url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.08B
1.73B
| node_id
stringlengths 18
19
| number
int64 3.45k
5.9k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 2
36.2k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5382 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5382/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5382/comments | https://api.github.com/repos/huggingface/datasets/issues/5382/events | https://github.com/huggingface/datasets/pull/5382 | 1,504,788,691 | PR_kwDODunzps5F4Q0V | 5,382 | Raise from disconnect error in xopen | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Could you review this small PR @albertvillanova ? :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011200 / 0.011353 (-0.000153) | 0.006156 / 0.011008 (-0.004852) | 0.119072 / 0.038508 (0.080564) | 0.042616 / 0.023109 (0.019507) | 0.348329 / 0.275898 (0.072431) | 0.418550 / 0.323480 (0.095070) | 0.009302 / 0.007986 (0.001316) | 0.004596 / 0.004328 (0.000267) | 0.090111 / 0.004250 (0.085860) | 0.053341 / 0.037052 (0.016289) | 0.361234 / 0.258489 (0.102745) | 0.400427 / 0.293841 (0.106586) | 0.045601 / 0.128546 (-0.082945) | 0.013806 / 0.075646 (-0.061841) | 0.393178 / 0.419271 (-0.026094) | 0.056809 / 0.043533 (0.013276) | 0.344090 / 0.255139 (0.088951) | 0.370610 / 0.283200 (0.087410) | 0.125728 / 0.141683 (-0.015955) | 1.671931 / 1.452155 (0.219776) | 1.703143 / 1.492716 (0.210427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226534 / 0.018006 (0.208527) | 0.496487 / 0.000490 (0.495998) | 0.002235 / 0.000200 (0.002035) | 0.000094 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031298 / 0.037411 (-0.006113) | 0.137740 / 0.014526 (0.123214) | 0.153497 / 0.176557 (-0.023059) | 0.204201 / 0.737135 (-0.532934) | 0.162324 / 0.296338 (-0.134014) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475922 / 0.215209 (0.260712) | 4.682344 / 2.077655 (2.604689) | 2.107387 / 1.504120 (0.603267) | 1.884792 / 1.541195 (0.343597) | 2.003180 / 1.468490 (0.534690) | 0.810212 / 4.584777 (-3.774564) | 4.631047 / 3.745712 (0.885334) | 4.467606 / 5.269862 (-0.802256) | 2.334196 / 4.565676 (-2.231480) | 0.099713 / 0.424275 (-0.324562) | 0.014732 / 0.007607 (0.007125) | 0.604587 / 0.226044 (0.378543) | 5.951679 / 2.268929 (3.682751) | 2.704761 / 55.444624 (-52.739863) | 2.280695 / 6.876477 (-4.595781) | 2.279489 / 2.142072 (0.137417) | 0.962474 / 4.805227 (-3.842753) | 0.195279 / 6.500664 (-6.305385) | 0.071503 / 0.075469 (-0.003966) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.558037 / 1.841788 (-0.283751) | 17.722140 / 8.074308 (9.647832) | 16.229016 / 10.191392 (6.037624) | 0.177148 / 0.680424 (-0.503276) | 0.034162 / 0.534201 (-0.500039) | 0.513945 / 0.579283 (-0.065338) | 0.533542 / 0.434364 (0.099178) | 0.672457 / 0.540337 (0.132119) | 0.762390 / 1.386936 (-0.624546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009739 / 0.011353 (-0.001613) | 0.006095 / 0.011008 (-0.004914) | 0.105968 / 0.038508 (0.067460) | 0.046229 / 0.023109 (0.023120) | 0.449156 / 0.275898 (0.173258) | 0.462182 / 0.323480 (0.138702) | 0.006981 / 0.007986 (-0.001004) | 0.004867 / 0.004328 (0.000539) | 0.082142 / 0.004250 (0.077891) | 0.058652 / 0.037052 (0.021600) | 0.454542 / 0.258489 (0.196052) | 0.494910 / 0.293841 (0.201069) | 0.047159 / 0.128546 (-0.081387) | 0.014677 / 0.075646 (-0.060969) | 0.370819 / 0.419271 (-0.048452) | 0.064603 / 0.043533 (0.021070) | 0.441514 / 0.255139 (0.186375) | 0.442802 / 0.283200 (0.159603) | 0.138603 / 0.141683 (-0.003080) | 1.692810 / 1.452155 (0.240655) | 1.894596 / 1.492716 (0.401880) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281681 / 0.018006 (0.263675) | 0.532693 / 0.000490 (0.532203) | 0.005484 / 0.000200 (0.005284) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032994 / 0.037411 (-0.004417) | 0.134614 / 0.014526 (0.120088) | 0.142286 / 0.176557 (-0.034270) | 0.187220 / 0.737135 (-0.549916) | 0.144897 / 0.296338 (-0.151441) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.519536 / 0.215209 (0.304327) | 5.214429 / 2.077655 (3.136775) | 2.612575 / 1.504120 (1.108455) | 2.369085 / 1.541195 (0.827891) | 2.503157 / 1.468490 (1.034667) | 0.834827 / 4.584777 (-3.749950) | 4.586789 / 3.745712 (0.841077) | 4.472605 / 5.269862 (-0.797257) | 2.314471 / 4.565676 (-2.251205) | 0.095817 / 0.424275 (-0.328458) | 0.014086 / 0.007607 (0.006478) | 0.605875 / 0.226044 (0.379831) | 6.153143 / 2.268929 (3.884214) | 3.187456 / 55.444624 (-52.257169) | 2.755377 / 6.876477 (-4.121100) | 2.777118 / 2.142072 (0.635046) | 0.967285 / 4.805227 (-3.837942) | 0.199202 / 6.500664 (-6.301462) | 0.075979 / 0.075469 (0.000510) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.481758 / 1.841788 (-0.360030) | 18.053769 / 8.074308 (9.979461) | 15.558780 / 10.191392 (5.367388) | 0.226135 / 0.680424 (-0.454288) | 0.021668 / 0.534201 (-0.512533) | 0.562618 / 0.579283 (-0.016666) | 0.518183 / 0.434364 (0.083819) | 0.628580 / 0.540337 (0.088243) | 0.740368 / 1.386936 (-0.646568) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4e4d46eec24c36799c0efcc1b7231f597039c497 \"CML watermark\")\n"
] | 2022-12-20T15:52:44 | 2023-01-26T09:51:13 | 2023-01-26T09:42:45 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5382",
"html_url": "https://github.com/huggingface/datasets/pull/5382",
"diff_url": "https://github.com/huggingface/datasets/pull/5382.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5382.patch",
"merged_at": "2023-01-26T09:42:45"
} | this way we can know the cause of the disconnect
related to https://github.com/huggingface/datasets/issues/5374 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5382/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5382/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5381 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5381/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5381/comments | https://api.github.com/repos/huggingface/datasets/issues/5381/events | https://github.com/huggingface/datasets/issues/5381 | 1,504,498,387 | I_kwDODunzps5ZrNLT | 5,381 | Wrong URL for the_pile dataset | {
"login": "LeoGrin",
"id": 45738728,
"node_id": "MDQ6VXNlcjQ1NzM4NzI4",
"avatar_url": "https://avatars.githubusercontent.com/u/45738728?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/LeoGrin",
"html_url": "https://github.com/LeoGrin",
"followers_url": "https://api.github.com/users/LeoGrin/followers",
"following_url": "https://api.github.com/users/LeoGrin/following{/other_user}",
"gists_url": "https://api.github.com/users/LeoGrin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/LeoGrin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LeoGrin/subscriptions",
"organizations_url": "https://api.github.com/users/LeoGrin/orgs",
"repos_url": "https://api.github.com/users/LeoGrin/repos",
"events_url": "https://api.github.com/users/LeoGrin/events{/privacy}",
"received_events_url": "https://api.github.com/users/LeoGrin/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! This error can happen if there is a local file/folder with the same name as the requested dataset. And to avoid it, rename the local file/folder.\r\n\r\nSoon, it will be possible to explicitly request a Hub dataset as follows:https://github.com/huggingface/datasets/issues/5228#issuecomment-1313494020"
] | 2022-12-20T12:40:14 | 2023-02-15T16:24:57 | 2023-02-15T16:24:57 | NONE | null | null | null | ### Describe the bug
When trying to load `the_pile` dataset from the library, I get a `FileNotFound` error.
### Steps to reproduce the bug
Steps to reproduce:
Run:
```
from datasets import load_dataset
dataset = load_dataset("the_pile")
```
I get the output:
"name": "FileNotFoundError",
"message": "Unable to resolve any data file that matches '['**']' at /storage/store/work/lgrinszt/memorization/the_pile with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'BLP', 'BMP', 'DIB', 'BUFR', 'CUR', 'PCX', 'DCX', 'DDS', 'PS', 'EPS', 'FIT', 'FITS', 'FLI', 'FLC', 'FTC', 'FTU', 'GBR', 'GIF', 'GRIB', 'H5', 'HDF', 'PNG', 'APNG', 'JP2', 'J2K', 'JPC', 'JPF', 'JPX', 'J2C', 'ICNS', 'ICO', 'IM', 'IIM', 'TIF', 'TIFF', 'JFIF', 'JPE', 'JPG', 'JPEG', 'MPG', 'MPEG', 'MSP', 'PCD', 'PXR', 'PBM', 'PGM', 'PPM', 'PNM', 'PSD', 'BW', 'RGB', 'RGBA', 'SGI', 'RAS', 'TGA', 'ICB', 'VDA', 'VST', 'WEBP', 'WMF', 'EMF', 'XBM', 'XPM', 'aiff', 'au', 'avr', 'caf', 'flac', 'htk', 'svx', 'mat4', 'mat5', 'mpc2k', 'ogg', 'paf', 'pvf', 'raw', 'rf64', 'sd2', 'sds', 'ircam', 'voc', 'w64', 'wav', 'nist', 'wavex', 'wve', 'xi', 'mp3', 'opus', 'AIFF', 'AU', 'AVR', 'CAF', 'FLAC', 'HTK', 'SVX', 'MAT4', 'MAT5', 'MPC2K', 'OGG', 'PAF', 'PVF', 'RAW', 'RF64', 'SD2', 'SDS', 'IRCAM', 'VOC', 'W64', 'WAV', 'NIST', 'WAVEX', 'WVE', 'XI', 'MP3', 'OPUS', 'zip']"
### Expected behavior
`the_pile` dataset should be dowloaded.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-4.15.0-112-generic-x86_64-with-glibc2.27
- Python version: 3.10.8
- PyArrow version: 10.0.1
- Pandas version: 1.5.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5381/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5381/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5380 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5380/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5380/comments | https://api.github.com/repos/huggingface/datasets/issues/5380/events | https://github.com/huggingface/datasets/issues/5380 | 1,504,404,043 | I_kwDODunzps5Zq2JL | 5,380 | Improve dataset `.skip()` speed in streaming mode | {
"login": "versae",
"id": 173537,
"node_id": "MDQ6VXNlcjE3MzUzNw==",
"avatar_url": "https://avatars.githubusercontent.com/u/173537?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/versae",
"html_url": "https://github.com/versae",
"followers_url": "https://api.github.com/users/versae/followers",
"following_url": "https://api.github.com/users/versae/following{/other_user}",
"gists_url": "https://api.github.com/users/versae/gists{/gist_id}",
"starred_url": "https://api.github.com/users/versae/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/versae/subscriptions",
"organizations_url": "https://api.github.com/users/versae/orgs",
"repos_url": "https://api.github.com/users/versae/repos",
"events_url": "https://api.github.com/users/versae/events{/privacy}",
"received_events_url": "https://api.github.com/users/versae/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 3761482852,
"node_id": "LA_kwDODunzps7gM6xk",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue",
"name": "good second issue",
"color": "BDE59C",
"default": false,
"description": "Issues a bit more difficult than \"Good First\" issues"
}
] | open | false | null | [] | null | [
"Hi! I agree `skip` can be inefficient to use in the current state.\r\n\r\nTo make it fast, we could use \"statistics\" stored in Parquet metadata and read only the chunks needed to form a dataset. \r\n\r\nAnd thanks to the \"datasets-server\" project, which aims to store the Parquet versions of the Hub datasets (only the smaller datasets are covered currently), this solution can also be applied to datasets stored in formats other than Parquet. (cc @severo)",
"@mariosasko do the current parquet files created by the datasets-server already have the required \"statistics\"? If not, please open an issue on https://github.com/huggingface/datasets-server with some details to make sure we implement it.",
"Yes, nothing has to be changed on the datasets-server side. What I mean by \"statistics\" is that we can use the \"row_group\" metadata embedded in a Parquet file (by default) to fetch the requested rows more efficiently.",
"Glad to see the feature could be of interest. \r\n\r\nI'm sure there are many possible ways to implement this feature. I don't know enough about the datasets-server, but I guess that it is not instantaneous, in the sense that user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all), which could be cumbersome. Having optionally that information in the `dataset_infos.json` file would make it easier for users to control the skip process a bit.",
"re: statistics:\r\n\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.FileMetaData.html\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.RowGroupMetaData.html\r\n\r\n```python\r\n>>> import pyarrow.parquet as pq\r\n>>> import hffs\r\n>>> fs = hffs.HfFileSystem(\"glue\", repo_type=\"dataset\", revision=\"refs/convert/parquet\")\r\n>>> metadata = pq.read_metadata(\"ax/glue-test.parquet\", filesystem=fs)\r\n>>> metadata\r\n<pyarrow._parquet.FileMetaData object at 0x7f4537cec400>\r\n created_by: parquet-cpp-arrow version 7.0.0\r\n num_columns: 4\r\n num_rows: 1104\r\n num_row_groups: 2\r\n format_version: 1.0\r\n serialized_size: 2902\r\n>>> metadata.row_group(0)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f45564bcbd0>\r\n num_columns: 4\r\n num_rows: 1000\r\n total_byte_size: 164474\r\n>>> metadata.row_group(1)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f455005c400>\r\n num_columns: 4\r\n num_rows: 104\r\n total_byte_size: 13064\r\n```",
"> user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all)\r\n\r\nprivate datasets are not supported yet (https://github.com/huggingface/datasets-server/issues/39)",
"@versae `Dataset.push_to_hub` writes shards in Parquet, so this solution would also work for such datasets (immediately after the push). ",
"@mariosasko that is right. However, there are still a good amount of datasets for which the shards are created manually. In our very specific case, we create medium-sized datasets (rarely over 100-200GB) of both text and audio, we prepare the shards by hand and then upload then. It would be great to have immediate access to this download skipping feature for them too.",
"From looking at Arrow's source, it seems Parquet stores metadata at the end, which means one needs to iterate over a Parquet file's data before accessing its metadata. We could mimic Dask to address this \"limitation\" and write metadata in a `_metadata`/`_common_metadata` file in `to_parquet`/`push_to_hub`, which we could then use to optimize reads (if present). Plus, it's handy that PyArrow can also parse these metadata files.",
"So if Parquet metadata needs to be in its own file anyway, why not implement this skipping feature by storing the example counts per shard in `dataset_infos.json`? That would allow:\r\n- Support both private and public datasets\r\n- Immediate access to the feature upon uploading of shards\r\n- Use any dataset, not only those uploaded using `.push_to_hub()`\r\n\r\nA proper Parquet metadata file could still be created and \"overwrite\" the `dataset_infos.json` info in the datasets-server."
] | 2022-12-20T11:25:23 | 2023-03-08T10:47:12 | null | CONTRIBUTOR | null | null | null | ### Feature request
Add extra information to the `dataset_infos.json` file to include the number of samples/examples in each shard, for example in a new field `num_examples` alongside `num_bytes`. The `.skip()` function could use this information to ignore the download of a shard when in streaming mode, which AFAICT it should speed up the skipping process.
### Motivation
When resuming from a checkpoint after a crashed run, using `dataset.skip()` is very convenient to recover the exact state of the data and to not train again over the same examples (assuming same seed, no shuffling). However, I have noticed that for audio datasets in streaming mode this is very costly in terms of time, as shards need to be downloaded every time before skipping the right number of examples.
### Your contribution
I took a look already at the code, but it seems a change like this is way deeper than I am able to manage, as it touches the library in several parts. I could give it a try but might need some guidance on the internals. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5380/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5380/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5379 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5379/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5379/comments | https://api.github.com/repos/huggingface/datasets/issues/5379/events | https://github.com/huggingface/datasets/pull/5379 | 1,504,010,639 | PR_kwDODunzps5F1r2k | 5,379 | feat: depth estimation dataset guide. | {
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Thanks for the changes, looks good to me!",
"@stevhliu I have pushed some quality improvements both in terms of code and content. Would you be able to re-review? ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008325 / 0.011353 (-0.003028) | 0.004432 / 0.011008 (-0.006576) | 0.099794 / 0.038508 (0.061286) | 0.029469 / 0.023109 (0.006360) | 0.306554 / 0.275898 (0.030656) | 0.367373 / 0.323480 (0.043893) | 0.007532 / 0.007986 (-0.000454) | 0.003310 / 0.004328 (-0.001018) | 0.077453 / 0.004250 (0.073203) | 0.034836 / 0.037052 (-0.002216) | 0.311696 / 0.258489 (0.053207) | 0.349683 / 0.293841 (0.055842) | 0.033089 / 0.128546 (-0.095457) | 0.011339 / 0.075646 (-0.064307) | 0.321699 / 0.419271 (-0.097573) | 0.040213 / 0.043533 (-0.003320) | 0.304741 / 0.255139 (0.049602) | 0.331569 / 0.283200 (0.048369) | 0.090397 / 0.141683 (-0.051285) | 1.526001 / 1.452155 (0.073847) | 1.558863 / 1.492716 (0.066146) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.179446 / 0.018006 (0.161440) | 0.416308 / 0.000490 (0.415818) | 0.002390 / 0.000200 (0.002190) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023641 / 0.037411 (-0.013770) | 0.096672 / 0.014526 (0.082147) | 0.104330 / 0.176557 (-0.072227) | 0.146338 / 0.737135 (-0.590797) | 0.108278 / 0.296338 (-0.188060) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420194 / 0.215209 (0.204985) | 4.196981 / 2.077655 (2.119326) | 1.861206 / 1.504120 (0.357086) | 1.658748 / 1.541195 (0.117554) | 1.704309 / 1.468490 (0.235819) | 0.691639 / 4.584777 (-3.893138) | 3.346303 / 3.745712 (-0.399409) | 1.932962 / 5.269862 (-3.336900) | 1.299395 / 4.565676 (-3.266281) | 0.081869 / 0.424275 (-0.342406) | 0.012415 / 0.007607 (0.004808) | 0.530805 / 0.226044 (0.304761) | 5.293486 / 2.268929 (3.024558) | 2.328327 / 55.444624 (-53.116297) | 1.964956 / 6.876477 (-4.911521) | 2.002793 / 2.142072 (-0.139280) | 0.813380 / 4.805227 (-3.991847) | 0.150030 / 6.500664 (-6.350634) | 0.065194 / 0.075469 (-0.010275) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259421 / 1.841788 (-0.582367) | 13.667796 / 8.074308 (5.593488) | 13.819121 / 10.191392 (3.627729) | 0.136718 / 0.680424 (-0.543706) | 0.028510 / 0.534201 (-0.505691) | 0.402246 / 0.579283 (-0.177037) | 0.405279 / 0.434364 (-0.029085) | 0.467185 / 0.540337 (-0.073153) | 0.554213 / 1.386936 (-0.832723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006738 / 0.011353 (-0.004615) | 0.004616 / 0.011008 (-0.006393) | 0.096978 / 0.038508 (0.058470) | 0.027750 / 0.023109 (0.004640) | 0.411505 / 0.275898 (0.135607) | 0.441796 / 0.323480 (0.118316) | 0.005073 / 0.007986 (-0.002913) | 0.003360 / 0.004328 (-0.000968) | 0.074445 / 0.004250 (0.070194) | 0.040654 / 0.037052 (0.003602) | 0.414277 / 0.258489 (0.155788) | 0.448665 / 0.293841 (0.154824) | 0.032346 / 0.128546 (-0.096200) | 0.011533 / 0.075646 (-0.064114) | 0.317349 / 0.419271 (-0.101923) | 0.041934 / 0.043533 (-0.001599) | 0.409102 / 0.255139 (0.153963) | 0.429977 / 0.283200 (0.146777) | 0.089459 / 0.141683 (-0.052224) | 1.518127 / 1.452155 (0.065973) | 1.569902 / 1.492716 (0.077186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232648 / 0.018006 (0.214642) | 0.413751 / 0.000490 (0.413261) | 0.000404 / 0.000200 (0.000204) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025468 / 0.037411 (-0.011943) | 0.098195 / 0.014526 (0.083669) | 0.108882 / 0.176557 (-0.067674) | 0.150059 / 0.737135 (-0.587076) | 0.110742 / 0.296338 (-0.185597) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445326 / 0.215209 (0.230117) | 4.449200 / 2.077655 (2.371545) | 2.098939 / 1.504120 (0.594819) | 1.861207 / 1.541195 (0.320012) | 1.901385 / 1.468490 (0.432894) | 0.695287 / 4.584777 (-3.889490) | 3.461775 / 3.745712 (-0.283938) | 2.998566 / 5.269862 (-2.271296) | 1.555036 / 4.565676 (-3.010641) | 0.082789 / 0.424275 (-0.341486) | 0.012772 / 0.007607 (0.005165) | 0.564855 / 0.226044 (0.338811) | 5.631049 / 2.268929 (3.362120) | 2.543771 / 55.444624 (-52.900854) | 2.194378 / 6.876477 (-4.682099) | 2.267168 / 2.142072 (0.125095) | 0.803330 / 4.805227 (-4.001898) | 0.151336 / 6.500664 (-6.349328) | 0.067015 / 0.075469 (-0.008454) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.298422 / 1.841788 (-0.543366) | 13.933637 / 8.074308 (5.859329) | 13.570848 / 10.191392 (3.379456) | 0.150787 / 0.680424 (-0.529637) | 0.016911 / 0.534201 (-0.517290) | 0.384771 / 0.579283 (-0.194512) | 0.397505 / 0.434364 (-0.036858) | 0.450931 / 0.540337 (-0.089406) | 0.534501 / 1.386936 (-0.852435) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n",
"@lhoestq @nateraw made some changes as per the comments. PTAL and approve as necessary. ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009037 / 0.011353 (-0.002316) | 0.004970 / 0.011008 (-0.006038) | 0.099223 / 0.038508 (0.060715) | 0.034935 / 0.023109 (0.011826) | 0.297027 / 0.275898 (0.021129) | 0.352861 / 0.323480 (0.029382) | 0.007558 / 0.007986 (-0.000427) | 0.003903 / 0.004328 (-0.000425) | 0.075663 / 0.004250 (0.071413) | 0.042577 / 0.037052 (0.005524) | 0.307182 / 0.258489 (0.048693) | 0.344237 / 0.293841 (0.050396) | 0.041438 / 0.128546 (-0.087108) | 0.012159 / 0.075646 (-0.063487) | 0.333771 / 0.419271 (-0.085501) | 0.047847 / 0.043533 (0.004314) | 0.290797 / 0.255139 (0.035658) | 0.320517 / 0.283200 (0.037318) | 0.098334 / 0.141683 (-0.043349) | 1.446187 / 1.452155 (-0.005968) | 1.495506 / 1.492716 (0.002789) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203704 / 0.018006 (0.185698) | 0.441325 / 0.000490 (0.440835) | 0.001173 / 0.000200 (0.000973) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026694 / 0.037411 (-0.010718) | 0.103819 / 0.014526 (0.089294) | 0.116377 / 0.176557 (-0.060179) | 0.158280 / 0.737135 (-0.578856) | 0.119797 / 0.296338 (-0.176541) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405723 / 0.215209 (0.190514) | 4.047633 / 2.077655 (1.969979) | 1.805652 / 1.504120 (0.301532) | 1.611382 / 1.541195 (0.070187) | 1.663117 / 1.468490 (0.194627) | 0.692589 / 4.584777 (-3.892188) | 3.689970 / 3.745712 (-0.055742) | 2.089760 / 5.269862 (-3.180101) | 1.450576 / 4.565676 (-3.115101) | 0.085276 / 0.424275 (-0.338999) | 0.012042 / 0.007607 (0.004434) | 0.513159 / 0.226044 (0.287115) | 5.123235 / 2.268929 (2.854306) | 2.281864 / 55.444624 (-53.162761) | 1.926170 / 6.876477 (-4.950307) | 2.035093 / 2.142072 (-0.106979) | 0.857457 / 4.805227 (-3.947770) | 0.166088 / 6.500664 (-6.334576) | 0.062115 / 0.075469 (-0.013354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197776 / 1.841788 (-0.644012) | 14.674452 / 8.074308 (6.600144) | 14.275990 / 10.191392 (4.084598) | 0.170848 / 0.680424 (-0.509576) | 0.028613 / 0.534201 (-0.505588) | 0.438650 / 0.579283 (-0.140633) | 0.439323 / 0.434364 (0.004959) | 0.515090 / 0.540337 (-0.025247) | 0.614216 / 1.386936 (-0.772720) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007159 / 0.011353 (-0.004194) | 0.005142 / 0.011008 (-0.005866) | 0.096953 / 0.038508 (0.058445) | 0.033036 / 0.023109 (0.009927) | 0.391790 / 0.275898 (0.115892) | 0.427120 / 0.323480 (0.103640) | 0.005691 / 0.007986 (-0.002294) | 0.004848 / 0.004328 (0.000519) | 0.072258 / 0.004250 (0.068008) | 0.049017 / 0.037052 (0.011965) | 0.387267 / 0.258489 (0.128778) | 0.437112 / 0.293841 (0.143272) | 0.036360 / 0.128546 (-0.092186) | 0.012249 / 0.075646 (-0.063397) | 0.336246 / 0.419271 (-0.083025) | 0.048777 / 0.043533 (0.005244) | 0.397872 / 0.255139 (0.142733) | 0.399768 / 0.283200 (0.116568) | 0.101283 / 0.141683 (-0.040400) | 1.443999 / 1.452155 (-0.008156) | 1.575496 / 1.492716 (0.082779) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220952 / 0.018006 (0.202946) | 0.442220 / 0.000490 (0.441730) | 0.000406 / 0.000200 (0.000206) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028626 / 0.037411 (-0.008786) | 0.109929 / 0.014526 (0.095403) | 0.120989 / 0.176557 (-0.055568) | 0.157377 / 0.737135 (-0.579758) | 0.125522 / 0.296338 (-0.170816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436565 / 0.215209 (0.221356) | 4.380771 / 2.077655 (2.303117) | 2.200003 / 1.504120 (0.695883) | 2.013289 / 1.541195 (0.472094) | 2.052658 / 1.468490 (0.584168) | 0.703706 / 4.584777 (-3.881071) | 3.823289 / 3.745712 (0.077577) | 2.064882 / 5.269862 (-3.204980) | 1.330834 / 4.565676 (-3.234842) | 0.085945 / 0.424275 (-0.338330) | 0.012511 / 0.007607 (0.004904) | 0.544171 / 0.226044 (0.318127) | 5.476059 / 2.268929 (3.207130) | 2.695586 / 55.444624 (-52.749039) | 2.330239 / 6.876477 (-4.546238) | 2.429290 / 2.142072 (0.287218) | 0.843154 / 4.805227 (-3.962073) | 0.169334 / 6.500664 (-6.331330) | 0.064261 / 0.075469 (-0.011209) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268344 / 1.841788 (-0.573444) | 14.934342 / 8.074308 (6.860034) | 13.555389 / 10.191392 (3.363997) | 0.142725 / 0.680424 (-0.537699) | 0.017891 / 0.534201 (-0.516310) | 0.424833 / 0.579283 (-0.154450) | 0.420035 / 0.434364 (-0.014329) | 0.491009 / 0.540337 (-0.049329) | 0.586953 / 1.386936 (-0.799983) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n",
"Merging this PR with approvals from @stevhliu @lhoestq. ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008586 / 0.011353 (-0.002767) | 0.004659 / 0.011008 (-0.006350) | 0.100343 / 0.038508 (0.061835) | 0.029861 / 0.023109 (0.006751) | 0.301090 / 0.275898 (0.025192) | 0.369528 / 0.323480 (0.046048) | 0.006920 / 0.007986 (-0.001065) | 0.003513 / 0.004328 (-0.000815) | 0.078514 / 0.004250 (0.074263) | 0.035285 / 0.037052 (-0.001767) | 0.311257 / 0.258489 (0.052768) | 0.353995 / 0.293841 (0.060154) | 0.033733 / 0.128546 (-0.094813) | 0.011489 / 0.075646 (-0.064157) | 0.323095 / 0.419271 (-0.096176) | 0.040808 / 0.043533 (-0.002725) | 0.301779 / 0.255139 (0.046640) | 0.348517 / 0.283200 (0.065318) | 0.086962 / 0.141683 (-0.054721) | 1.496270 / 1.452155 (0.044115) | 1.514260 / 1.492716 (0.021544) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189502 / 0.018006 (0.171496) | 0.419326 / 0.000490 (0.418837) | 0.002160 / 0.000200 (0.001960) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023669 / 0.037411 (-0.013742) | 0.096574 / 0.014526 (0.082048) | 0.105970 / 0.176557 (-0.070587) | 0.148531 / 0.737135 (-0.588605) | 0.109948 / 0.296338 (-0.186391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424968 / 0.215209 (0.209759) | 4.246292 / 2.077655 (2.168637) | 1.911062 / 1.504120 (0.406943) | 1.700733 / 1.541195 (0.159538) | 1.760756 / 1.468490 (0.292266) | 0.696966 / 4.584777 (-3.887811) | 3.372320 / 3.745712 (-0.373392) | 2.886281 / 5.269862 (-2.383581) | 1.553082 / 4.565676 (-3.012594) | 0.082835 / 0.424275 (-0.341440) | 0.012688 / 0.007607 (0.005081) | 0.536352 / 0.226044 (0.310308) | 5.382510 / 2.268929 (3.113582) | 2.365664 / 55.444624 (-53.078960) | 1.995631 / 6.876477 (-4.880845) | 2.073865 / 2.142072 (-0.068207) | 0.819109 / 4.805227 (-3.986118) | 0.150278 / 6.500664 (-6.350386) | 0.065201 / 0.075469 (-0.010268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239835 / 1.841788 (-0.601953) | 13.911847 / 8.074308 (5.837539) | 13.500433 / 10.191392 (3.309041) | 0.137153 / 0.680424 (-0.543271) | 0.028451 / 0.534201 (-0.505750) | 0.394659 / 0.579283 (-0.184625) | 0.404915 / 0.434364 (-0.029449) | 0.458944 / 0.540337 (-0.081394) | 0.542288 / 1.386936 (-0.844648) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006791 / 0.011353 (-0.004562) | 0.004590 / 0.011008 (-0.006419) | 0.098697 / 0.038508 (0.060189) | 0.027634 / 0.023109 (0.004525) | 0.344383 / 0.275898 (0.068485) | 0.385607 / 0.323480 (0.062127) | 0.005413 / 0.007986 (-0.002573) | 0.003447 / 0.004328 (-0.000881) | 0.077268 / 0.004250 (0.073018) | 0.041823 / 0.037052 (0.004770) | 0.342904 / 0.258489 (0.084414) | 0.399371 / 0.293841 (0.105530) | 0.032668 / 0.128546 (-0.095879) | 0.011598 / 0.075646 (-0.064048) | 0.319973 / 0.419271 (-0.099299) | 0.041760 / 0.043533 (-0.001773) | 0.340510 / 0.255139 (0.085371) | 0.377929 / 0.283200 (0.094730) | 0.090889 / 0.141683 (-0.050793) | 1.496068 / 1.452155 (0.043913) | 1.574884 / 1.492716 (0.082168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230489 / 0.018006 (0.212483) | 0.425234 / 0.000490 (0.424745) | 0.000406 / 0.000200 (0.000206) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024650 / 0.037411 (-0.012761) | 0.102706 / 0.014526 (0.088180) | 0.108017 / 0.176557 (-0.068539) | 0.143645 / 0.737135 (-0.593490) | 0.110556 / 0.296338 (-0.185782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468038 / 0.215209 (0.252829) | 4.670514 / 2.077655 (2.592860) | 2.446620 / 1.504120 (0.942500) | 2.241255 / 1.541195 (0.700060) | 2.286409 / 1.468490 (0.817919) | 0.698923 / 4.584777 (-3.885854) | 3.401121 / 3.745712 (-0.344592) | 1.892399 / 5.269862 (-3.377462) | 1.163101 / 4.565676 (-3.402575) | 0.082567 / 0.424275 (-0.341708) | 0.012662 / 0.007607 (0.005055) | 0.571262 / 0.226044 (0.345218) | 5.731740 / 2.268929 (3.462812) | 2.879649 / 55.444624 (-52.564975) | 2.533846 / 6.876477 (-4.342631) | 2.654789 / 2.142072 (0.512717) | 0.811345 / 4.805227 (-3.993882) | 0.152495 / 6.500664 (-6.348169) | 0.067748 / 0.075469 (-0.007721) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267852 / 1.841788 (-0.573935) | 14.114920 / 8.074308 (6.040612) | 14.355403 / 10.191392 (4.164011) | 0.150393 / 0.680424 (-0.530031) | 0.016855 / 0.534201 (-0.517346) | 0.378710 / 0.579283 (-0.200573) | 0.385380 / 0.434364 (-0.048984) | 0.439054 / 0.540337 (-0.101284) | 0.524343 / 1.386936 (-0.862593) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n"
] | 2022-12-20T05:32:11 | 2023-01-13T12:30:31 | 2023-01-13T12:23:34 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5379",
"html_url": "https://github.com/huggingface/datasets/pull/5379",
"diff_url": "https://github.com/huggingface/datasets/pull/5379.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5379.patch",
"merged_at": "2023-01-13T12:23:34"
} | This PR adds a guide for prepping datasets for depth estimation.
