) # Display result print("BMI is", bmi) if bmi < 18.5: print("Underweight") elif bmi < 25: print("Normal") elif bmi < 30: print("Overweight") else: print("Obese")
b53f694546230e659192bcc46194c791ff1c68a3
IvoNet/StackOverflow
/src/main/python/005.py
501
4.0625
4
#!/usr/bin/env python # -*- coding: utf-8 -*- def bubble_sort(seq): changed = True while changed: changed = False for i in range(len(seq) - 1): if seq[i] > seq[i + 1]: seq[i], seq[i + 1] = seq[i + 1], seq[i] changed = True print(seq) return None if __name__ == '__main__': # l = list(range(0, 10, -1)) # Wring l = list(range(10, 0, -1)) bubble_sort(l)
d808f1b2b598f8549208cbdfe36b635d2f12c6f8
nsnoel/Fifth-Assignment-nsnoel
/medium_assign.py
5,672
4.21875
4
''' Implement the following functions based on the question. Retain the name of the functions, and parameters as is in the question. ================= 1. compute_number_of_occurences(file_name) --> 50% Read the file large_sample.txt, and create dictionary of words where the key is the word, and value is the number of occurences of it. Your function should output three parameters: word_dictionary and longest_word and no_of_unique_words ------------------------------------------------ 2. word_list_game(file_name) & get_leader_board() --> 50% Write a function to create a game that reads the word_list.csv file. Based on this create a game where the users are meant to guess the meaning of a word. For each turn, display 4 meanings as 4 options, where one is the correct meaning of the word. Get input of the option from user, and see if the user got the meaning right. Each option entered is to be considered as a "try" by the user. A try is successfull if user guesses meaning correctly, and try is mistake otherwise. End the game when the user gets 3 mistakes. Create a file leaderboard.csv where you maintain the name and successful tries by each user. Write a function get_leader_board() which displays the top scorers sorted by score in following fashion: Rank | Name | Score 1 | John | 10 2 | Jane | 8 ''' 1 import string def strip_text(file_name): text = file_name.read() words = text.split() words = text.split("--") words = text.split(",") table = str.maketrans("", "", string.punctuation) inter_reader = [w.translate(table) for w in words] return inter_reader def compute_number_of_occurences(file_name): inter_reader = strip_text(file_name) word_dictionary = dict() for line in inter_reader: line = line.strip() line = line.lower() words = line.split(" ") for word in words: if word in word_dictionary: word_dictionary[word] = word_dictionary[word] +1 else: word_dictionary[word] = 1 for key in list(word_dictionary.keys()): print(key, ":", word_dictionary[key]) longest_word = '' longest_size = 0 for word in word_dictionary: if (len(word) > longest_size): longest_word = word longest_size = len(word) print(longest_word) no_of_unique_words = len(word_dictionary) return f"The full dictionary is :{word_dictionary}, The longest word is {longest_word}. The number of unique words is {no_of_unique_words}" if __name__ == "__main__": input_file = open('large_sample.txt','r') dictionary = compute_number_of_occurences(input_file) print(dictionary) import random import csv def word_list_game(file_name): csv_fd = open(file_name, 'r') csv_reader = csv.reader(csv_fd) # opens and reads file, make it into a string player_name = input("Enter name: ") #new name list_of_words = [] definition_list = [] for row in csv_reader: if row[0] != 'WORD': #word is column, if the row of 0 doesnt = word, means it isnt the first row list_of_words.append(row[0]) # append the value from the file to a new list (all the words) definition_list.append(row[1]) # append the definitions (column 2) game = "" # initialize the variables, game is = to an empty string right now wrong_try = 0 successful_try = 0 while game != 'over': #while the game isn't over guess_key = random.randint(0,len(list_of_words)) #random word from list guess_word = list_of_words[guess_key] #the definition of that random word print(f"The definition of {guess_word} is : ") print() letters = ['A', 'B', 'C', 'D'] correct_alpha = random.randint(0,3) for i in range(4): if i == correct_alpha: print(f"{letters[correct_alpha]} {definition_list[guess_key]}") else: rand_def = random.randint(0,len(list_of_words) - 1) while rand_def == guess_key: rand_def = random.randint(0,len(list_of_words) - 1) print(f"{letters[i]} {definition_list[rand_def]}") guess = input("Which is the correct definition? (A,B,C,D): ") guess = guess.upper() #upper cases print() if not guess in 'ABCD': print("That is simply not an option :)") if guess != letters[correct_alpha]: #index out of range only when guess != correct alpha wrong_try += 1 if wrong_try != 3: print(f"Not right, but you still have {3 - wrong_try} tries left before the game is absolutely over.") if wrong_try == 3: print("Game is over, sorry. ") game = 'over' else: successful_try += 1 print("Yes.") csv_fd.close() leader_fd_append = open('leaderboard.csv', 'a') csv_writer = csv.writer(leader_fd_append) leader_fd_read = open('leaderboard.csv', 'r') csv_reader = csv.reader(leader_fd_read) if len(list(csv_reader)) == 0: csv_writer.writerow(["Player", "Score"]) csv_writer.writerow([player_name, successful_try]) leader_fd_append.close() leader_fd_read.close() def get_leader_board(): leader_fd = open('leaderboard.csv', 'r') csv_reader = csv.reader(leader_fd) for row in csv_reader: #writing new rows print(row[0], " | ", row[1]) if __name__ == "__main__": word_list_game("word_list.csv") get_leader_board()
0aa83c8b941db62f131b3a469d7c96f74e68e7df
jenny-jt/HW-Accounting-Scripts
/melon_info.py
439
3.65625
4
"""Print out all the melons in our inventory.""" melon_info = { 'Honeydew': [True, 0.99], 'Crenshaw': [False, 2.00], 'Crane': [False, 2.50], 'Casaba': [False, 2.50], 'Cantaloupe': [False, 0.99] } def print_melon(melon_info): """Print each melon with corresponding attribute information.""" for name, attributes in melon_info.items(): seedless, price = attributes print(name.upper(), seedless, price)
7c5c01a3d83699a0b7813d8d486c6e24fdf7d213
VinceBy/newone
/python/001-PythonCooked/第一章 数据结构与算法/14-dictcum.py
538
4.09375
4
prices = { 'ACME': 45.23, 'AAPL': 612.78, 'IBM': 205.55, 'HPQ': 37.20, 'FB': 10.75 } #zip创建了一个迭代器,只能使用一次 min_price = min(zip(prices.values(), prices.keys())) print("min_price:",min_price) max_price = max(zip(prices.values(), prices.keys())) print("max_price:",max_price) print('==========================') print(min(prices.values())) print(max(prices.values())) print("2222222222222222222222222222") print(max(prices,key=lambda k:prices[k])) print(min(prices,key=lambda k:prices[k]))
41bbf42e97518fdcaf99fdb6e344d919e466c20e
VinceBy/newone
/python/3day/1.py
189
3.640625
4
#99乘法表 #记录乘法表的长度 i=9 j=1 n=1 while j<=i: m=1 while m<=j: n=j*m print('%d*%d=%-2d'%(m,j,n),end=" ") m=m+1 print('\n') j=j+1
db1aaeb45d9bbc3493dd74a71d4a17bbaf145046
VinceBy/newone
/python/04-python高级/01-线程/05-多线程的缺点.py
480
3.703125
4
from threading import Thread import time g_num = 0 def test1(): global g_num for i in range(1000000): g_num +=1 print("-----test1-----g_num=%d"%g_num) def test2(): global g_num for i in range(1000000): g_num += 1 print("----test2----g_num=%d"%g_num) p1 = Thread(target=test1) p1.start() time.sleep(3) #取消屏蔽之后 再次运行注释,结果会不一样. p2 = Thread(target=test2) p2.start() print("----g_num=%d----"%g_num)
a571691e818d6ab77a2397e4d23d9e929941f5dd
VinceBy/newone
/python/2 day/11.py
83
3.734375
4
i=0 while i<=100: print("%d"%i,end="-") i=i+1 if i==100: print("\n")
959dc83e6aefc1ce5885b903a6124461f47fd60b
VinceBy/newone
/python/02-python高级-2/06-内建属性/02-内建函数.py
1,269
3.515625
4
from functools import reduce print('='*30) print('对map的操作') #map(f,l1,l2)分别表示 f:函数 l1:操作数1 l2:操作数2 def f1(x,y): return (x,y) l1 = [0,1,2,3,4,5,6] l2 = ['sun','M','T','W','T','F','S',] l3 = map(f1,l1,l2) print(list(l3)) print("="*30) print("对filter的操作") #filter(f,l) 分别表示 f:函数 True l:操作数 #过滤 a = filter(lambda x: x%2,[1,2,3,4,5,6,7]) print(list(a)) print('='*30) print('对reduce的操作') b = reduce(lambda x,y:x+y,['a','b','c','d'],'f') print(str(b)) c = reduce(lambda x,y:x+y,[1,2,3,4,5,7],8) print(int(c)) print("="*30) print("对sort的操作") a = [112,43,34,545,4,57,3,23,25,656,78,45] a.sort() print('正序'+str(a)) a.sort(reverse = True) print('倒序'+str(a)) d = sorted([1,23,4,5,6,78,],reverse = 1) print(d) print("="*30) #集合set #去重 print("利用集合set去重方法") print('原列表:') a = [12,3,34,34,65,23,542,35,45,23] print(a) print("转换成集合:") b = set(a) print(b) print("把集合转换成列表:") a =list(b) print(a) print("="*30) print('集合的交并差补') a = 'abcdef' b = set(a) print(b) A = 'bdf' B = set(A) print(B) print("交集") print(B&b)#交集 print('并集') print(B|b)#并集 print('差集') print(b-B)#差 print("对称差集") print(b^B)
eec99a1173918d15dcc2abde23d40d29c451b5fd
VinceBy/newone
/python/suanfa/13-quick-sort.py
825
3.78125
4
def quick_sort(alist,first,last): if first>=last: return mid_value = alist[first] low = first high = last while low < high: #high的游标左移 while low < high and alist[high] >= mid_value: high -= 1 alist[low] = alist[high] #low 右移 while low < high and alist[low] < mid_value: low += 1 alist[high] = alist[low] #从循环退出时low= high alist[low] = mid_value #对low 左边的列表执行快速排序 quick_sort(alist,first,low-1) #对low 右边的列表排序 quick_sort(alist,low+1,last) if __name__ == "__main__": alist = [12,343,235,23,54,54,523,523,532,5] print(alist) n = len(alist)-1 quick_sort(alist, 0, n) print(alist)
b0a9cdc7356c886265143290404671c56a7d069a
VinceBy/newone
/python/1016/01-保护对象的属性.py
595
3.5625
4
class Person(): def __init__(self,name,age): #只要属性名前面有两个下划线,那么就表示私有的属性 #所谓私有,不能在外部使用 对象名.属性名获取 # #原来没有__的属性,默认是 公有 self.__name = name self.__age = age def setNewAge(self,newAge): if newAge>0 and newAge<=100: self.__age = newAge def getAge(self): return self.__age def __test(self): print('-------------sdff------------') laowang = Person('laowang',30) laowang.setNewAge(31) age = laowang.getAge() print(age) #私有方法无法访问 #laowang.__test()
d2b672a5c8dfcacb09f474dc279991ed76ad9afc
VinceBy/newone
/python/01-python高级-1/02-私有化/03-test.py
426
3.59375
4
class Test(object): def __init__(self): self.__num = 100 def setNum(self,newNum): print("----------setter-------") self.__num = newNum def getNum(self): print('-----------getter------') return self.__num num = property(getNum,setNum) t =Test() #t.__num = 200 #print(t.__num) print(t.getNum()) t.setNum(50) print(t.getNum()) print('-'*30) t.num = 200 print(t.num)
b02653080a7a155f673e8bcd85171c44d13485e9
VinceBy/newone
/python/001-PythonCooked/第一章 数据结构与算法/29-从字典中提取子集.py
510
3.859375
4
prices = { 'ACME':45.23, 'AAPL':612.78, 'IBM':205.55, 'HPQ':37.20, 'FB':10.75 } #make directonary of all prices p1 = {key:value for key,value in prices.items() if value>200} p1 = dict((key,value) for key,value in prices.items() if value>200) print(p1) #make a dictionary of tech stocks tech_names = {'AAPL','IBM','HPQ','MSFT'} tech_names = {key:value for key,value in prices.items() if key in tech_names} p2 = {key:prices[key] for key in prices.keys()&tech_names } print(tech_names,p2)
cf1a30476f4384a36235c62bd8a4b83a4d3678b2
VinceBy/newone
/python/1017/03-类方法.py
739
3.890625
4