PR to add documentation images is up here: https://huggingface.co/datasets/huggingface/documentation-images/discussions/22 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5379/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 1,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5379/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5378 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5378/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5378/comments | https://api.github.com/repos/huggingface/datasets/issues/5378/events | https://github.com/huggingface/datasets/issues/5378 | 1,503,887,508 | I_kwDODunzps5Zo4CU | 5,378 | The dataset "the_pile", subset "enron_emails" , load_dataset() failure | {
"login": "shaoyuta",
"id": 52023469,
"node_id": "MDQ6VXNlcjUyMDIzNDY5",
"avatar_url": "https://avatars.githubusercontent.com/u/52023469?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shaoyuta",
"html_url": "https://github.com/shaoyuta",
"followers_url": "https://api.github.com/users/shaoyuta/followers",
"following_url": "https://api.github.com/users/shaoyuta/following{/other_user}",
"gists_url": "https://api.github.com/users/shaoyuta/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shaoyuta/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shaoyuta/subscriptions",
"organizations_url": "https://api.github.com/users/shaoyuta/orgs",
"repos_url": "https://api.github.com/users/shaoyuta/repos",
"events_url": "https://api.github.com/users/shaoyuta/events{/privacy}",
"received_events_url": "https://api.github.com/users/shaoyuta/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for reporting @shaoyuta. We are investigating it.\r\n\r\nWe are transferring the issue to \"the_pile\" Community tab on the Hub: https://huggingface.co/datasets/the_pile/discussions/4"
] | 2022-12-20T02:19:13 | 2022-12-20T07:52:54 | 2022-12-20T07:52:54 | NONE | null | null | null | ### Describe the bug
When run
"datasets.load_dataset("the_pile","enron_emails")" failure
![image](https://user-images.githubusercontent.com/52023469/208565302-cfab7b89-0b97-4fa6-a5ba-c11b0b629b1a.png)
### Steps to reproduce the bug
Run below code in python cli:
>>> import datasets
>>> datasets.load_dataset("the_pile","enron_emails")
### Expected behavior
Load dataset "the_pile", "enron_emails" successfully.
### Environment info
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.7.1
- Platform: Linux-5.15.0-53-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- PyArrow version: 10.0.0
- Pandas version: 1.4.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5378/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5378/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5377 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5377/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5377/comments | https://api.github.com/repos/huggingface/datasets/issues/5377/events | https://github.com/huggingface/datasets/pull/5377 | 1,503,477,833 | PR_kwDODunzps5Fz5lw | 5,377 | Add a parallel implementation of to_tf_dataset() | {
"login": "Rocketknight1",
"id": 12866554,
"node_id": "MDQ6VXNlcjEyODY2NTU0",
"avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Rocketknight1",
"html_url": "https://github.com/Rocketknight1",
"followers_url": "https://api.github.com/users/Rocketknight1/followers",
"following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}",
"gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions",
"organizations_url": "https://api.github.com/users/Rocketknight1/orgs",
"repos_url": "https://api.github.com/users/Rocketknight1/repos",
"events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}",
"received_events_url": "https://api.github.com/users/Rocketknight1/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Failing because the test server uses Py3.7 but the `SharedMemory` features require Py3.8! I forgot we still support 3.7 for another couple of months. I'm not sure exactly how to proceed, whether I should leave this PR until then, or just gate the feature behind a version check and skip the tests until the Python version catches up.",
"I haven't played with `NumpyMultiprocessingGenerator` so I can't really help here, but this sounds promising :) Otherwise I think it's also fine to allow `num_workers` only for py>=3.8 for now. You can skip the test on 3.7 and make sure to raise an informative error if someone wants to use `num_workers` with 3.7",
"Lots of comments here - I'll reply to the specific code comments underneath them, but in response to the general comments:\r\n\r\n@gante: I think this approach is much more performant than a `multiprocessing.Pool`. The reason is that when results are returned from a process `Pool`, the returned Python objects are pickled by the child processes, sent down a pipe and unpickled by the parent process. This creates a huge single-process bottleneck as the parent has to unpickle lots of large NumPy arrays, which is quite slow.\r\n\r\nWhen you use a `SharedMemory` approach, the data is just **there** for the parent process - the child and the parent are writing to exactly the same array in memory, and no pickling or unpickling occurs. This means the parent can just immediately copy the array (which is much faster than unpickling) and yield it to `tf.data`. We're taking advantage of the fact that we know the data is just big NumPy arrays and we don't need the full generality of `pickle`.\r\n\r\n@lhoestq: Sounds good! I'll add a clear error and skip the tests on Py<=3.7.",
"Also, an extra technicality, just for information in case anyone looks at this PR later: Recent versions of Python allow [pickled objects to store out-of-band data](https://peps.python.org/pep-0574/). This allows for very efficient zero-copy unpickling of objects like NumPy arrays, with the unpickled object having a view on the same memory as the original. \r\n\r\nHowever, this explicitly does **not** work when the object is unpickled by a different process than the one that created it. For this to work you must explicitly allocate shared memory and create the array there, which pickle cannot handle for you. As a result, if you just benchmark unpickling vs copying of NumPy arrays it can seem like unpickling is very fast - but this is only true when the pickle was created in the unpickling process!",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008666 / 0.011353 (-0.002687) | 0.004624 / 0.011008 (-0.006384) | 0.099247 / 0.038508 (0.060739) | 0.029766 / 0.023109 (0.006657) | 0.303347 / 0.275898 (0.027449) | 0.370022 / 0.323480 (0.046542) | 0.007128 / 0.007986 (-0.000857) | 0.003446 / 0.004328 (-0.000883) | 0.076670 / 0.004250 (0.072420) | 0.038892 / 0.037052 (0.001840) | 0.313035 / 0.258489 (0.054546) | 0.350503 / 0.293841 (0.056662) | 0.033732 / 0.128546 (-0.094815) | 0.011644 / 0.075646 (-0.064003) | 0.323295 / 0.419271 (-0.095977) | 0.040336 / 0.043533 (-0.003196) | 0.302253 / 0.255139 (0.047114) | 0.337199 / 0.283200 (0.053999) | 0.089454 / 0.141683 (-0.052229) | 1.624906 / 1.452155 (0.172752) | 1.546187 / 1.492716 (0.053470) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184614 / 0.018006 (0.166608) | 0.427397 / 0.000490 (0.426907) | 0.003342 / 0.000200 (0.003142) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023684 / 0.037411 (-0.013727) | 0.100095 / 0.014526 (0.085569) | 0.104996 / 0.176557 (-0.071560) | 0.144719 / 0.737135 (-0.592416) | 0.110759 / 0.296338 (-0.185579) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421108 / 0.215209 (0.205899) | 4.214094 / 2.077655 (2.136440) | 1.906231 / 1.504120 (0.402111) | 1.698000 / 1.541195 (0.156806) | 1.744856 / 1.468490 (0.276366) | 0.693671 / 4.584777 (-3.891106) | 3.362522 / 3.745712 (-0.383190) | 1.878470 / 5.269862 (-3.391392) | 1.167563 / 4.565676 (-3.398113) | 0.082455 / 0.424275 (-0.341820) | 0.012261 / 0.007607 (0.004654) | 0.525196 / 0.226044 (0.299152) | 5.257553 / 2.268929 (2.988624) | 2.298286 / 55.444624 (-53.146339) | 1.956106 / 6.876477 (-4.920371) | 2.006308 / 2.142072 (-0.135764) | 0.811069 / 4.805227 (-3.994158) | 0.150368 / 6.500664 (-6.350296) | 0.065699 / 0.075469 (-0.009771) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224516 / 1.841788 (-0.617272) | 13.619084 / 8.074308 (5.544776) | 14.096666 / 10.191392 (3.905274) | 0.151068 / 0.680424 (-0.529356) | 0.028819 / 0.534201 (-0.505382) | 0.402071 / 0.579283 (-0.177212) | 0.408647 / 0.434364 (-0.025717) | 0.466605 / 0.540337 (-0.073733) | 0.547094 / 1.386936 (-0.839842) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006935 / 0.011353 (-0.004418) | 0.004590 / 0.011008 (-0.006419) | 0.099398 / 0.038508 (0.060890) | 0.028145 / 0.023109 (0.005036) | 0.426582 / 0.275898 (0.150684) | 0.465712 / 0.323480 (0.142233) | 0.005254 / 0.007986 (-0.002731) | 0.004956 / 0.004328 (0.000627) | 0.075616 / 0.004250 (0.071365) | 0.039871 / 0.037052 (0.002819) | 0.428859 / 0.258489 (0.170370) | 0.470839 / 0.293841 (0.176998) | 0.032150 / 0.128546 (-0.096396) | 0.011778 / 0.075646 (-0.063868) | 0.322358 / 0.419271 (-0.096913) | 0.041974 / 0.043533 (-0.001559) | 0.427459 / 0.255139 (0.172320) | 0.446685 / 0.283200 (0.163485) | 0.092000 / 0.141683 (-0.049683) | 1.509231 / 1.452155 (0.057076) | 1.578950 / 1.492716 (0.086234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.168047 / 0.018006 (0.150041) | 0.418993 / 0.000490 (0.418503) | 0.002855 / 0.000200 (0.002655) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025652 / 0.037411 (-0.011759) | 0.100141 / 0.014526 (0.085616) | 0.107293 / 0.176557 (-0.069264) | 0.142857 / 0.737135 (-0.594278) | 0.110933 / 0.296338 (-0.185406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477556 / 0.215209 (0.262347) | 4.777951 / 2.077655 (2.700296) | 2.461885 / 1.504120 (0.957765) | 2.252307 / 1.541195 (0.711112) | 2.307983 / 1.468490 (0.839493) | 0.697570 / 4.584777 (-3.887207) | 3.370323 / 3.745712 (-0.375389) | 3.131333 / 5.269862 (-2.138529) | 1.594839 / 4.565676 (-2.970838) | 0.082333 / 0.424275 (-0.341942) | 0.012574 / 0.007607 (0.004967) | 0.583704 / 0.226044 (0.357660) | 5.817675 / 2.268929 (3.548746) | 2.927054 / 55.444624 (-52.517570) | 2.582929 / 6.876477 (-4.293548) | 2.634275 / 2.142072 (0.492202) | 0.806407 / 4.805227 (-3.998821) | 0.151438 / 6.500664 (-6.349226) | 0.067429 / 0.075469 (-0.008040) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267011 / 1.841788 (-0.574776) | 13.989515 / 8.074308 (5.915207) | 14.087968 / 10.191392 (3.896576) | 0.142130 / 0.680424 (-0.538293) | 0.017201 / 0.534201 (-0.517000) | 0.383394 / 0.579283 (-0.195889) | 0.381921 / 0.434364 (-0.052443) | 0.439169 / 0.540337 (-0.101168) | 0.524215 / 1.386936 (-0.862721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#be2ebc8f3cfeb532c933be2443094603bafcab04 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008489 / 0.011353 (-0.002864) | 0.004617 / 0.011008 (-0.006391) | 0.102035 / 0.038508 (0.063527) | 0.029850 / 0.023109 (0.006741) | 0.296789 / 0.275898 (0.020891) | 0.367270 / 0.323480 (0.043790) | 0.006934 / 0.007986 (-0.001052) | 0.004923 / 0.004328 (0.000595) | 0.079150 / 0.004250 (0.074900) | 0.036884 / 0.037052 (-0.000169) | 0.305747 / 0.258489 (0.047258) | 0.348510 / 0.293841 (0.054669) | 0.034074 / 0.128546 (-0.094472) | 0.011650 / 0.075646 (-0.063997) | 0.324226 / 0.419271 (-0.095045) | 0.041763 / 0.043533 (-0.001770) | 0.300887 / 0.255139 (0.045748) | 0.333393 / 0.283200 (0.050193) | 0.093838 / 0.141683 (-0.047844) | 1.499801 / 1.452155 (0.047646) | 1.505988 / 1.492716 (0.013272) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198610 / 0.018006 (0.180604) | 0.407380 / 0.000490 (0.406891) | 0.000367 / 0.000200 (0.000167) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022858 / 0.037411 (-0.014554) | 0.095727 / 0.014526 (0.081202) | 0.104014 / 0.176557 (-0.072543) | 0.138764 / 0.737135 (-0.598371) | 0.105860 / 0.296338 (-0.190478) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416352 / 0.215209 (0.201143) | 4.150007 / 2.077655 (2.072352) | 1.878727 / 1.504120 (0.374607) | 1.678978 / 1.541195 (0.137783) | 1.711990 / 1.468490 (0.243500) | 0.691722 / 4.584777 (-3.893055) | 3.386466 / 3.745712 (-0.359246) | 1.835730 / 5.269862 (-3.434132) | 1.149975 / 4.565676 (-3.415702) | 0.081914 / 0.424275 (-0.342362) | 0.012238 / 0.007607 (0.004631) | 0.522945 / 0.226044 (0.296900) | 5.251793 / 2.268929 (2.982864) | 2.306907 / 55.444624 (-53.137717) | 1.968400 / 6.876477 (-4.908076) | 1.981154 / 2.142072 (-0.160919) | 0.810126 / 4.805227 (-3.995101) | 0.147876 / 6.500664 (-6.352788) | 0.064042 / 0.075469 (-0.011428) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.199150 / 1.841788 (-0.642637) | 13.913473 / 8.074308 (5.839165) | 14.079132 / 10.191392 (3.887740) | 0.137387 / 0.680424 (-0.543037) | 0.028456 / 0.534201 (-0.505745) | 0.394162 / 0.579283 (-0.185122) | 0.402051 / 0.434364 (-0.032313) | 0.461944 / 0.540337 (-0.078394) | 0.542648 / 1.386936 (-0.844288) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006393 / 0.011353 (-0.004960) | 0.004599 / 0.011008 (-0.006409) | 0.097389 / 0.038508 (0.058881) | 0.027719 / 0.023109 (0.004610) | 0.341060 / 0.275898 (0.065162) | 0.379604 / 0.323480 (0.056124) | 0.004955 / 0.007986 (-0.003030) | 0.003369 / 0.004328 (-0.000959) | 0.075390 / 0.004250 (0.071139) | 0.038518 / 0.037052 (0.001466) | 0.347085 / 0.258489 (0.088596) | 0.393468 / 0.293841 (0.099627) | 0.031482 / 0.128546 (-0.097064) | 0.011585 / 0.075646 (-0.064061) | 0.317969 / 0.419271 (-0.101302) | 0.041389 / 0.043533 (-0.002144) | 0.343812 / 0.255139 (0.088673) | 0.371047 / 0.283200 (0.087848) | 0.090020 / 0.141683 (-0.051663) | 1.461690 / 1.452155 (0.009536) | 1.552458 / 1.492716 (0.059741) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188691 / 0.018006 (0.170684) | 0.415635 / 0.000490 (0.415145) | 0.005285 / 0.000200 (0.005085) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024695 / 0.037411 (-0.012716) | 0.098939 / 0.014526 (0.084413) | 0.108472 / 0.176557 (-0.068085) | 0.152635 / 0.737135 (-0.584501) | 0.109947 / 0.296338 (-0.186391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471975 / 0.215209 (0.256766) | 4.716437 / 2.077655 (2.638782) | 2.420148 / 1.504120 (0.916028) | 2.219864 / 1.541195 (0.678669) | 2.238647 / 1.468490 (0.770157) | 0.697628 / 4.584777 (-3.887149) | 3.530720 / 3.745712 (-0.214993) | 3.327354 / 5.269862 (-1.942508) | 1.665877 / 4.565676 (-2.899800) | 0.082650 / 0.424275 (-0.341625) | 0.012593 / 0.007607 (0.004986) | 0.576109 / 0.226044 (0.350065) | 5.744691 / 2.268929 (3.475762) | 2.863473 / 55.444624 (-52.581152) | 2.529616 / 6.876477 (-4.346861) | 2.562802 / 2.142072 (0.420730) | 0.805631 / 4.805227 (-3.999597) | 0.150788 / 6.500664 (-6.349876) | 0.065743 / 0.075469 (-0.009726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295134 / 1.841788 (-0.546654) | 14.096046 / 8.074308 (6.021738) | 13.901399 / 10.191392 (3.710007) | 0.127481 / 0.680424 (-0.552943) | 0.016666 / 0.534201 (-0.517535) | 0.381819 / 0.579283 (-0.197464) | 0.382629 / 0.434364 (-0.051735) | 0.439354 / 0.540337 (-0.100984) | 0.527662 / 1.386936 (-0.859274) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fe2ad43f59e65d39f2f2ce7442c76990493deb7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008509 / 0.011353 (-0.002844) | 0.004523 / 0.011008 (-0.006485) | 0.100616 / 0.038508 (0.062108) | 0.029573 / 0.023109 (0.006464) | 0.306414 / 0.275898 (0.030516) | 0.377034 / 0.323480 (0.053554) | 0.007621 / 0.007986 (-0.000365) | 0.003335 / 0.004328 (-0.000993) | 0.078598 / 0.004250 (0.074348) | 0.036902 / 0.037052 (-0.000150) | 0.318146 / 0.258489 (0.059657) | 0.355626 / 0.293841 (0.061785) | 0.033441 / 0.128546 (-0.095105) | 0.011552 / 0.075646 (-0.064094) | 0.322973 / 0.419271 (-0.096299) | 0.040564 / 0.043533 (-0.002968) | 0.306451 / 0.255139 (0.051312) | 0.337591 / 0.283200 (0.054392) | 0.086822 / 0.141683 (-0.054861) | 1.484601 / 1.452155 (0.032447) | 1.542777 / 1.492716 (0.050061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201711 / 0.018006 (0.183705) | 0.418387 / 0.000490 (0.417898) | 0.002753 / 0.000200 (0.002553) | 0.000263 / 0.000054 (0.000209) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023016 / 0.037411 (-0.014395) | 0.097313 / 0.014526 (0.082787) | 0.103435 / 0.176557 (-0.073122) | 0.142665 / 0.737135 (-0.594470) | 0.107397 / 0.296338 (-0.188942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422739 / 0.215209 (0.207530) | 4.220126 / 2.077655 (2.142471) | 1.865447 / 1.504120 (0.361327) | 1.649647 / 1.541195 (0.108453) | 1.711655 / 1.468490 (0.243165) | 0.704269 / 4.584777 (-3.880508) | 3.407390 / 3.745712 (-0.338322) | 1.929224 / 5.269862 (-3.340638) | 1.281225 / 4.565676 (-3.284452) | 0.082924 / 0.424275 (-0.341351) | 0.012588 / 0.007607 (0.004981) | 0.531025 / 0.226044 (0.304980) | 5.339441 / 2.268929 (3.070512) | 2.298969 / 55.444624 (-53.145656) | 1.952145 / 6.876477 (-4.924332) | 2.034754 / 2.142072 (-0.107318) | 0.823672 / 4.805227 (-3.981555) | 0.151465 / 6.500664 (-6.349199) | 0.066663 / 0.075469 (-0.008807) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258981 / 1.841788 (-0.582807) | 13.791640 / 8.074308 (5.717332) | 14.001514 / 10.191392 (3.810122) | 0.149805 / 0.680424 (-0.530619) | 0.028614 / 0.534201 (-0.505587) | 0.400266 / 0.579283 (-0.179017) | 0.405891 / 0.434364 (-0.028473) | 0.471903 / 0.540337 (-0.068435) | 0.563656 / 1.386936 (-0.823280) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006751 / 0.011353 (-0.004601) | 0.004665 / 0.011008 (-0.006343) | 0.098362 / 0.038508 (0.059854) | 0.027451 / 0.023109 (0.004342) | 0.421859 / 0.275898 (0.145961) | 0.458089 / 0.323480 (0.134609) | 0.004885 / 0.007986 (-0.003101) | 0.003459 / 0.004328 (-0.000870) | 0.075871 / 0.004250 (0.071621) | 0.036591 / 0.037052 (-0.000462) | 0.423307 / 0.258489 (0.164818) | 0.467040 / 0.293841 (0.173199) | 0.031837 / 0.128546 (-0.096710) | 0.011604 / 0.075646 (-0.064042) | 0.321132 / 0.419271 (-0.098140) | 0.041806 / 0.043533 (-0.001727) | 0.421653 / 0.255139 (0.166514) | 0.445896 / 0.283200 (0.162696) | 0.087998 / 0.141683 (-0.053685) | 1.475818 / 1.452155 (0.023664) | 1.559487 / 1.492716 (0.066770) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203096 / 0.018006 (0.185090) | 0.401381 / 0.000490 (0.400892) | 0.004037 / 0.000200 (0.003837) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023757 / 0.037411 (-0.013654) | 0.099919 / 0.014526 (0.085393) | 0.108384 / 0.176557 (-0.068173) | 0.143780 / 0.737135 (-0.593355) | 0.111528 / 0.296338 (-0.184811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475896 / 0.215209 (0.260686) | 4.754567 / 2.077655 (2.676912) | 2.444986 / 1.504120 (0.940866) | 2.231055 / 1.541195 (0.689860) | 2.283646 / 1.468490 (0.815156) | 0.701303 / 4.584777 (-3.883474) | 3.381597 / 3.745712 (-0.364115) | 1.878714 / 5.269862 (-3.391148) | 1.171566 / 4.565676 (-3.394111) | 0.083106 / 0.424275 (-0.341169) | 0.012575 / 0.007607 (0.004967) | 0.582570 / 0.226044 (0.356526) | 5.813677 / 2.268929 (3.544748) | 2.908578 / 55.444624 (-52.536046) | 2.548459 / 6.876477 (-4.328017) | 2.581211 / 2.142072 (0.439139) | 0.807925 / 4.805227 (-3.997302) | 0.153516 / 6.500664 (-6.347148) | 0.068763 / 0.075469 (-0.006706) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249595 / 1.841788 (-0.592193) | 14.208573 / 8.074308 (6.134265) | 14.179174 / 10.191392 (3.987781) | 0.156005 / 0.680424 (-0.524419) | 0.017045 / 0.534201 (-0.517156) | 0.377414 / 0.579283 (-0.201869) | 0.395291 / 0.434364 (-0.039073) | 0.444642 / 0.540337 (-0.095695) | 0.531626 / 1.386936 (-0.855311) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#52888645daa6854928474df6308bd997c8878ced \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008871 / 0.011353 (-0.002482) | 0.004616 / 0.011008 (-0.006392) | 0.100910 / 0.038508 (0.062402) | 0.030381 / 0.023109 (0.007272) | 0.304636 / 0.275898 (0.028737) | 0.384258 / 0.323480 (0.060778) | 0.007019 / 0.007986 (-0.000966) | 0.004262 / 0.004328 (-0.000066) | 0.077082 / 0.004250 (0.072832) | 0.035235 / 0.037052 (-0.001817) | 0.318293 / 0.258489 (0.059804) | 0.356578 / 0.293841 (0.062737) | 0.033568 / 0.128546 (-0.094978) | 0.011583 / 0.075646 (-0.064063) | 0.322442 / 0.419271 (-0.096830) | 0.041941 / 0.043533 (-0.001592) | 0.310469 / 0.255139 (0.055330) | 0.335626 / 0.283200 (0.052427) | 0.088195 / 0.141683 (-0.053487) | 1.466778 / 1.452155 (0.014623) | 1.512459 / 1.492716 (0.019743) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184126 / 0.018006 (0.166120) | 0.413392 / 0.000490 (0.412902) | 0.002191 / 0.000200 (0.001992) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023426 / 0.037411 (-0.013985) | 0.096240 / 0.014526 (0.081715) | 0.105908 / 0.176557 (-0.070648) | 0.146331 / 0.737135 (-0.590804) | 0.107441 / 0.296338 (-0.188898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420018 / 0.215209 (0.204809) | 4.198129 / 2.077655 (2.120474) | 1.998726 / 1.504120 (0.494606) | 1.870410 / 1.541195 (0.329215) | 1.925160 / 1.468490 (0.456670) | 0.688790 / 4.584777 (-3.895987) | 3.430629 / 3.745712 (-0.315083) | 2.875616 / 5.269862 (-2.394246) | 1.566269 / 4.565676 (-2.999408) | 0.082431 / 0.424275 (-0.341844) | 0.012409 / 0.007607 (0.004802) | 0.536178 / 0.226044 (0.310134) | 5.342918 / 2.268929 (3.073989) | 2.410814 / 55.444624 (-53.033811) | 2.056518 / 6.876477 (-4.819958) | 2.240148 / 2.142072 (0.098075) | 0.804848 / 4.805227 (-4.000379) | 0.147325 / 6.500664 (-6.353340) | 0.064217 / 0.075469 (-0.011252) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285725 / 1.841788 (-0.556063) | 13.909739 / 8.074308 (5.835431) | 14.025774 / 10.191392 (3.834382) | 0.142413 / 0.680424 (-0.538011) | 0.028390 / 0.534201 (-0.505811) | 0.402345 / 0.579283 (-0.176939) | 0.404341 / 0.434364 (-0.030023) | 0.463055 / 0.540337 (-0.077282) | 0.556811 / 1.386936 (-0.830125) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006557 / 0.011353 (-0.004795) | 0.004668 / 0.011008 (-0.006340) | 0.098839 / 0.038508 (0.060331) | 0.027618 / 0.023109 (0.004508) | 0.409338 / 0.275898 (0.133440) | 0.444048 / 0.323480 (0.120568) | 0.004881 / 0.007986 (-0.003105) | 0.003434 / 0.004328 (-0.000895) | 0.076497 / 0.004250 (0.072247) | 0.038932 / 0.037052 (0.001880) | 0.411419 / 0.258489 (0.152930) | 0.451167 / 0.293841 (0.157326) | 0.031649 / 0.128546 (-0.096897) | 0.011691 / 0.075646 (-0.063955) | 0.321586 / 0.419271 (-0.097685) | 0.041984 / 0.043533 (-0.001549) | 0.407717 / 0.255139 (0.152578) | 0.434687 / 0.283200 (0.151487) | 0.086419 / 0.141683 (-0.055264) | 1.491755 / 1.452155 (0.039601) | 1.569081 / 1.492716 (0.076364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231746 / 0.018006 (0.213739) | 0.412271 / 0.000490 (0.411781) | 0.000403 / 0.000200 (0.000203) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024264 / 0.037411 (-0.013147) | 0.100478 / 0.014526 (0.085952) | 0.107065 / 0.176557 (-0.069491) | 0.140724 / 0.737135 (-0.596412) | 0.110631 / 0.296338 (-0.185707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472476 / 0.215209 (0.257267) | 4.738919 / 2.077655 (2.661265) | 2.438049 / 1.504120 (0.933929) | 2.237855 / 1.541195 (0.696660) | 2.282885 / 1.468490 (0.814395) | 0.690420 / 4.584777 (-3.894357) | 3.426487 / 3.745712 (-0.319225) | 1.842443 / 5.269862 (-3.427418) | 1.154466 / 4.565676 (-3.411210) | 0.082166 / 0.424275 (-0.342109) | 0.012309 / 0.007607 (0.004701) | 0.574730 / 0.226044 (0.348686) | 5.737566 / 2.268929 (3.468638) | 2.882405 / 55.444624 (-52.562220) | 2.540276 / 6.876477 (-4.336201) | 2.552356 / 2.142072 (0.410283) | 0.796413 / 4.805227 (-4.008815) | 0.152705 / 6.500664 (-6.347959) | 0.068273 / 0.075469 (-0.007196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244423 / 1.841788 (-0.597365) | 13.827750 / 8.074308 (5.753442) | 14.074083 / 10.191392 (3.882691) | 0.140291 / 0.680424 (-0.540133) | 0.017337 / 0.534201 (-0.516864) | 0.389314 / 0.579283 (-0.189969) | 0.390914 / 0.434364 (-0.043450) | 0.450333 / 0.540337 (-0.090004) | 0.543860 / 1.386936 (-0.843076) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cdcddc51d3cda24c2d79ad137af9e55d0a38044 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009490 / 0.011353 (-0.001863) | 0.005211 / 0.011008 (-0.005798) | 0.100884 / 0.038508 (0.062376) | 0.035834 / 0.023109 (0.012725) | 0.293623 / 0.275898 (0.017724) | 0.378118 / 0.323480 (0.054638) | 0.008106 / 0.007986 (0.000120) | 0.005339 / 0.004328 (0.001010) | 0.076311 / 0.004250 (0.072061) | 0.045954 / 0.037052 (0.008902) | 0.308163 / 0.258489 (0.049674) | 0.353470 / 0.293841 (0.059629) | 0.038539 / 0.128546 (-0.090008) | 0.012174 / 0.075646 (-0.063472) | 0.334875 / 0.419271 (-0.084396) | 0.048602 / 0.043533 (0.005069) | 0.295803 / 0.255139 (0.040664) | 0.318894 / 0.283200 (0.035695) | 0.105487 / 0.141683 (-0.036195) | 1.433628 / 1.452155 (-0.018526) | 1.466843 / 1.492716 (-0.025873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203426 / 0.018006 (0.185419) | 0.456877 / 0.000490 (0.456387) | 0.001452 / 0.000200 (0.001252) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028308 / 0.037411 (-0.009103) | 0.108965 / 0.014526 (0.094439) | 0.119552 / 0.176557 (-0.057005) | 0.156371 / 0.737135 (-0.580765) | 0.124141 / 0.296338 (-0.172197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400183 / 0.215209 (0.184973) | 3.990983 / 2.077655 (1.913329) | 1.806729 / 1.504120 (0.302609) | 1.611944 / 1.541195 (0.070750) | 1.740019 / 1.468490 (0.271529) | 0.699600 / 4.584777 (-3.885177) | 3.868711 / 3.745712 (0.122999) | 3.249758 / 5.269862 (-2.020103) | 1.832213 / 4.565676 (-2.733463) | 0.085282 / 0.424275 (-0.338993) | 0.012726 / 0.007607 (0.005119) | 0.509385 / 0.226044 (0.283341) | 5.066913 / 2.268929 (2.797984) | 2.325710 / 55.444624 (-53.118914) | 1.962238 / 6.876477 (-4.914239) | 2.017576 / 2.142072 (-0.124496) | 0.839444 / 4.805227 (-3.965783) | 0.166936 / 6.500664 (-6.333728) | 0.064546 / 0.075469 (-0.010923) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196396 / 1.841788 (-0.645392) | 15.077063 / 8.074308 (7.002755) | 14.268103 / 10.191392 (4.076711) | 0.163782 / 0.680424 (-0.516642) | 0.028794 / 0.534201 (-0.505407) | 0.440564 / 0.579283 (-0.138719) | 0.439826 / 0.434364 (0.005463) | 0.514786 / 0.540337 (-0.025551) | 0.603353 / 1.386936 (-0.783583) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007874 / 0.011353 (-0.003479) | 0.005347 / 0.011008 (-0.005661) | 0.099461 / 0.038508 (0.060953) | 0.034010 / 0.023109 (0.010901) | 0.384650 / 0.275898 (0.108752) | 0.423827 / 0.323480 (0.100347) | 0.006201 / 0.007986 (-0.001784) | 0.004212 / 0.004328 (-0.000117) | 0.074354 / 0.004250 (0.070104) | 0.051675 / 0.037052 (0.014623) | 0.392488 / 0.258489 (0.133999) | 0.425828 / 0.293841 (0.131987) | 0.037444 / 0.128546 (-0.091103) | 0.012388 / 0.075646 (-0.063258) | 0.334482 / 0.419271 (-0.084789) | 0.050715 / 0.043533 (0.007182) | 0.378323 / 0.255139 (0.123184) | 0.395450 / 0.283200 (0.112250) | 0.108403 / 0.141683 (-0.033280) | 1.426803 / 1.452155 (-0.025352) | 1.532417 / 1.492716 (0.039701) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219989 / 0.018006 (0.201982) | 0.454101 / 0.000490 (0.453611) | 0.000407 / 0.000200 (0.000207) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030590 / 0.037411 (-0.006822) | 0.113483 / 0.014526 (0.098957) | 0.122603 / 0.176557 (-0.053954) | 0.161031 / 0.737135 (-0.576104) | 0.128039 / 0.296338 (-0.168300) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430458 / 0.215209 (0.215249) | 4.286594 / 2.077655 (2.208940) | 2.056666 / 1.504120 (0.552546) | 1.861142 / 1.541195 (0.319948) | 1.937185 / 1.468490 (0.468695) | 0.701881 / 4.584777 (-3.882896) | 3.970144 / 3.745712 (0.224432) | 2.107118 / 5.269862 (-3.162744) | 1.351561 / 4.565676 (-3.214115) | 0.085470 / 0.424275 (-0.338805) | 0.012366 / 0.007607 (0.004759) | 0.525212 / 0.226044 (0.299168) | 5.301553 / 2.268929 (3.032625) | 2.593862 / 55.444624 (-52.850763) | 2.287315 / 6.876477 (-4.589161) | 2.368249 / 2.142072 (0.226176) | 0.855656 / 4.805227 (-3.949571) | 0.167846 / 6.500664 (-6.332818) | 0.064521 / 0.075469 (-0.010948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237008 / 1.841788 (-0.604779) | 15.784303 / 8.074308 (7.709995) | 14.613081 / 10.191392 (4.421689) | 0.161012 / 0.680424 (-0.519412) | 0.017928 / 0.534201 (-0.516273) | 0.423905 / 0.579283 (-0.155378) | 0.428316 / 0.434364 (-0.006048) | 0.500226 / 0.540337 (-0.040112) | 0.606725 / 1.386936 (-0.780211) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#08473e2ee66acb7e6f82d3591bb9b03924a661ed \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008874 / 0.011353 (-0.002479) | 0.004581 / 0.011008 (-0.006428) | 0.100180 / 0.038508 (0.061672) | 0.029990 / 0.023109 (0.006880) | 0.301616 / 0.275898 (0.025718) | 0.343662 / 0.323480 (0.020183) | 0.007111 / 0.007986 (-0.000875) | 0.003428 / 0.004328 (-0.000900) | 0.078031 / 0.004250 (0.073780) | 0.037332 / 0.037052 (0.000279) | 0.301977 / 0.258489 (0.043488) | 0.345581 / 0.293841 (0.051740) | 0.034305 / 0.128546 (-0.094241) | 0.011660 / 0.075646 (-0.063986) | 0.322289 / 0.419271 (-0.096982) | 0.041488 / 0.043533 (-0.002045) | 0.301612 / 0.255139 (0.046473) | 0.328174 / 0.283200 (0.044974) | 0.085561 / 0.141683 (-0.056122) | 1.482114 / 1.452155 (0.029959) | 1.556194 / 1.492716 (0.063478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186989 / 0.018006 (0.168983) | 0.421499 / 0.000490 (0.421009) | 0.001193 / 0.000200 (0.000993) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023551 / 0.037411 (-0.013861) | 0.099868 / 0.014526 (0.085343) | 0.105233 / 0.176557 (-0.071324) | 0.141628 / 0.737135 (-0.595507) | 0.109004 / 0.296338 (-0.187335) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415189 / 0.215209 (0.199979) | 4.145716 / 2.077655 (2.068061) | 1.837917 / 1.504120 (0.333797) | 1.635043 / 1.541195 (0.093848) | 1.683299 / 1.468490 (0.214809) | 0.688538 / 4.584777 (-3.896239) | 3.412628 / 3.745712 (-0.333084) | 1.877456 / 5.269862 (-3.392405) | 1.154129 / 4.565676 (-3.411547) | 0.081850 / 0.424275 (-0.342425) | 0.012309 / 0.007607 (0.004702) | 0.522830 / 0.226044 (0.296785) | 5.238685 / 2.268929 (2.969756) | 2.277840 / 55.444624 (-53.166784) | 1.941787 / 6.876477 (-4.934690) | 1.999688 / 2.142072 (-0.142385) | 0.807590 / 4.805227 (-3.997637) | 0.148157 / 6.500664 (-6.352507) | 0.064898 / 0.075469 (-0.010571) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253859 / 1.841788 (-0.587929) | 13.676097 / 8.074308 (5.601789) | 14.237837 / 10.191392 (4.046444) | 0.137178 / 0.680424 (-0.543246) | 0.028971 / 0.534201 (-0.505230) | 0.400380 / 0.579283 (-0.178903) | 0.409990 / 0.434364 (-0.024374) | 0.462552 / 0.540337 (-0.077786) | 0.552153 / 1.386936 (-0.834783) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006831 / 0.011353 (-0.004522) | 0.004627 / 0.011008 (-0.006381) | 0.099883 / 0.038508 (0.061375) | 0.028072 / 0.023109 (0.004962) | 0.343556 / 0.275898 (0.067658) | 0.386792 / 0.323480 (0.063312) | 0.005080 / 0.007986 (-0.002906) | 0.003508 / 0.004328 (-0.000820) | 0.077803 / 0.004250 (0.073552) | 0.040038 / 0.037052 (0.002985) | 0.345089 / 0.258489 (0.086600) | 0.396078 / 0.293841 (0.102238) | 0.032241 / 0.128546 (-0.096305) | 0.011711 / 0.075646 (-0.063935) | 0.320531 / 0.419271 (-0.098740) | 0.043658 / 0.043533 (0.000125) | 0.344696 / 0.255139 (0.089557) | 0.389847 / 0.283200 (0.106648) | 0.092328 / 0.141683 (-0.049355) | 1.477290 / 1.452155 (0.025136) | 1.548698 / 1.492716 (0.055982) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236073 / 0.018006 (0.218067) | 0.422113 / 0.000490 (0.421624) | 0.000431 / 0.000200 (0.000231) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024738 / 0.037411 (-0.012673) | 0.100546 / 0.014526 (0.086020) | 0.107550 / 0.176557 (-0.069006) | 0.146056 / 0.737135 (-0.591079) | 0.112665 / 0.296338 (-0.183674) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.490259 / 0.215209 (0.275050) | 4.907994 / 2.077655 (2.830339) | 2.547175 / 1.504120 (1.043055) | 2.344419 / 1.541195 (0.803224) | 2.403985 / 1.468490 (0.935495) | 0.696011 / 4.584777 (-3.888766) | 3.442426 / 3.745712 (-0.303286) | 1.878702 / 5.269862 (-3.391159) | 1.158280 / 4.565676 (-3.407396) | 0.082300 / 0.424275 (-0.341975) | 0.012513 / 0.007607 (0.004906) | 0.602696 / 0.226044 (0.376651) | 6.014592 / 2.268929 (3.745663) | 3.014466 / 55.444624 (-52.430159) | 2.669376 / 6.876477 (-4.207101) | 2.724485 / 2.142072 (0.582412) | 0.799795 / 4.805227 (-4.005432) | 0.151220 / 6.500664 (-6.349444) | 0.067486 / 0.075469 (-0.007983) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281265 / 1.841788 (-0.560523) | 14.362284 / 8.074308 (6.287976) | 14.313690 / 10.191392 (4.122298) | 0.142870 / 0.680424 (-0.537554) | 0.017206 / 0.534201 (-0.516995) | 0.380084 / 0.579283 (-0.199199) | 0.388161 / 0.434364 (-0.046203) | 0.442617 / 0.540337 (-0.097721) | 0.528487 / 1.386936 (-0.858449) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#452b7f8ae78967dc662f5436e751233d46c62e78 \"CML watermark\")\n",
"@lhoestq @amyeroberts @gante I did a substantial rewrite and all tests are passing now (Windows seems to time out or something and I can't figure out why - not sure if that's related to this PR!). I also confirmed tests are passing locally with Py==3.10. \r\n\r\nAside from incorporating everyone's comments, I also made a context manager to create and handle shared memory - this ensures that shared memory is cleaned up even if execution is interrupted. Also, shared memory names include a UUID string now to avoid collisions. Finally, string arrays are now split up into fixed-width character arrays in the workers so that they can be passed through shared memory, and the parent process reconstructs them into string arrays.",
"Update: `test_arrow_dataset.py` ran fine in this branch on my Windows machine (Py 3.10), so I have no idea what's up with those tests",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008852 / 0.011353 (-0.002500) | 0.004545 / 0.011008 (-0.006464) | 0.099814 / 0.038508 (0.061306) | 0.030314 / 0.023109 (0.007205) | 0.310426 / 0.275898 (0.034528) | 0.366893 / 0.323480 (0.043413) | 0.007183 / 0.007986 (-0.000802) | 0.003476 / 0.004328 (-0.000853) | 0.077566 / 0.004250 (0.073315) | 0.038269 / 0.037052 (0.001217) | 0.319133 / 0.258489 (0.060644) | 0.352399 / 0.293841 (0.058558) | 0.033847 / 0.128546 (-0.094700) | 0.011568 / 0.075646 (-0.064078) | 0.321355 / 0.419271 (-0.097917) | 0.040719 / 0.043533 (-0.002814) | 0.304812 / 0.255139 (0.049673) | 0.329512 / 0.283200 (0.046312) | 0.088045 / 0.141683 (-0.053638) | 1.514182 / 1.452155 (0.062027) | 1.529459 / 1.492716 (0.036742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216749 / 0.018006 (0.198743) | 0.409909 / 0.000490 (0.409419) | 0.002790 / 0.000200 (0.002590) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023390 / 0.037411 (-0.014021) | 0.095955 / 0.014526 (0.081430) | 0.104749 / 0.176557 (-0.071807) | 0.143414 / 0.737135 (-0.593721) | 0.109011 / 0.296338 (-0.187328) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420410 / 0.215209 (0.205201) | 4.185745 / 2.077655 (2.108090) | 1.910207 / 1.504120 (0.406087) | 1.679330 / 1.541195 (0.138135) | 1.727134 / 1.468490 (0.258644) | 0.692379 / 4.584777 (-3.892398) | 3.358731 / 3.745712 (-0.386982) | 2.914657 / 5.269862 (-2.355205) | 1.506083 / 4.565676 (-3.059594) | 0.081922 / 0.424275 (-0.342353) | 0.012691 / 0.007607 (0.005084) | 0.530942 / 0.226044 (0.304897) | 5.357642 / 2.268929 (3.088714) | 2.387347 / 55.444624 (-53.057277) | 2.030001 / 6.876477 (-4.846476) | 2.026405 / 2.142072 (-0.115667) | 0.809406 / 4.805227 (-3.995821) | 0.149003 / 6.500664 (-6.351661) | 0.066910 / 0.075469 (-0.008559) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278160 / 1.841788 (-0.563627) | 13.632742 / 8.074308 (5.558434) | 13.995537 / 10.191392 (3.804145) | 0.136507 / 0.680424 (-0.543917) | 0.028817 / 0.534201 (-0.505384) | 0.394842 / 0.579283 (-0.184441) | 0.399526 / 0.434364 (-0.034838) | 0.459174 / 0.540337 (-0.081163) | 0.536877 / 1.386936 (-0.850059) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006814 / 0.011353 (-0.004539) | 0.004456 / 0.011008 (-0.006552) | 0.098386 / 0.038508 (0.059878) | 0.028124 / 0.023109 (0.005015) | 0.409004 / 0.275898 (0.133106) | 0.446746 / 0.323480 (0.123266) | 0.005108 / 0.007986 (-0.002877) | 0.004807 / 0.004328 (0.000479) | 0.075751 / 0.004250 (0.071500) | 0.039297 / 0.037052 (0.002244) | 0.413198 / 0.258489 (0.154709) | 0.452124 / 0.293841 (0.158283) | 0.032534 / 0.128546 (-0.096012) | 0.011689 / 0.075646 (-0.063957) | 0.325465 / 0.419271 (-0.093806) | 0.041347 / 0.043533 (-0.002185) | 0.411489 / 0.255139 (0.156350) | 0.447120 / 0.283200 (0.163920) | 0.093058 / 0.141683 (-0.048625) | 1.489903 / 1.452155 (0.037748) | 1.580771 / 1.492716 (0.088055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192619 / 0.018006 (0.174613) | 0.399201 / 0.000490 (0.398711) | 0.002894 / 0.000200 (0.002694) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025120 / 0.037411 (-0.012292) | 0.100126 / 0.014526 (0.085600) | 0.108669 / 0.176557 (-0.067887) | 0.148687 / 0.737135 (-0.588448) | 0.112286 / 0.296338 (-0.184052) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438866 / 0.215209 (0.223657) | 4.382418 / 2.077655 (2.304764) | 2.106450 / 1.504120 (0.602330) | 1.885105 / 1.541195 (0.343910) | 1.922948 / 1.468490 (0.454458) | 0.693145 / 4.584777 (-3.891632) | 3.378206 / 3.745712 (-0.367506) | 1.867295 / 5.269862 (-3.402566) | 1.164999 / 4.565676 (-3.400678) | 0.081918 / 0.424275 (-0.342357) | 0.012225 / 0.007607 (0.004618) | 0.547114 / 0.226044 (0.321069) | 5.454208 / 2.268929 (3.185279) | 2.532112 / 55.444624 (-52.912512) | 2.192573 / 6.876477 (-4.683904) | 2.225364 / 2.142072 (0.083291) | 0.797165 / 4.805227 (-4.008062) | 0.151185 / 6.500664 (-6.349480) | 0.067512 / 0.075469 (-0.007957) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303905 / 1.841788 (-0.537883) | 14.107678 / 8.074308 (6.033370) | 14.147630 / 10.191392 (3.956238) | 0.156597 / 0.680424 (-0.523827) | 0.017037 / 0.534201 (-0.517164) | 0.383202 / 0.579283 (-0.196081) | 0.385340 / 0.434364 (-0.049024) | 0.443338 / 0.540337 (-0.097000) | 0.542345 / 1.386936 (-0.844591) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#38228533a03767aab713a3806aac0e8503668c68 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009982 / 0.011353 (-0.001371) | 0.005327 / 0.011008 (-0.005681) | 0.099092 / 0.038508 (0.060584) | 0.035824 / 0.023109 (0.012715) | 0.303258 / 0.275898 (0.027360) | 0.335379 / 0.323480 (0.011899) | 0.008192 / 0.007986 (0.000207) | 0.004242 / 0.004328 (-0.000087) | 0.076277 / 0.004250 (0.072026) | 0.043851 / 0.037052 (0.006799) | 0.307750 / 0.258489 (0.049261) | 0.348459 / 0.293841 (0.054618) | 0.038943 / 0.128546 (-0.089604) | 0.012128 / 0.075646 (-0.063519) | 0.334143 / 0.419271 (-0.085128) | 0.047865 / 0.043533 (0.004332) | 0.300909 / 0.255139 (0.045770) | 0.320879 / 0.283200 (0.037680) | 0.103812 / 0.141683 (-0.037871) | 1.468646 / 1.452155 (0.016491) | 1.557660 / 1.492716 (0.064944) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244108 / 0.018006 (0.226102) | 0.554895 / 0.000490 (0.554405) | 0.005311 / 0.000200 (0.005111) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028771 / 0.037411 (-0.008640) | 0.108133 / 0.014526 (0.093608) | 0.120098 / 0.176557 (-0.056458) | 0.159815 / 0.737135 (-0.577320) | 0.125437 / 0.296338 (-0.170901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397675 / 0.215209 (0.182466) | 3.975839 / 2.077655 (1.898184) | 1.797803 / 1.504120 (0.293683) | 1.612517 / 1.541195 (0.071322) | 1.659086 / 1.468490 (0.190596) | 0.679822 / 4.584777 (-3.904955) | 3.688321 / 3.745712 (-0.057391) | 2.155285 / 5.269862 (-3.114576) | 1.466453 / 4.565676 (-3.099223) | 0.084102 / 0.424275 (-0.340173) | 0.012074 / 0.007607 (0.004467) | 0.503744 / 0.226044 (0.277699) | 5.075599 / 2.268929 (2.806670) | 2.312149 / 55.444624 (-53.132476) | 1.975028 / 6.876477 (-4.901449) | 2.069554 / 2.142072 (-0.072519) | 0.828329 / 4.805227 (-3.976898) | 0.162816 / 6.500664 (-6.337849) | 0.063813 / 0.075469 (-0.011656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.173327 / 1.841788 (-0.668461) | 15.281584 / 8.074308 (7.207276) | 14.450851 / 10.191392 (4.259459) | 0.165621 / 0.680424 (-0.514802) | 0.028779 / 0.534201 (-0.505422) | 0.438483 / 0.579283 (-0.140800) | 0.438477 / 0.434364 (0.004113) | 0.517703 / 0.540337 (-0.022634) | 0.615119 / 1.386936 (-0.771817) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007013 / 0.011353 (-0.004340) | 0.005272 / 0.011008 (-0.005736) | 0.097203 / 0.038508 (0.058695) | 0.033103 / 0.023109 (0.009994) | 0.380203 / 0.275898 (0.104305) | 0.414868 / 0.323480 (0.091388) | 0.006326 / 0.007986 (-0.001659) | 0.005433 / 0.004328 (0.001104) | 0.074299 / 0.004250 (0.070049) | 0.049418 / 0.037052 (0.012366) | 0.388771 / 0.258489 (0.130282) | 0.435169 / 0.293841 (0.141328) | 0.036170 / 0.128546 (-0.092377) | 0.012452 / 0.075646 (-0.063195) | 0.331215 / 0.419271 (-0.088056) | 0.048577 / 0.043533 (0.005044) | 0.381491 / 0.255139 (0.126352) | 0.396731 / 0.283200 (0.113531) | 0.106435 / 0.141683 (-0.035248) | 1.446437 / 1.452155 (-0.005718) | 1.542337 / 1.492716 (0.049621) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216714 / 0.018006 (0.198707) | 0.562460 / 0.000490 (0.561970) | 0.003636 / 0.000200 (0.003436) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028726 / 0.037411 (-0.008686) | 0.111993 / 0.014526 (0.097467) | 0.125325 / 0.176557 (-0.051232) | 0.157779 / 0.737135 (-0.579356) | 0.130633 / 0.296338 (-0.165705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440520 / 0.215209 (0.225311) | 4.396283 / 2.077655 (2.318628) | 2.204714 / 1.504120 (0.700594) | 2.011667 / 1.541195 (0.470473) | 2.050518 / 1.468490 (0.582028) | 0.695204 / 4.584777 (-3.889573) | 3.779699 / 3.745712 (0.033987) | 2.096064 / 5.269862 (-3.173798) | 1.325446 / 4.565676 (-3.240230) | 0.085315 / 0.424275 (-0.338960) | 0.012178 / 0.007607 (0.004570) | 0.550478 / 0.226044 (0.324434) | 5.471872 / 2.268929 (3.202943) | 2.687147 / 55.444624 (-52.757478) | 2.348465 / 6.876477 (-4.528011) | 2.409700 / 2.142072 (0.267628) | 0.839468 / 4.805227 (-3.965760) | 0.167030 / 6.500664 (-6.333635) | 0.063243 / 0.075469 (-0.012226) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257347 / 1.841788 (-0.584441) | 15.157821 / 8.074308 (7.083512) | 14.646381 / 10.191392 (4.454989) | 0.185550 / 0.680424 (-0.494874) | 0.018441 / 0.534201 (-0.515760) | 0.423330 / 0.579283 (-0.155954) | 0.426204 / 0.434364 (-0.008160) | 0.498985 / 0.540337 (-0.041352) | 0.608432 / 1.386936 (-0.778504) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0f96e349ec5665e1e4135b5a108ba5db227bd3b1 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010856 / 0.011353 (-0.000497) | 0.005897 / 0.011008 (-0.005111) | 0.117826 / 0.038508 (0.079317) | 0.041899 / 0.023109 (0.018790) | 0.353804 / 0.275898 (0.077906) | 0.431021 / 0.323480 (0.107541) | 0.009288 / 0.007986 (0.001303) | 0.004556 / 0.004328 (0.000227) | 0.089344 / 0.004250 (0.085094) | 0.052224 / 0.037052 (0.015172) | 0.373242 / 0.258489 (0.114753) | 0.420667 / 0.293841 (0.126826) | 0.044191 / 0.128546 (-0.084355) | 0.014083 / 0.075646 (-0.061564) | 0.400373 / 0.419271 (-0.018898) | 0.056119 / 0.043533 (0.012586) | 0.363302 / 0.255139 (0.108163) | 0.382073 / 0.283200 (0.098873) | 0.118646 / 0.141683 (-0.023037) | 1.696576 / 1.452155 (0.244422) | 1.756518 / 1.492716 (0.263802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216388 / 0.018006 (0.198382) | 0.485732 / 0.000490 (0.485242) | 0.004012 / 0.000200 (0.003812) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032095 / 0.037411 (-0.005316) | 0.128954 / 0.014526 (0.114429) | 0.137564 / 0.176557 (-0.038993) | 0.184315 / 0.737135 (-0.552820) | 0.144707 / 0.296338 (-0.151631) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472792 / 0.215209 (0.257583) | 4.723044 / 2.077655 (2.645390) | 2.115075 / 1.504120 (0.610955) | 1.898993 / 1.541195 (0.357798) | 1.972894 / 1.468490 (0.504404) | 0.807210 / 4.584777 (-3.777567) | 4.493139 / 3.745712 (0.747427) | 2.501053 / 5.269862 (-2.768808) | 1.686121 / 4.565676 (-2.879556) | 0.099545 / 0.424275 (-0.324730) | 0.014360 / 0.007607 (0.006753) | 0.596235 / 0.226044 (0.370191) | 5.944285 / 2.268929 (3.675357) | 2.654944 / 55.444624 (-52.789681) | 2.281451 / 6.876477 (-4.595026) | 2.448407 / 2.142072 (0.306334) | 1.000512 / 4.805227 (-3.804716) | 0.196413 / 6.500664 (-6.304251) | 0.075810 / 0.075469 (0.000341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.435707 / 1.841788 (-0.406081) | 17.931070 / 8.074308 (9.856762) | 16.635522 / 10.191392 (6.444130) | 0.189119 / 0.680424 (-0.491304) | 0.034392 / 0.534201 (-0.499809) | 0.519041 / 0.579283 (-0.060242) | 0.516159 / 0.434364 (0.081795) | 0.601180 / 0.540337 (0.060843) | 0.713180 / 1.386936 (-0.673756) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008741 / 0.011353 (-0.002612) | 0.006102 / 0.011008 (-0.004906) | 0.114787 / 0.038508 (0.076279) | 0.039610 / 0.023109 (0.016501) | 0.451730 / 0.275898 (0.175832) | 0.488820 / 0.323480 (0.165340) | 0.006979 / 0.007986 (-0.001006) | 0.006458 / 0.004328 (0.002130) | 0.086505 / 0.004250 (0.082254) | 0.057684 / 0.037052 (0.020632) | 0.451354 / 0.258489 (0.192865) | 0.523143 / 0.293841 (0.229302) | 0.043224 / 0.128546 (-0.085323) | 0.014671 / 0.075646 (-0.060975) | 0.398030 / 0.419271 (-0.021241) | 0.063650 / 0.043533 (0.020117) | 0.448324 / 0.255139 (0.193185) | 0.476560 / 0.283200 (0.193361) | 0.125772 / 0.141683 (-0.015911) | 1.801051 / 1.452155 (0.348896) | 1.872736 / 1.492716 (0.380020) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256146 / 0.018006 (0.238139) | 0.486915 / 0.000490 (0.486425) | 0.000513 / 0.000200 (0.000313) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035242 / 0.037411 (-0.002170) | 0.134322 / 0.014526 (0.119797) | 0.144786 / 0.176557 (-0.031770) | 0.188786 / 0.737135 (-0.548349) | 0.151737 / 0.296338 (-0.144602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506047 / 0.215209 (0.290838) | 5.028253 / 2.077655 (2.950598) | 2.393070 / 1.504120 (0.888950) | 2.157847 / 1.541195 (0.616652) | 2.229412 / 1.468490 (0.760922) | 0.828973 / 4.584777 (-3.755804) | 4.741470 / 3.745712 (0.995758) | 4.048118 / 5.269862 (-1.221744) | 2.573818 / 4.565676 (-1.991859) | 0.101019 / 0.424275 (-0.323256) | 0.014640 / 0.007607 (0.007033) | 0.632591 / 0.226044 (0.406546) | 6.289153 / 2.268929 (4.020224) | 2.977261 / 55.444624 (-52.467363) | 2.554396 / 6.876477 (-4.322081) | 2.619446 / 2.142072 (0.477374) | 0.988376 / 4.805227 (-3.816851) | 0.196895 / 6.500664 (-6.303769) | 0.076355 / 0.075469 (0.000886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.493570 / 1.841788 (-0.348218) | 18.422758 / 8.074308 (10.348449) | 17.007352 / 10.191392 (6.815960) | 0.191903 / 0.680424 (-0.488521) | 0.020974 / 0.534201 (-0.513227) | 0.500573 / 0.579283 (-0.078710) | 0.489381 / 0.434364 (0.055017) | 0.580765 / 0.540337 (0.040428) | 0.698907 / 1.386936 (-0.688029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa9baa268a6d285ab0a61cc37413392c94cfe2e8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008979 / 0.011353 (-0.002374) | 0.004497 / 0.011008 (-0.006511) | 0.102227 / 0.038508 (0.063719) | 0.031302 / 0.023109 (0.008193) | 0.298488 / 0.275898 (0.022590) | 0.372589 / 0.323480 (0.049109) | 0.007261 / 0.007986 (-0.000725) | 0.003542 / 0.004328 (-0.000786) | 0.078503 / 0.004250 (0.074253) | 0.039474 / 0.037052 (0.002422) | 0.310991 / 0.258489 (0.052502) | 0.353245 / 0.293841 (0.059404) | 0.033798 / 0.128546 (-0.094749) | 0.011634 / 0.075646 (-0.064012) | 0.321141 / 0.419271 (-0.098131) | 0.041264 / 0.043533 (-0.002268) | 0.300900 / 0.255139 (0.045761) | 0.326255 / 0.283200 (0.043055) | 0.092477 / 0.141683 (-0.049205) | 1.478921 / 1.452155 (0.026766) | 1.514915 / 1.492716 (0.022198) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184415 / 0.018006 (0.166408) | 0.428986 / 0.000490 (0.428497) | 0.002590 / 0.000200 (0.002390) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023730 / 0.037411 (-0.013681) | 0.099846 / 0.014526 (0.085320) | 0.107075 / 0.176557 (-0.069482) | 0.147475 / 0.737135 (-0.589661) | 0.111802 / 0.296338 (-0.184537) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413704 / 0.215209 (0.198494) | 4.144498 / 2.077655 (2.066843) | 1.855900 / 1.504120 (0.351780) | 1.647958 / 1.541195 (0.106763) | 1.712437 / 1.468490 (0.243947) | 0.688382 / 4.584777 (-3.896395) | 3.432136 / 3.745712 (-0.313576) | 2.837211 / 5.269862 (-2.432651) | 1.519004 / 4.565676 (-3.046672) | 0.082429 / 0.424275 (-0.341846) | 0.012610 / 0.007607 (0.005003) | 0.525078 / 0.226044 (0.299034) | 5.272932 / 2.268929 (3.004003) | 2.340482 / 55.444624 (-53.104143) | 2.007372 / 6.876477 (-4.869104) | 2.060567 / 2.142072 (-0.081506) | 0.806476 / 4.805227 (-3.998752) | 0.149421 / 6.500664 (-6.351243) | 0.066252 / 0.075469 (-0.009218) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235078 / 1.841788 (-0.606710) | 13.870758 / 8.074308 (5.796450) | 14.104582 / 10.191392 (3.913190) | 0.159375 / 0.680424 (-0.521049) | 0.029233 / 0.534201 (-0.504968) | 0.392184 / 0.579283 (-0.187099) | 0.407909 / 0.434364 (-0.026455) | 0.458757 / 0.540337 (-0.081581) | 0.547681 / 1.386936 (-0.839255) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007194 / 0.011353 (-0.004159) | 0.004578 / 0.011008 (-0.006431) | 0.098936 / 0.038508 (0.060428) | 0.029639 / 0.023109 (0.006530) | 0.347241 / 0.275898 (0.071343) | 0.378838 / 0.323480 (0.055358) | 0.005632 / 0.007986 (-0.002353) | 0.003469 / 0.004328 (-0.000860) | 0.075536 / 0.004250 (0.071285) | 0.043301 / 0.037052 (0.006249) | 0.348091 / 0.258489 (0.089602) | 0.388595 / 0.293841 (0.094754) | 0.033512 / 0.128546 (-0.095034) | 0.011754 / 0.075646 (-0.063892) | 0.321003 / 0.419271 (-0.098268) | 0.044634 / 0.043533 (0.001101) | 0.346688 / 0.255139 (0.091549) | 0.366346 / 0.283200 (0.083147) | 0.093650 / 0.141683 (-0.048033) | 1.509913 / 1.452155 (0.057759) | 1.596414 / 1.492716 (0.103698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230466 / 0.018006 (0.212459) | 0.417106 / 0.000490 (0.416617) | 0.000959 / 0.000200 (0.000759) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025581 / 0.037411 (-0.011830) | 0.105246 / 0.014526 (0.090720) | 0.108997 / 0.176557 (-0.067560) | 0.144342 / 0.737135 (-0.592794) | 0.113911 / 0.296338 (-0.182427) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479608 / 0.215209 (0.264399) | 4.766081 / 2.077655 (2.688426) | 2.446597 / 1.504120 (0.942477) | 2.228278 / 1.541195 (0.687083) | 2.289943 / 1.468490 (0.821453) | 0.703146 / 4.584777 (-3.881631) | 3.414150 / 3.745712 (-0.331562) | 2.957730 / 5.269862 (-2.312132) | 1.531524 / 4.565676 (-3.034152) | 0.083449 / 0.424275 (-0.340826) | 0.012684 / 0.007607 (0.005077) | 0.587622 / 0.226044 (0.361578) | 5.888791 / 2.268929 (3.619863) | 2.884200 / 55.444624 (-52.560424) | 2.543739 / 6.876477 (-4.332737) | 2.596245 / 2.142072 (0.454173) | 0.813070 / 4.805227 (-3.992157) | 0.152706 / 6.500664 (-6.347958) | 0.069257 / 0.075469 (-0.006212) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.302945 / 1.841788 (-0.538842) | 14.484051 / 8.074308 (6.409743) | 14.216143 / 10.191392 (4.024751) | 0.154537 / 0.680424 (-0.525886) | 0.016909 / 0.534201 (-0.517292) | 0.389433 / 0.579283 (-0.189850) | 0.393280 / 0.434364 (-0.041084) | 0.446884 / 0.540337 (-0.093453) | 0.534394 / 1.386936 (-0.852542) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2bcdeb952c57c5f22643061d49d16014a7b6426a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008822 / 0.011353 (-0.002530) | 0.004826 / 0.011008 (-0.006182) | 0.102710 / 0.038508 (0.064202) | 0.030353 / 0.023109 (0.007244) | 0.297224 / 0.275898 (0.021326) | 0.371861 / 0.323480 (0.048381) | 0.007266 / 0.007986 (-0.000720) | 0.003632 / 0.004328 (-0.000696) | 0.079960 / 0.004250 (0.075710) | 0.036908 / 0.037052 (-0.000144) | 0.309582 / 0.258489 (0.051093) | 0.350108 / 0.293841 (0.056267) | 0.034280 / 0.128546 (-0.094266) | 0.011739 / 0.075646 (-0.063907) | 0.323217 / 0.419271 (-0.096054) | 0.043491 / 0.043533 (-0.000042) | 0.298454 / 0.255139 (0.043315) | 0.326735 / 0.283200 (0.043535) | 0.093955 / 0.141683 (-0.047728) | 1.494313 / 1.452155 (0.042159) | 1.562104 / 1.492716 (0.069388) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.182796 / 0.018006 (0.164790) | 0.420133 / 0.000490 (0.419643) | 0.002537 / 0.000200 (0.002337) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023143 / 0.037411 (-0.014269) | 0.098560 / 0.014526 (0.084034) | 0.105060 / 0.176557 (-0.071496) | 0.140269 / 0.737135 (-0.596866) | 0.109120 / 0.296338 (-0.187219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419907 / 0.215209 (0.204698) | 4.196179 / 2.077655 (2.118524) | 1.887663 / 1.504120 (0.383543) | 1.686232 / 1.541195 (0.145037) | 1.741741 / 1.468490 (0.273251) | 0.696222 / 4.584777 (-3.888555) | 3.400250 / 3.745712 (-0.345462) | 1.875058 / 5.269862 (-3.394803) | 1.159466 / 4.565676 (-3.406211) | 0.082520 / 0.424275 (-0.341755) | 0.012408 / 0.007607 (0.004801) | 0.525212 / 0.226044 (0.299168) | 5.283691 / 2.268929 (3.014762) | 2.314487 / 55.444624 (-53.130138) | 1.966212 / 6.876477 (-4.910265) | 2.023458 / 2.142072 (-0.118615) | 0.808896 / 4.805227 (-3.996331) | 0.148973 / 6.500664 (-6.351691) | 0.065378 / 0.075469 (-0.010091) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223833 / 1.841788 (-0.617955) | 14.053651 / 8.074308 (5.979343) | 14.072165 / 10.191392 (3.880773) | 0.156006 / 0.680424 (-0.524418) | 0.028665 / 0.534201 (-0.505536) | 0.392099 / 0.579283 (-0.187184) | 0.401460 / 0.434364 (-0.032904) | 0.462184 / 0.540337 (-0.078153) | 0.540459 / 1.386936 (-0.846477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006907 / 0.011353 (-0.004446) | 0.004585 / 0.011008 (-0.006423) | 0.099027 / 0.038508 (0.060519) | 0.028317 / 0.023109 (0.005208) | 0.421068 / 0.275898 (0.145170) | 0.450712 / 0.323480 (0.127233) | 0.005229 / 0.007986 (-0.002756) | 0.004873 / 0.004328 (0.000545) | 0.077374 / 0.004250 (0.073124) | 0.042530 / 0.037052 (0.005477) | 0.417392 / 0.258489 (0.158903) | 0.462605 / 0.293841 (0.168764) | 0.032195 / 0.128546 (-0.096351) | 0.011777 / 0.075646 (-0.063870) | 0.321927 / 0.419271 (-0.097344) | 0.041999 / 0.043533 (-0.001533) | 0.419402 / 0.255139 (0.164263) | 0.437179 / 0.283200 (0.153979) | 0.089549 / 0.141683 (-0.052134) | 1.469525 / 1.452155 (0.017370) | 1.586407 / 1.492716 (0.093691) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209533 / 0.018006 (0.191526) | 0.413886 / 0.000490 (0.413396) | 0.003357 / 0.000200 (0.003157) | 0.000121 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026133 / 0.037411 (-0.011278) | 0.103128 / 0.014526 (0.088602) | 0.110604 / 0.176557 (-0.065952) | 0.153055 / 0.737135 (-0.584080) | 0.112257 / 0.296338 (-0.184081) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471281 / 0.215209 (0.256072) | 4.708361 / 2.077655 (2.630706) | 2.572681 / 1.504120 (1.068561) | 2.370536 / 1.541195 (0.829341) | 2.456010 / 1.468490 (0.987520) | 0.694173 / 4.584777 (-3.890603) | 3.434511 / 3.745712 (-0.311201) | 1.877169 / 5.269862 (-3.392693) | 1.158387 / 4.565676 (-3.407289) | 0.081849 / 0.424275 (-0.342426) | 0.012176 / 0.007607 (0.004569) | 0.581736 / 0.226044 (0.355692) | 5.803173 / 2.268929 (3.534245) | 3.040003 / 55.444624 (-52.404621) | 2.704698 / 6.876477 (-4.171779) | 2.760138 / 2.142072 (0.618065) | 0.802557 / 4.805227 (-4.002671) | 0.151397 / 6.500664 (-6.349268) | 0.068308 / 0.075469 (-0.007161) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.304062 / 1.841788 (-0.537725) | 14.364809 / 8.074308 (6.290501) | 14.192131 / 10.191392 (4.000739) | 0.150025 / 0.680424 (-0.530399) | 0.017020 / 0.534201 (-0.517181) | 0.389235 / 0.579283 (-0.190048) | 0.387557 / 0.434364 (-0.046807) | 0.454636 / 0.540337 (-0.085702) | 0.558182 / 1.386936 (-0.828754) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#663e5eddca188abbb37e2f803846f02fe4ca0d9b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008519 / 0.011353 (-0.002834) | 0.004538 / 0.011008 (-0.006470) | 0.102066 / 0.038508 (0.063558) | 0.029700 / 0.023109 (0.006591) | 0.304573 / 0.275898 (0.028675) | 0.366232 / 0.323480 (0.042752) | 0.007154 / 0.007986 (-0.000832) | 0.003497 / 0.004328 (-0.000831) | 0.079119 / 0.004250 (0.074868) | 0.036088 / 0.037052 (-0.000964) | 0.311076 / 0.258489 (0.052587) | 0.352205 / 0.293841 (0.058364) | 0.033706 / 0.128546 (-0.094840) | 0.011657 / 0.075646 (-0.063990) | 0.324024 / 0.419271 (-0.095247) | 0.040777 / 0.043533 (-0.002756) | 0.302661 / 0.255139 (0.047522) | 0.329091 / 0.283200 (0.045891) | 0.086774 / 0.141683 (-0.054909) | 1.485874 / 1.452155 (0.033720) | 1.535726 / 1.492716 (0.043009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194284 / 0.018006 (0.176277) | 0.412875 / 0.000490 (0.412385) | 0.003348 / 0.000200 (0.003148) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022432 / 0.037411 (-0.014979) | 0.095008 / 0.014526 (0.080482) | 0.103268 / 0.176557 (-0.073288) | 0.140121 / 0.737135 (-0.597014) | 0.106619 / 0.296338 (-0.189719) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414786 / 0.215209 (0.199577) | 4.146345 / 2.077655 (2.068690) | 1.873703 / 1.504120 (0.369583) | 1.673498 / 1.541195 (0.132303) | 1.716993 / 1.468490 (0.248502) | 0.692098 / 4.584777 (-3.892679) | 3.380991 / 3.745712 (-0.364721) | 1.846811 / 5.269862 (-3.423050) | 1.159617 / 4.565676 (-3.406059) | 0.081867 / 0.424275 (-0.342408) | 0.012371 / 0.007607 (0.004764) | 0.526228 / 0.226044 (0.300184) | 5.273139 / 2.268929 (3.004211) | 2.327147 / 55.444624 (-53.117477) | 1.968366 / 6.876477 (-4.908111) | 2.018053 / 2.142072 (-0.124019) | 0.816098 / 4.805227 (-3.989130) | 0.149438 / 6.500664 (-6.351226) | 0.065000 / 0.075469 (-0.010469) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244408 / 1.841788 (-0.597380) | 13.774354 / 8.074308 (5.700046) | 14.178923 / 10.191392 (3.987531) | 0.150032 / 0.680424 (-0.530392) | 0.029736 / 0.534201 (-0.504465) | 0.399134 / 0.579283 (-0.180149) | 0.404214 / 0.434364 (-0.030150) | 0.462096 / 0.540337 (-0.078242) | 0.542256 / 1.386936 (-0.844680) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006776 / 0.011353 (-0.004577) | 0.004586 / 0.011008 (-0.006422) | 0.097658 / 0.038508 (0.059150) | 0.027627 / 0.023109 (0.004517) | 0.423794 / 0.275898 (0.147896) | 0.447443 / 0.323480 (0.123963) | 0.005099 / 0.007986 (-0.002886) | 0.004846 / 0.004328 (0.000517) | 0.075135 / 0.004250 (0.070884) | 0.038068 / 0.037052 (0.001016) | 0.420999 / 0.258489 (0.162510) | 0.460368 / 0.293841 (0.166527) | 0.032107 / 0.128546 (-0.096439) | 0.011775 / 0.075646 (-0.063871) | 0.323854 / 0.419271 (-0.095418) | 0.045538 / 0.043533 (0.002005) | 0.420949 / 0.255139 (0.165810) | 0.441906 / 0.283200 (0.158706) | 0.091955 / 0.141683 (-0.049728) | 1.523736 / 1.452155 (0.071581) | 1.587865 / 1.492716 (0.095148) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263297 / 0.018006 (0.245290) | 0.416170 / 0.000490 (0.415680) | 0.023161 / 0.000200 (0.022961) | 0.000243 / 0.000054 (0.000188) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024000 / 0.037411 (-0.013412) | 0.097787 / 0.014526 (0.083262) | 0.106884 / 0.176557 (-0.069672) | 0.140861 / 0.737135 (-0.596274) | 0.108228 / 0.296338 (-0.188111) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477222 / 0.215209 (0.262013) | 4.774729 / 2.077655 (2.697074) | 2.451575 / 1.504120 (0.947455) | 2.251255 / 1.541195 (0.710060) | 2.281154 / 1.468490 (0.812664) | 0.699394 / 4.584777 (-3.885383) | 3.421575 / 3.745712 (-0.324137) | 2.704713 / 5.269862 (-2.565148) | 1.508464 / 4.565676 (-3.057212) | 0.082199 / 0.424275 (-0.342076) | 0.012586 / 0.007607 (0.004979) | 0.588783 / 0.226044 (0.362739) | 5.878434 / 2.268929 (3.609505) | 2.927422 / 55.444624 (-52.517202) | 2.574357 / 6.876477 (-4.302120) | 2.603626 / 2.142072 (0.461554) | 0.804706 / 4.805227 (-4.000521) | 0.152919 / 6.500664 (-6.347745) | 0.069316 / 0.075469 (-0.006153) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280025 / 1.841788 (-0.561763) | 13.968407 / 8.074308 (5.894099) | 13.874506 / 10.191392 (3.683114) | 0.154711 / 0.680424 (-0.525713) | 0.016827 / 0.534201 (-0.517374) | 0.377775 / 0.579283 (-0.201508) | 0.393035 / 0.434364 (-0.041329) | 0.439405 / 0.540337 (-0.100932) | 0.528135 / 1.386936 (-0.858801) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#00b27a59b8af9075967b800e3b0f1de8616aa0ce \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009035 / 0.011353 (-0.002318) | 0.004518 / 0.011008 (-0.006490) | 0.102077 / 0.038508 (0.063569) | 0.030169 / 0.023109 (0.007060) | 0.297713 / 0.275898 (0.021815) | 0.364976 / 0.323480 (0.041496) | 0.007079 / 0.007986 (-0.000906) | 0.003438 / 0.004328 (-0.000890) | 0.079667 / 0.004250 (0.075416) | 0.035890 / 0.037052 (-0.001162) | 0.306065 / 0.258489 (0.047576) | 0.352133 / 0.293841 (0.058292) | 0.033800 / 0.128546 (-0.094746) | 0.011613 / 0.075646 (-0.064034) | 0.322917 / 0.419271 (-0.096354) | 0.040973 / 0.043533 (-0.002560) | 0.300896 / 0.255139 (0.045757) | 0.331540 / 0.283200 (0.048341) | 0.089579 / 0.141683 (-0.052103) | 1.466755 / 1.452155 (0.014600) | 1.522120 / 1.492716 (0.029404) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193172 / 0.018006 (0.175166) | 0.408878 / 0.000490 (0.408389) | 0.001586 / 0.000200 (0.001386) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023496 / 0.037411 (-0.013915) | 0.098046 / 0.014526 (0.083520) | 0.104599 / 0.176557 (-0.071957) | 0.139054 / 0.737135 (-0.598081) | 0.111163 / 0.296338 (-0.185175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417374 / 0.215209 (0.202165) | 4.145808 / 2.077655 (2.068153) | 1.847101 / 1.504120 (0.342981) | 1.637207 / 1.541195 (0.096012) | 1.676906 / 1.468490 (0.208416) | 0.689851 / 4.584777 (-3.894926) | 3.402099 / 3.745712 (-0.343614) | 1.896808 / 5.269862 (-3.373054) | 1.257876 / 4.565676 (-3.307801) | 0.081744 / 0.424275 (-0.342531) | 0.012206 / 0.007607 (0.004599) | 0.524830 / 0.226044 (0.298786) | 5.251344 / 2.268929 (2.982416) | 2.277907 / 55.444624 (-53.166717) | 1.933985 / 6.876477 (-4.942491) | 2.038500 / 2.142072 (-0.103573) | 0.808696 / 4.805227 (-3.996532) | 0.149488 / 6.500664 (-6.351176) | 0.065323 / 0.075469 (-0.010146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204294 / 1.841788 (-0.637493) | 13.696526 / 8.074308 (5.622218) | 13.947195 / 10.191392 (3.755802) | 0.136812 / 0.680424 (-0.543611) | 0.028625 / 0.534201 (-0.505576) | 0.397662 / 0.579283 (-0.181621) | 0.403423 / 0.434364 (-0.030941) | 0.465288 / 0.540337 (-0.075049) | 0.551919 / 1.386936 (-0.835017) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006467 / 0.011353 (-0.004886) | 0.004562 / 0.011008 (-0.006447) | 0.097514 / 0.038508 (0.059006) | 0.027471 / 0.023109 (0.004362) | 0.425504 / 0.275898 (0.149606) | 0.458856 / 0.323480 (0.135376) | 0.004816 / 0.007986 (-0.003169) | 0.003264 / 0.004328 (-0.001065) | 0.074947 / 0.004250 (0.070697) | 0.037147 / 0.037052 (0.000095) | 0.429513 / 0.258489 (0.171024) | 0.463971 / 0.293841 (0.170130) | 0.031638 / 0.128546 (-0.096908) | 0.011545 / 0.075646 (-0.064101) | 0.320261 / 0.419271 (-0.099010) | 0.041570 / 0.043533 (-0.001963) | 0.424809 / 0.255139 (0.169670) | 0.447158 / 0.283200 (0.163959) | 0.088418 / 0.141683 (-0.053265) | 1.492242 / 1.452155 (0.040087) | 1.545523 / 1.492716 (0.052807) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217865 / 0.018006 (0.199859) | 0.399925 / 0.000490 (0.399436) | 0.004853 / 0.000200 (0.004653) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024275 / 0.037411 (-0.013137) | 0.098249 / 0.014526 (0.083723) | 0.107110 / 0.176557 (-0.069446) | 0.143870 / 0.737135 (-0.593265) | 0.108796 / 0.296338 (-0.187542) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470856 / 0.215209 (0.255647) | 4.687921 / 2.077655 (2.610266) | 2.448631 / 1.504120 (0.944511) | 2.247748 / 1.541195 (0.706553) | 2.287713 / 1.468490 (0.819223) | 0.687534 / 4.584777 (-3.897243) | 3.421099 / 3.745712 (-0.324613) | 2.977280 / 5.269862 (-2.292582) | 1.274837 / 4.565676 (-3.290839) | 0.081611 / 0.424275 (-0.342664) | 0.012603 / 0.007607 (0.004996) | 0.574600 / 0.226044 (0.348556) | 5.802826 / 2.268929 (3.533898) | 2.913178 / 55.444624 (-52.531446) | 2.589486 / 6.876477 (-4.286991) | 2.630004 / 2.142072 (0.487932) | 0.790087 / 4.805227 (-4.015140) | 0.150019 / 6.500664 (-6.350645) | 0.067346 / 0.075469 (-0.008123) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266521 / 1.841788 (-0.575267) | 13.818770 / 8.074308 (5.744462) | 13.872277 / 10.191392 (3.680885) | 0.147375 / 0.680424 (-0.533049) | 0.016837 / 0.534201 (-0.517363) | 0.376421 / 0.579283 (-0.202862) | 0.400236 / 0.434364 (-0.034128) | 0.436623 / 0.540337 (-0.103714) | 0.527173 / 1.386936 (-0.859763) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f347cf8443aa35401ba6a4159600b92bc6a156b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009341 / 0.011353 (-0.002012) | 0.005188 / 0.011008 (-0.005820) | 0.101831 / 0.038508 (0.063323) | 0.035141 / 0.023109 (0.012032) | 0.299324 / 0.275898 (0.023426) | 0.334749 / 0.323480 (0.011269) | 0.007958 / 0.007986 (-0.000027) | 0.005482 / 0.004328 (0.001153) | 0.077070 / 0.004250 (0.072820) | 0.044733 / 0.037052 (0.007680) | 0.310398 / 0.258489 (0.051909) | 0.347925 / 0.293841 (0.054084) | 0.038141 / 0.128546 (-0.090405) | 0.012135 / 0.075646 (-0.063512) | 0.333799 / 0.419271 (-0.085472) | 0.048881 / 0.043533 (0.005348) | 0.301336 / 0.255139 (0.046197) | 0.314592 / 0.283200 (0.031393) | 0.103635 / 0.141683 (-0.038048) | 1.437321 / 1.452155 (-0.014833) | 1.598781 / 1.492716 (0.106065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248911 / 0.018006 (0.230905) | 0.528932 / 0.000490 (0.528442) | 0.002495 / 0.000200 (0.002295) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027903 / 0.037411 (-0.009509) | 0.106716 / 0.014526 (0.092190) | 0.122650 / 0.176557 (-0.053907) | 0.162481 / 0.737135 (-0.574654) | 0.126402 / 0.296338 (-0.169937) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.352819 / 0.215209 (0.137610) | 3.522761 / 2.077655 (1.445106) | 1.576761 / 1.504120 (0.072641) | 1.411631 / 1.541195 (-0.129563) | 1.449689 / 1.468490 (-0.018801) | 0.608987 / 4.584777 (-3.975790) | 3.705121 / 3.745712 (-0.040592) | 2.085071 / 5.269862 (-3.184790) | 1.308653 / 4.565676 (-3.257024) | 0.083763 / 0.424275 (-0.340512) | 0.011957 / 0.007607 (0.004350) | 0.502182 / 0.226044 (0.276137) | 5.008829 / 2.268929 (2.739900) | 2.244687 / 55.444624 (-53.199937) | 1.891411 / 6.876477 (-4.985065) | 1.940789 / 2.142072 (-0.201284) | 0.825966 / 4.805227 (-3.979261) | 0.165267 / 6.500664 (-6.335397) | 0.063020 / 0.075469 (-0.012449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196707 / 1.841788 (-0.645081) | 14.236877 / 8.074308 (6.162569) | 14.872954 / 10.191392 (4.681562) | 0.168560 / 0.680424 (-0.511864) | 0.029038 / 0.534201 (-0.505163) | 0.440192 / 0.579283 (-0.139091) | 0.437021 / 0.434364 (0.002657) | 0.519612 / 0.540337 (-0.020725) | 0.612013 / 1.386936 (-0.774923) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007170 / 0.011353 (-0.004183) | 0.005303 / 0.011008 (-0.005705) | 0.098503 / 0.038508 (0.059995) | 0.032573 / 0.023109 (0.009463) | 0.398203 / 0.275898 (0.122305) | 0.446075 / 0.323480 (0.122595) | 0.005712 / 0.007986 (-0.002274) | 0.004165 / 0.004328 (-0.000164) | 0.074273 / 0.004250 (0.070023) | 0.049587 / 0.037052 (0.012534) | 0.399458 / 0.258489 (0.140969) | 0.459167 / 0.293841 (0.165327) | 0.036063 / 0.128546 (-0.092483) | 0.012394 / 0.075646 (-0.063253) | 0.332559 / 0.419271 (-0.086713) | 0.048499 / 0.043533 (0.004967) | 0.404044 / 0.255139 (0.148905) | 0.410462 / 0.283200 (0.127262) | 0.104104 / 0.141683 (-0.037579) | 1.488141 / 1.452155 (0.035986) | 1.535517 / 1.492716 (0.042801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292976 / 0.018006 (0.274970) | 0.569139 / 0.000490 (0.568649) | 0.000553 / 0.000200 (0.000353) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030144 / 0.037411 (-0.007267) | 0.098699 / 0.014526 (0.084173) | 0.114437 / 0.176557 (-0.062120) | 0.156657 / 0.737135 (-0.580478) | 0.117449 / 0.296338 (-0.178890) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441921 / 0.215209 (0.226712) | 4.413090 / 2.077655 (2.335435) | 2.190458 / 1.504120 (0.686338) | 2.008919 / 1.541195 (0.467724) | 2.049657 / 1.468490 (0.581167) | 0.691751 / 4.584777 (-3.893026) | 3.767524 / 3.745712 (0.021812) | 3.395564 / 5.269862 (-1.874297) | 1.633480 / 4.565676 (-2.932196) | 0.084880 / 0.424275 (-0.339395) | 0.012133 / 0.007607 (0.004526) | 0.555372 / 0.226044 (0.329327) | 5.522820 / 2.268929 (3.253892) | 2.723331 / 55.444624 (-52.721293) | 2.337583 / 6.876477 (-4.538894) | 2.368746 / 2.142072 (0.226674) | 0.830127 / 4.805227 (-3.975100) | 0.166239 / 6.500664 (-6.334425) | 0.064279 / 0.075469 (-0.011190) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.123421 / 1.841788 (-0.718367) | 14.413392 / 8.074308 (6.339084) | 12.865143 / 10.191392 (2.673751) | 0.132198 / 0.680424 (-0.548226) | 0.016138 / 0.534201 (-0.518063) | 0.380760 / 0.579283 (-0.198523) | 0.387223 / 0.434364 (-0.047141) | 0.445574 / 0.540337 (-0.094764) | 0.535658 / 1.386936 (-0.851278) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a89564d3d17b5960db2435662cb9c49f8ad7488a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008316 / 0.011353 (-0.003037) | 0.004503 / 0.011008 (-0.006505) | 0.100565 / 0.038508 (0.062057) | 0.030388 / 0.023109 (0.007279) | 0.304417 / 0.275898 (0.028519) | 0.369655 / 0.323480 (0.046175) | 0.007796 / 0.007986 (-0.000190) | 0.003450 / 0.004328 (-0.000878) | 0.078694 / 0.004250 (0.074443) | 0.038068 / 0.037052 (0.001016) | 0.316353 / 0.258489 (0.057864) | 0.352344 / 0.293841 (0.058503) | 0.033271 / 0.128546 (-0.095276) | 0.011427 / 0.075646 (-0.064220) | 0.322367 / 0.419271 (-0.096904) | 0.041497 / 0.043533 (-0.002036) | 0.305876 / 0.255139 (0.050737) | 0.332279 / 0.283200 (0.049079) | 0.086719 / 0.141683 (-0.054964) | 1.488367 / 1.452155 (0.036212) | 1.528943 / 1.492716 (0.036227) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.171072 / 0.018006 (0.153066) | 0.421048 / 0.000490 (0.420558) | 0.003622 / 0.000200 (0.003422) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022632 / 0.037411 (-0.014779) | 0.095304 / 0.014526 (0.080778) | 0.106254 / 0.176557 (-0.070302) | 0.138437 / 0.737135 (-0.598698) | 0.107258 / 0.296338 (-0.189080) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423201 / 0.215209 (0.207992) | 4.208397 / 2.077655 (2.130742) | 1.899800 / 1.504120 (0.395680) | 1.682782 / 1.541195 (0.141587) | 1.708840 / 1.468490 (0.240350) | 0.694492 / 4.584777 (-3.890285) | 3.380369 / 3.745712 (-0.365344) | 1.851731 / 5.269862 (-3.418130) | 1.151615 / 4.565676 (-3.414061) | 0.082446 / 0.424275 (-0.341829) | 0.012483 / 0.007607 (0.004876) | 0.533688 / 0.226044 (0.307643) | 5.373434 / 2.268929 (3.104505) | 2.346403 / 55.444624 (-53.098221) | 1.978505 / 6.876477 (-4.897971) | 2.005875 / 2.142072 (-0.136198) | 0.820785 / 4.805227 (-3.984442) | 0.150728 / 6.500664 (-6.349936) | 0.065761 / 0.075469 (-0.009708) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244550 / 1.841788 (-0.597237) | 13.219096 / 8.074308 (5.144788) | 13.960463 / 10.191392 (3.769071) | 0.135572 / 0.680424 (-0.544852) | 0.028746 / 0.534201 (-0.505455) | 0.393082 / 0.579283 (-0.186201) | 0.402852 / 0.434364 (-0.031512) | 0.461191 / 0.540337 (-0.079147) | 0.543500 / 1.386936 (-0.843436) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006316 / 0.011353 (-0.005037) | 0.004394 / 0.011008 (-0.006615) | 0.096478 / 0.038508 (0.057970) | 0.026965 / 0.023109 (0.003855) | 0.340371 / 0.275898 (0.064473) | 0.368334 / 0.323480 (0.044854) | 0.004744 / 0.007986 (-0.003242) | 0.004652 / 0.004328 (0.000324) | 0.074479 / 0.004250 (0.070228) | 0.036358 / 0.037052 (-0.000694) | 0.342968 / 0.258489 (0.084479) | 0.383675 / 0.293841 (0.089834) | 0.031439 / 0.128546 (-0.097107) | 0.011529 / 0.075646 (-0.064117) | 0.319560 / 0.419271 (-0.099711) | 0.041370 / 0.043533 (-0.002163) | 0.342594 / 0.255139 (0.087455) | 0.363237 / 0.283200 (0.080038) | 0.087316 / 0.141683 (-0.054367) | 1.468690 / 1.452155 (0.016535) | 1.553974 / 1.492716 (0.061257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198366 / 0.018006 (0.180360) | 0.401581 / 0.000490 (0.401091) | 0.000400 / 0.000200 (0.000200) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023150 / 0.037411 (-0.014261) | 0.097797 / 0.014526 (0.083271) | 0.106198 / 0.176557 (-0.070359) | 0.139599 / 0.737135 (-0.597536) | 0.108361 / 0.296338 (-0.187978) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472962 / 0.215209 (0.257753) | 4.702688 / 2.077655 (2.625033) | 2.401002 / 1.504120 (0.896882) | 2.193857 / 1.541195 (0.652663) | 2.219188 / 1.468490 (0.750697) | 0.689993 / 4.584777 (-3.894784) | 3.369409 / 3.745712 (-0.376304) | 1.824801 / 5.269862 (-3.445061) | 1.150815 / 4.565676 (-3.414862) | 0.082197 / 0.424275 (-0.342078) | 0.012287 / 0.007607 (0.004679) | 0.581963 / 0.226044 (0.355918) | 5.786943 / 2.268929 (3.518015) | 2.871235 / 55.444624 (-52.573389) | 2.516009 / 6.876477 (-4.360468) | 2.535669 / 2.142072 (0.393597) | 0.804733 / 4.805227 (-4.000494) | 0.150545 / 6.500664 (-6.350119) | 0.066964 / 0.075469 (-0.008505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285431 / 1.841788 (-0.556356) | 14.097108 / 8.074308 (6.022800) | 13.821497 / 10.191392 (3.630105) | 0.141922 / 0.680424 (-0.538502) | 0.016964 / 0.534201 (-0.517237) | 0.374784 / 0.579283 (-0.204500) | 0.381034 / 0.434364 (-0.053330) | 0.435487 / 0.540337 (-0.104850) | 0.521894 / 1.386936 (-0.865042) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#462000c2b12a11f1fc26853e842d3f6e40287737 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009486 / 0.011353 (-0.001867) | 0.005363 / 0.011008 (-0.005645) | 0.101008 / 0.038508 (0.062500) | 0.036355 / 0.023109 (0.013246) | 0.290575 / 0.275898 (0.014677) | 0.391634 / 0.323480 (0.068154) | 0.009085 / 0.007986 (0.001099) | 0.005780 / 0.004328 (0.001451) | 0.077848 / 0.004250 (0.073598) | 0.049062 / 0.037052 (0.012009) | 0.310900 / 0.258489 (0.052411) | 0.358224 / 0.293841 (0.064383) | 0.038838 / 0.128546 (-0.089708) | 0.012244 / 0.075646 (-0.063402) | 0.333701 / 0.419271 (-0.085570) | 0.048021 / 0.043533 (0.004488) | 0.289584 / 0.255139 (0.034445) | 0.317556 / 0.283200 (0.034356) | 0.109807 / 0.141683 (-0.031876) | 1.465966 / 1.452155 (0.013811) | 1.526341 / 1.492716 (0.033625) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246221 / 0.018006 (0.228215) | 0.580659 / 0.000490 (0.580169) | 0.000627 / 0.000200 (0.000427) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028352 / 0.037411 (-0.009059) | 0.110569 / 0.014526 (0.096043) | 0.126456 / 0.176557 (-0.050100) | 0.163633 / 0.737135 (-0.573503) | 0.128252 / 0.296338 (-0.168087) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397271 / 0.215209 (0.182062) | 3.975336 / 2.077655 (1.897682) | 1.786957 / 1.504120 (0.282837) | 1.598468 / 1.541195 (0.057273) | 1.645299 / 1.468490 (0.176809) | 0.686221 / 4.584777 (-3.898556) | 3.753184 / 3.745712 (0.007472) | 2.089505 / 5.269862 (-3.180356) | 1.325799 / 4.565676 (-3.239878) | 0.084608 / 0.424275 (-0.339667) | 0.012343 / 0.007607 (0.004736) | 0.509951 / 0.226044 (0.283907) | 5.092102 / 2.268929 (2.823174) | 2.297551 / 55.444624 (-53.147073) | 1.938177 / 6.876477 (-4.938300) | 2.012448 / 2.142072 (-0.129625) | 0.835206 / 4.805227 (-3.970021) | 0.166373 / 6.500664 (-6.334291) | 0.063996 / 0.075469 (-0.011473) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212936 / 1.841788 (-0.628851) | 15.067370 / 8.074308 (6.993062) | 14.165214 / 10.191392 (3.973822) | 0.157041 / 0.680424 (-0.523383) | 0.029612 / 0.534201 (-0.504589) | 0.440006 / 0.579283 (-0.139277) | 0.439165 / 0.434364 (0.004801) | 0.524970 / 0.540337 (-0.015368) | 0.608305 / 1.386936 (-0.778631) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007433 / 0.011353 (-0.003920) | 0.005310 / 0.011008 (-0.005698) | 0.097194 / 0.038508 (0.058686) | 0.033265 / 0.023109 (0.010156) | 0.369908 / 0.275898 (0.094010) | 0.411508 / 0.323480 (0.088028) | 0.006000 / 0.007986 (-0.001986) | 0.005647 / 0.004328 (0.001319) | 0.075597 / 0.004250 (0.071347) | 0.051951 / 0.037052 (0.014899) | 0.378469 / 0.258489 (0.119980) | 0.424849 / 0.293841 (0.131008) | 0.036700 / 0.128546 (-0.091846) | 0.012535 / 0.075646 (-0.063111) | 0.333197 / 0.419271 (-0.086074) | 0.049046 / 0.043533 (0.005513) | 0.381845 / 0.255139 (0.126706) | 0.397846 / 0.283200 (0.114646) | 0.109152 / 0.141683 (-0.032531) | 1.432407 / 1.452155 (-0.019748) | 1.555509 / 1.492716 (0.062793) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265433 / 0.018006 (0.247427) | 0.559590 / 0.000490 (0.559100) | 0.000492 / 0.000200 (0.000292) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029748 / 0.037411 (-0.007663) | 0.110490 / 0.014526 (0.095964) | 0.124125 / 0.176557 (-0.052431) | 0.160089 / 0.737135 (-0.577046) | 0.128755 / 0.296338 (-0.167583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443976 / 0.215209 (0.228767) | 4.416960 / 2.077655 (2.339305) | 2.239408 / 1.504120 (0.735288) | 2.055341 / 1.541195 (0.514147) | 2.093479 / 1.468490 (0.624988) | 0.688846 / 4.584777 (-3.895930) | 3.797526 / 3.745712 (0.051814) | 3.578137 / 5.269862 (-1.691725) | 2.015073 / 4.565676 (-2.550603) | 0.084126 / 0.424275 (-0.340149) | 0.012581 / 0.007607 (0.004974) | 0.549774 / 0.226044 (0.323730) | 5.492185 / 2.268929 (3.223256) | 2.739851 / 55.444624 (-52.704773) | 2.371091 / 6.876477 (-4.505386) | 2.400178 / 2.142072 (0.258105) | 0.831227 / 4.805227 (-3.974001) | 0.166156 / 6.500664 (-6.334508) | 0.063901 / 0.075469 (-0.011568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236127 / 1.841788 (-0.605660) | 15.236884 / 8.074308 (7.162576) | 14.434351 / 10.191392 (4.242959) | 0.163725 / 0.680424 (-0.516699) | 0.018009 / 0.534201 (-0.516192) | 0.430612 / 0.579283 (-0.148671) | 0.420426 / 0.434364 (-0.013938) | 0.497062 / 0.540337 (-0.043275) | 0.590924 / 1.386936 (-0.796012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#63377dc53fc94f19bc2b0bbfb118a90d01a1d020 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010862 / 0.011353 (-0.000491) | 0.005741 / 0.011008 (-0.005267) | 0.111911 / 0.038508 (0.073403) | 0.042316 / 0.023109 (0.019207) | 0.347665 / 0.275898 (0.071767) | 0.377335 / 0.323480 (0.053855) | 0.009400 / 0.007986 (0.001414) | 0.006814 / 0.004328 (0.002486) | 0.087194 / 0.004250 (0.082943) | 0.046878 / 0.037052 (0.009826) | 0.348920 / 0.258489 (0.090430) | 0.393347 / 0.293841 (0.099507) | 0.044212 / 0.128546 (-0.084334) | 0.013925 / 0.075646 (-0.061722) | 0.386076 / 0.419271 (-0.033195) | 0.054195 / 0.043533 (0.010662) | 0.358486 / 0.255139 (0.103347) | 0.360132 / 0.283200 (0.076932) | 0.109783 / 0.141683 (-0.031900) | 1.679875 / 1.452155 (0.227720) | 1.794379 / 1.492716 (0.301663) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221927 / 0.018006 (0.203921) | 0.487352 / 0.000490 (0.486863) | 0.003494 / 0.000200 (0.003294) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032201 / 0.037411 (-0.005210) | 0.125861 / 0.014526 (0.111335) | 0.133905 / 0.176557 (-0.042652) | 0.183319 / 0.737135 (-0.553817) | 0.142646 / 0.296338 (-0.153693) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442720 / 0.215209 (0.227511) | 4.602619 / 2.077655 (2.524964) | 2.050214 / 1.504120 (0.546094) | 1.837968 / 1.541195 (0.296773) | 1.961199 / 1.468490 (0.492709) | 0.793426 / 4.584777 (-3.791351) | 4.472078 / 3.745712 (0.726366) | 2.364903 / 5.269862 (-2.904959) | 1.515076 / 4.565676 (-3.050600) | 0.103087 / 0.424275 (-0.321188) | 0.014676 / 0.007607 (0.007068) | 0.576887 / 0.226044 (0.350843) | 5.785525 / 2.268929 (3.516596) | 2.765231 / 55.444624 (-52.679393) | 2.365364 / 6.876477 (-4.511113) | 2.448335 / 2.142072 (0.306262) | 0.978726 / 4.805227 (-3.826501) | 0.191417 / 6.500664 (-6.309247) | 0.073295 / 0.075469 (-0.002174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.378995 / 1.841788 (-0.462792) | 16.583655 / 8.074308 (8.509347) | 14.944731 / 10.191392 (4.753339) | 0.168916 / 0.680424 (-0.511508) | 0.035272 / 0.534201 (-0.498928) | 0.489729 / 0.579283 (-0.089554) | 0.496231 / 0.434364 (0.061867) | 0.576218 / 0.540337 (0.035880) | 0.673558 / 1.386936 (-0.713378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008104 / 0.011353 (-0.003249) | 0.005179 / 0.011008 (-0.005829) | 0.103908 / 0.038508 (0.065400) | 0.034661 / 0.023109 (0.011552) | 0.398119 / 0.275898 (0.122221) | 0.411765 / 0.323480 (0.088286) | 0.006016 / 0.007986 (-0.001970) | 0.005637 / 0.004328 (0.001308) | 0.073662 / 0.004250 (0.069412) | 0.052411 / 0.037052 (0.015359) | 0.391826 / 0.258489 (0.133337) | 0.455217 / 0.293841 (0.161376) | 0.039924 / 0.128546 (-0.088622) | 0.013390 / 0.075646 (-0.062256) | 0.390319 / 0.419271 (-0.028953) | 0.054312 / 0.043533 (0.010779) | 0.395492 / 0.255139 (0.140353) | 0.446324 / 0.283200 (0.163124) | 0.116461 / 0.141683 (-0.025222) | 1.502163 / 1.452155 (0.050008) | 1.731541 / 1.492716 (0.238825) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282612 / 0.018006 (0.264606) | 0.503170 / 0.000490 (0.502680) | 0.005307 / 0.000200 (0.005107) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029071 / 0.037411 (-0.008340) | 0.123831 / 0.014526 (0.109306) | 0.133284 / 0.176557 (-0.043272) | 0.172029 / 0.737135 (-0.565106) | 0.140639 / 0.296338 (-0.155700) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.496812 / 0.215209 (0.281603) | 4.958915 / 2.077655 (2.881260) | 2.559188 / 1.504120 (1.055068) | 2.262434 / 1.541195 (0.721240) | 2.371126 / 1.468490 (0.902636) | 0.780150 / 4.584777 (-3.804627) | 4.417060 / 3.745712 (0.671348) | 2.401909 / 5.269862 (-2.867953) | 1.527943 / 4.565676 (-3.037733) | 0.100074 / 0.424275 (-0.324201) | 0.014853 / 0.007607 (0.007246) | 0.630192 / 0.226044 (0.404147) | 6.409685 / 2.268929 (4.140757) | 3.224718 / 55.444624 (-52.219906) | 2.795301 / 6.876477 (-4.081176) | 2.927205 / 2.142072 (0.785132) | 0.989537 / 4.805227 (-3.815690) | 0.199775 / 6.500664 (-6.300889) | 0.076725 / 0.075469 (0.001256) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.433504 / 1.841788 (-0.408284) | 17.117134 / 8.074308 (9.042825) | 16.606367 / 10.191392 (6.414975) | 0.165653 / 0.680424 (-0.514771) | 0.020818 / 0.534201 (-0.513383) | 0.496782 / 0.579283 (-0.082501) | 0.473895 / 0.434364 (0.039531) | 0.576796 / 0.540337 (0.036459) | 0.703272 / 1.386936 (-0.683664) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6627fb6f2639ac3b1435b3386545612db038a42e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012501 / 0.011353 (0.001148) | 0.006437 / 0.011008 (-0.004571) | 0.129387 / 0.038508 (0.090878) | 0.035847 / 0.023109 (0.012737) | 0.339243 / 0.275898 (0.063345) | 0.423274 / 0.323480 (0.099794) | 0.008489 / 0.007986 (0.000503) | 0.004596 / 0.004328 (0.000268) | 0.103322 / 0.004250 (0.099071) | 0.043570 / 0.037052 (0.006517) | 0.357004 / 0.258489 (0.098515) | 0.426511 / 0.293841 (0.132670) | 0.062923 / 0.128546 (-0.065623) | 0.021168 / 0.075646 (-0.054478) | 0.387485 / 0.419271 (-0.031787) | 0.059745 / 0.043533 (0.016213) | 0.341101 / 0.255139 (0.085962) | 0.365530 / 0.283200 (0.082331) | 0.102110 / 0.141683 (-0.039573) | 1.729408 / 1.452155 (0.277253) | 1.759510 / 1.492716 (0.266794) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187065 / 0.018006 (0.169059) | 0.499685 / 0.000490 (0.499196) | 0.004677 / 0.000200 (0.004478) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025827 / 0.037411 (-0.011584) | 0.113780 / 0.014526 (0.099255) | 0.146060 / 0.176557 (-0.030496) | 0.158169 / 0.737135 (-0.578966) | 0.136133 / 0.296338 (-0.160206) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.608421 / 0.215209 (0.393211) | 5.907395 / 2.077655 (3.829741) | 2.193140 / 1.504120 (0.689021) | 1.870315 / 1.541195 (0.329120) | 1.885660 / 1.468490 (0.417170) | 1.227637 / 4.584777 (-3.357140) | 5.319242 / 3.745712 (1.573530) | 2.991595 / 5.269862 (-2.278267) | 2.043906 / 4.565676 (-2.521771) | 0.151829 / 0.424275 (-0.272447) | 0.018974 / 0.007607 (0.011367) | 0.778035 / 0.226044 (0.551991) | 7.705796 / 2.268929 (5.436868) | 2.990156 / 55.444624 (-52.454468) | 2.372643 / 6.876477 (-4.503834) | 2.240847 / 2.142072 (0.098775) | 1.407209 / 4.805227 (-3.398018) | 0.242336 / 6.500664 (-6.258328) | 0.069847 / 0.075469 (-0.005622) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.445817 / 1.841788 (-0.395970) | 16.059632 / 8.074308 (7.985324) | 18.541971 / 10.191392 (8.350579) | 0.237830 / 0.680424 (-0.442594) | 0.041060 / 0.534201 (-0.493141) | 0.496765 / 0.579283 (-0.082518) | 0.609666 / 0.434364 (0.175302) | 0.584614 / 0.540337 (0.044277) | 0.680858 / 1.386936 (-0.706078) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009037 / 0.011353 (-0.002315) | 0.005961 / 0.011008 (-0.005047) | 0.127204 / 0.038508 (0.088696) | 0.030664 / 0.023109 (0.007555) | 0.417968 / 0.275898 (0.142070) | 0.515316 / 0.323480 (0.191836) | 0.006549 / 0.007986 (-0.001436) | 0.004456 / 0.004328 (0.000128) | 0.083715 / 0.004250 (0.079464) | 0.043701 / 0.037052 (0.006648) | 0.521153 / 0.258489 (0.262664) | 0.565456 / 0.293841 (0.271615) | 0.055298 / 0.128546 (-0.073248) | 0.018103 / 0.075646 (-0.057544) | 0.403990 / 0.419271 (-0.015282) | 0.060162 / 0.043533 (0.016629) | 0.486383 / 0.255139 (0.231244) | 0.470342 / 0.283200 (0.187142) | 0.102269 / 0.141683 (-0.039414) | 1.643241 / 1.452155 (0.191086) | 1.763850 / 1.492716 (0.271133) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185602 / 0.018006 (0.167596) | 0.489163 / 0.000490 (0.488674) | 0.000426 / 0.000200 (0.000226) | 0.000086 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026689 / 0.037411 (-0.010722) | 0.111520 / 0.014526 (0.096994) | 0.119838 / 0.176557 (-0.056719) | 0.153698 / 0.737135 (-0.583437) | 0.130969 / 0.296338 (-0.165370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616170 / 0.215209 (0.400961) | 6.219702 / 2.077655 (4.142048) | 2.533554 / 1.504120 (1.029434) | 2.256009 / 1.541195 (0.714815) | 2.217617 / 1.468490 (0.749127) | 1.156920 / 4.584777 (-3.427857) | 5.175759 / 3.745712 (1.430046) | 2.848419 / 5.269862 (-2.421442) | 1.943864 / 4.565676 (-2.621813) | 0.138342 / 0.424275 (-0.285933) | 0.013140 / 0.007607 (0.005533) | 0.782105 / 0.226044 (0.556060) | 7.602003 / 2.268929 (5.333075) | 3.629577 / 55.444624 (-51.815047) | 2.713849 / 6.876477 (-4.162628) | 2.663888 / 2.142072 (0.521816) | 1.418381 / 4.805227 (-3.386847) | 0.250649 / 6.500664 (-6.250015) | 0.073564 / 0.075469 (-0.001905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483739 / 1.841788 (-0.358049) | 16.386204 / 8.074308 (8.311896) | 20.685262 / 10.191392 (10.493870) | 0.237084 / 0.680424 (-0.443340) | 0.039097 / 0.534201 (-0.495104) | 0.525399 / 0.579283 (-0.053884) | 0.587541 / 0.434364 (0.153177) | 0.566605 / 0.540337 (0.026268) | 0.677384 / 1.386936 (-0.709552) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b3b67d42733dabb15ce4997c8324f8e047ce12bd \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014050 / 0.011353 (0.002697) | 0.005981 / 0.011008 (-0.005028) | 0.126307 / 0.038508 (0.087799) | 0.035400 / 0.023109 (0.012290) | 0.387821 / 0.275898 (0.111923) | 0.462785 / 0.323480 (0.139305) | 0.009427 / 0.007986 (0.001441) | 0.005081 / 0.004328 (0.000753) | 0.097273 / 0.004250 (0.093023) | 0.044699 / 0.037052 (0.007647) | 0.396025 / 0.258489 (0.137536) | 0.450137 / 0.293841 (0.156296) | 0.055660 / 0.128546 (-0.072886) | 0.022710 / 0.075646 (-0.052936) | 0.443784 / 0.419271 (0.024513) | 0.065756 / 0.043533 (0.022223) | 0.379350 / 0.255139 (0.124211) | 0.396783 / 0.283200 (0.113583) | 0.114088 / 0.141683 (-0.027594) | 1.856834 / 1.452155 (0.404679) | 1.839292 / 1.492716 (0.346576) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206748 / 0.018006 (0.188742) | 0.517711 / 0.000490 (0.517222) | 0.008302 / 0.000200 (0.008102) | 0.000494 / 0.000054 (0.000440) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033987 / 0.037411 (-0.003424) | 0.131067 / 0.014526 (0.116542) | 0.155539 / 0.176557 (-0.021018) | 0.188598 / 0.737135 (-0.548537) | 0.156000 / 0.296338 (-0.140338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.641413 / 0.215209 (0.426204) | 6.156680 / 2.077655 (4.079025) | 2.428858 / 1.504120 (0.924738) | 2.086195 / 1.541195 (0.545000) | 2.109604 / 1.468490 (0.641114) | 1.209426 / 4.584777 (-3.375351) | 5.139398 / 3.745712 (1.393686) | 3.041337 / 5.269862 (-2.228524) | 2.294809 / 4.565676 (-2.270868) | 0.142206 / 0.424275 (-0.282069) | 0.015167 / 0.007607 (0.007560) | 0.816269 / 0.226044 (0.590224) | 7.953931 / 2.268929 (5.685002) | 3.201793 / 55.444624 (-52.242832) | 2.448620 / 6.876477 (-4.427857) | 2.521670 / 2.142072 (0.379597) | 1.484094 / 4.805227 (-3.321133) | 0.255069 / 6.500664 (-6.245595) | 0.076031 / 0.075469 (0.000561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.590951 / 1.841788 (-0.250836) | 17.661353 / 8.074308 (9.587045) | 21.097837 / 10.191392 (10.906445) | 0.229265 / 0.680424 (-0.451159) | 0.042618 / 0.534201 (-0.491583) | 0.535942 / 0.579283 (-0.043342) | 0.590195 / 0.434364 (0.155831) | 0.623985 / 0.540337 (0.083648) | 0.742637 / 1.386936 (-0.644299) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009264 / 0.011353 (-0.002088) | 0.008798 / 0.011008 (-0.002210) | 0.122208 / 0.038508 (0.083700) | 0.034835 / 0.023109 (0.011726) | 0.462618 / 0.275898 (0.186720) | 0.505632 / 0.323480 (0.182152) | 0.006320 / 0.007986 (-0.001665) | 0.005383 / 0.004328 (0.001054) | 0.091229 / 0.004250 (0.086979) | 0.045828 / 0.037052 (0.008775) | 0.477507 / 0.258489 (0.219018) | 0.539616 / 0.293841 (0.245775) | 0.061913 / 0.128546 (-0.066633) | 0.019390 / 0.075646 (-0.056257) | 0.420016 / 0.419271 (0.000745) | 0.065958 / 0.043533 (0.022425) | 0.468603 / 0.255139 (0.213464) | 0.486246 / 0.283200 (0.203046) | 0.107924 / 0.141683 (-0.033759) | 1.843614 / 1.452155 (0.391459) | 1.988159 / 1.492716 (0.495442) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247043 / 0.018006 (0.229037) | 0.515580 / 0.000490 (0.515090) | 0.005630 / 0.000200 (0.005430) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030674 / 0.037411 (-0.006737) | 0.130783 / 0.014526 (0.116258) | 0.147669 / 0.176557 (-0.028888) | 0.175656 / 0.737135 (-0.561479) | 0.138317 / 0.296338 (-0.158022) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.727119 / 0.215209 (0.511909) | 6.848208 / 2.077655 (4.770553) | 3.121418 / 1.504120 (1.617298) | 2.701799 / 1.541195 (1.160604) | 2.749179 / 1.468490 (1.280689) | 1.312058 / 4.584777 (-3.272719) | 5.400562 / 3.745712 (1.654850) | 3.058142 / 5.269862 (-2.211719) | 2.076361 / 4.565676 (-2.489316) | 0.142169 / 0.424275 (-0.282106) | 0.014340 / 0.007607 (0.006733) | 0.853534 / 0.226044 (0.627490) | 8.734484 / 2.268929 (6.465556) | 3.968130 / 55.444624 (-51.476495) | 3.118032 / 6.876477 (-3.758444) | 3.078757 / 2.142072 (0.936684) | 1.460694 / 4.805227 (-3.344533) | 0.261858 / 6.500664 (-6.238806) | 0.081089 / 0.075469 (0.005620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.611473 / 1.841788 (-0.230315) | 17.660545 / 8.074308 (9.586237) | 20.526023 / 10.191392 (10.334631) | 0.223320 / 0.680424 (-0.457103) | 0.027939 / 0.534201 (-0.506261) | 0.542704 / 0.579283 (-0.036579) | 0.563826 / 0.434364 (0.129462) | 0.639936 / 0.540337 (0.099599) | 0.755974 / 1.386936 (-0.630962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#942141e13ba2be853e2231d9edbfa38044e2632d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008776 / 0.011353 (-0.002577) | 0.004532 / 0.011008 (-0.006476) | 0.100373 / 0.038508 (0.061865) | 0.029706 / 0.023109 (0.006597) | 0.304374 / 0.275898 (0.028476) | 0.337223 / 0.323480 (0.013743) | 0.007021 / 0.007986 (-0.000965) | 0.003420 / 0.004328 (-0.000908) | 0.077754 / 0.004250 (0.073504) | 0.034411 / 0.037052 (-0.002642) | 0.302926 / 0.258489 (0.044437) | 0.342654 / 0.293841 (0.048813) | 0.034528 / 0.128546 (-0.094018) | 0.011926 / 0.075646 (-0.063721) | 0.322971 / 0.419271 (-0.096301) | 0.041384 / 0.043533 (-0.002149) | 0.306433 / 0.255139 (0.051294) | 0.332293 / 0.283200 (0.049093) | 0.084972 / 0.141683 (-0.056711) | 1.493426 / 1.452155 (0.041271) | 1.570446 / 1.492716 (0.077729) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189090 / 0.018006 (0.171084) | 0.433904 / 0.000490 (0.433414) | 0.001323 / 0.000200 (0.001124) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023531 / 0.037411 (-0.013880) | 0.097774 / 0.014526 (0.083248) | 0.106383 / 0.176557 (-0.070174) | 0.139158 / 0.737135 (-0.597977) | 0.109443 / 0.296338 (-0.186896) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419078 / 0.215209 (0.203869) | 4.182657 / 2.077655 (2.105002) | 1.887276 / 1.504120 (0.383156) | 1.679542 / 1.541195 (0.138347) | 1.718035 / 1.468490 (0.249545) | 0.692628 / 4.584777 (-3.892149) | 3.361354 / 3.745712 (-0.384358) | 1.928583 / 5.269862 (-3.341278) | 1.317291 / 4.565676 (-3.248386) | 0.081799 / 0.424275 (-0.342476) | 0.012318 / 0.007607 (0.004711) | 0.525927 / 0.226044 (0.299883) | 5.285905 / 2.268929 (3.016977) | 2.317524 / 55.444624 (-53.127100) | 1.966478 / 6.876477 (-4.909998) | 2.054869 / 2.142072 (-0.087204) | 0.807579 / 4.805227 (-3.997649) | 0.149854 / 6.500664 (-6.350810) | 0.065285 / 0.075469 (-0.010184) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180516 / 1.841788 (-0.661271) | 13.889734 / 8.074308 (5.815426) | 14.076163 / 10.191392 (3.884771) | 0.156276 / 0.680424 (-0.524148) | 0.029187 / 0.534201 (-0.505013) | 0.403859 / 0.579283 (-0.175424) | 0.404998 / 0.434364 (-0.029366) | 0.471467 / 0.540337 (-0.068871) | 0.564526 / 1.386936 (-0.822410) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006739 / 0.011353 (-0.004614) | 0.004644 / 0.011008 (-0.006364) | 0.097326 / 0.038508 (0.058818) | 0.027728 / 0.023109 (0.004619) | 0.413537 / 0.275898 (0.137639) | 0.452012 / 0.323480 (0.128532) | 0.005346 / 0.007986 (-0.002639) | 0.003338 / 0.004328 (-0.000991) | 0.075670 / 0.004250 (0.071420) | 0.038825 / 0.037052 (0.001772) | 0.415612 / 0.258489 (0.157123) | 0.454680 / 0.293841 (0.160839) | 0.031866 / 0.128546 (-0.096680) | 0.011616 / 0.075646 (-0.064031) | 0.319527 / 0.419271 (-0.099745) | 0.041283 / 0.043533 (-0.002250) | 0.412046 / 0.255139 (0.156907) | 0.435244 / 0.283200 (0.152044) | 0.088400 / 0.141683 (-0.053283) | 1.478125 / 1.452155 (0.025970) | 1.553677 / 1.492716 (0.060960) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229919 / 0.018006 (0.211913) | 0.415446 / 0.000490 (0.414956) | 0.000386 / 0.000200 (0.000186) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024365 / 0.037411 (-0.013046) | 0.098225 / 0.014526 (0.083699) | 0.106674 / 0.176557 (-0.069883) | 0.144755 / 0.737135 (-0.592380) | 0.109221 / 0.296338 (-0.187117) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457665 / 0.215209 (0.242456) | 4.597849 / 2.077655 (2.520195) | 2.171275 / 1.504120 (0.667155) | 1.945547 / 1.541195 (0.404352) | 2.014043 / 1.468490 (0.545553) | 0.699732 / 4.584777 (-3.885045) | 3.420711 / 3.745712 (-0.325001) | 3.298702 / 5.269862 (-1.971159) | 1.390324 / 4.565676 (-3.175353) | 0.082668 / 0.424275 (-0.341607) | 0.012556 / 0.007607 (0.004949) | 0.550406 / 0.226044 (0.324361) | 5.501060 / 2.268929 (3.232132) | 2.659841 / 55.444624 (-52.784783) | 2.243443 / 6.876477 (-4.633034) | 2.266006 / 2.142072 (0.123934) | 0.806295 / 4.805227 (-3.998933) | 0.151399 / 6.500664 (-6.349265) | 0.067048 / 0.075469 (-0.008421) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291404 / 1.841788 (-0.550384) | 14.164728 / 8.074308 (6.090419) | 13.980219 / 10.191392 (3.788827) | 0.140599 / 0.680424 (-0.539824) | 0.016880 / 0.534201 (-0.517321) | 0.379073 / 0.579283 (-0.200210) | 0.385770 / 0.434364 (-0.048594) | 0.442516 / 0.540337 (-0.097822) | 0.533569 / 1.386936 (-0.853367) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#29fa15df972353f51fc434cf8eceb574b60a415f \"CML watermark\")\n",
"Tests seem to be failing for unrelated reasons.",
"Tests are failing because of a bug on the Hub side - this is being fixed :)\r\n\r\nlmk once the TF documentation page is updated and we can merge !",
"@lhoestq Docs updated!"