class Test(object): #类属性 num = 0 #实例属性 def __init__(self): #实例属性 self.age = 1 def test(self): print(self.age) #类方法 #可以由类名直接调用类属性或更改类属性 #也可以由类的对象调用 @classmethod def setNum(cls,newNum): cls.num = newNum #静态方法 #可以由类直接调用不需要参数也可以由对象调用 @staticmethod def printTest(): print('当前这个程序,是验证Test类的') Test.printTest() a = Test() print(Test.num) #a.setNum(200) Test.setNum(300) print(Test.num) a.printTest() #不允许使用类名访问实例属性 #print("Test.age") #Test.printTest
87d55680fd9999f2b7676dfce3a813750fd56977
ethanfebs/Minesweeper
/Minesweeper_Playable.py
2,511
3.890625
4
import random nearby_offsets = [(-1, 0), (0, 1), (1, 0), (0, -1), (-1, -1), (-1, 1), (1, -1), (1, 1)] def print_board(board): """ Prints board in 2D format board - 2D list of mine locations """ d = len(board) # print upper border for i in range(d): print("==", end='') print() # print 2D list for i in range(d): for j in range(d): print(board[i][j], end=' ') print() # print lower border for i in range(d): print("==", end='') print() def gen_board(d: int, n: int): """ Generates a d x d square board with randomly placed mines d - dimension of the board n - number of mines """ # select n integers from the set {0 ... d*d} mines = random.sample(range(d*d), n) # create d x d nested list with values preset to 0 board = [[0 for i in range(d)] for j in range(d)] for mine in mines: # for each mine location set corresponding board location to 1 board[mine // d][mine % d] = 1 return board def query(q, board): """ Given a position and board as input returns 'M' if there is a mine at pos and returns the number of surrounding mines otherwise q - position on board to query board - 2D list of mine locations """ # if a mine exists at q return M if(board[q[0]][q[1]] == 1): return 'M' count = 0 d = len(board) # iterate over 8 surrounding board locations for i in range(len(nearby_offsets)): offset_i, offset_j = nearby_offsets[i] pos = (q[0] + offset_i, q[1]+offset_j) # if pos is out of bounds, continue if(pos[0] < 0 or pos[0] >= d or pos[1] < 0 or pos[1] >= d): continue count += board[pos[0]][pos[1]] # return number of surrounding mines return count d = 5 board = gen_board(d, 5) kb = [["?" for i in range(d)] for j in range(d)] score = 0 revealed = 0 while(True): print_board(kb) q = (int(input("Query X: ")), int(input("Query Y: "))) if(kb[q[0]][q[1]] != '?'): print("ERROR that location has already been queried") continue kb[q[0]][q[1]] = query(q, board) revealed += 1 if(input("Flag as Mine(Y/N): ") == 'Y'): if(kb[q[0]][q[1]] == 'M'): score += 1 else: print("ERROR flagged a clear space") break if(revealed == d**2): print("Congratulations! Score: "+str(score)) break
b098be5aec4d590c64ed78d96a60fa82031ed103
FerGrant/ProyectoFinal
/ConvergenciaDivergencia/codigo.py
475
3.71875
4
import numpy as np import matplotlib.pyplot as plt def xnew(x): return (2*x**2 + 3)/ 5 x0 = 0 x1 = 0 itera = 0 x0array = np.zeros(100) x1array = np.zeros(100) xexe= np.zeros(100) for i in range (10): x1 = xnew(x0) xexe[i] = 1 x0array[i]= x0 x1array[i]= x1 if abs (x1 - x0) < 0.00000001: break x0 = x1 itera += 1 print("La raíz es %.5f"%(x1)) print("Usando %i iteraciones"%(itera)) plt.plot(xexe,x0array,x1array) plt.grid()
71a19ea2fdcbe4ee378e6859e127addf842acb16
ashusaini1988/melbourne
/fibo.py
333
3.984375
4
def fibonacci(n): ''' This is a fibonacci series function. Comment ''' a, b = 0, 1 while n > 0: a, b = b, a+b n -= 1 return a #print fibonacci(1000) assert fibonacci(0) == 0 assert fibonacci(1) == 1 assert fibonacci(2) == 1 assert fibonacci(3) == 2 assert fibonacci(5) == 5
865e8db4c54b14cfa8f9a4bb332938d240f471ea
ashusaini1988/melbourne
/complex_if.py
150
3.5
4
import sys a = int(sys.argv[1]) if (a<50) and (a>0): print "Minor" elif (a>=50) and (a <1000): print "Major" else: print "severe"
e64b941a4dcd7ab11fb3c54aed574abe25959efd
TimKillingsworth/Codio-Assignments
/src/dictionaries/person_dict1.py
239
4.0625
4
#Here's the code for Ringo person = {'first_name':'Ringo','last_name':'Starr'} #Add the new entries person['instrument'] = 'drums' person['born'] = 1940 #Print the result print(person['first_name'] + ' was born in ' + str(person['born']))
b37520ed33b2fef924c8ea17c96d34799b78cc37
TimKillingsworth/Codio-Assignments
/src/dictionaries/person_with_school.py
306
4.34375
4
#Create dictionary with person information. Assign the dictionary to the variable person person={'name':'Lisa', 'age':29} #Print out the contents of person print(person) #Add the school which Lisa attends person['school'] = 'SNHU' #Print out the contents of person after adding the school print(person)
38a0c28141a41c88aa2d7210c96ffce37abe6e30
TimKillingsworth/Codio-Assignments
/src/lists/max.py
317
3.8125
4
# Get our numbers from the command line import sys numbers= sys.argv[1].split(',') numbers= [int(i) for i in numbers] # Your code goes here index = 0 maxVal = 0 maxIndex = index for index in range(0, len(numbers)): if numbers[index] > maxVal: maxVal = numbers[index] maxIndex = index print(maxIndex)
d54f448967d127688cc7b4d37c2a9db11aeb5d60
TimKillingsworth/Codio-Assignments
/src/functions/red.py
221
3.734375
4
# Get our input from the command line import sys text= sys.argv[1] # Write your code here def isRed(str): found = str.find('red') if found >= 0: return True else: return False print(str(isRed(text)))
5dff174f4164bb5933de55efcf58c74152287e51
TimKillingsworth/Codio-Assignments
/src/dictionaries/list_of_dictionary.py
336
4.59375
5
#Create a pre-populated list containing the informatin of three persons persons=[{'name':'Lisa','age':29,'school':'SNHU'}, {'name': 'Jay', 'age': 25, 'school': 'SNHU'}, {'name': 'Doug', 'age': 27, 'school': 'SNHU'}] #Print the person list print(persons) #Access the name of the first person print(persons[1]['name'])
462acf5fc99890cc95f83ba89f716be60bb7e6fb
Joey238/python_laicode
/Laicode/binarysearch_recursion_2/bisearchtest.py
5,569
4.09375
4
""" Python standard library for binary search tree is bisection method, which module named bisect """ import bisect def binary_search_tree(sortedlist, target): if not sortedlist: return None left = 0 right = len(sortedlist)-1 """ 1. 首先判断能不能进while loop, 如果只有一个元素在list里面, so, 我需要left <= right 2. right = mid-1, not right = mid. 因为如果我们只有一个元素在list里面,这个元素并不等于target, 那while loop会陷入死循环. """ while left <= right: mid = left + (right - left)//2 if sortedlist[mid] == target: return mid if sortedlist[mid] > target: right = mid - 1 else: left = mid + 1 def bisect_right(a, x, lo=0, hi=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e <= x, and all e in a[i:] have e > x. So if x already appears in the list, a.insert(x) will insert just after the rightmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if x < a[mid]: hi = mid else: lo = mid+1 return lo def bisect_left(a, x, lo=0, hi=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e < x, and all e in a[i:] have e >= x. So if x already appears in the list, a.insert(x) will insert just before the leftmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if x > a[mid]: lo = mid+1 else: hi = mid return lo def binary_search(sarray, target): if not sarray and isinstance(target, int): raise 'sarray none' left = 0 right = len(sarray) -1 while left<= right: # only < miss one element mid = left + (right - left)//2 if sarray[mid] == target: return mid elif sarray[mid] < target: right = mid -1 else: left = mid + 1 def search_in_sorted_matrix(array, target): print(array) if not array or len(array[0]) == 0: return 'NOT 2D ARRAY' rows = len(array) cols = len(array[0]) right = rows * cols -1 left = 0 while left <= right: mid = left + (right - left)//2 r = mid // cols c = mid % cols if array[r][c] == target: print(r,c) return r, c elif array[r][c] > target: right = mid -1 else: left = mid+1 def binary_searh_2(array, target): if not array: return none left = 0 right = len(array) -1 while left < right-1: # if 左边界 == 右边界-1就相邻了, terminates mid = left + (right - left)//2 if array[mid] == target: return mid elif array[mid] < target: left = mid #if mid + 1 就错过了后面的值 else: right = mid #post processing: 不同的提议,稍微不一样 if abs(array[left] -target) < abs(array[right]-target): return left else: return right def binary_search_1st_Occur(array, target): ''' return the index of the first occurrence of an element, say 5? ''' left = 0 right = len(array) - 1 while left < right -1: mid = left + (right - left)//2 if array[mid] == target: right = mid # = mid -1 wrong: [4,5,5], right = mid -1 => right =4, miss掉了index=1的5, 不能把此target排除为非1st target! do not stop here, keeping track the left. elif array[mid] < target: mid = left + 1 else: mid = right - 1 # post processing if array[left] == target: return left elif array[right] == target: return right def k_closest_in_sorted_array(array, target, k): if not isinstance(k, int) or not array: return 'not valid input' left = 0 right = len(array) -1 # find largets smaller or equal target element 's index in the array while left < right-1: mid = left +(right - left) //2 if array[mid] <= target: left = mid else: right = mid i = 0 kclosest = [] while i < k: if right >= len(array) or left >= 0 and abs(array[left] -target) < abs(array[right]-target): kclosest.append(left) left -= 1 else: kclosest.append(right) right +=1 i +=1 return kclosest def test(): # sortedList = [7, 8, 9, 10, 11, 12] # target_po = binary_search(sortedList, 12) # print(target_po) # arr2D = [[3,5],[6,7],[8,9],[10,11],[21,23]] # r,c = search_in_sorted_matrix(arr2D, 23) # arr_1stocc =[4, 5,5] # index = binary_search_1st_Occur(arr_1stocc, 5) # print(index) array = [1, 2, 3, 8,9 ] kclosests = k_closest_in_sorted_array(array, 4, 2) print(f'kcloests: {kclosests}') if __name__ == "__main__": test()
061398644a97dd50567debc6204b049734d63fcd
Joey238/python_laicode
/Laicode/heap_graph_5/deque_demo.py
376
4.0625
4
from collections import deque ''' deque: - stacks and queues (double ended queue0 - thread-save, memory efficient appends and pops from either side of the deque O(1) ''' queue = deque('Breadth-1st Search') queue.append('algorithm') queue.appendleft('hello') for i in queue: print(i) print(f'size: {len(queue)}') first=queue.popleft() print(f'first: {first}')
99bbfce8bd57964e1a177617ef1e3307e6ec3953
SumitB-2094/My_Money_Bank
/part-1 mini project.py
810
4.0625
4
name=(input("Enter your name:")) print("-------------------------------------------------------------------------------------------") a=print("1-Add expense:") b=print("2-Read expense report:") c=print("3-Email expense report:") ans=int(input("Enter your choice:")) def database(): global database global ans if ans==1: a1=str(input("Topic of Expense:")) b1=(input("Expense:")) report_file=open(name+".txt",'a') report_file.write(a1) report_file.write("-->") report_file.write("RS."+b1) report_file.write("\n") report_file.close() database() def asking_(): global database d=print("4-Add expenses:") e=print("5-LOGOUT") ans1=int(input("Enter your choice:")) if ans1==4: return database() asking_()
ba5f25636ecc3855c69a5e9a8c7548f3ea6f6e4a
Riicha/PythonChallenge
/PyBoss/Employee.py
1,167
4.03125
4
from datetime import datetime class Employee: """Construct employee class and its members/operations""" # constructor of employee class def __init__(self,EmployeeId,Name,DOB,SSN,State): """Initialize the employee and return a new employee object. """ self.EmployeeId = EmployeeId # Need to split the name into First Name and Last Name name = Name.split(" ") self.FirstName = name[0] self.LastName = name[1] self.DOB = DOB self.SSN = SSN self.State = State # function to display employee details def DisplayEmployee(self): """ 1. It formats the DOB 2. Masks the SSN 3. Sends all the attributes as CSV """ #Need to change the date format formatDate = datetime.strptime(self.DOB,'%Y-%m-%d').strftime("%m/%d/%Y") #Need to mask the SSN maskSSN = "***-**-"+self.SSN[-4:] #The format for displaying the employee #214,Sarah,Simpson,12/04/1985,***-**-8166,FL return self.EmployeeId + "," + self.FirstName + "," + self.LastName + "," + formatDate + "," + maskSSN + "," + self.State
04b3b24788c05906c147423474ec64bcb76a781e
LiamLead/get-initials
/initials.py
98
4.09375
4
name = str(input("Name: ")).title() for n in name: if n.isupper(): print(n, end=" ")
72dc04ca9c52407b1149442b0d32f377c5e28a12
nidiodolfini/descubra-o-python
/Guanabara/desafio95.py
1,211
3.6875
4
jogador = dict() jogadores = list() gols = list() while True: jogador.clear() jogador['nome'] = str(input('Nome do Jogador: ')) partidas = int(input(f'Quantas partidas {jogador["nome"]} jogou? ')) for i in range(0, partidas): gols.append(int(input(f"Quantos gols na partida {i + 1}: "))) jogador['gols'] = gols[:] jogador['total'] = sum(gols) jogadores.append(jogador.copy()) gols.clear() while True: resp = str(input("Quer continuar:")).upper()[0] if resp in 'SN': break print('Erro responda apenas S ou N.') if resp in "N": break print('-='*30) print(jogadores) print('-='*30) print(f'{"COD":<5}{"Nome":<10}{"gols"}{"total":>15}') for i, v in enumerate(jogadores): print(f'{i:<2} {v["nome"]:<10} {v["gols"]} {v["total"]:>10}') print('-='*30) resp = 0 while resp != 999: resp = int(input("Mostrar dados de qual jogador (999 para)? ")) if resp < len(jogadores): print(f'Levantamento do jogador: {jogadores[resp]["nome"]}') for k, i in enumerate(jogadores[resp]["gols"]): print(f'No jogo {k} fez {i} gols') elif resp < 999: print("Digite um valor valido")
e7663c7fb9c123e506298ec2a308be41a5348cce
nidiodolfini/descubra-o-python
/URI/1010.py
545
3.859375
4
# a,w,e = input().split(" ") # pega 3 valores na mesma linha e atribui a variáveis # # Converte o valor para os tipos necessários # a = int(a) # w = int(w) # e = float(e) lista = input().split(" ") lista2 = input().split(" ") codigo_peca = int(lista[0]) numero_de_peca = int(lista[1]) valor_pecas = float(lista[2]) codigo_peca2 = int(lista2[0]) numero_de_peca2 = int(lista2[1]) valor_pecas2 = float(lista2[2]) valor_total = (numero_de_peca * valor_pecas) + (numero_de_peca2 * valor_pecas2) print("VALOR A PAGAR: R$ %0.2f" %valor_total)
0b0b1b9c830b91417b2c0e2095378548dee688f6
nidiodolfini/descubra-o-python
/URI/1012.py
392
3.734375
4
dados = input().split(" ") a = float(dados[0]) b = float(dados[1]) c = float(dados[2]) pi = 3.14159 triangulo = (a * c) / 2 circulo = (c ** 2) * pi trapezio = (( a + b) * c) /2 quadrado = b * b retangulo = a * b print("TRIANGULO: %0.3f" %triangulo) print("CIRCULO: %0.3f" %circulo) print("TRAPEZIO: %0.3f" %trapezio) print("QUADRADO: %0.3f" %quadrado) print("RETANGULO: %0.3f" %retangulo)
354337fe40f7e1df55cb6c5e935499841b20a20d
nidiodolfini/descubra-o-python
/Guanabara/desafio89.py
1,631
3.828125
4
ficha = list() while True: nome = str(input('Nome: ')) nota1 = float(input('Nota 1: ')) nota2 = float(input('Nota 2: ')) media = (nota1 + nota2) / 2 ficha.append([nome, [nota1, nota2], media]) resp = str(input('Quer continuar? S/N: ')) if resp in 'Nn': break print('-='*30) print(f'{"No.":<4}{"Nome":<10}{"Média":>8}') print('_'*26) for i, a in enumerate(ficha): print(f'{i:<4}{a[0]:<10}{a[2]:>8.1f}') while True: print('_'*26) opc = int(input('Mostrar nota de qual aluno? (999 interrompe): ')) if opc == 999: print('FINALIZANDO') break if opc <= len(ficha) -1: print(f'Notas de {ficha[opc][0]} são {ficha[opc][1]} ') print('Volte sempre') # dadosAlunosTemp = list() # dadosAlunos = list() # print('Digita o nome e as notas dos alunos: ') # while True: # dadosAlunosTemp.append(str(input('Digite o nome do aluno: '))) # dadosAlunosTemp.append(float(input('Digite a primeira nota: '))) # dadosAlunosTemp.append(float(input('Digite a segunda nota: '))) # # dadosAlunos.append(dadosAlunosTemp[:]) # dadosAlunosTemp.clear() # resp = str(input('Quer continuar? ')) # if resp in 'Nn': # break # print(f'NO. Nome Média') # for i, l in enumerate(dadosAlunos): # print(f'{i:^3} {l[0]:^8} {(l[1]+l[2])/2}') # # interrompe = 0 # while interrompe != 999: # interrompe = int(input('mostrar nota de qual aluno: (999 interrompe): ')) # if interrompe <= len(dadosAlunos): # print(f'Notas de {dadosAlunos[interrompe][0]} são [{dadosAlunos[interrompe][1], dadosAlunos[interrompe][2]}]') # print('saiu')
855d056333d0d84f9a450399717f640238d9fe16
nidiodolfini/descubra-o-python
/CS50/marioLess.py
240
3.890625
4
tamanho = 3 for i in range(tamanho): for j in range(1,tamanho+1): if j == tamanho - i: for b in range(tamanho, j-1, -1): print("#", end='') break print(" ", end='') print()
850a2be484f2de91195eadc731948930aaeb9acc
nidiodolfini/descubra-o-python
/Guanabara/desafio76.py
359
3.53125
4
listagem = ( 'Lapis', 1.75, 'Borracha', 2.00, 'Carderno', 20.25, 'Estojo', 9.99 ) print('-'* 40) print(f'{"Listagem de Preços":^40}') print('-'*40) for pos in range(0, len(listagem)): if pos % 2 == 0: print(f'{listagem[pos]:.<30}', end='') else: print(f'R${listagem[pos]:>7.2f}') print('-'*40)
765c0c8fe31f4e036da13d40ae79199a85395466
nidiodolfini/descubra-o-python
/URI/1035.py
242
3.796875
4
numeros = input().split(" ") a = int(numeros[0]) b = int(numeros[1]) c = int(numeros[2]) d = int(numeros[3]) if ((a % 2 == 0) and (b > c) and (d > a) and ( c + d > a + b)): print("Valores aceitos") else: print("Valores nao aceitos")
f4f5f02467f01e945a826b16feffa495e89ee51f
nidiodolfini/descubra-o-python
/Guanabara/desafio86.py
263
3.875
4
lista = [[0,0,0], [0,0,0],[0,0,0]] for l in range(0,3): for c in range(0,3): lista[l][c] = int(input(f'Digite um valor na posição: [{l},{c}] ')) for l in range(0,3): for c in range(0,3): print(f'[{lista[l][c]:^5}]', end='') print()
bfadb9cad0df6a7f350498a4a4bf0ef05587d6c7
nidiodolfini/descubra-o-python
/Guanabara/desafio102.py
335
3.734375
4
def fatorial(num=1, show=True): if show: fat = num for i in range(1, num + 1): if fat != 1: print(f'{fat}', end=' x ') else: print(f'{fat}', end=' = ') fat -= 1 for i in range(1, num): num *= i print(f'{num}') fatorial(5, True)
92695e87a783152773fc6fc09851190db2a6d1c7
nidiodolfini/descubra-o-python
/Guanabara/desafio84.py
800
3.75
4
temp = [] dados = [] maior = menor = 0 while True: temp.append(str(input('digite o nome: '))) temp.append(int(input('Digite o peso: '))) if len(dados) == 0: maior = menor = temp[1] else: if temp[1] > maior: maior = temp[1] if temp[1] < menor: menor = temp[1] dados.append(temp[:]) temp.clear() print('menor peso' , menor, ' maior peso' , maior) resp = str(input('quer continuar: ')) if resp in 'Nn': break print('os mais pesados são: ', end='') for p in dados: if p[1] == maior: print(f'[{p[0]}]', end='') print() print('os menores pesos foram: ', end='') for p in dados: if p[1] == menor: print(f'[{p[0]}]', end='') print() print(f' numeros de pessoas na lista {len(dados)}')
62e1b57f1ad0ba73813481a24ba2159fd3d5d714
Eunsol-Lee/projectEulerPythonSolve
/p14 Longest Collatz sequence.py
370
3.671875
4
# Problem 14 # Longest Collatz sequence # # By Eunsol num = {} num[1] = 1 def seq(x): if x in num: return num[x] if x % 2: num[x] = seq(3 * x + 1) + 1 else: num[x] = seq(x / 2) + 1 return num[x] largest = 0 for i in range(1, 1000001): if largest < seq(i): largest = seq(i) index = i print (index, largest)
1e758a4591812d3906e4cf6d95a20873f3769720
jerryAnu/Detecting-Depression-from-Physiological-Features-on-the-basis-of-Neural-Networks-and-Genetic-Algorit
/nn.py
16,179
4.125
4
""" This file is used to detect levels of depression by using a neural network model. This model is a three-layer network. This model is not combined with the GIS technique or genetic algorithm. """ # import libraries import pandas as pd import torch """ Define a neural network Here we build a neural network with one hidden layer. input layer: 85 neurons, representing the physiological features of observers hidden layer: 60 neurons, using Sigmoid as activation function output layer: 4 neurons, representing various levels of depression The network will be trained with Adam as an optimiser, that will hold the current state and will update the parameters based on the computed gradients. Its performance will be evaluated using cross-entropy. """ # define a customised neural network structure class TwoLayerNet(torch.nn.Module): def __init__(self, n_input, n_hidden, n_output): """ This function is to initialize the net model; specifically, we define a linear hidden layer and a linear output layer. :param n_input: the number of input neurons :param n_hidden: the number of hidden neurons :param n_output: the number of output neurons """ super(TwoLayerNet, self).__init__() # define linear hidden layer output self.hidden = torch.nn.Linear(n_input, n_hidden) # define linear output layer output self.out = torch.nn.Linear(n_hidden, n_output) def forward(self, x): """ This function is to define the process of performing forward pass, that is to accept a Variable of input data, x, and return a Variable of output data, y_pred. :param x: a variable of input data :return: a variable of output data """ # get hidden layer input h_input = self.hidden(x) # use dropout function to reduce the impact of overfitting h_input = torch.dropout(h_input, p=0.5, train=True) # define activation function for hidden layer h_output = torch.sigmoid(h_input) # get output layer output y_pred = self.out(h_output) return y_pred def prec_reca_f1(confusion): """ This function is used to calculate evaluation measures of this task including the precision, recall and F1-score. Precision: the number of true positive classifications divided by the number of true positive plus false positive classifications. Recall: the number of true positive classifications divided by the number of true positive plus false negative classifications. F1-score: 2 * Precision * Recall / (Precision + Recall) Besides, this function also calculates overall accuracy. Overall accuracy: the sum of correct predictions for all levels divided by the number of data points. :param confusion: a confusion matrix :return: the precision, recall and F1-score for all levels of depression as well as overall accuracy """ # calculate the numbers of true positive classifications, true positive # plus false positive classifications and true positive plus # false negative classifications for all four levels of depression. tp_none, tp_fp_none, tp_fn_none = confusion[0, 0], sum(confusion[:, 0]), sum(confusion[0, :]) tp_mild, tp_fp_mild, tp_fn_mild = confusion[1, 1], sum(confusion[:, 1]), sum(confusion[1, :]) tp_moderate, tp_fp_moderate, tp_fn_moderate = confusion[2, 2], sum(confusion[:, 2]), sum(confusion[2, :]) tp_severe, tp_fp_severe, tp_fn_severe = confusion[3, 3], sum(confusion[:, 3]), sum(confusion[3, :]) # avoid divided by zero and calculate the precision if tp_fp_none == 0: precision_none = 0 else: precision_none = tp_none / tp_fp_none if tp_fp_mild == 0: precision_mild = 0 else: precision_mild = tp_mild / tp_fp_mild if tp_fp_moderate == 0: precision_moderate = 0 else: precision_moderate = tp_moderate / tp_fp_moderate if tp_fp_severe == 0: precision_severe = 0 else: precision_severe = tp_severe / tp_fp_severe # calculate the average precision precision_average = (precision_none + precision_mild + precision_moderate + precision_severe) / 4 # avoid divided by zero and calculate the recall if tp_fn_none == 0: recall_none = 0 else: recall_none = tp_none / tp_fn_none if tp_fn_mild == 0: recall_mild = 0 else: recall_mild = tp_mild / tp_fn_mild if tp_fn_moderate == 0: recall_moderate = 0 else: recall_moderate = tp_moderate / tp_fn_moderate if tp_fn_severe == 0: recall_severe = 0 else: recall_severe = tp_severe / tp_fn_severe # calculate the average recall recall_average = (recall_none + recall_mild + recall_moderate + recall_severe) / 4 # avoid divided by zero and calculate the F1-score if precision_none == 0 and recall_none == 0: f1_score_none = 0 else: f1_score_none = 2 * precision_none * recall_none / (precision_none + recall_none) if precision_mild == 0 and recall_mild == 0: f1_score_mild = 0 else: f1_score_mild = 2 * precision_mild * recall_mild / (precision_mild + recall_mild) if precision_moderate == 0 and recall_moderate == 0: f1_score_moderate = 0 else: f1_score_moderate = 2 * precision_moderate * recall_moderate / (precision_moderate + recall_moderate) if precision_severe == 0 and recall_severe == 0: f1_score_severe = 0 else: f1_score_severe = 2 * precision_severe * recall_severe / (precision_severe + recall_severe) # calculate the average F1-score f1_score_average = (f1_score_none + f1_score_mild + f1_score_moderate + f1_score_severe) / 4 # calculate overall accuracy overall_accuracy = (confusion[0, 0] + confusion[1, 1] + confusion[2, 2] + confusion[3, 3]) / (torch.sum(confusion)) # combine the precision, recall, the F1-score and overall accuracy res = [[precision_none, precision_mild, precision_moderate, precision_severe], [recall_none, recall_mild, recall_moderate, recall_severe], [f1_score_none, f1_score_mild, f1_score_moderate, f1_score_severe], [precision_average, recall_average, f1_score_average, overall_accuracy]] return res if __name__ == "__main__": # load training set and testing set train_data = pd.read_csv("train.csv") test_data = pd.read_csv("test.csv") # the number of features n_features = train_data.shape[1] - 1 # split training data into input and target # the first column is target; others are features train_input = train_data.iloc[:, 1:n_features + 1] train_target = train_data.iloc[:, 0] # normalise training data by columns for column in train_input: train_input[column] = train_input.loc[:, [column]].apply(lambda x: (x - x.min()) / (x.max() - x.min())) # This part is used to compare different methods of normalization # normalise for comparison (subtracted from the mean and divided by the standard deviation) # for column in train_input: # train_input[column] = train_input.loc[:, [column]].apply(lambda x: (x - x.mean()) / x.std()) # split testing data into input and target # the first column is target; others are features test_input = test_data.iloc[:, 1:n_features + 1] test_target = test_data.iloc[:, 0] # normalise testing input data by columns for column in test_input: test_input[column] = test_input.loc[:, [column]].apply(lambda x: (x - x.min()) / (x.max() - x.min())) # This part is used to compare different methods of normalization # normalise for comparison (subtracted from the mean and divided by the standard deviation) # for column in test_input: # test_input[column] = test_input.loc[:, [column]].apply(lambda x: (x - x.mean()) / x.std()) # create Tensors to hold inputs and outputs for training data X = torch.Tensor(train_input.values).float() Y = torch.Tensor(train_target.values).long() # create Tensors to hold inputs and outputs for testing data X_test = torch.Tensor(test_input.values).float() Y_test = torch.Tensor(test_target.values).long() # define the number of input neurons, hidden neurons, output neurons, # learning rate and training epochs input_neurons = n_features hidden_layer = 60 output_neurons = 4 learning_rate = 0.01 num_epochs = 500 # define a neural network using the customised structure net = TwoLayerNet(input_neurons, hidden_layer, output_neurons) # define loss function loss_func = torch.nn.CrossEntropyLoss() # define optimiser optimiser = torch.optim.Adam(net.parameters(), lr=learning_rate) # This part is used to compare different methods of optimiser # optimiser = torch.optim.Adadelta(net.parameters(), lr=learning_rate) # optimiser = torch.optim.Adagrad(net.parameters(), lr=learning_rate) # store all losses for visualisation all_losses = [] # store the previous recorded overall accuracy previous_accuracy = 0 # count how many times overall accuracy drops compared with # the previous recorded one. # if the value is more than 1, then stop training. count = 0 # train a neural network for epoch in range(num_epochs): # perform forward pass: compute predicted y by passing x to the model. Y_pred = net(X) # compute loss loss = loss_func(Y_pred, Y) all_losses.append(loss.item()) # print progress if epoch % 50 == 0: # use softmax function for classification Y_pred = torch.softmax(Y_pred, 1) # convert four-column predicted Y values to one column for comparison _, predicted = torch.max(Y_pred, 1) # create a confusion matrix, indicating for every level (rows) # which level the network guesses (columns). confusion = torch.zeros(output_neurons, output_neurons) # see how well the network performs on different categories for i in range(train_data.shape[0]): actual_class = Y.data[i] predicted_class = predicted.data[i] confusion[actual_class][predicted_class] += 1 # calculate evaluation measures and print the loss as well as # overall accuracy res = prec_reca_f1(confusion) print('Epoch [%d/%d] Loss: %.4f Overall accuracy: %.2f %%' % (epoch + 1, num_epochs, loss.item(), 100 * res[3][3])) # if current overall accuracy is less than the previous one, "count" # is added one; otherwise, set "count" to zero and store current # overall accuracy # if "count" is more than 1, stop training if previous_accuracy >= res[3][3]: # "count" is added one count += 1 if count > 1: # stop training count = 0 break else: # otherwise, set "count" to zero count = 0 # store current overall accuracy previous_accuracy = res[3][3] # clear the gradients before running the backward pass. net.zero_grad() # perform backward pass loss.backward() # calling the step function on an Optimiser makes an update to its # parameters optimiser.step() """ Evaluating the Results To see how well the network performs on different categories, we will create a confusion matrix, indicating for every level (rows) which level the network guesses (columns). """ # create a confusion matrix confusion = torch.zeros(output_neurons, output_neurons) # perform forward pass: compute predicted y by passing x to the model. Y_pred = net(X) # convert four-column predicted Y values to one column for comparison _, predicted = torch.max(Y_pred, 1) # calculate the confusion matrix and print the matrix for i in range(train_data.shape[0]): actual_class = Y.data[i] predicted_class = predicted.data[i] confusion[actual_class][predicted_class] += 1 print('') print('Confusion matrix for training:') print(confusion) # calculate evaluation measures and print the evaluation measures res_train = prec_reca_f1(confusion) print('Test of Precision of None: %.2f %% Precision of Mild: %.2f %% Precision of Moderate: %.2f %% Precision' ' of Severe: %.2f %%' % (100 * res_train[0][0], 100 * res_train[0][1], 100 * res_train[0][2], 100 * res_train[0][3])) print('Test of Recall of None: %.2f %% Recall of Mild: %.2f %% Recall of Moderate: %.2f %% Recall' ' of Severe: %.2f %%' % (100 * res_train[1][0], 100 * res_train[1][1], 100 * res_train[1][2], 100 * res_train[1][3])) print('Test of F1 score of None: %.2f %% F1 score of Mild: %.2f %% F1 score of Moderate: %.2f %% F1 score' ' of Severe: %.2f %%' % (100 * res_train[2][0], 100 * res_train[2][1], 100 * res_train[2][2], 100 * res_train[2][3])) print('Average precision: %.2f %% Average recall: %.2f %% Average F1 score: %.2f %%' % (100 * res_train[3][0], 100 * res_train[3][1], 100 * res_train[3][2])) print('Overall accuracy: %.2f %%' % (100 * res_train[3][3])) """ Test the neural network Pass testing data to the built neural network and get its performance """ # test the neural network using testing data # It is actually performing a forward pass computation of predicted y # by passing x to the model. # Here, Y_pred_test contains four columns Y_pred_test = net(X_test) # get prediction # convert four-column predicted Y values to one column for comparison _, predicted_test = torch.max(Y_pred_test, 1) """ Evaluating the Results To see how well the network performs on different categories, we will create a confusion matrix, indicating for every iris flower (rows) which class the network guesses (columns). """ # create a confusion matrix confusion_test = torch.zeros(output_neurons, output_neurons) # calculate the confusion matrix and print the matrix for i in range(test_data.shape[0]): actual_class = Y_test.data[i] predicted_class = predicted_test.data[i] confusion_test[actual_class][predicted_class] += 1 print('') print('Confusion matrix for testing:') print(confusion_test) # calculate evaluation measures and print the evaluation measures res_test = prec_reca_f1(confusion_test) print('Test of Precision of None: %.2f %% Precision of Mild: %.2f %% Precision of Moderate: %.2f %% Precision' ' of Severe: %.2f %%' % (100 * res_test[0][0], 100 * res_test[0][1], 100 * res_test[0][2], 100 * res_test[0][3])) print('Test of Recall of None: %.2f %% Recall of Mild: %.2f %% Recall of Moderate: %.2f %% Recall' ' of Severe: %.2f %%' % (100 * res_test[1][0], 100 * res_test[1][1], 100 * res_test[1][2], 100 * res_test[1][3])) print('Test of F1 score of None: %.2f %% F1 score of Mild: %.2f %% F1 score of Moderate: %.2f %% F1 score' ' of Severe: %.2f %%' % (100 * res_test[2][0], 100 * res_test[2][1], 100 * res_test[2][2], 100 * res_test[2][3])) print('Average precision: %.2f %% Average recall: %.2f %% Average F1 score: %.2f %%' % (100 * res_test[3][0], 100 * res_test[3][1], 100 * res_test[3][2])) print('Overall accuracy: %.2f %%' % (100 * res_test[3][3]))
e076131a45b7aa04318f73ea7e9d163d1dbf1cf2
Nireka74/gy-sbj
/excise/duixiang.py
1,147
3.71875
4
#类的封装 # class aaa(): #类变量 # pub_res = '公有变量' # _pri_res = '私有变量' # __pri_res = '私有变量2' #类变量通过类直接调用,双下划线私有变量不能调用。单下划线私有变量能调用,不能修改。 # print(aaa.pub_res) # print(aaa._pri_res) # class aaa(): # 实例方法 # def pub_function(self): # print('公有方法') # def _pri_function(self): # print('私有方法') # def __pri_function(self): # print('私有方法2') #实例方法通过对象调用 # print(aaa().pub_function()) # print(aaa()._pri_function()) #类的继承 class Woman(): money =1000000 house =10 __yi_wu = '裙子' def __init__(self,a): self.a = a def skill(self): print('吃喝玩乐') # w = Woman(123) # print(w.a) # class Man(Woman): # hobby = '花钱' # def __init__(self,a): # super().__init__(a) # # def skill(self): # print('白嫖')# 方法重写 # super().skill() # # m = Man(123) # print(m.skill()) # print(Man.money) # print(m.house) # print(m.hobby) # m.skill() # print(m.a)