] | 2022-12-19T19:40:27 | 2023-01-25T16:28:44 | 2023-01-25T16:21:40 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5377",
"html_url": "https://github.com/huggingface/datasets/pull/5377",
"diff_url": "https://github.com/huggingface/datasets/pull/5377.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5377.patch",
"merged_at": "2023-01-25T16:21:40"
} | Hey all! Here's a first draft of the PR to add a multiprocessing implementation for `to_tf_dataset()`. It worked in some quick testing for me, but obviously I need to do some much more rigorous testing/benchmarking, and add some proper library tests.
The core idea is that we do everything using `multiprocessing` and `numpy`, and just wrap a `tf.data.Dataset` around the output. We could also rewrite the existing single-threaded implementation based on this code, which might simplify it a bit.
Checklist:
- [X] Add initial draft
- [x] Check that it works regardless of whether the `collate_fn` or dataset returns `tf` or `np` arrays
- [x] Check that it works with `tf.string` return data
- [x] Check indices are correctly reshuffled each epoch
- [x] Make sure workers don't try to initialize a GPU device!!
- [x] Check `fit()` with multiple epochs works fine and that the progress bar is correct
- [x] Check there are no memory leaks or zombie processes
- [x] Benchmark performance
- [x] Tweak params for dataset inference - can we speed things up there a bit?
- [x] Add tests to the library
- [x] Add a PR to `transformers` to expose the `num_workers` argument via `prepare_tf_dataset` (will merge after this one is released)
- [x] Stop TF console spam!! (almost)
- [x] Add a method for creating SHM that doesn't crash if it was left and still linked
- [x] Add a barrier for Py <= 3.7 because it doesn't support SharedMemory
- [x] Support string dtypes by converting them into fixed-width character arrays | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5377/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5377/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5376 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5376/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5376/comments | https://api.github.com/repos/huggingface/datasets/issues/5376/events | https://github.com/huggingface/datasets/pull/5376 | 1,502,730,559 | PR_kwDODunzps5FxWkM | 5,376 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5376). All of your documentation changes will be reflected on that endpoint."
] | 2022-12-19T10:56:56 | 2022-12-19T11:01:55 | 2022-12-19T10:57:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5376",
"html_url": "https://github.com/huggingface/datasets/pull/5376",
"diff_url": "https://github.com/huggingface/datasets/pull/5376.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5376.patch",
"merged_at": "2022-12-19T10:57:16"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5376/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5376/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5375 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5375/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5375/comments | https://api.github.com/repos/huggingface/datasets/issues/5375/events | https://github.com/huggingface/datasets/pull/5375 | 1,502,720,404 | PR_kwDODunzps5FxUbG | 5,375 | Release: 2.8.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-19T10:48:26 | 2022-12-19T10:55:43 | 2022-12-19T10:53:15 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5375",
"html_url": "https://github.com/huggingface/datasets/pull/5375",
"diff_url": "https://github.com/huggingface/datasets/pull/5375.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5375.patch",
"merged_at": "2022-12-19T10:53:15"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5375/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5375/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5374 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5374/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5374/comments | https://api.github.com/repos/huggingface/datasets/issues/5374/events | https://github.com/huggingface/datasets/issues/5374 | 1,501,872,945 | I_kwDODunzps5ZhMMx | 5,374 | Using too many threads results in: Got disconnected from remote data host. Retrying in 5sec | {
"login": "Muennighoff",
"id": 62820084,
"node_id": "MDQ6VXNlcjYyODIwMDg0",
"avatar_url": "https://avatars.githubusercontent.com/u/62820084?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Muennighoff",
"html_url": "https://github.com/Muennighoff",
"followers_url": "https://api.github.com/users/Muennighoff/followers",
"following_url": "https://api.github.com/users/Muennighoff/following{/other_user}",
"gists_url": "https://api.github.com/users/Muennighoff/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Muennighoff/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Muennighoff/subscriptions",
"organizations_url": "https://api.github.com/users/Muennighoff/orgs",
"repos_url": "https://api.github.com/users/Muennighoff/repos",
"events_url": "https://api.github.com/users/Muennighoff/events{/privacy}",
"received_events_url": "https://api.github.com/users/Muennighoff/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The data files are hosted on HF at https://huggingface.co/datasets/allenai/c4/tree/main\r\n\r\nYou have 200 runs streaming the same files in parallel. So this is probably a Hub limitation. Maybe rate limiting ? cc @julien-c \r\n\r\nMaybe you can also try to reduce the number of HTTP requests by increasing the block size of each request. This can be done by increasing `DEFAULT_BLOCK_SIZE` in `fsspec.implementations.http`. Default is `5 * 2**20` (5MiB)\r\n\r\nAnyway maybe it's just better to save the dataset locally in that case ?",
"you don't get an HTTP error code or something in your stack trace? Kinda hard to debug with this info",
"You could try to re-run using this `datasets` branch: [raise-err-when-disconnect](https://github.com/huggingface/datasets/compare/raise-err-when-disconnect?expand=1)\r\nIt should raise the fsspec error",
"The weird thing is that I already have it saved locally & it seems to indeed be using the cached one 🧐 ; I'm also using offline mode, so I don't think it has something to do with the Hub.\r\n```\r\nWARNING:datasets.load:Using the latest cached version of the module from /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/df532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01 (last modified on Mon Dec 12 10:45:02 2022) since it couldn't be found locally at c4.\r\n```\r\n\r\n",
"No, you passed `streaming=True` so it streams the data from the Hub.\r\nThis message just shows that you use the cached version of the `c4` **module**, aka the python script that is run to generate the examples from the raw data files.\r\n\r\nMaybe the offline mode should also disable `fsspec`/`aiohttp` HTTP calls in `datasets` and not just the `requests` ones.",
"> This message just shows that you use the cached version of the c4 module\r\n\r\nAh my bad you're right about the module, but it's also using the downloaded & cached c4 dataset. There's no internet during the runs so it wouldn't work otherwise",
"You don't have internet, therefore you get an error while trying to stream ;)"
] | 2022-12-18T11:38:58 | 2022-12-19T16:33:31 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
`streaming_download_manager` seems to disconnect if too many runs access the same underlying dataset 🧐
The code works fine for me if I have ~100 runs in parallel, but disconnects once scaling to 200.
Possibly related:
- https://github.com/huggingface/datasets/pull/3100
- https://github.com/huggingface/datasets/pull/3050
### Steps to reproduce the bug
Running
```python
c4 = datasets.load_dataset("c4", "en", split="train", streaming=True).skip(args.start).take(args.end-args.start)
df = pd.DataFrame(c4, index=None)
```
with different start & end arguments on 200 CPUs in parallel yields:
```
WARNING:datasets.load:Using the latest cached version of the module from /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/df532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01 (last modified on Mon Dec 12 10:45:02 2022) since it couldn't be found locally at c4.
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [1/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [2/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [3/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [4/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [5/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [6/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [7/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [8/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [9/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [10/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [11/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [12/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [13/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [14/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [15/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [16/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [17/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [18/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [19/20]
WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [20/20]
╭───────────────────── Traceback (most recent call last) ──────────────────────╮
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/dec-2022-tasky/inference │
│ _c4.py:68 in <module> │
│ │
│ 65 │ model.eval() │
│ 66 │ │
│ 67 │ c4 = datasets.load_dataset("c4", "en", split="train", streaming=Tru │
│ ❱ 68 │ df = pd.DataFrame(c4, index=None) │
│ 69 │ texts = df["text"].to_list() │
│ 70 │ preds = batch_inference(texts, batch_size=args.batch_size) │
│ 71 │
│ │
│ /opt/cray/pe/python/3.9.12.1/lib/python3.9/site-packages/pandas/core/frame.p │
│ y:684 in __init__ │
│ │
│ 681 │ │ # For data is list-like, or Iterable (will consume into list │
│ 682 │ │ elif is_list_like(data): │
│ 683 │ │ │ if not isinstance(data, (abc.Sequence, ExtensionArray)): │
│ ❱ 684 │ │ │ │ data = list(data) │
│ 685 │ │ │ if len(data) > 0: │
│ 686 │ │ │ │ if is_dataclass(data[0]): │
│ 687 │ │ │ │ │ data = dataclasses_to_dicts(data) │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/iterable_dataset.py:751 in __iter__ │
│ │
│ 748 │ │ yield from ex_iterable.shard_data_sources(shard_idx) │
│ 749 │ │
│ 750 │ def __iter__(self): │
│ ❱ 751 │ │ for key, example in self._iter(): │
│ 752 │ │ │ if self.features: │
│ 753 │ │ │ │ # `IterableDataset` automatically fills missing colum │
│ 754 │ │ │ │ # This is done with `_apply_feature_types`. │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/iterable_dataset.py:741 in _iter │
│ │
│ 738 │ │ │ ex_iterable = self._ex_iterable.shuffle_data_sources(self │
│ 739 │ │ else: │
│ 740 │ │ │ ex_iterable = self._ex_iterable │
│ ❱ 741 │ │ yield from ex_iterable │
│ 742 │ │
│ 743 │ def _iter_shard(self, shard_idx: int): │
│ 744 │ │ if self._shuffling: │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/iterable_dataset.py:617 in __iter__ │
│ │
│ 614 │ │ self.n = n │
│ 615 │ │
│ 616 │ def __iter__(self): │
│ ❱ 617 │ │ yield from islice(self.ex_iterable, self.n) │
│ 618 │ │
│ 619 │ def shuffle_data_sources(self, generator: np.random.Generator) -> │
│ 620 │ │ """Doesn't shuffle the wrapped examples iterable since it wou │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/iterable_dataset.py:594 in __iter__ │
│ │
│ 591 │ │
│ 592 │ def __iter__(self): │
│ 593 │ │ #ex_iterator = iter(self.ex_iterable) │
│ ❱ 594 │ │ yield from islice(self.ex_iterable, self.n, None) │
│ 595 │ │ #for _ in range(self.n): │
│ 596 │ │ # next(ex_iterator) │
│ 597 │ │ #yield from islice(ex_iterator, self.n, None) │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/iterable_dataset.py:106 in __iter__ │
│ │
│ 103 │ │ self.kwargs = kwargs │
│ 104 │ │
│ 105 │ def __iter__(self): │
│ ❱ 106 │ │ yield from self.generate_examples_fn(**self.kwargs) │
│ 107 │ │
│ 108 │ def shuffle_data_sources(self, generator: np.random.Generator) -> │
│ 109 │ │ return ShardShuffledExamplesIterable(self.generate_examples_f │
│ │
│ /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/d │
│ f532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01/c4.py:89 in │
│ _generate_examples │
│ │
│ 86 │ │ for filepath in filepaths: │
│ 87 │ │ │ logger.info("generating examples from = %s", filepath) │
│ 88 │ │ │ with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8" │
│ ❱ 89 │ │ │ │ for line in f: │
│ 90 │ │ │ │ │ if line: │
│ 91 │ │ │ │ │ │ example = json.loads(line) │
│ 92 │ │ │ │ │ │ yield id_, example │
│ │
│ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:313 in read1 │
│ │
│ 310 │ │ │
│ 311 │ │ if size < 0: │
│ 312 │ │ │ size = io.DEFAULT_BUFFER_SIZE │
│ ❱ 313 │ │ return self._buffer.read1(size) │
│ 314 │ │
│ 315 │ def peek(self, n): │
│ 316 │ │ self._check_not_closed() │
│ │
│ /opt/cray/pe/python/3.9.12.1/lib/python3.9/_compression.py:68 in readinto │
│ │
│ 65 │ │
│ 66 │ def readinto(self, b): │
│ 67 │ │ with memoryview(b) as view, view.cast("B") as byte_view: │
│ ❱ 68 │ │ │ data = self.read(len(byte_view)) │
│ 69 │ │ │ byte_view[:len(data)] = data │
│ 70 │ │ return len(data) │
│ 71 │
│ │
│ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:493 in read │
│ │
│ 490 │ │ │ │ self._new_member = False │
│ 491 │ │ │ │
│ 492 │ │ │ # Read a chunk of data from the file │
│ ❱ 493 │ │ │ buf = self._fp.read(io.DEFAULT_BUFFER_SIZE) │
│ 494 │ │ │ │
│ 495 │ │ │ uncompress = self._decompressor.decompress(buf, size) │
│ 496 │ │ │ if self._decompressor.unconsumed_tail != b"": │
│ │
│ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:96 in read │
│ │
│ 93 │ │ │ read = self._read │
│ 94 │ │ │ self._read = None │
│ 95 │ │ │ return self._buffer[read:] + \ │
│ ❱ 96 │ │ │ │ self.file.read(size-self._length+read) │
│ 97 │ │
│ 98 │ def prepend(self, prepend=b''): │
│ 99 │ │ if self._read is None: │
│ │
│ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │
│ lib/python3.9/site-packages/datasets/download/streaming_download_manager.py: │
│ 365 in read_with_retries │
│ │
│ 362 │ │ │ │ ) │
│ 363 │ │ │ │ time.sleep(config.STREAMING_READ_RETRY_INTERVAL) │
│ 364 │ │ else: │
│ ❱ 365 │ │ │ raise ConnectionError("Server Disconnected") │
│ 366 │ │ return out │
│ 367 │ │
│ 368 │ file_obj.read = read_with_retries │
╰──────────────────────────────────────────────────────────────────────────────╯
ConnectionError: Server Disconnected
```
### Expected behavior
There should be no disconnect I think.
### Environment info
```
datasets=2.7.0
Python 3.9.12
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5374/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5374/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5373 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5373/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5373/comments | https://api.github.com/repos/huggingface/datasets/issues/5373/events | https://github.com/huggingface/datasets/pull/5373 | 1,501,484,197 | PR_kwDODunzps5FtRU4 | 5,373 | Simplify skipping | {
"login": "Muennighoff",
"id": 62820084,
"node_id": "MDQ6VXNlcjYyODIwMDg0",
"avatar_url": "https://avatars.githubusercontent.com/u/62820084?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Muennighoff",
"html_url": "https://github.com/Muennighoff",
"followers_url": "https://api.github.com/users/Muennighoff/followers",
"following_url": "https://api.github.com/users/Muennighoff/following{/other_user}",
"gists_url": "https://api.github.com/users/Muennighoff/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Muennighoff/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Muennighoff/subscriptions",
"organizations_url": "https://api.github.com/users/Muennighoff/orgs",
"repos_url": "https://api.github.com/users/Muennighoff/repos",
"events_url": "https://api.github.com/users/Muennighoff/events{/privacy}",
"received_events_url": "https://api.github.com/users/Muennighoff/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-17T17:23:52 | 2022-12-18T21:43:31 | 2022-12-18T21:40:21 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5373",
"html_url": "https://github.com/huggingface/datasets/pull/5373",
"diff_url": "https://github.com/huggingface/datasets/pull/5373.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5373.patch",
"merged_at": "2022-12-18T21:40:21"
} | Was hoping to find a way to speed up the skipping as I'm running into bottlenecks skipping 100M examples on C4 (it takes 12 hours to skip), but didn't find anything better than this small change :(
Maybe there's a way to directly skip whole shards to speed it up? 🧐 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5373/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5373/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5372 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5372/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5372/comments | https://api.github.com/repos/huggingface/datasets/issues/5372/events | https://github.com/huggingface/datasets/pull/5372 | 1,501,377,802 | PR_kwDODunzps5Fs9w5 | 5,372 | Fix streaming pandas.read_excel | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009517 / 0.011353 (-0.001835) | 0.005210 / 0.011008 (-0.005798) | 0.098916 / 0.038508 (0.060408) | 0.036123 / 0.023109 (0.013014) | 0.301564 / 0.275898 (0.025666) | 0.358086 / 0.323480 (0.034606) | 0.008159 / 0.007986 (0.000174) | 0.004122 / 0.004328 (-0.000206) | 0.075899 / 0.004250 (0.071648) | 0.046082 / 0.037052 (0.009030) | 0.302871 / 0.258489 (0.044382) | 0.351162 / 0.293841 (0.057321) | 0.038215 / 0.128546 (-0.090331) | 0.012026 / 0.075646 (-0.063620) | 0.330988 / 0.419271 (-0.088284) | 0.048351 / 0.043533 (0.004818) | 0.291840 / 0.255139 (0.036701) | 0.320387 / 0.283200 (0.037187) | 0.105018 / 0.141683 (-0.036665) | 1.447158 / 1.452155 (-0.004997) | 1.491205 / 1.492716 (-0.001511) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250870 / 0.018006 (0.232863) | 0.562974 / 0.000490 (0.562484) | 0.001789 / 0.000200 (0.001589) | 0.000252 / 0.000054 (0.000197) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028208 / 0.037411 (-0.009203) | 0.110897 / 0.014526 (0.096371) | 0.120394 / 0.176557 (-0.056163) | 0.164980 / 0.737135 (-0.572156) | 0.126283 / 0.296338 (-0.170056) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397922 / 0.215209 (0.182713) | 3.969233 / 2.077655 (1.891578) | 1.766422 / 1.504120 (0.262302) | 1.577503 / 1.541195 (0.036308) | 1.672344 / 1.468490 (0.203854) | 0.695708 / 4.584777 (-3.889069) | 3.770763 / 3.745712 (0.025051) | 3.369592 / 5.269862 (-1.900269) | 1.851122 / 4.565676 (-2.714554) | 0.084063 / 0.424275 (-0.340212) | 0.012156 / 0.007607 (0.004549) | 0.534639 / 0.226044 (0.308594) | 5.021955 / 2.268929 (2.753027) | 2.215438 / 55.444624 (-53.229186) | 1.890459 / 6.876477 (-4.986018) | 2.071361 / 2.142072 (-0.070712) | 0.834623 / 4.805227 (-3.970604) | 0.165588 / 6.500664 (-6.335076) | 0.064336 / 0.075469 (-0.011133) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.205651 / 1.841788 (-0.636136) | 14.916871 / 8.074308 (6.842563) | 14.559495 / 10.191392 (4.368103) | 0.166889 / 0.680424 (-0.513535) | 0.028645 / 0.534201 (-0.505556) | 0.433634 / 0.579283 (-0.145649) | 0.429849 / 0.434364 (-0.004515) | 0.508617 / 0.540337 (-0.031720) | 0.595261 / 1.386936 (-0.791675) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007696 / 0.011353 (-0.003657) | 0.005434 / 0.011008 (-0.005574) | 0.099234 / 0.038508 (0.060725) | 0.033904 / 0.023109 (0.010795) | 0.379181 / 0.275898 (0.103283) | 0.401858 / 0.323480 (0.078379) | 0.006257 / 0.007986 (-0.001729) | 0.004406 / 0.004328 (0.000077) | 0.073174 / 0.004250 (0.068923) | 0.056033 / 0.037052 (0.018981) | 0.379375 / 0.258489 (0.120886) | 0.425928 / 0.293841 (0.132087) | 0.037476 / 0.128546 (-0.091071) | 0.012520 / 0.075646 (-0.063127) | 0.364975 / 0.419271 (-0.054297) | 0.049341 / 0.043533 (0.005808) | 0.370519 / 0.255139 (0.115380) | 0.390585 / 0.283200 (0.107385) | 0.113339 / 0.141683 (-0.028344) | 1.460575 / 1.452155 (0.008421) | 1.564951 / 1.492716 (0.072235) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246217 / 0.018006 (0.228210) | 0.554358 / 0.000490 (0.553869) | 0.000451 / 0.000200 (0.000251) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029557 / 0.037411 (-0.007855) | 0.110472 / 0.014526 (0.095946) | 0.122652 / 0.176557 (-0.053904) | 0.159396 / 0.737135 (-0.577739) | 0.128852 / 0.296338 (-0.167486) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447927 / 0.215209 (0.232718) | 4.448292 / 2.077655 (2.370637) | 2.228874 / 1.504120 (0.724754) | 2.030231 / 1.541195 (0.489036) | 2.116417 / 1.468490 (0.647927) | 0.702713 / 4.584777 (-3.882064) | 3.774063 / 3.745712 (0.028351) | 3.521662 / 5.269862 (-1.748200) | 1.476700 / 4.565676 (-3.088976) | 0.084921 / 0.424275 (-0.339354) | 0.012862 / 0.007607 (0.005255) | 0.559142 / 0.226044 (0.333098) | 5.512233 / 2.268929 (3.243305) | 2.750024 / 55.444624 (-52.694600) | 2.388845 / 6.876477 (-4.487632) | 2.541786 / 2.142072 (0.399714) | 0.842256 / 4.805227 (-3.962971) | 0.168088 / 6.500664 (-6.332576) | 0.064211 / 0.075469 (-0.011258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239001 / 1.841788 (-0.602787) | 15.286345 / 8.074308 (7.212036) | 13.883981 / 10.191392 (3.692589) | 0.186212 / 0.680424 (-0.494212) | 0.018305 / 0.534201 (-0.515896) | 0.420459 / 0.579283 (-0.158824) | 0.421039 / 0.434364 (-0.013325) | 0.487348 / 0.540337 (-0.052989) | 0.587730 / 1.386936 (-0.799206) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n"
] | 2022-12-17T12:58:52 | 2023-01-06T11:50:58 | 2023-01-06T11:43:37 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5372",
"html_url": "https://github.com/huggingface/datasets/pull/5372",
"diff_url": "https://github.com/huggingface/datasets/pull/5372.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5372.patch",
"merged_at": "2023-01-06T11:43:37"
} | This PR fixes `xpandas_read_excel`:
- Support passing a path string, besides a file-like object
- Support passing `use_auth_token`
- First assumes the host server supports HTTP range requests; only if a ValueError is thrown (Cannot seek streaming HTTP file), then it preserves previous behavior (see [#3355](https://github.com/huggingface/datasets/pull/3355)).