47f7f996f21d85e5b7613aa14c1a6d2752faaa82
zaidjubapu/pythonjourney
/h5fileio.py
1,969
4.15625
4
# file io basic '''f = open("zaid.txt","rt") content=f.read(10) # it will read only first 10 character of file print(content) content=f.read(10) # it will read next 10 character of the file print(content f.close() # must close the file in every program''' '''f = open("zaid.txt","rt") content=f.read() # it will read all the files print(1,content) # print content with one content=f.read() print(2,content) # it will print only 2 because content are printed allready f.close()''' '''if we want to read the file in a loop with f = open("zaid.txt","rt") for line in f: print(line,end="")''' # if want to read character in line by line '''f = open("zaid.txt","rt") content=f.read() for c in content: print(c)''' #read line function '''f = open("zaid.txt","rt") print(f.readline()) # it wiil read a first line of the file print(f.readline()) # it will read next line of the file it will give a space because the new line wil already exist in that f.close()''' # readlines functon wil use to create a list of a file with 1 line as 1 index '''f = open("zaid.txt","rt") print(f.readlines())''' # writ functions '''f=open("zaid.txt","w") f.write("hello how are you") # replce the content with what we have written f.close()''' '''f=open("zaid1.txt","w") # the new file wil come with name zaid1 f.write("hello how are you") # the new file will created and the content will what we have written f.close()''' # append mode in write '''f=open("zaid2.txt","a") # the new file wil come with name zaid1 and will append the character at the end how much we run the program a=f.write("hello how are you\n") # the new file will created and the content will what we have written print(a) # it will display the no of character in the file f.close()''' #if want to use read and write function simultaneously f=open("zaid.txt","r+") #r+ is used for read and write print(f.read()) f.write("thankyou") f.write("zaid") f.close()
6a72313370336294491913d7eb3b50aaa6c81b65
zaidjubapu/pythonjourney
/h22operatoroverloadingdunder.py
970
3.9375
4
class Employees: no_of_l=8 def __init__(self,aname,asalary): self.name=aname self.salary=asalary def printdetails(self): return f"Namae is {self.name}. salary is {self.salary}" @classmethod def change_leaves(cls,newleaves): cls.no_of_l=newleaves def __add__(self, other): return self.salary+other.salary def __repr__(self): return self.printdetails() def __str__(self): return self.printdetails() harry=Employees("harry",500) larry=Employees("zaid",600) print(harry+larry) # it will run untill dunder method is created # run of repr method print(harry) # to run this type of method we create repr method # run of str method: automatically it will run str method untill it will not define be repr print(harry) # it wil run str method print(str(harry)) # this also run str method.. if str mthod is not there then also this eqn will run print(repr(harry)) # it wil run repr method
014987c11429d51e6d1462e3a6d0b7fb97b11822
zaidjubapu/pythonjourney
/enumeratefunction.py
592
4.59375
5
'''enumerate functions: use for to easy the method of for loop the with enumerate method we can find out index of the list ex: list=["a","b","c"] for index,i in enumerate(list): print(index,i) ''' ''' if ___name function : print("and the name is ",__name__)# it will give main if it is written before if __name__ == '__main__': # it is used for if we want to use function in other file print("hello my name is zaid")''' ''' join function: used to concatenat list in to string list=["a","b","c","d"] z=" and ".join(list) #used to concatenate the items of the sting print(z)'''
50e523c196fc0df4be3ce6acab607f623119f4e1
zaidjubapu/pythonjourney
/h23abstractbaseclassmethod.py
634
4.21875
4
# from abc import ABCMeta,abstractmethod # class shape(metaclass=ABCMeta): # or from abc import ABC,abstractmethod class shape(ABC): @abstractmethod def printarea(self): return 0 class Rectangle(shape): type= "Rectangle" sides=4 def __init__(self): self.length=6 self.b=7 # def printarea(self): # return self.length+self.b harry=Rectangle() # if we use abstract method before any function. then if we inherit the class then it gives an errr # untill that method is not created inside that class # now it wil give error # we cant create an object of abstract base class method
dfc07a2dd914fa785f5c9c581772f92637dea0a7
zaidjubapu/pythonjourney
/h9recursion.py
1,167
4.28125
4
''' recursive and iterative method; factorial using iterative method: # using iterative method def factorialiterative(n): fac=1 for i in range(n): print(i) fac=fac*(i+1) return fac # recusion method which mean callingthe function inside the function def factorialrecursion(n): if n==1: return 1 else: z= n * factorialrecursion(n-1) return z n=int(input("enter the fact n0")) print("the factorial iteration is", factorialiterative(n)) print("the factorial recursion is", factorialrecursion(n)) print(factorialrecursion(3))''' # fibonaccis series:0 1 1 2 3 5 8 13 which adding the backwaard two numbers ''' def fibonacci(n): if n==1: return 0 elif n==2: return 1 elif n==3: # if we want 3 addition return 1 return fibonacci(n-1) + fibonacci(n-2)# + fibonacci(n-3) if we want 3 addition in line n=int(input("enter the nuber")) print(fibonacci(n))''' def factorialrecursion(n): if n==1: return 1 else: z= n + factorialrecursion(n-1) return z n=int(input("enter the fact n0")) print("the factorial iteration is", factorialrecursion(n))
cb8b23c641448a238fd11bdfc9ea7b8116d8991e
zaidjubapu/pythonjourney
/exe7.py
857
3.53125
4
sentences=["python is python very good laguage","python python is python is cool","python is awesome","javascript is good"] import time # join=sentences[0].split() # print(join) inp=[x for x in (input("enter the word you want to search").split())] searchmatch=[] # dict1={} c=time.time() for search in inp: a = 0 for i in sentences: a = 0 d=i.split() for j in d: if j == search: a+=1 searchmatch.append(a) print(searchmatch) f=[] b=time.time()-c # print(f'{e} result found in {b} second') # print(searchmatch[::-1]) # print(dict1) k=[] for i in range(len(searchmatch)/2): s=searchmatch[i+4] k.append(s) l=sorted((zip(k,sentences)),reverse=True) print(l) for i,v in l: if i>=1: f.append(v) e=len(f) print(f'{e} result found in {b} second') for i in f: print(i)
b7544654e79a09747fc2ab42643cf265a7a77dc4
zaidjubapu/pythonjourney
/rough.py
1,135
3.625
4
# # # a="hello" # # # b="python" # # # print(a,b,"fish",sep="zain",end="!") # # # print(a,b,"zain",end="!") # # a=["ima zaid","iam zuha"] # # z=a.sort() # # print(a) # # import pyaudio # b=open("zaid.txt",'r') # for a in b: # a=a.rstrip() # print(a) # import pyaudio1 #to tell you in wich your you will become 100 year old class age: cy=2020 # def __init__(self,a): # self.ag=a # self.ye=a def year(self): print(f"you will become 100 year old at the year{a+100}") def ages(self): print(f"you will become 100 year old at the year {age.cy-a + 100}") if __name__ == '__main__': print("to tell you in which year you will become 100 year old") while True: try: classage=age() a=int(input("please enter year of birth or your current age : ")) if a>200: classage.year() else: classage.ages() except Exception as e: print(f"the error is {e}") b=input("press s to continue or n to exit") if b == "s": continue else: break
22773f2a2796ae9a493020885a6e3a987047e7f8
Pegasus-01/hackerrank-python-works
/02-division in python.py
454
4.125
4
##Task ##The provided code stub reads two integers, a and b, from STDIN. ##Add logic to print two lines. The first line should contain the result of integer division, a// b. ##The second line should contain the result of float division, a/ b. ##No rounding or formatting is necessary. if __name__ == '__main__': a = int(input()) b = int(input()) intdiv = a//b floatdiv = a/b print(intdiv) print(floatdiv)
6f31574f1e99ad506ecfdc4d1d74dc292f1083be
YuyangZhang/leetcode
/81.py
1,089
3.515625
4
class Solution: # @param A, a list of integers # @param target, an integer to be searched # @return an integer def search(self, A, target): B=list(set(A)) return find(B,target,0,len(B)-1) def find(A,target,start,end): if A==[]: return False if start+1<len(A): if A[start]==A[start+1]: del A[start] return find(A,target,start,end-1) if end-1>0: if A[end]==A[end-1]: del A[end] return find(A,target,start,end-1) if start==end: if target==A[end]: return True else: return False if A[start]==A[end]: del A[end] return find(A,target,start,end-1) elif A[start]<A[end]: if target<A[start] or target>A[end]: return False else: return find(A,target,start,int((start+end)/2)) or find(A,target,int((start+end)/2)+1,end) else: return find(A,target,start,int((start+end)/2)) or find(A,target,int((start+end)/2)+1,end) s=Solution() print(s.search([0,0,1,1,2,0],2))
d8ef559f6a0a87acaa355bf458504cfa53afa5dd
YuyangZhang/leetcode
/153.py
605
3.59375
4
class Solution: # @param A, a list of integers # @param target, an integer to be searched # @return an integer def findMin(self, num): return findPeak(num,0,len(num)-1) def findPeak(A,start,end): if A[start]<A[end] or start==end: return A[start] else: if end-start==1: return A[end] elif A[int((start+end)/2)]>A[int((start+end)/2)+1]: return A[int((start+end)/2)+1] else: return min(findPeak(A,start,int((start+end)/2)),findPeak(A,int((start+end)/2)+1,end)) s=Solution() print(s.findMin([3,1,2]))
4bea0d3f0b98fe2b2749aa0a2587efb6d7bc1dcb
YuyangZhang/leetcode
/2.py
935
3.59375
4
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: # @return a ListNode def addTwoNumbers(self, l1, l2): i1=1 i2=1 num1=0 num2=0 while True: num1+=l1.val*i1 if l1.next==None: break else: l1=l1.next i1*=10 while True: num2+=l2.val*i2 if l2.next==None: break else: l2=l2.next i2*=10 num=num1+num2 print(num) pre=ListNode(num%10) l=pre for i in range(1,len(str(num))): cur=ListNode(int(str(num)[-1-i])) pre.next=cur pre=cur return l s=Solution() l1=ListNode(1) l1.next=ListNode(8) l2=ListNode(1) l2.next=ListNode(9) s.addTwoNumbers(l1,l2)
9a5fea44aa42331fafd6654f693ed6792fec0a12
shudongW/python
/Exercise/Python48.py
403
3.6875
4
#-*- coding:UTF-8 -*- #笨办法学编程py3---异常,扫描 def cover_number(s) : try: print("this function's value:", s) return int(s) except ValueError: return None ''' a = cover_number('python') print(a) b = cover_number(12305) print(b) ''' stuff = input("> ") print("input value:",stuff) words = stuff.split() print("split value:",words) #sentence.scan(words)
e1988a2808048261146e27e94d513fc79053aaf9
shudongW/python
/Exercise/Python21.py
709
4.09375
4
#-*- coding:UTF-8 -*- #笨办法学编程py3---函数和变量 def add(a,b): print("ADDING %d + %d " % (a,b)) return a + b def substract(a,b): print("SUBTRACT %d - %d " % (a, b)) return a - b def multiply(a,b): print("MULTIPLY %d * %d " % (a,b)) return a * b def divide(a,b): print("DEVIDE %d / %d" % (a,b)) return a / b print("Let's do some math with just functions!") age = add(30,5) height = substract(78,4) weight = multiply(90,2) iq = divide(100,2) print("Age:%d,Height:%d,weight:%d,IQ:%d " % (age,height,weight,iq)) print("Here is a puzzle") what = add(age,substract(height,multiply(weight,divide(iq,2)))) print("That becames: ",what, "Can you do it by hand?")
379509ed51eb7ac9484e7b9a5acbb537b4de7c5b
shudongW/python
/Exercise/Python09.py
287
4
4
# -*-coding: UTF-8 -*- #笨办法学编程py3-输入 print("How old are you?",end="") age = input() print("How tall are you?",end="") height = input() print("How much do you weight?",end="") weight = input() print("So you're %r old,%r tall and %r heavry." %(age,height,weight))
139d9c55627188c10bc2304695fd3c66c700ceb2
shudongW/python
/Exercise/Python40.py
507
4.25
4
#-*- coding:UTF-8 -*- #笨办法学编程py3---字典 cities ={'CA':'San Francisco','MI':'Detroit','FL':'Jacksonville'} cities['NY'] = 'New York' cities['OR'] = 'Portland' def find_city(themap, state) : if state in themap: return themap[state] else: return "Not found." cities['_find'] = find_city while True : print("State? (ENTER to quit)", end = " ") state = input("> ") if not state : break city_found = cities['_find'](cities,state) print(city_found)
fc89e815a53416d1e274bfe9e5eff307f69b3d37
Jerkow/BNP_Datathon
/datathon_ai/interfaces/responses.py
1,110
3.5
4
from dataclasses import dataclass from typing import List @dataclass class QuestionResponse: """ Interface that represents the response of one question. """ answer_id: int question_id: int justification: str = None @dataclass class FormCompanyResponse: """ Interface that represents the response of one form company. """ answers: List[QuestionResponse] @classmethod def from_list_question_response(cls, question_responses: List[QuestionResponse]): data_model_questions_id = {i for i in range(1, 23)} # 22 questions in total extracted_questions_id = {response.question_id for response in question_responses} if data_model_questions_id == extracted_questions_id: return cls(answers=question_responses) raise ValueError( f"Missing questions number for the company : {data_model_questions_id.difference(extracted_questions_id)}" ) def sort_by_question_id(self): sorted_answers = sorted(self.answers, key=lambda x: x.question_id) self.answers = sorted_answers
a0c6ea7a8f1310a36a81b72c6edf4214def0ae62
BarunBlog/Python-Files
/14 Tuple.py
468
4.375
4
tpl = (1, 2, 3, "Hello", 3.5, [4,5,6,10]) print(type(tpl)," ",tpl,"\n") print(tpl[5]," ",tpl[-3]) for i in tpl: print(i, end=" ") print("\n") #converting tuple to list li = list(tpl) print(type(li),' ',li,"\n") tpl2 = 1,2,3 print(type(tpl2)," ",tpl2) a,b,c = tpl2 print(a," ",b," ",c) t = (1) print(type(t)) t1 = (1,) print(type(t1)) ''' difference between tuple & list Can not overwrite vales in tuple ''' tpl3 = (1,2,3, [12,10], (14,15), 20) print(tpl3)
eefb8356e729952c086e208211ef64f5831a0290
BarunBlog/Python-Files
/17 Read & Write file.py
222
3.640625
4
fw = open('sample.txt','w') ##'w' for writing file fw.write('Writing some stuff in my text file\n') fw.write('Barun Bhattacharjee') fw.close() fr = open('sample.txt','r') ##'r' for reading file text = fr.read() print(text) fr.close()
fee9b0aa24b959b9e61ce49bdd723327ec68981d
BarunBlog/Python-Files
/leap_year.py
153
3.6875
4
def main(): n = int(input()) str = '' for i in range(1,n+1): str = str + f"{i}" print(str) if __name__=="__main__": main()
5a4c0c930ea92260b88f0282297db9c9e5bffe3f
BarunBlog/Python-Files
/Learn Python3 the Hard Way by Zed Shaw/13_Function&Files_ex20.py
1,236
4.21875
4
from sys import argv script, input_file = argv def print_all(f): print(f.read()) def rewind(f): f.seek(0) ''' fp.seek(offset, from_what) where fp is the file pointer you're working with; offset means how many positions you will move; from_what defines your point of reference: 0: means your reference point is the beginning of the file 1: means your reference point is the current file position 2: means your reference point is the end of the file if omitted, from_what defaults to 0. ''' def print_a_line(line_count, f): print(line_count, f.readline()) ''' readline() reads one entire line from the file. fileObject.readline( size ); size − This is the number of bytes to be read from the file. The fle f is responsible for maintaining the current position in the fle after each readline() call ''' current_file = open(input_file) print("First let's print the whole file:\n") print_all(current_file) print("Now let's rewind, kind of like a tape.") rewind(current_file) print("Let's print three lines:") current_line = 1 print_a_line(current_line, current_file) current_line = current_line + 1 print_a_line(current_line, current_file) current_line = current_line + 1 print_a_line(current_line, current_file)
b6fefcbd7ae15032f11a372c583c5b9d7b3199d9
BarunBlog/Python-Files
/02 String operation.py
993
4.21875
4
str1 = "Barun " str2 = "Hello "+"World" print(str1+" "+str2) ''' To insert characters that are illegal in a string, use an escape character. An escape character is a backslash \ followed by the character you want to insert. ''' str3 = 'I don\'t think so' print(str3) print('Source:D \Barun\Python files\first project.py') # raw string changed heres print(r'Source:D \Barun\Python files\first project.py') # r means rush string.. #raw string stays the way you wrote it str4 = str1+str2 print(str4) print(str1 * 5) x = ' ' print(str2.find('World'),x,str2.find('Word')) print(len(str2)) print(str2.replace('Hello','hello')) # replace returns string but don't replace parmanently print(str2,"\n") new_str2 = str2.replace('H','h') print(new_str2) print(str2) str5 = "Hello World!" print(str5) del str5 #print(str5) # it will give an error st1 = "Barun Bhattacharjee" st2 = "Hello World!" li = st2.split(" ") print(li) st3 = li[0] +' '+ st1 print(st3) st4 = st2.replace("World!", st1) print(st4)
37b61edb32bd793db26b3ec05d4013e0dec76765
BarunBlog/Python-Files
/Python modules.py
312
3.9375
4
## Modules: bunch of codes in pyhon library import calendar ## importing calendar module year = int(input('Enter a year number: ')) calendar.prcal(year) ## prcal() is a sub-module of calendar module import math fact = int(input('Enter a number: ')) print('The Factorial of ',fact,'is: ',math.factorial(fact))
fbdbdd1019c438c8cbcff0a8f5ece04701a5ccb4
sklx2016/Salary-of-Adults
/AdultSalary.py
1,628
3.53125
4
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt # Loading the Data Set data = pd.read_csv("train.csv") null = data.isnull().sum() #To determine the the no. of NaN # Imputing the NaN Values , other methods such as kNN, sklearn Imputer can also be used #Education data.workclass.value_counts(sort=True) data.workclass.fillna('Private',inplace=True) #Occupation data.occupation.value_counts(sort=True) data.occupation.fillna('Prof-specialty',inplace=True) #Native Country data['native.country'].value_counts(sort=True) data['native.country'].fillna('United-States',inplace=True) # Label Encoding from sklearn import preprocessing for x in data.columns: if data[x].dtype == 'object': lbl = preprocessing.LabelEncoder() lbl.fit(list(data[x].values)) data[x] = lbl.transform(list(data[x].values)) # Creating Randomforest Model from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import cross_val_score from sklearn.metrics import accuracy_score y = data['target'] del data['target'] # removes the index X = data X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=1,stratify=y) #train the RF classifier clf = RandomForestClassifier(n_estimators = 500, max_depth = 6) clf.fit(X_train,y_train) #make prediction and check model's accuracy prediction = clf.predict(X_test) acc = accuracy_score(np.array(y_test),prediction) print ('The accuracy of Random Forest is {}'.format(acc))
6f95262465fd4e871d264b3e21469cb6ca41083f
Sartaj-S/Portfolio
/Python/Guess The Word Game/GuessTheWord Game.py
2,248
4.09375
4
import random def search(letter, word): n=0 i=0 for x in word: if letter==x: n=i i= i+1 #load words word=[ 'apple', 'notebook', 'phone', 'monitor', 'coconut', 'burrito', 'convertible', 'mansion', 'unorthodox', 'hangman'] #get random word i=(random.randint(0,9)) man=word[i] #get length of word, declare it to x to work with it x=len(man) tries=6 #Creating the word with dashes display = list(man) i=0 for y in man: display[i]=' _ ' i+=1 #Begin game: print("WELCOME TO HANGMAN!") print("You have %i tries to guess the word"%tries) print("YOUR WORD:") print(display) #keeps program going while the user has tries left while tries>0: r=0 #if there are not any dashes left, meaning the user found all the letters in the word, they win if not(' _ ' in display): print("Congratulations! You have found the word, please play again by restarting the program") break #displays tries and asks for input print("You still have %i tries left to guess the word"%tries) let=input("\nEnter a letter to guess: ") #if the user enters the whole word, they win if let==man: print("Congratulations! You have found the word, please play again by restarting the program") break # if the letter is found in the word if let in man: i=0 #search for all occurances of the word for y in range(0,x): if let==man[i]: #this segment checks if the letter has already been found and sets r to 1 so that the #congratulations statement doesn't appear again if let==display[i]: print("You found that letter already silly") r=1 break display[i]=let i=i+1 if not r==1: print("Awesome! You got it") elif (let in str(display)): print("You already found that letter! Try again.") else: print("That letter is not in the word, sorry! Try again.") tries=tries-1 print (display) if tries==0: print("You tried!") print("Unfortunately, you failed. The word was: "+man)
cc727eb2b7cbea8092a744aab971403dfde6b790
AdamBucholc/SpaceX
/API_CSV.py
906
3.75
4
# Program that writes data from an API to a CSV file. import requests import csv url = "https://api.spacexdata.com/v3/launches" response = requests.get(url) # Data download. with open("flights.csv", mode='w') as flights_file: csv_w = csv.writer(flights_file) csv_w.writerow([ #Save strings in a CSV file. "flight_number:", "mission_name:", "rocket_id:", "rocket_number:", "launch_date_utc:", "video_link: " ]) for informations in response.json(): #Loop that saves data in a CSV file. csv_w.writerow([ informations["flight_number"], informations["mission_name"], informations["rocket"]["rocket_id"], informations["rocket"]['rocket_name'], informations["launch_date_utc"], informations["links"]["video_link"] ])
adf3fb5c5918ebccec51fe5b9709cacf78dbf511
mont-grunthal/titanic_kaggle
/Titanic_training.py
8,227
3.546875
4
#!/usr/bin/env python # coding: utf-8 # In[1]: #import required modules import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn as sk import scipy as sp from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer #Read in the datasets train = pd.read_csv('C://Users//Monty//Desktop//Titanic//train.csv') test = pd.read_csv('C://Users//Monty//Desktop//Titanic//test.csv') # # Alexis Cook's Model # # Using the method in Alexis Cook's tutorial, we were able to achieve and accuracy of: # # 0.77511. # # We can likely improve on this model. My first thought is that we should explore the data to see if we can impove our feature selection to train the model on more and perhaps more informative features. Additionally, we might dicover that there are preprocessing tools that might impove out # # Exploratory Data Analysis # In[2]: #View the data #It appears that some features may be unique identifiers #Such as, Ticket and PassengerId #cabin is a unique identifier but it may incode useful spatial information train.head() # In[3]: #Look for any suspicious data. Fare having a minimum #of zero could be an indication of missing values or #maybe workers were listed as having zero fare. #Maybe some got compliminetery tickets. train.describe() # In[4]: #Very few people got complintary tickets on the titanic so I will #only consider that the zeros may be explained by workers. #That assumes that crew are on this list #Whats the probability that <=1.6% of the training sample is crew given that #our data is a random sample of everyone on the titanic? #36% of the population were workers #1.6% of the sample is workers true_prop = (900/2435) sample_prop = (15/891) #The sample population had 891 individuals #The population had 2435 individuals sample_pop = 891 pop = 2435 #np is over 10 #n(1-p) is over 10 #we can use approximate as normal distribution z = (sample_prop-true_prop)/np.sqrt((true_prop*(1-true_prop))/sample_pop) #What is the probability that P(z<-21)? p = sp.stats.norm.cdf(z) print(f"n*p = {sample_pop*sample_prop}") print(f"n*(1-p) = {sample_pop*(1-sample_prop)}") print(f"Z = {z}") print(" ") print(f"The probability that we would sample less that 15 workers out of 891 from the titanic is {(p*100):0.2}%") print(" ") print("Definitly not explainable as crew!") # In[5]: #store all feature names for indexing all_features = list(train.columns) percent_incomplete = [] #count the number of missing values in each coloumn print("Name and number of missing elements for each feature.") print(" ") for col in all_features: num_nan = train[col].isna().sum() print(f"{col}: {num_nan}") perc = (num_nan/len(train[col])) percent_incomplete.append((col,perc)) # In[6]: #find percent missing elements per feature for feat in percent_incomplete: print(f"{feat[0]} is {feat[1]:.1%} inclompete") # In[7]: #Plot histograms of each feature (excluding unique features like ticket number) fig, axs = plt.subplots(3,3); axs[0,0].hist(train["SibSp"]) axs[0,0].set_title("SibSp"); axs[0,1].hist(train["Pclass"], bins = 3); axs[0,1].set_title("Pclass"); axs[0,2].hist(train["Survived"], bins = 2) axs[0,2].set_title("Survived"); axs[1,0].hist(train["Parch"]); axs[1,0].set_title("Parch"); axs[1,1].hist(train["Fare"]); axs[1,1].set_title("Fare"); axs[1,2].hist(train["Sex"], bins = 2) axs[1,2].set_title("Sex"); axs[2,0].hist(train["Cabin"].dropna(0)); axs[2,0].set_title("Cabin"); axs[2,0].get_xaxis().set_visible(False) axs[2,1].hist(train["Embarked"].dropna(0), bins = 3); axs[2,1].set_title("Embarked"); axs[2,2].hist(train["Age"]); axs[2,2].set_title("Age"); plt.tight_layout() # In[8]: #plot correlation matrix f = plt.figure(figsize=(19, 15)) plt.matshow(train.corr(), fignum=f.number) plt.xticks(range(train.select_dtypes(['number']).shape[1]), train.select_dtypes(['number']).columns, fontsize=14, rotation=45) plt.yticks(range(train.select_dtypes(['number']).shape[1]), train.select_dtypes(['number']).columns, fontsize=14) cb = plt.colorbar() cb.ax.tick_params(labelsize=14) plt.title('Correlation Matrix', fontsize=16); # # Exploratory Data Analysis: Results # # From our small exploratoration of the data, we've learned the following. These insights are as follows: # # 1. We know intuitivly that some of our features, such as Name, PassengerId, Ticket, and Embark are unique or arbitrary enough that they dont yeild any information about survival. Cabin seems arbitrary, but if we can gleam spatial information out of it and passengers in sertain sections were more likely to die, it could be informative. # # 2. Some features have missing values. For the most part, this isn't to much of a problem. However, Cabin is over 77% missing data and should therefor be excluded from the model. And we have reaon to belive that there are some missing values inthe Fare feature. # # 3. Features such as Parch and Age are skewed. Other features are very different in scale. As we are using a tree based classifier, this won't be an issue. It should still be noted for when we apply different models in the future. # # 4. We have both numerical, ordenal, and categorical features. We should not encode these for random forest but may need to for future classifiers. # # Preprocessing # Based on this preliminary exploration. I will not consider Name, PassengerId, Ticket, Embarked, and Cabin from the training. Our only preprocessing step for random forest is to remove unwanted features and deal with the missing values for age. We will assume that the missing values in Age and Fare are Missing at Random and Missing Completly at random. We will use an iterative multivatiate imputer here. In the future, we will make a few more assumtions about the data in order to fill the data using Markov Chain Monte Carlo methods to impute the data. Its overkill for this problem but MCMC was one of my favorite courses in undergrad. # In[9]: test_feat = ['Age', 'Fare', 'Parch', 'Pclass', 'Sex', 'SibSp'] features = ['Survived','Age', 'Fare', 'Parch', 'Pclass', 'Sex', 'SibSp'] # In[10]: #convert catigorical sex to categorica int for classification train["Sex"] = train["Sex"].replace({"male": 0, "female": 1}) #convert catigorical sex to categorica int for classification test["Sex"] = test["Sex"].replace({"male": 0, "female": 1}) #convert zeros in fare to NaN for imputer #loop because find and replace has trouble w/ float zeros count = 0 for i,elem in enumerate(train["Fare"]): if elem < 0.001: train["Fare"][i] = math.nan #convert zeros in fare to NaN for imputer #loop because find and replace has trouble w/ float zeros count = 0 for i,elem in enumerate(test["Fare"]): if elem < 0.001: test["Fare"][i] = math.nan # In[11]: #Impute missing values in fare and age imputed_data = [] for df in [train,test]: imputed_df = df.copy() numerical = ['Age','Fare'] #define an imputer for numerical columns imp_num = IterativeImputer(estimator=RandomForestRegressor(), initial_strategy='median', max_iter=10, random_state=0) #impute the numerical column(Age) imputed_df[numerical] = imp_num.fit_transform(imputed_df[numerical]) imputed_df['Age'] = imputed_df['Age'].apply(lambda x:int(round(x,0))) imputed_data.append(imputed_df) train = imputed_data[0] test = imputed_data[1] # # Train and Run # In[12]: #encode categorical attributes X = train[features] X_test = test[test_feat] #define output for training y = X["Survived"] x = X[test_feat] #build and fit model model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(x, y) #apply model to test objects predictions = model.predict(X_test) #save predictions output = pd.DataFrame({'PassengerId': test.PassengerId, 'Survived': predictions}) output.to_csv('my_submission_preprocessing_unencoded.csv', index=False)
4c137f2f6e171fd84d296099ea98cf0333dba392
TheCodingRecruiter/joblistinggenerator
/generatorlisting.py
616
3.546875
4
class Hiring: def __init__(self, title, skills, location): self.title = title self.skills = skills self.location = location def listjob(self): print('We have a current job opening for a ' + str(self.title) + ' who is skilled in ' + str(self.skills) + '. The position is located in ' + str(self.location) + '. Apply today if you are interested' ) pythondev = Hiring('Python Dev', 'Django/Flask, Machine Learning', 'Des Moines, IA') javadev = Hiring('Java Developer', 'Hibernate/Spring, AWS, Rest', 'Dallas, TX') pythondev.listjob() javadev.listjob()
5c5af8b01b167bcf1229a33b6fcd2e8b468322da
kenji-kk/algorithm_py
/list1-19.py
237
3.78125
4
#1から12までを8をスキップして繰り返す #ダメなら例 for i in range(1,150): if i == 8: continue print(i, end='') print() #良い例 for i in list(range(1, 8)) + list(range(9, 150)): print(i, end=' ') print()
08b2822f41f28adf122c2f069681edf81153cbe2
DylanDu123/leetcode
/94.二叉树的中序遍历.py
968
3.625
4
# # @lc app=leetcode.cn id=94 lang=python3 # # [94] 二叉树的中序遍历 # # @lc code=start # Definition for a binary tree node. import collections class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def inorderTraversal(self, root: TreeNode) -> [int]: result, curr, stack = [], root, [] while len(stack) or curr: while curr: stack.append(curr) curr = curr.left node = stack.pop() result.append(node.val) curr = node.right return result def sortedArrayToBST(self, nums: [int]) -> TreeNode: if len(nums): mid = int(len(nums)/2) root = TreeNode(nums[mid]) root.left = self.sortedArrayToBST(nums[:mid]) root.right = self.sortedArrayToBST(nums[mid+1:]) return root return None # @lc code=end
8ed06dba5c6dac0ec030f4a000f274de68a6c2e7
DylanDu123/leetcode
/48.旋转图像.py
808
3.71875
4
# # @lc app=leetcode.cn id=48 lang=python3 # # [48] 旋转图像 # # @lc code=start class Solution: def rotate(self, matrix: [[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ size = len(matrix) l = size - 1 for row in range(0, int(size/2)): for column in range(0, int((size + 1)/2)): temp = matrix[row][column] matrix[row][column] = matrix[l-column][row] matrix[l-column][row] = matrix[l-row][l-column] matrix[l-row][l-column] = matrix[column][l-row] matrix[column][l-row] = temp pass # if __name__ == "__main__": # l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Solution().rotate(l) # print(l) # @lc code=end
ac705d9e1b145b8d47a927c79c0917f651da0101
sanjayait/Python-Tkinter-Library
/Tkinter _Libarary/tic_tac_toe_game.py
5,792
4.03125
4
# Tutorial 17 Tic-Tac-Toe Game from tkinter import * root=Tk() root.minsize(400,400) root.resizable(0,0) # Define function to change label of button x=1 def show(b): global x x=x+1 if x%2 == 0: if (b["text"]==""): b["text"]="O" else: if (b["text"]==""): b["text"]="X" # For Row 0 if btn1["text"]=="O" and btn2["text"]=="O" and btn3["text"]=="O": btn1["bg"]="green" btn2["bg"]="green" btn3["bg"]="green" var.set("Player One Is Winner.!!!") if btn1["text"]=="X" and btn2["text"]=="X" and btn3["text"]=="X": btn1["bg"]="green" btn2["bg"]="green" btn3["bg"]="green" var.set("Player Two Is Winner.!!!") # For Row 1 if btn4["text"]=="O" and btn5["text"]=="O" and btn6["text"]=="O": btn4["bg"]="green" btn5["bg"]="green" btn6["bg"]="green" var.set("Player One Is Winner.!!!") if btn4["text"]=="X" and btn5["text"]=="X" and btn6["text"]=="X": btn4["bg"]="green" btn5["bg"]="green" btn6["bg"]="green" var.set("Player Two Is Winner.!!!") # For Row 2 if btn7["text"]=="O" and btn8["text"]=="O" and btn9["text"]=="O": btn7["bg"]="green" btn8["bg"]="green" btn9["bg"]="green" var.set("Player One Is Winner.!!!") if btn7["text"]=="X" and btn8["text"]=="X" and btn9["text"]=="X": btn7["bg"]="green" btn8["bg"]="green" btn9["bg"]="green" var.set("Player Two Is Winner.!!!") # For Column 0 if btn1["text"]=="O" and btn4["text"]=="O" and btn7["text"]=="O": btn1["bg"]="green" btn4["bg"]="green" btn7["bg"]="green" var.set("Player One Is Winner.!!!") if btn1["text"]=="X" and btn4["text"]=="X" and btn7["text"]=="X": btn1["bg"]="green" btn4["bg"]="green" btn7["bg"]="green" var.set("Player Two Is Winner.!!!") # For Column 1 if btn2["text"]=="O" and btn5["text"]=="O" and btn8["text"]=="O": btn2["bg"]="green" btn5["bg"]="green" btn8["bg"]="green" var.set("Player One Is Winner.!!!") if btn2["text"]=="X" and btn5["text"]=="X" and btn8["text"]=="X": btn2["bg"]="green" btn5["bg"]="green" btn8["bg"]="green" var.set("Player Two Is Winner.!!!") # For Column 2 if btn3["text"]=="O" and btn6["text"]=="O" and btn9["text"]=="O": btn3["bg"]="green" btn6["bg"]="green" btn9["bg"]="green" var.set("Player One Is Winner.!!!") if btn3["text"]=="X" and btn6["text"]=="X" and btn9["text"]=="X": btn3["bg"]="green" btn6["bg"]="green" btn9["bg"]="green" var.set("Player Two Is Winner.!!!") # For Diagonal 1,5,9 if btn1["text"]=="O" and btn5["text"]=="O" and btn9["text"]=="O": btn1["bg"]="green" btn5["bg"]="green" btn9["bg"]="green" var.set("Player One Is Winner.!!!") if btn1["text"]=="X" and btn5["text"]=="X" and btn9["text"]=="X": btn1["bg"]="green" btn5["bg"]="green" btn9["bg"]="green" var.set("Player Two Is Winner.!!!") # For Diagonal 3,5,7 if btn3["text"]=="O" and btn5["text"]=="O" and btn7["text"]=="O": btn3["bg"]="green" btn5["bg"]="green" btn7["bg"]="green" var.set("Player One Is Winner.!!!") if btn3["text"]=="X" and btn5["text"]=="X" and btn7["text"]=="X": btn3["bg"]="green" btn5["bg"]="green" btn7["bg"]="green" var.set("Player Two Is Winner.!!!") # Define reset function def reset(): global x btn1["text"]="";btn2["text"]="";btn3["text"]="" btn4["text"]="";btn5["text"]="";btn6["text"]="" btn7["text"]="";btn8["text"]="";btn9["text"]="" btn1["bg"]="lightblue";btn2["bg"]="lightblue";btn3["bg"]="lightblue" btn4["bg"]="lightblue";btn5["bg"]="lightblue";btn6["bg"]="lightblue" btn7["bg"]="lightblue";btn8["bg"]="lightblue";btn9["bg"]="lightblue" x=1 var.set("") # Create Button # Row 0 btn1=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn1)) btn1.grid(row=0,column=0,) btn2=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn2)) btn2.grid(row=0,column=1) btn3=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn3)) btn3.grid(row=0,column=2) # Row 1 btn4=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn4)) btn4.grid(row=1,column=0) btn5=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn5)) btn5.grid(row=1,column=1) btn6=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn6)) btn6.grid(row=1,column=2) # Row 2 btn7=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn7)) btn7.grid(row=2,column=0) btn8=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn8)) btn8.grid(row=2,column=1) btn9=Button(root,text='',bg='lightblue',fg='black',width=25,height=5,command=lambda:show(btn9)) btn9.grid(row=2,column=2) var=StringVar() # Create Input Field e1=Entry(root,font=("Arial",15),fg="green",textvariable=var) e1.grid(row=3,column=0,columnspan=3,pady=25,ipady=10) # Reset Button btn10=Button(root,text='Reset',bg='lightgreen',fg='black',width=25,height=2,command=reset) btn10.grid(row=4,column=0,columnspan=3) root.mainloop()
48406d347ca5ca5ec379bf78ed0280bab6f62569
sanjayait/Python-Tkinter-Library
/Tkinter _Libarary/Label_widget.py
388
4.03125
4