Fix https://huggingface.co/datasets/bigbio/meqsum/discussions/1
Fix:
- https://github.com/bigscience-workshop/biomedical/issues/801
Related to:
- #3355 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5372/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5372/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5371 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5371/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5371/comments | https://api.github.com/repos/huggingface/datasets/issues/5371/events | https://github.com/huggingface/datasets/issues/5371 | 1,501,369,036 | I_kwDODunzps5ZfRLM | 5,371 | Add a robustness benchmark dataset for vision | {
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 2067376369,
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request",
"name": "dataset request",
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset"
}
] | open | false | {
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Ccing @nazneenrajani @lvwerra @osanseviero "
] | 2022-12-17T12:35:13 | 2022-12-20T06:21:41 | null | MEMBER | null | null | null | ### Name
ImageNet-C
### Paper
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
### Data
https://github.com/hendrycks/robustness
### Motivation
It's a known fact that vision models are brittle when they meet with slightly corrupted and perturbed data. This is also correlated to the robustness aspects of vision models.
Researchers use different benchmark datasets to evaluate the robustness aspects of vision models. ImageNet-C is one of them.
Having this dataset in 🤗 Datasets would allow researchers to evaluate and study the robustness aspects of vision models. Since the metric associated with these evaluations is top-1 accuracy, researchers should be able to easily take advantage of the evaluation benchmarks on the Hub and perform comprehensive reporting.
ImageNet-C is a large dataset. Once it's in, it can act as a reference and we can also reach out to the authors of the other robustness benchmark datasets in vision, such as ObjectNet, WILDS, Metashift, etc. These datasets cater to different aspects. For example, ObjectNet is related to assessing how well a model performs under sub-population shifts.
Related thread: https://huggingface.slack.com/archives/C036H4A5U8Z/p1669994598060499 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5371/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 2,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5371/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5369 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5369/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5369/comments | https://api.github.com/repos/huggingface/datasets/issues/5369/events | https://github.com/huggingface/datasets/pull/5369 | 1,500,622,276 | PR_kwDODunzps5Fqaj- | 5,369 | Distributed support | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Alright all the tests are passing - this is ready for review",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.015146 / 0.011353 (0.003793) | 0.006683 / 0.011008 (-0.004326) | 0.125994 / 0.038508 (0.087486) | 0.041345 / 0.023109 (0.018235) | 0.378609 / 0.275898 (0.102711) | 0.483139 / 0.323480 (0.159659) | 0.009669 / 0.007986 (0.001684) | 0.005143 / 0.004328 (0.000814) | 0.092015 / 0.004250 (0.087765) | 0.052728 / 0.037052 (0.015676) | 0.397166 / 0.258489 (0.138677) | 0.465820 / 0.293841 (0.171979) | 0.051025 / 0.128546 (-0.077521) | 0.018451 / 0.075646 (-0.057196) | 0.397311 / 0.419271 (-0.021960) | 0.054842 / 0.043533 (0.011309) | 0.391203 / 0.255139 (0.136064) | 0.412743 / 0.283200 (0.129543) | 0.111356 / 0.141683 (-0.030327) | 1.697526 / 1.452155 (0.245372) | 1.795017 / 1.492716 (0.302301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253737 / 0.018006 (0.235731) | 0.583071 / 0.000490 (0.582581) | 0.005958 / 0.000200 (0.005758) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030397 / 0.037411 (-0.007014) | 0.112242 / 0.014526 (0.097716) | 0.138807 / 0.176557 (-0.037749) | 0.209820 / 0.737135 (-0.527316) | 0.139530 / 0.296338 (-0.156808) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.574111 / 0.215209 (0.358902) | 5.623713 / 2.077655 (3.546058) | 2.416880 / 1.504120 (0.912760) | 1.951013 / 1.541195 (0.409819) | 2.124565 / 1.468490 (0.656075) | 1.268854 / 4.584777 (-3.315923) | 5.942368 / 3.745712 (2.196656) | 5.413814 / 5.269862 (0.143952) | 2.931638 / 4.565676 (-1.634038) | 0.135070 / 0.424275 (-0.289205) | 0.014290 / 0.007607 (0.006683) | 0.708384 / 0.226044 (0.482340) | 7.487994 / 2.268929 (5.219065) | 3.074210 / 55.444624 (-52.370414) | 2.380583 / 6.876477 (-4.495893) | 2.522298 / 2.142072 (0.380226) | 1.336741 / 4.805227 (-3.468486) | 0.236761 / 6.500664 (-6.263903) | 0.076592 / 0.075469 (0.001123) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.629415 / 1.841788 (-0.212373) | 19.000640 / 8.074308 (10.926332) | 21.474058 / 10.191392 (11.282666) | 0.231227 / 0.680424 (-0.449197) | 0.046213 / 0.534201 (-0.487988) | 0.565703 / 0.579283 (-0.013580) | 0.662956 / 0.434364 (0.228592) | 0.656475 / 0.540337 (0.116137) | 0.762534 / 1.386936 (-0.624402) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010952 / 0.011353 (-0.000400) | 0.006259 / 0.011008 (-0.004749) | 0.132430 / 0.038508 (0.093922) | 0.037920 / 0.023109 (0.014811) | 0.483565 / 0.275898 (0.207667) | 0.528190 / 0.323480 (0.204710) | 0.008116 / 0.007986 (0.000130) | 0.006768 / 0.004328 (0.002440) | 0.100520 / 0.004250 (0.096270) | 0.055208 / 0.037052 (0.018155) | 0.484672 / 0.258489 (0.226183) | 0.556937 / 0.293841 (0.263096) | 0.057938 / 0.128546 (-0.070609) | 0.020821 / 0.075646 (-0.054826) | 0.430735 / 0.419271 (0.011464) | 0.066317 / 0.043533 (0.022785) | 0.496652 / 0.255139 (0.241513) | 0.502004 / 0.283200 (0.218804) | 0.125403 / 0.141683 (-0.016280) | 1.833396 / 1.452155 (0.381241) | 1.974517 / 1.492716 (0.481800) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269198 / 0.018006 (0.251191) | 0.620314 / 0.000490 (0.619824) | 0.000535 / 0.000200 (0.000335) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032373 / 0.037411 (-0.005039) | 0.130043 / 0.014526 (0.115517) | 0.146217 / 0.176557 (-0.030339) | 0.200187 / 0.737135 (-0.536948) | 0.152839 / 0.296338 (-0.143499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.677478 / 0.215209 (0.462268) | 6.678856 / 2.077655 (4.601201) | 3.025870 / 1.504120 (1.521750) | 2.678196 / 1.541195 (1.137001) | 2.740640 / 1.468490 (1.272150) | 1.237163 / 4.584777 (-3.347614) | 5.752621 / 3.745712 (2.006908) | 3.170435 / 5.269862 (-2.099427) | 2.049174 / 4.565676 (-2.516502) | 0.147663 / 0.424275 (-0.276612) | 0.016107 / 0.007607 (0.008500) | 0.849666 / 0.226044 (0.623621) | 8.395212 / 2.268929 (6.126283) | 3.741120 / 55.444624 (-51.703505) | 3.102926 / 6.876477 (-3.773550) | 3.233655 / 2.142072 (1.091583) | 1.520349 / 4.805227 (-3.284878) | 0.267159 / 6.500664 (-6.233505) | 0.083646 / 0.075469 (0.008177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.640458 / 1.841788 (-0.201330) | 19.043169 / 8.074308 (10.968861) | 22.786126 / 10.191392 (12.594734) | 0.218040 / 0.680424 (-0.462384) | 0.032948 / 0.534201 (-0.501253) | 0.569574 / 0.579283 (-0.009710) | 0.658746 / 0.434364 (0.224382) | 0.650501 / 0.540337 (0.110164) | 0.730588 / 1.386936 (-0.656348) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n",
"just added a note :)"
] | 2022-12-16T17:43:47 | 2023-01-16T13:36:12 | 2023-01-16T13:33:32 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5369",
"html_url": "https://github.com/huggingface/datasets/pull/5369",
"diff_url": "https://github.com/huggingface/datasets/pull/5369.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5369.patch",
"merged_at": "2023-01-16T13:33:32"
} | To split your dataset across your training nodes, you can use the new [`datasets.distributed.split_dataset_by_node`]:
```python
import os
from datasets.distributed import split_dataset_by_node
ds = split_dataset_by_node(ds, rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"]))
```
This works for both map-style datasets and iterable datasets.
The dataset is split for the node at rank `rank` in a pool of nodes of size `world_size`.
For map-style datasets:
Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset.
For iterable datasets:
If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`),
then the shards are evenly assigned across the nodes, which is the most optimized.
Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.
This can also be combined with a `torch.utils.data.DataLoader` if you want each node to use multiple workers to load the data.
This also supports shuffling. At each epoch, the iterable dataset shards are reshuffled across all the nodes - you just have to call `iterable_ds.set_epoch(epoch_number)`.
TODO:
- [x] docs for usage in PyTorch
- [x] unit tests
- [x] integration tests with torch.distributed.launch
Related to https://github.com/huggingface/transformers/issues/20770
Close https://github.com/huggingface/datasets/issues/5360 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5369/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5369/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5368 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5368/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5368/comments | https://api.github.com/repos/huggingface/datasets/issues/5368/events | https://github.com/huggingface/datasets/pull/5368 | 1,500,322,973 | PR_kwDODunzps5FpZyx | 5,368 | Align remove columns behavior and input dict mutation in `map` with previous behavior | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-16T14:28:47 | 2022-12-16T16:28:08 | 2022-12-16T16:25:12 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5368",
"html_url": "https://github.com/huggingface/datasets/pull/5368",
"diff_url": "https://github.com/huggingface/datasets/pull/5368.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5368.patch",
"merged_at": "2022-12-16T16:25:12"
} | Align the `remove_columns` behavior and input dict mutation in `map` with the behavior before https://github.com/huggingface/datasets/pull/5252. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5368/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5368/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5367 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5367/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5367/comments | https://api.github.com/repos/huggingface/datasets/issues/5367/events | https://github.com/huggingface/datasets/pull/5367 | 1,499,174,749 | PR_kwDODunzps5FlevK | 5,367 | Fix remove columns from lazy dict | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-15T22:04:12 | 2022-12-15T22:27:53 | 2022-12-15T22:24:50 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5367",
"html_url": "https://github.com/huggingface/datasets/pull/5367",
"diff_url": "https://github.com/huggingface/datasets/pull/5367.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5367.patch",
"merged_at": "2022-12-15T22:24:50"
} | This was introduced in https://github.com/huggingface/datasets/pull/5252 and causing the transformers CI to break: https://app.circleci.com/pipelines/github/huggingface/transformers/53886/workflows/522faf2e-a053-454c-94f8-a617fde33393/jobs/648597
Basically this code should return a dataset with only one column:
```python
from datasets import *
ds = Dataset.from_dict({"a": range(5)})
def f(x):
x["b"] = x["a"]
return x
ds = ds.map(f, remove_columns=["a"])
assert ds.column_names == ["b"]
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5367/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5367/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5366 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5366/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5366/comments | https://api.github.com/repos/huggingface/datasets/issues/5366/events | https://github.com/huggingface/datasets/pull/5366 | 1,498,530,851 | PR_kwDODunzps5FjSFl | 5,366 | ExamplesIterable fixes | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-15T14:23:05 | 2022-12-15T14:44:47 | 2022-12-15T14:41:45 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5366",
"html_url": "https://github.com/huggingface/datasets/pull/5366",
"diff_url": "https://github.com/huggingface/datasets/pull/5366.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5366.patch",
"merged_at": "2022-12-15T14:41:45"
} | fix typing and ExamplesIterable.shard_data_sources | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5366/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5366/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5365 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5365/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5365/comments | https://api.github.com/repos/huggingface/datasets/issues/5365/events | https://github.com/huggingface/datasets/pull/5365 | 1,498,422,466 | PR_kwDODunzps5Fi6ZD | 5,365 | fix: image array should support other formats than uint8 | {
"login": "vigsterkr",
"id": 30353,
"node_id": "MDQ6VXNlcjMwMzUz",
"avatar_url": "https://avatars.githubusercontent.com/u/30353?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vigsterkr",
"html_url": "https://github.com/vigsterkr",
"followers_url": "https://api.github.com/users/vigsterkr/followers",
"following_url": "https://api.github.com/users/vigsterkr/following{/other_user}",
"gists_url": "https://api.github.com/users/vigsterkr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vigsterkr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vigsterkr/subscriptions",
"organizations_url": "https://api.github.com/users/vigsterkr/orgs",
"repos_url": "https://api.github.com/users/vigsterkr/repos",
"events_url": "https://api.github.com/users/vigsterkr/events{/privacy}",
"received_events_url": "https://api.github.com/users/vigsterkr/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Hi, thanks for working on this! \r\n\r\nI agree that the current type-casting (always cast to `np.uint8` as Tensorflow Datasets does) is a bit too harsh. However, not all dtypes are supported in `Image.fromarray` (e.g. np.int64), so we need to treat these with special care (e.g. downcast to the closest supported dtype, maybe with warnings to let the user know what's happening).\r\n\r\nPS: To avoid the CI failures, we need to handle two more instances of the cast to `np.uint8` (both are in the `image.py` file).",
"I've made some changes to the PR.\r\n\r\nNow the encoding procedure behaves as follows:\r\n* for multi-channel arrays: if their dtype is `int`/`uint`, cast to np.uint8 (the only supported dtype for multi-channel arrays), throw an error otherwise\r\n* if the array dtype is of valid kind (\"u\", \"i\", \"f\", ...):\r\n * don't do anything if Pillow natively supports it\r\n * otherwise, downcast until it becomes compatible with Pillow\r\n* raise an error if nothing from above is true",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009537 / 0.011353 (-0.001816) | 0.004946 / 0.011008 (-0.006062) | 0.100552 / 0.038508 (0.062043) | 0.035119 / 0.023109 (0.012009) | 0.295989 / 0.275898 (0.020091) | 0.361326 / 0.323480 (0.037846) | 0.007608 / 0.007986 (-0.000378) | 0.004151 / 0.004328 (-0.000177) | 0.077301 / 0.004250 (0.073050) | 0.042921 / 0.037052 (0.005869) | 0.304804 / 0.258489 (0.046315) | 0.345934 / 0.293841 (0.052093) | 0.038987 / 0.128546 (-0.089559) | 0.012055 / 0.075646 (-0.063591) | 0.334035 / 0.419271 (-0.085236) | 0.052679 / 0.043533 (0.009146) | 0.291700 / 0.255139 (0.036561) | 0.335423 / 0.283200 (0.052223) | 0.107002 / 0.141683 (-0.034680) | 1.516780 / 1.452155 (0.064625) | 1.514137 / 1.492716 (0.021420) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.014719 / 0.018006 (-0.003287) | 0.545251 / 0.000490 (0.544761) | 0.004719 / 0.000200 (0.004519) | 0.000275 / 0.000054 (0.000220) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026633 / 0.037411 (-0.010779) | 0.106911 / 0.014526 (0.092385) | 0.120258 / 0.176557 (-0.056299) | 0.156196 / 0.737135 (-0.580940) | 0.123132 / 0.296338 (-0.173207) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398018 / 0.215209 (0.182809) | 3.973992 / 2.077655 (1.896337) | 1.776436 / 1.504120 (0.272316) | 1.579036 / 1.541195 (0.037841) | 1.643345 / 1.468490 (0.174855) | 0.692408 / 4.584777 (-3.892369) | 3.757243 / 3.745712 (0.011531) | 3.226212 / 5.269862 (-2.043649) | 1.797845 / 4.565676 (-2.767831) | 0.085878 / 0.424275 (-0.338398) | 0.012451 / 0.007607 (0.004844) | 0.509755 / 0.226044 (0.283711) | 5.029035 / 2.268929 (2.760107) | 2.255507 / 55.444624 (-53.189117) | 1.892868 / 6.876477 (-4.983609) | 1.900017 / 2.142072 (-0.242055) | 0.853965 / 4.805227 (-3.951263) | 0.167268 / 6.500664 (-6.333396) | 0.062796 / 0.075469 (-0.012673) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.183361 / 1.841788 (-0.658427) | 15.103797 / 8.074308 (7.029489) | 14.112931 / 10.191392 (3.921539) | 0.167234 / 0.680424 (-0.513190) | 0.029487 / 0.534201 (-0.504713) | 0.444121 / 0.579283 (-0.135162) | 0.437821 / 0.434364 (0.003457) | 0.544900 / 0.540337 (0.004562) | 0.642142 / 1.386936 (-0.744794) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007078 / 0.011353 (-0.004275) | 0.004983 / 0.011008 (-0.006026) | 0.097106 / 0.038508 (0.058598) | 0.033747 / 0.023109 (0.010637) | 0.382030 / 0.275898 (0.106132) | 0.410193 / 0.323480 (0.086713) | 0.006658 / 0.007986 (-0.001327) | 0.005358 / 0.004328 (0.001029) | 0.073878 / 0.004250 (0.069628) | 0.049292 / 0.037052 (0.012240) | 0.384053 / 0.258489 (0.125564) | 0.427826 / 0.293841 (0.133985) | 0.036780 / 0.128546 (-0.091766) | 0.012469 / 0.075646 (-0.063178) | 0.332989 / 0.419271 (-0.086283) | 0.059531 / 0.043533 (0.015998) | 0.378431 / 0.255139 (0.123292) | 0.402672 / 0.283200 (0.119473) | 0.110782 / 0.141683 (-0.030901) | 1.484570 / 1.452155 (0.032416) | 1.608081 / 1.492716 (0.115365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232356 / 0.018006 (0.214350) | 0.545648 / 0.000490 (0.545158) | 0.003113 / 0.000200 (0.002913) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028138 / 0.037411 (-0.009273) | 0.110786 / 0.014526 (0.096260) | 0.123615 / 0.176557 (-0.052941) | 0.165773 / 0.737135 (-0.571362) | 0.126401 / 0.296338 (-0.169937) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440518 / 0.215209 (0.225309) | 4.393821 / 2.077655 (2.316166) | 2.295479 / 1.504120 (0.791359) | 2.116679 / 1.541195 (0.575485) | 2.215561 / 1.468490 (0.747071) | 0.722343 / 4.584777 (-3.862434) | 3.783360 / 3.745712 (0.037647) | 3.302242 / 5.269862 (-1.967620) | 1.681535 / 4.565676 (-2.884142) | 0.085738 / 0.424275 (-0.338537) | 0.012373 / 0.007607 (0.004766) | 0.540499 / 0.226044 (0.314455) | 5.384915 / 2.268929 (3.115986) | 2.766346 / 55.444624 (-52.678279) | 2.451994 / 6.876477 (-4.424483) | 2.505720 / 2.142072 (0.363647) | 0.833006 / 4.805227 (-3.972221) | 0.168206 / 6.500664 (-6.332458) | 0.064971 / 0.075469 (-0.010498) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253499 / 1.841788 (-0.588289) | 15.381840 / 8.074308 (7.307532) | 13.519493 / 10.191392 (3.328101) | 0.165559 / 0.680424 (-0.514865) | 0.017682 / 0.534201 (-0.516519) | 0.422248 / 0.579283 (-0.157035) | 0.422750 / 0.434364 (-0.011614) | 0.524546 / 0.540337 (-0.015792) | 0.626956 / 1.386936 (-0.759980) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d9a8d8af0961c473103516dd018e2d34d23cea02 \"CML watermark\")\n"
] | 2022-12-15T13:17:50 | 2023-01-26T18:46:45 | 2023-01-26T18:39:36 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5365",
"html_url": "https://github.com/huggingface/datasets/pull/5365",
"diff_url": "https://github.com/huggingface/datasets/pull/5365.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5365.patch",
"merged_at": "2023-01-26T18:39:36"
} | Currently images that are provided as ndarrays, but not in `uint8` format are going to loose data. Namely, for example in a depth image where the data is in float32 format, the type-casting to uint8 will basically make the whole image blank.
`PIL.Image.fromarray` [does support mode `F`](https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes).
although maybe some further metadata could be supplied via the [Image](https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/main_classes#datasets.Image) object. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5365/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5365/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5364 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5364/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5364/comments | https://api.github.com/repos/huggingface/datasets/issues/5364/events | https://github.com/huggingface/datasets/pull/5364 | 1,498,360,628 | PR_kwDODunzps5Fiss1 | 5,364 | Support for writing arrow files directly with BeamWriter | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5364). All of your documentation changes will be reflected on that endpoint.",
"Deleting `BeamPipeline` and `upload_local_to_remote` would break the existing Beam scripts, so I reverted this change.\r\n\r\nFrom what I understand, we need these components in our scripts for the pattern:\r\n```python\r\nif not pipeline.is_local():\r\n dl_manager.ship_files_with_pipeline()\r\n```\r\n\r\nI plan to address this in a subsequent PR by (implicitly) downloading the files directly to the remote storage of the non-local runners.",
"I got `AttributeError: 'Pipeline' object has no attribute 'is_local'` when running\r\n```python\r\nload_dataset(\"wikipedia\", language=\"af\", date=\"20230101\", beam_runner=\"DirectRunner\")\r\n```\r\n```python\r\n~/.cache/huggingface/modules/datasets_modules/datasets/wikipedia/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559/wikipedia.py in _split_generators(self, dl_manager, pipeline)\r\n 965 # Use dictionary since testing mock always returns the same result.\r\n 966 downloaded_files = dl_manager.download({\"xml\": xml_urls})\r\n--> 967 if not pipeline.is_local():\r\n 968 downloaded_files = dl_manager.ship_files_with_pipeline(downloaded_files, pipeline)\r\n 969 \r\n\r\nAttributeError: 'Pipeline' object has no attribute 'is_local'\r\n```",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010649 / 0.011353 (-0.000704) | 0.006116 / 0.011008 (-0.004892) | 0.115568 / 0.038508 (0.077060) | 0.041704 / 0.023109 (0.018595) | 0.360459 / 0.275898 (0.084561) | 0.425679 / 0.323480 (0.102200) | 0.008992 / 0.007986 (0.001006) | 0.006321 / 0.004328 (0.001993) | 0.090223 / 0.004250 (0.085973) | 0.049877 / 0.037052 (0.012824) | 0.382447 / 0.258489 (0.123958) | 0.406567 / 0.293841 (0.112726) | 0.045138 / 0.128546 (-0.083409) | 0.014203 / 0.075646 (-0.061444) | 0.388897 / 0.419271 (-0.030375) | 0.057176 / 0.043533 (0.013644) | 0.358729 / 0.255139 (0.103590) | 0.386086 / 0.283200 (0.102887) | 0.119221 / 0.141683 (-0.022462) | 1.731574 / 1.452155 (0.279419) | 1.744103 / 1.492716 (0.251386) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230380 / 0.018006 (0.212373) | 0.493690 / 0.000490 (0.493201) | 0.005150 / 0.000200 (0.004950) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030771 / 0.037411 (-0.006641) | 0.123196 / 0.014526 (0.108671) | 0.134097 / 0.176557 (-0.042459) | 0.190442 / 0.737135 (-0.546693) | 0.138416 / 0.296338 (-0.157923) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469763 / 0.215209 (0.254554) | 4.682847 / 2.077655 (2.605192) | 2.076717 / 1.504120 (0.572597) | 1.843721 / 1.541195 (0.302527) | 1.923486 / 1.468490 (0.454996) | 0.817680 / 4.584777 (-3.767097) | 4.482409 / 3.745712 (0.736697) | 3.898695 / 5.269862 (-1.371167) | 2.078291 / 4.565676 (-2.487386) | 0.100285 / 0.424275 (-0.323990) | 0.014761 / 0.007607 (0.007154) | 0.611261 / 0.226044 (0.385217) | 5.926919 / 2.268929 (3.657990) | 2.685080 / 55.444624 (-52.759544) | 2.232179 / 6.876477 (-4.644298) | 2.305576 / 2.142072 (0.163504) | 0.993729 / 4.805227 (-3.811498) | 0.194491 / 6.500664 (-6.306173) | 0.074176 / 0.075469 (-0.001293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.388592 / 1.841788 (-0.453196) | 17.146945 / 8.074308 (9.072636) | 15.989570 / 10.191392 (5.798178) | 0.200147 / 0.680424 (-0.480277) | 0.034009 / 0.534201 (-0.500192) | 0.517531 / 0.579283 (-0.061753) | 0.533966 / 0.434364 (0.099602) | 0.637024 / 0.540337 (0.096687) | 0.749166 / 1.386936 (-0.637770) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008240 / 0.011353 (-0.003113) | 0.006139 / 0.011008 (-0.004869) | 0.112258 / 0.038508 (0.073750) | 0.039001 / 0.023109 (0.015891) | 0.449467 / 0.275898 (0.173569) | 0.483422 / 0.323480 (0.159942) | 0.006176 / 0.007986 (-0.001810) | 0.006340 / 0.004328 (0.002012) | 0.083105 / 0.004250 (0.078855) | 0.047002 / 0.037052 (0.009950) | 0.458564 / 0.258489 (0.200075) | 0.513704 / 0.293841 (0.219863) | 0.041359 / 0.128546 (-0.087188) | 0.014515 / 0.075646 (-0.061131) | 0.392599 / 0.419271 (-0.026673) | 0.055222 / 0.043533 (0.011690) | 0.446956 / 0.255139 (0.191817) | 0.469194 / 0.283200 (0.185994) | 0.118212 / 0.141683 (-0.023471) | 1.682647 / 1.452155 (0.230492) | 1.780076 / 1.492716 (0.287360) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259124 / 0.018006 (0.241117) | 0.507559 / 0.000490 (0.507069) | 0.001080 / 0.000200 (0.000880) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031969 / 0.037411 (-0.005442) | 0.126997 / 0.014526 (0.112471) | 0.139593 / 0.176557 (-0.036963) | 0.182735 / 0.737135 (-0.554400) | 0.145871 / 0.296338 (-0.150468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.530894 / 0.215209 (0.315685) | 5.284979 / 2.077655 (3.207324) | 2.592886 / 1.504120 (1.088766) | 2.407202 / 1.541195 (0.866007) | 2.434079 / 1.468490 (0.965589) | 0.829382 / 4.584777 (-3.755395) | 4.481710 / 3.745712 (0.735998) | 3.912280 / 5.269862 (-1.357581) | 1.962291 / 4.565676 (-2.603386) | 0.101840 / 0.424275 (-0.322435) | 0.014528 / 0.007607 (0.006921) | 0.639956 / 0.226044 (0.413911) | 6.414685 / 2.268929 (4.145756) | 3.240290 / 55.444624 (-52.204334) | 2.795208 / 6.876477 (-4.081269) | 2.912122 / 2.142072 (0.770050) | 0.992188 / 4.805227 (-3.813039) | 0.200701 / 6.500664 (-6.299964) | 0.074235 / 0.075469 (-0.001234) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455075 / 1.841788 (-0.386712) | 17.186669 / 8.074308 (9.112361) | 15.404357 / 10.191392 (5.212965) | 0.168267 / 0.680424 (-0.512157) | 0.020774 / 0.534201 (-0.513427) | 0.502603 / 0.579283 (-0.076680) | 0.506500 / 0.434364 (0.072136) | 0.624245 / 0.540337 (0.083907) | 0.735529 / 1.386936 (-0.651407) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n"
] | 2022-12-15T12:38:05 | 2023-01-25T15:49:25 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5364",
"html_url": "https://github.com/huggingface/datasets/pull/5364",
"diff_url": "https://github.com/huggingface/datasets/pull/5364.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5364.patch",
"merged_at": null
} | Make it possible to write Arrow files directly with `BeamWriter` rather than converting from Parquet to Arrow, which is sub-optimal, especially for big datasets for which Beam is primarily used. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5364/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5364/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5363 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5363/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5363/comments | https://api.github.com/repos/huggingface/datasets/issues/5363/events | https://github.com/huggingface/datasets/issues/5363 | 1,498,171,317 | I_kwDODunzps5ZTEe1 | 5,363 | Dataset.from_generator() crashes on simple example | {
"login": "villmow",
"id": 2743060,
"node_id": "MDQ6VXNlcjI3NDMwNjA=",
"avatar_url": "https://avatars.githubusercontent.com/u/2743060?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/villmow",
"html_url": "https://github.com/villmow",
"followers_url": "https://api.github.com/users/villmow/followers",
"following_url": "https://api.github.com/users/villmow/following{/other_user}",
"gists_url": "https://api.github.com/users/villmow/gists{/gist_id}",
"starred_url": "https://api.github.com/users/villmow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/villmow/subscriptions",
"organizations_url": "https://api.github.com/users/villmow/orgs",
"repos_url": "https://api.github.com/users/villmow/repos",
"events_url": "https://api.github.com/users/villmow/events{/privacy}",
"received_events_url": "https://api.github.com/users/villmow/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2022-12-15T10:21:28 | 2022-12-15T11:51:33 | 2022-12-15T11:51:33 | NONE | null | null | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5363/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5363/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5362 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5362/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5362/comments | https://api.github.com/repos/huggingface/datasets/issues/5362/events | https://github.com/huggingface/datasets/issues/5362 | 1,497,643,744 | I_kwDODunzps5ZRDrg | 5,362 | Run 'GPT-J' failure due to download dataset fail (' ConnectionError: Couldn't reach http://eaidata.bmk.sh/data/enron_emails.jsonl.zst ' ) | {
"login": "shaoyuta",
"id": 52023469,
"node_id": "MDQ6VXNlcjUyMDIzNDY5",
"avatar_url": "https://avatars.githubusercontent.com/u/52023469?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shaoyuta",
"html_url": "https://github.com/shaoyuta",
"followers_url": "https://api.github.com/users/shaoyuta/followers",
"following_url": "https://api.github.com/users/shaoyuta/following{/other_user}",
"gists_url": "https://api.github.com/users/shaoyuta/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shaoyuta/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shaoyuta/subscriptions",
"organizations_url": "https://api.github.com/users/shaoyuta/orgs",
"repos_url": "https://api.github.com/users/shaoyuta/repos",
"events_url": "https://api.github.com/users/shaoyuta/events{/privacy}",
"received_events_url": "https://api.github.com/users/shaoyuta/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @shaoyuta.\r\n\r\nWe have checked and yes, apparently there is an issue with the server hosting the data of the \"enron_emails\" subset of \"the_pile\" dataset: http://eaidata.bmk.sh/data/enron_emails.jsonl.zst\r\nIt seems to be down: The connection has timed out.\r\n\r\nPlease note that at the Hugging Face Hub, we are not hosting their data for this dataset, but only a script that downloads the data from their servers. We are updating the data URL to one in another server.\r\n\r\nIn the meantime, please note that you can train your model in the entire \"the_pile\" dataset, by passing the \"all\" config (instead of the \"enron_emails\" one).",
"We have transferred this issue to the corresponding dataset Community tab: https://huggingface.co/datasets/the_pile/discussions/2\r\n\r\nPlease, follow the updates there."