# Tutorial 1 Label widget from tkinter import * # Create window object root=Tk() # Define size of window root.minsize(600, 300) # To fix size of window root.resizable(0, 0) # Create label in window using "Label" class lbl=Label(root,text="Sanjay\nGoyal\nBhind",font=("Arial",15),bg='lightgreen',fg='black',width=40, height=3) lbl.pack() root.mainloop()
ed0c0537b5e48a9f86c70957a9b69f4fba67e35e
AnkitAvi11/100-Days-of-Code
/Strings/longest.py
511
3.765625
4
def count_substring_length(string : str) -> int : seen = dict() last_index = 0 max_len = 0 for i in range(len(string)) : if string[i] in seen : last_index = max(last_index, seen[string[i]] + 1) seen[string[i]] = i max_len = max(max_len, i - last_index + 1) return max_len def main() : t = int(input()) for _ in range(t) : string = input() print(count_substring_length(string)) if __name__ == '__main__' : main()
54515c6f31106af4e112942e09b8d08e9f5b370c
AnkitAvi11/100-Days-of-Code
/Day 11 to 20/Sort.py
458
4.03125
4
# List sorting in python class Person(object) : def __init__(self, name, age) : self.name = name self.age = age def __str__(self) : return "Name = {} and age = {}".format(self.name, self.age) if __name__ == "__main__": mylist = [ Person('Ankit', 22), Person('Priya', 20), Person('Puneet', 20) ] mylist.sort(key = lambda item : item.name) for el in mylist : print(el)
047dd0b26413c4e4130f551a9aec46fafafd753f
AnkitAvi11/100-Days-of-Code
/Strings/union.py
973
4.1875
4
# program to find the union of two sorted arrays class Solution : def find_union(self, arr1, arr2) : i, j = 0, 0 while i < len(arr1) and j < len(arr2) : if arr1[i] < arr2[j] : print(arr1[i], end = " ") i+=1 elif arr2[j] < arr1[i] : print(arr2[j], end = " ") j += 1 elif arr1[i] == arr2[j] : print(arr1[i], end = " ") i += 1 j += 1 if i == len(arr1) : for el in arr2[j:] : print(el, end = " ") else : for el in arr1[i:] : print(el, end = " ") def main() : t = int(input()) for _ in range(t) : arr1 = list(map(int, input().split())) arr2 = list(map(int, input().split())) solution = Solution() solution.find_union(arr1, arr2) if __name__ == '__main__' : main()
6e778eca7af31d0913539cda877f26d6ee5436c3
AnkitAvi11/100-Days-of-Code
/Day 11 to 20/duplicateinarray.py
462
4.0625
4
# program to find the duplicate in an array of N+1 integers def find_duplicate(arr : list) -> None : slow = arr[0];fast = arr[0] slow = arr[slow] fast = arr[arr[fast]] while slow != fast : slow = arr[slow] fast = arr[arr[fast]] fast = arr[0] while slow != fast : slow = arr[slow] fast = arr[fast] return slow if __name__ == "__main__": arr = [1,3,4,2,2] print(find_duplicate(arr))
6c727ec6706b42ea057f264ff97d6f39b7481338
AnkitAvi11/100-Days-of-Code
/Day 11 to 20/MoveAllnegative.py
798
4.59375
5
""" python program to move all the negative elements to one side of the array ------------------------------------------------------------------------- In this, the sequence of the array does not matter. Time complexity : O(n) space complexity : O(1) """ # function to move negatives to the right of the array def move_negative(arr : list) -> None : left = 0;right = len(arr) - 1 while left < right : if arr[left] < 0 : while arr[right] < 0 : right-=1 # swap the two ends of the array arr[left], arr[right] = arr[right], arr[left] left += 1 right -= 1 else : left += 1 # driver code if __name__ == "__main__": arr = [1,2,-1,3,5,-2,7,8] move_negative(arr) print(arr)
8d431c5c7681b0a7298e20e69d916c106bfba8f9
AnkitAvi11/100-Days-of-Code
/Strings/equalstring.py
1,114
3.9375
4
""" Equal Strings ------------- You are given N strings, You have to make all the strings equal if possible. Output : Print the minimum number of moves required to make all the strings equal or -1 if it is not possible to make them equal at all """ # function to get the minimum number of moves def min_moves(arr : list) -> int : arr.sort() min_moves = 99999 for i in range(len(arr)) : count = 0 for j in range(len(arr)) : if i!=j and arr[i] != arr[j] : temp = arr[j] + arr[j] if temp.count(arr[i]) > 0 : count += temp.index(arr[i]) else: return -1 min_moves = min(min_moves, count) return min_moves # main function def main() : # input t = int(input()) for _ in range(t) : n = int(input()) arr = list() for _ in range(n) : arr.append(input()) # calling of the min_moves functions print(min_moves(arr)) # driver code if __name__ == '__main__' : main()
f035dfbeb10ccb98eb85ae9f7625666fbf31e409
AnkitAvi11/100-Days-of-Code
/Day 11 to 20/Pangrams.py
239
3.90625
4
def pangrams(string : str) : string = string.upper() alpha = [0]*26 for el in string : if el.isalpha() : alpha[ord(el) - 65] += 1 return all(alpha) if __name__ == "__main__": print(pangrams("ankit"))
b595a08c2935570d1d5fa83805f03119444ab3f7
AnkitAvi11/100-Days-of-Code
/Strings/fakepassword.py
909
3.84375
4
def rotate_string(string : list, i : int, j : int) -> None : while i <= j : string[i], string[j] = string[j], string[i] i+=1;j-=1 def main() : t = int(input()) for _ in range(t) : original_string = input() fake_string = list(input()) temp = fake_string.copy() rotate_string(fake_string, 0, 1) rotate_string(fake_string,2,len(fake_string)-1) rotate_string(fake_string, 0, len(fake_string) - 1) if "".join(fake_string) == original_string : print("Yes") else : rotate_string(temp, len(temp)-2, len(temp)-1) rotate_string(temp,0,len(fake_string)-3) rotate_string(temp, 0, len(fake_string) - 1) if "".join(fake_string) == original_string : print("Yes") else : print("No") if __name__ == '__main__' : main()
0ada57c61248ca2d1bc470a1d0dd6fd52b8da72e
AnkitAvi11/100-Days-of-Code
/Recursion/ass3.py
361
3.875
4
def decode_message(string) : res = list() for el in string : next_char = chr(ord(el) - 3) if ord(el) - 3 < 65 : next_char = chr(ord(el) - 3 + 26) res.append(next_char) return res if __name__ == '__main__' : string = input() res = decode_message(string) res.reverse() print(''.join(res))
4986274f00f6a7686333e7cddb05dc0b1767e1b8
siddharthkarnam/leetcode1992
/151-200/200.py
1,535
3.875
4
''' 200. Number of Islands Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water. Example 1: Input: 11110 11010 11000 00000 Output: 1 Example 2: Input: 11000 11000 00100 00011 Output: 3 ''' class Solution: def numIslands(self, grid): """ :type grid: List[List[str]] :rtype: int """ visited = set() stack = [] islandNo = 0 for row, rval in enumerate(grid): for col, cval in enumerate(rval): if ((row, col) in visited) or (int(cval) == 0): continue visited.add((row, col)) stack.append((row, col)) while stack: seed = stack.pop() neighbors = [(seed[0]-1, seed[1]),(seed[0]+1, seed[1]),\ (seed[0], seed[1]-1),(seed[0], seed[1]+1)] for nei in neighbors: if (0<= nei[0] < len(grid)) and ( 0<= nei[1] < len(grid[0]) ) and int(grid[nei[0]][nei[1]]) and (nei not in visited): stack.append(nei) visited.add(nei) islandNo += 1 return islandNo
4337472b441001cdb16b3774358b4653148a68e6
C9Adrian/FaceNET
/facepic.py
1,849
3.90625
4
import curses #----------------- # Curses Variables #----------------- stdscr = curses.initscr() # Initiate the curses terminal curses.start_color() curses.init_pair(1, curses.COLOR_RED, curses.COLOR_BLACK) curses.init_pair(2, curses.COLOR_GREEN, curses.COLOR_BLACK) curses.init_pair(3, curses.COLOR_BLUE, curses.COLOR_BLACK) curses.init_pair(4, curses.COLOR_YELLOW, curses.COLOR_BLACK) curses.init_pair(5, curses.COLOR_MAGENTA, curses.COLOR_BLACK) k = 0 optNum = 1 name = "" while True: stdscr.clear() height, width = stdscr.getmaxyx() XCursor = width // 6 YCursor = height // 6 # Print title stdscr.attron(curses.color_pair(3)) stdscr.attron(curses.A_BOLD) stdscr.addstr(YCursor, XCursor, "Photo Booth") stdscr.attroff(curses.color_pair(3)) stdscr.attroff(curses.A_BOLD) # Print OPTIONS YCursor = YCursor + 2 stdscr.attron(curses.A_ITALIC) stdscr.attron(curses.color_pair(5)) stdscr.addstr(YCursor, XCursor, "Select an option using the UP/DOWN arrows and ENTER:") stdscr.attroff(curses.A_ITALIC) stdscr.attroff(curses.color_pair(5)) XCursor = XCursor + 5 YCursor = YCursor + 2 if optNum == 1: stdscr.addstr(YCursor, XCursor, "Enter your Name: " + name, curses.A_STANDOUT) else: stdscr.addstr(YCursor, XCursor, "Enter your Name: " + name) stdscr.refresh() k = stdscr.getch() if(k != 8): name = name + chr(k) print(name) # Exit the settings if k == 27: break if k == 8: if (len(name) > 0): name = name[:-1] if optNum == 1 and k == 10: if name[:-1] != "": name = name[:-1] path = "Face_Database/" + name+ ".jpg" print(path) break
2745adacab5e9df7eee9e5b1b6dff266012519b4
kollyQAQ/wx-robot
/learning/chart/main.py
333
3.84375
4
fig = dict({ "data": [{"type": "bar", "x": [1, 2, 3], "y": [1, 3, 2]}], "layout": {"title": {"text": "A Figure Specified By Python Dictionary"}} }) # To display the figure defined by this dict, use the low-level plotly.io.show function import plotly.io as pio # pio.show(fig) print(range(1,101))
e4649cc9aea90f14b3a27effd33b8367bdeda2c3
jackrosetti/ProjectEulerSolutions
/Python/prob17.py
806
3.796875
4
# If the numbers 1 to 5 are written out in words: one, two, three, four, five, # then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. # # If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? # # # NOTE: Do not count spaces or hyphens. # For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. # The use of "and" when writing out numbers is in compliance with British usage. # #We need to get the names for each number then in a loop add the length of them up #Recursion would be nice but i think the array solution is better import standard_math def main(): res = sum(len(standard_math.num_to_word(i))for i in range(1, 1001)) return str(res) print(main())
0354cd26dbab16b6c889222b491e5b3bba47b33c
kishoreramesh84/python-75-hackathon
/scopedemo.py
187
3.625
4
x=10 def fun1(): #"x=x+1" print("x=x+1 this statement produces error as this function treats x as a local variable") def fun2(): global x x=x+1 print(x) fun1() fun2()
9f076e1b7465ff2d509b27296a2b963dd392a7f9
kishoreramesh84/python-75-hackathon
/filepy2.py
523
4.28125
4
print("Reading operation from a file") f2=open("newfile2.txt","w") f2.write(" Hi! there\n") f2.write("My python demo file\n") f2.write("Thank u") f2.close() f3=open("newfile2.txt","r+") print("Method 1:") for l in f3: #Method 1 reading file using loops print(l,end=" ") f3.seek(0) #seek is used to place a pointer to a specific location print("\nMethod 2:") print(f3.read(10))#Method 2 it reads 10 character from file f3.seek(0) print("Method 3:") print(f3.readlines())#Method 3 it prints the text in a list f3.close()
cf268b95b8fffc6af24f53bd1412ecf5cc72ca1a
kishoreramesh84/python-75-hackathon
/turtlerace.py
888
3.90625
4
import turtle from turtle import * from random import randint wn=turtle.Screen() wn.bgcolor("light yellow") wn.title("Race") turtle.pencolor("dark blue") penup() goto(-200,200) write("RACE TRACK!!",align='center') goto(-160,160) for s in range(16): write(s) right(90) forward(10) pendown() forward(150) penup() backward(160) left(90) forward(20) sub=100 p=int(input("Enter no of participants:")) a=[0 for i in range(p)] c=[0 for i in range(p)] for i in range(p): a[i]=Turtle() c[i]=input("enter color:") a[i].color(c[i]) a[i].shape('turtle') a[i].penup() a[i].goto(-160,sub) a[i].pendown() sub=sub-30 for turn in range(100): for i in range(p): a[i].forward(randint(1,5)) max=a[0].pos() index=0 for i in range(p): if(a[i].pos()>max): max=a[i].pos() index=i print("THE WINNER IS ",c[index])
6628b79efc3e8d60d67344ecb44be3e03c3217ce
Jemanuel27/URI
/URI_SALARIO_1008.py
142
3.640625
4
N = int(input()) H = int(input()) R = float(input()) salario = float(H * R) print ("NUMBER = %d" %N) print("SALARY = U$%.2f" %salario)

SmolLM-Corpus: Python-Edu

This dataset contains the python-edu subset of SmolLM-Corpus with the contents of the files stored in a new text field. All files were downloaded from the S3 bucket on January the 8th 2025, using the blob IDs from the original dataset with revision 3ba9d605774198c5868892d7a8deda78031a781f. Only 1 file was marked as not found and the corresponding row removed from the dataset (content/39c3e5b85cc678d1d54b4d93a55271c51d54126c which I suspect is caused by a mallformed blob ID).

Please refer to the original README for all other information.

Dataset Features

  • blob_id (string): Software Heritage (SWH) ID of the file on AWS S3.
  • repo_name (string): Repository name on GitHub.
  • path (string): The file path within the repository.
  • length_bytes (int64): Length of the file content in UTF-8 bytes.
  • score (float32): The output of the educational scoring model.
  • int_score (uint8): The rounded educational score.
  • text (string): The downloaded python file text.
Downloads last month
32