] | 2022-12-15T01:23:03 | 2022-12-15T07:45:54 | 2022-12-15T07:45:53 | NONE | null | null | null | ### Describe the bug
Run model "GPT-J" with dataset "the_pile" fail.
The fail out is as below:
![image](https://user-images.githubusercontent.com/52023469/207750127-118d9896-35f4-4ee9-90d4-d0ab9aae9c74.png)
Looks like which is due to "http://eaidata.bmk.sh/data/enron_emails.jsonl.zst" unreachable .
### Steps to reproduce the bug
Steps to reproduce this issue:
git clone https://github.com/huggingface/transformers
cd transformers
python examples/pytorch/language-modeling/run_clm.py --model_name_or_path EleutherAI/gpt-j-6B --dataset_name the_pile --dataset_config_name enron_emails --do_eval --output_dir /tmp/output --overwrite_output_dir
### Expected behavior
This issue looks like due to "http://eaidata.bmk.sh/data/enron_emails.jsonl.zst " couldn't be reached.
Is there another way to download the dataset "the_pile" ?
Is there another way to cache the dataset "the_pile" but not let the hg to download it when runtime ?
### Environment info
huggingface_hub version: 0.11.1
Platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35
Python version: 3.9.12
Running in iPython ?: No
Running in notebook ?: No
Running in Google Colab ?: No
Token path ?: /home/taosy/.huggingface/token
Has saved token ?: False
Configured git credential helpers:
FastAI: N/A
Tensorflow: N/A
Torch: N/A
Jinja2: N/A
Graphviz: N/A
Pydot: N/A | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5362/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5362/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5361 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5361/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5361/comments | https://api.github.com/repos/huggingface/datasets/issues/5361/events | https://github.com/huggingface/datasets/issues/5361 | 1,497,153,889 | I_kwDODunzps5ZPMFh | 5,361 | How concatenate `Audio` elements using batch mapping | {
"login": "bayartsogt-ya",
"id": 43239645,
"node_id": "MDQ6VXNlcjQzMjM5NjQ1",
"avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bayartsogt-ya",
"html_url": "https://github.com/bayartsogt-ya",
"followers_url": "https://api.github.com/users/bayartsogt-ya/followers",
"following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}",
"gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions",
"organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs",
"repos_url": "https://api.github.com/users/bayartsogt-ya/repos",
"events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}",
"received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"You can try something like this ?\r\n```python\r\ndef mapper_function(batch):\r\n return {\"concatenated_audio\": [np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]])]}\r\n\r\ndataset = dataset.map(\r\n mapper_function,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n```",
"Thanks for the snippet!\r\n\r\nOne more question. I wonder why those two mappers are working so different that one taking 4 sec while other taking over 1 min :\r\n\r\n```python\r\n%%time\r\ndef mapper_function1(batch):\r\n # list_audio\r\n return {\r\n \"audio\": [\r\n {\r\n \"array\": np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]]),\r\n \"sampling_rate\": 16_000,\r\n }\r\n ]\r\n }\r\n\r\ndataset.map(\r\n mapper_function1,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n\r\n# 100%\r\n# 135/135 [01:13<00:00, 1.93ba/s]\r\n# CPU times: user 1min 10s, sys: 3.21 s, total: 1min 13s\r\n# Wall time: 1min 13s\r\n# Dataset({\r\n# features: ['audio'],\r\n# num_rows: 135\r\n# })\r\n\r\n# --------------------------------\r\n%%time\r\ndef mapper_function2(batch):\r\n # list_audio\r\n return {\"audio\": [np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]])]}\r\n\r\ndataset.map(\r\n mapper_function2,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n\r\n# 100%\r\n# 135/135 [00:03<00:00, 40.69ba/s]\r\n# CPU times: user 1.88 s, sys: 1.48 s, total: 3.36 s\r\n# Wall time: 4.8 s\r\n# Dataset({\r\n# features: ['audio'],\r\n# num_rows: 135\r\n# })\r\n```\r\n",
"In the first one you get a dataset with an Audio type, and in the second one you get a dataset with a sequence of floats type.\r\n\r\nThe Audio type encodes the data as WAV to save disk space, so it takes more time to create.\r\nThe Audio type is automatically inferred because you modify the column \"audio\" which was already an Audio type. If you name it to something else, type inference will use a type struct with array and sampling rate fields."
] | 2022-12-14T18:13:55 | 2022-12-15T10:53:28 | null | NONE | null | null | null | ### Describe the bug
I am trying to do concatenate audios in a dataset e.g. `google/fleurs`.
```python
print(dataset)
# Dataset({
# features: ['path', 'audio'],
# num_rows: 24
# })
def mapper_function(batch):
# to merge every 3 audio
# np.concatnate(audios[i: i+3]) for i in range(i, len(batch), 3)
dataset = dataset.map(mapper_function, batch=True, batch_size=24)
print(dataset)
# Expected output:
# Dataset({
# features: ['path', 'audio'],
# num_rows: 8
# })
```
I tried to construct `result={}` dictionary inside the mapper function, I just found it will not work because it needs `byte` also needed :((
I'd appreciate if your share any use cases similar to my problem or any solutions really. Thanks!
cc: @lhoestq
### Steps to reproduce the bug
1. load audio dataset
2. try to merge every k audios and return as one
### Expected behavior
Merged dataset with a fewer rows. If we merge every 3 rows, then `n // 3` number of examples.
### Environment info
- `datasets` version: 2.1.0
- Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- PyArrow version: 8.0.0
- Pandas version: 1.3.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5361/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5361/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5360 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5360/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5360/comments | https://api.github.com/repos/huggingface/datasets/issues/5360/events | https://github.com/huggingface/datasets/issues/5360 | 1,496,947,177 | I_kwDODunzps5ZOZnp | 5,360 | IterableDataset returns duplicated data using PyTorch DDP | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"If you use huggingface trainer, you will find the trainer has wrapped a `IterableDatasetShard` to avoid duplication.\r\nSee:\r\nhttps://github.com/huggingface/transformers/blob/dfd818420dcbad68e05a502495cf666d338b2bfb/src/transformers/trainer.py#L835\r\n",
"If you want to support it by datasets natively, maybe we also need to change the code in `transformers` ?",
"Opened https://github.com/huggingface/transformers/issues/20770 to discuss this :)",
"Maybe something like this then ?\r\n```python\r\nfrom datasets.distributed import split_dataset_by_node\r\nds = split_dataset_by_node(ds, rank=rank, world_size=world_size)\r\n```\r\n\r\nFor map-style datasets the implementation is trivial (it can simply use `.shard()`).\r\n\r\nFor iterable datasets we would need to implement a new ExamplesIterable that would only iterate on a subset of the (possibly shuffled and re-shuffled after each epoch) list of shards, based on the rank and world size.",
"My plan is to skip examples by default to not end up with duplicates.\r\n\r\nAnd if a dataset has a number of shards that is a factor of the world size, then I'd make it more optimized by distributing the shards evenly across nodes instead.",
"Opened a PR here: https://github.com/huggingface/datasets/pull/5369\r\n\r\nfeel free to play with it and share your feedbacks :)",
"@lhoestq I add shuffle after split_dataset_by_node, duplicated data still exist. \r\nFor example, we have a directory named `mock_pretraining_data`, which has three files, `part-00000`, `part-00002`,`part-00002`. \r\nText in `part-00000` is like this: \r\n{\"id\": 0}\r\n{\"id\": 1}\r\n{\"id\": 2}\r\n{\"id\": 3}\r\n{\"id\": 4}\r\n{\"id\": 5}\r\n{\"id\": 6}\r\n{\"id\": 7}\r\n{\"id\": 8}\r\n{\"id\": 9}\r\n\r\nand `part-00001`\r\n{\"id\": 10}\r\n{\"id\": 11}\r\n{\"id\": 12}\r\n{\"id\": 13}\r\n{\"id\": 14}\r\n{\"id\": 15}\r\n{\"id\": 16}\r\n{\"id\": 17}\r\n{\"id\": 18}\r\n{\"id\": 19}\r\n\r\nand `part-00002`\r\n{\"id\": 20}\r\n{\"id\": 21}\r\n{\"id\": 22}\r\n{\"id\": 23}\r\n{\"id\": 24}\r\n{\"id\": 25}\r\n{\"id\": 26}\r\n{\"id\": 27}\r\n{\"id\": 28}\r\n{\"id\": 29}\r\n\r\nAnd code in `test_dist.py` like this,\r\n```python\r\nimport torch\r\nfrom torch.utils.data import Dataset, DataLoader\r\nfrom datasets import load_dataset\r\nimport os\r\nfrom transformers import AutoTokenizer, NezhaForPreTraining\r\nfrom transformers import AdamW, get_linear_schedule_with_warmup\r\nimport torch.nn.functional as F\r\nimport torch.nn as nn\r\nimport torch.distributed as dist\r\nfrom datasets.distributed import split_dataset_by_node\r\nfrom torch.nn.parallel import DistributedDataParallel as DDP\r\n\r\nos.environ[\"CUDA_VISIBLE_DEVICES\"] = '5,6,7'\r\n\r\ndist.init_process_group(\"nccl\")\r\nlocal_rank = int(os.environ['LOCAL_RANK'])\r\nworld_size = torch.distributed.get_world_size()\r\ndevice = torch.device('cuda', local_rank)\r\ndata_dir = './'\r\n\r\ndef load_trainset(train_path):\r\n dataset = load_dataset('json', data_dir=os.path.join(data_dir, train_path), split='train', streaming=True)\r\n return dataset\r\n\r\ndef collate_fn(examples):\r\n input_ids = []\r\n for example in examples:\r\n input_ids.append(example['id'])\r\n return torch.LongTensor(input_ids).to(device)\r\n\r\n\r\ndataset = load_trainset('mock_pretraining_data')\r\ndataset = split_dataset_by_node(dataset, rank=local_rank, world_size=world_size).shuffle(buffer_size=512)\r\n# train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)\r\nbatch_size = 3\r\nprint('batch_size: {}'.format(batch_size))\r\ntrain_dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)\r\n\r\nfor x in train_dataloader:\r\n print({'rank': local_rank, 'id': x})\r\n```\r\nrun `python -m torch.distributed.launch --nproc_per_node=3 test_dist.py`\r\nThe output is\r\n```\r\n{'rank': 1, 'id': tensor([12, 15, 14], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([16, 10, 18], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([17, 13, 19], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([11], device='cuda:1')}\r\n{'rank': 0, 'id': tensor([0, 2, 9], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([4, 8, 1], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([5, 3, 6], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([7], device='cuda:0')}\r\n{'rank': 2, 'id': tensor([13, 15, 14], device='cuda:2')}\r\n{'rank': 2, 'id': tensor([19, 17, 18], device='cuda:2')}\r\n{'rank': 2, 'id': tensor([12, 16, 11], device='cuda:2')}\r\n{'rank': 2, 'id': tensor([10], device='cuda:2')}\r\n```\r\n`part-00001` is loaded twice, `part-00002` isn't loaded.\r\n\r\nIf I run `python -m torch.distributed.launch --nproc_per_node=2 test_dist.py`\r\nThe output is weirder,many numbers appear twice\r\n```\r\n{'rank': 1, 'id': tensor([26, 8, 13], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([22, 19, 20], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([12, 28, 11], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([24, 2, 14], device='cuda:1')}\r\n{'rank': 1, 'id': tensor([ 6, 27, 3], device='cuda:1')}\r\n{'rank': 0, 'id': tensor([ 8, 25, 1], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([20, 4, 12], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([14, 29, 5], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([ 7, 18, 23], device='cuda:0')}\r\n{'rank': 0, 'id': tensor([19, 17, 11], device='cuda:0')}\r\n``` ",
"Hi ! Thanks for reporting, you need to pass `seed=` to `shuffle()` or the processes won't use the same seed to shuffle the shards order before assigning each shard to a node.\r\n\r\nThe issue is that the workers are not using the same seed to shuffle the shards before splitting the shards list by node.",
"Opened https://github.com/huggingface/datasets/issues/5696"
] | 2022-12-14T16:06:19 | 2023-04-03T10:21:52 | 2023-01-16T13:33:33 | MEMBER | null | null | null | As mentioned in https://github.com/huggingface/datasets/issues/3423, when using PyTorch DDP the dataset ends up with duplicated data. We already check for the PyTorch `worker_info` for single node, but we should also check for `torch.distributed.get_world_size()` and `torch.distributed.get_rank()` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5360/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5360/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5359 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5359/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5359/comments | https://api.github.com/repos/huggingface/datasets/issues/5359/events | https://github.com/huggingface/datasets/pull/5359 | 1,495,297,857 | PR_kwDODunzps5FYHWm | 5,359 | Raise error if ClassLabel names is not python list | {
"login": "freddyheppell",
"id": 1475568,
"node_id": "MDQ6VXNlcjE0NzU1Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1475568?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/freddyheppell",
"html_url": "https://github.com/freddyheppell",
"followers_url": "https://api.github.com/users/freddyheppell/followers",
"following_url": "https://api.github.com/users/freddyheppell/following{/other_user}",
"gists_url": "https://api.github.com/users/freddyheppell/gists{/gist_id}",
"starred_url": "https://api.github.com/users/freddyheppell/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/freddyheppell/subscriptions",
"organizations_url": "https://api.github.com/users/freddyheppell/orgs",
"repos_url": "https://api.github.com/users/freddyheppell/repos",
"events_url": "https://api.github.com/users/freddyheppell/events{/privacy}",
"received_events_url": "https://api.github.com/users/freddyheppell/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Thanks for your proposed fix, @freddyheppell.\r\n\r\nCurrently the CI fails because in a test we pass a `tuple` instead of a `list`. I would say we should accept `tuple` as a valid input type as well...\r\n\r\nWhat about checking for `Sequence` instead?",
"Fixed that @albertvillanova, can you approve CI again please? Had some issues related to Pytorch .so files when running tests on my M1 mac, so wasn't able to test locally first. Have got them working on my desktop now though."
] | 2022-12-13T23:04:06 | 2022-12-22T16:35:49 | 2022-12-22T16:32:49 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5359",
"html_url": "https://github.com/huggingface/datasets/pull/5359",
"diff_url": "https://github.com/huggingface/datasets/pull/5359.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5359.patch",
"merged_at": "2022-12-22T16:32:49"
} | Checks type of names provided to ClassLabel to avoid easy and hard to debug errors (closes #5332 - see for discussion) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5359/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5359/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5358 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5358/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5358/comments | https://api.github.com/repos/huggingface/datasets/issues/5358/events | https://github.com/huggingface/datasets/pull/5358 | 1,495,270,822 | PR_kwDODunzps5FYBcq | 5,358 | Fix `fs.open` resource leaks | {
"login": "tkukurin",
"id": 297847,
"node_id": "MDQ6VXNlcjI5Nzg0Nw==",
"avatar_url": "https://avatars.githubusercontent.com/u/297847?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tkukurin",
"html_url": "https://github.com/tkukurin",
"followers_url": "https://api.github.com/users/tkukurin/followers",
"following_url": "https://api.github.com/users/tkukurin/following{/other_user}",
"gists_url": "https://api.github.com/users/tkukurin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tkukurin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tkukurin/subscriptions",
"organizations_url": "https://api.github.com/users/tkukurin/orgs",
"repos_url": "https://api.github.com/users/tkukurin/repos",
"events_url": "https://api.github.com/users/tkukurin/events{/privacy}",
"received_events_url": "https://api.github.com/users/tkukurin/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@mariosasko Sorry, I didn't check tests/style after doing a merge from the Git UI last week. Thx for fixing. \r\n\r\nFYI I'm getting \"Only those with [write access](https://docs.github.com/articles/what-are-the-different-access-permissions) to this repository can merge pull requests.\" so it seems somebody else needs to merge this.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008816 / 0.011353 (-0.002536) | 0.004691 / 0.011008 (-0.006317) | 0.100039 / 0.038508 (0.061531) | 0.035422 / 0.023109 (0.012313) | 0.312600 / 0.275898 (0.036702) | 0.378684 / 0.323480 (0.055204) | 0.007593 / 0.007986 (-0.000392) | 0.005183 / 0.004328 (0.000855) | 0.078040 / 0.004250 (0.073790) | 0.041845 / 0.037052 (0.004793) | 0.325251 / 0.258489 (0.066762) | 0.363459 / 0.293841 (0.069618) | 0.038006 / 0.128546 (-0.090540) | 0.011911 / 0.075646 (-0.063735) | 0.335020 / 0.419271 (-0.084251) | 0.048765 / 0.043533 (0.005233) | 0.305913 / 0.255139 (0.050774) | 0.337620 / 0.283200 (0.054420) | 0.101867 / 0.141683 (-0.039816) | 1.450091 / 1.452155 (-0.002064) | 1.437303 / 1.492716 (-0.055413) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225650 / 0.018006 (0.207644) | 0.492480 / 0.000490 (0.491990) | 0.002857 / 0.000200 (0.002658) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026231 / 0.037411 (-0.011180) | 0.105479 / 0.014526 (0.090953) | 0.118438 / 0.176557 (-0.058119) | 0.167313 / 0.737135 (-0.569822) | 0.119416 / 0.296338 (-0.176923) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396233 / 0.215209 (0.181024) | 3.943325 / 2.077655 (1.865671) | 1.778864 / 1.504120 (0.274744) | 1.587957 / 1.541195 (0.046763) | 1.615404 / 1.468490 (0.146914) | 0.709427 / 4.584777 (-3.875350) | 3.823310 / 3.745712 (0.077598) | 3.461376 / 5.269862 (-1.808486) | 1.888330 / 4.565676 (-2.677346) | 0.086910 / 0.424275 (-0.337365) | 0.012215 / 0.007607 (0.004608) | 0.504877 / 0.226044 (0.278833) | 5.051513 / 2.268929 (2.782584) | 2.249389 / 55.444624 (-53.195235) | 1.890949 / 6.876477 (-4.985528) | 2.015584 / 2.142072 (-0.126489) | 0.862313 / 4.805227 (-3.942914) | 0.166295 / 6.500664 (-6.334369) | 0.061131 / 0.075469 (-0.014338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.201804 / 1.841788 (-0.639984) | 14.589425 / 8.074308 (6.515117) | 13.855522 / 10.191392 (3.664130) | 0.193406 / 0.680424 (-0.487018) | 0.028614 / 0.534201 (-0.505587) | 0.439857 / 0.579283 (-0.139426) | 0.443330 / 0.434364 (0.008966) | 0.514078 / 0.540337 (-0.026259) | 0.608245 / 1.386936 (-0.778691) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007087 / 0.011353 (-0.004265) | 0.005024 / 0.011008 (-0.005985) | 0.096852 / 0.038508 (0.058344) | 0.032870 / 0.023109 (0.009761) | 0.397790 / 0.275898 (0.121892) | 0.420717 / 0.323480 (0.097237) | 0.005552 / 0.007986 (-0.002434) | 0.003742 / 0.004328 (-0.000586) | 0.074788 / 0.004250 (0.070537) | 0.048030 / 0.037052 (0.010977) | 0.398520 / 0.258489 (0.140031) | 0.460919 / 0.293841 (0.167078) | 0.037652 / 0.128546 (-0.090894) | 0.012249 / 0.075646 (-0.063397) | 0.333077 / 0.419271 (-0.086194) | 0.052364 / 0.043533 (0.008831) | 0.394358 / 0.255139 (0.139219) | 0.414193 / 0.283200 (0.130994) | 0.103569 / 0.141683 (-0.038114) | 1.499208 / 1.452155 (0.047053) | 1.619481 / 1.492716 (0.126764) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229476 / 0.018006 (0.211470) | 0.448670 / 0.000490 (0.448180) | 0.000399 / 0.000200 (0.000199) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027550 / 0.037411 (-0.009862) | 0.109180 / 0.014526 (0.094654) | 0.118372 / 0.176557 (-0.058185) | 0.153136 / 0.737135 (-0.583999) | 0.122689 / 0.296338 (-0.173650) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445163 / 0.215209 (0.229954) | 4.426350 / 2.077655 (2.348695) | 2.194902 / 1.504120 (0.690782) | 2.019049 / 1.541195 (0.477854) | 2.032795 / 1.468490 (0.564305) | 0.700752 / 4.584777 (-3.884025) | 3.797616 / 3.745712 (0.051903) | 2.046414 / 5.269862 (-3.223447) | 1.345037 / 4.565676 (-3.220639) | 0.085389 / 0.424275 (-0.338886) | 0.012824 / 0.007607 (0.005217) | 0.553875 / 0.226044 (0.327831) | 5.550252 / 2.268929 (3.281323) | 2.702822 / 55.444624 (-52.741803) | 2.346257 / 6.876477 (-4.530220) | 2.410772 / 2.142072 (0.268699) | 0.848271 / 4.805227 (-3.956957) | 0.170787 / 6.500664 (-6.329877) | 0.064344 / 0.075469 (-0.011125) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266222 / 1.841788 (-0.575566) | 14.501194 / 8.074308 (6.426886) | 13.413678 / 10.191392 (3.222286) | 0.589048 / 0.680424 (-0.091375) | 0.018246 / 0.534201 (-0.515955) | 0.425221 / 0.579283 (-0.154062) | 0.425900 / 0.434364 (-0.008464) | 0.494023 / 0.540337 (-0.046314) | 0.604324 / 1.386936 (-0.782612) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n"
] | 2022-12-13T22:35:51 | 2023-01-05T16:46:31 | 2023-01-05T15:59:51 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5358",
"html_url": "https://github.com/huggingface/datasets/pull/5358",
"diff_url": "https://github.com/huggingface/datasets/pull/5358.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5358.patch",
"merged_at": "2023-01-05T15:59:51"
} | Invoking `{load,save}_from_dict` results in resource leak warnings, this should fix.
Introduces no significant logic changes. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5358/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5358/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5357 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5357/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5357/comments | https://api.github.com/repos/huggingface/datasets/issues/5357/events | https://github.com/huggingface/datasets/pull/5357 | 1,495,029,602 | PR_kwDODunzps5FXNyR | 5,357 | Support torch dataloader without torch formatting | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Need some more time to fix the tests, especially with pickle",
"> And I actually don't quite understand the idea - what's the motivation behind making only IterableDataset compatible with torch DataLoader without setting the format explicitly?\r\n\r\nSetting the format to pytorch = set the output types of the dataset to be pytorch tensors. However sometimes your dataset is not made of tensors but you still want to be able to use a pytorch DataLoader",
"A bit more context. \r\n\r\nThe arrow-backed `Dataset` supports `DataLoader(ds)` (even if the format is not \"torch\"), and we want to be able to do the same with `IterableDataset` for consistency. However, this is when the PyTorch internals come into play - an iterable dataset needs to be an instance of `torch.utils.data.IterableDataset` due to [this](https://github.com/pytorch/pytorch/blob/abc54f93145830b502400faa92bec86e05422fbd/torch/utils/data/dataloader.py#L276) check (notice there is no check for the map-style version). Hence the explicit subclassing in this PR.",
"Exactly :) Btw I just took your comments into account @polinaeterna , so feel free to review again",
"@lhoestq just checking, does this change still preserve the fix to the \"data duplicate when setting num_works > 1 with streaming data\" issue from before?\r\n\r\nhttps://github.com/huggingface/datasets/issues/3423",
"Yes :)"
] | 2022-12-13T19:39:24 | 2023-01-04T12:45:40 | 2022-12-15T19:15:54 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5357",
"html_url": "https://github.com/huggingface/datasets/pull/5357",
"diff_url": "https://github.com/huggingface/datasets/pull/5357.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5357.patch",
"merged_at": "2022-12-15T19:15:54"
} | In https://github.com/huggingface/datasets/pull/5084 we make the torch formatting consistent with the map-style datasets formatting: a torch formatted iterable dataset will yield torch tensors.
The previous behavior of the torch formatting for iterable dataset was simply to make the iterable dataset inherit from `torch.utils.data.Dataset` to make it work in a torch DataLoader. However ideally an unformatted dataset should also work with a DataLoader. To fix that, `datasets.IterableDataset` should inherit from `torch.utils.data.IterableDataset`.
Since we don't want to import torch on startup, I created this PR to dynamically make the `datasets.IterableDataset` class inherit form the torch one when a `datasets.IterableDataset` is instantiated and if PyTorch is available.
```python
>>> from datasets import load_dataset
>>> ds = load_dataset("c4", "en", streaming=True, split="train")
>>> import torch.utils.data
>>> isinstance(ds, torch.utils.data.IterableDataset)
True
>>> dataloader = torch.utils.data.DataLoader(ds, batch_size=32, num_workers=4)
>>> for example in dataloader:
...: ...
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5357/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5357/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5356 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5356/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5356/comments | https://api.github.com/repos/huggingface/datasets/issues/5356/events | https://github.com/huggingface/datasets/pull/5356 | 1,494,961,609 | PR_kwDODunzps5FW-c9 | 5,356 | Clean filesystem and logging docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-13T18:54:09 | 2022-12-14T17:25:58 | 2022-12-14T17:22:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5356",
"html_url": "https://github.com/huggingface/datasets/pull/5356",
"diff_url": "https://github.com/huggingface/datasets/pull/5356.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5356.patch",
"merged_at": "2022-12-14T17:22:16"
} | This PR cleans the `Filesystems` and `Logging` docstrings. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5356/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5356/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5355 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5355/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5355/comments | https://api.github.com/repos/huggingface/datasets/issues/5355/events | https://github.com/huggingface/datasets/pull/5355 | 1,493,076,860 | PR_kwDODunzps5FQcYG | 5,355 | Clean up Table class docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-13T00:29:47 | 2022-12-13T18:17:56 | 2022-12-13T18:14:42 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5355",
"html_url": "https://github.com/huggingface/datasets/pull/5355",
"diff_url": "https://github.com/huggingface/datasets/pull/5355.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5355.patch",
"merged_at": "2022-12-13T18:14:42"
} | This PR cleans up the `Table` class docstrings :) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5355/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5355/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5354 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5354/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5354/comments | https://api.github.com/repos/huggingface/datasets/issues/5354/events | https://github.com/huggingface/datasets/issues/5354 | 1,492,174,125 | I_kwDODunzps5Y8MUt | 5,354 | Consider using "Sequence" instead of "List" | {
"login": "tranhd95",
"id": 15568078,
"node_id": "MDQ6VXNlcjE1NTY4MDc4",
"avatar_url": "https://avatars.githubusercontent.com/u/15568078?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tranhd95",
"html_url": "https://github.com/tranhd95",
"followers_url": "https://api.github.com/users/tranhd95/followers",
"following_url": "https://api.github.com/users/tranhd95/following{/other_user}",
"gists_url": "https://api.github.com/users/tranhd95/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tranhd95/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tranhd95/subscriptions",
"organizations_url": "https://api.github.com/users/tranhd95/orgs",
"repos_url": "https://api.github.com/users/tranhd95/repos",
"events_url": "https://api.github.com/users/tranhd95/events{/privacy}",
"received_events_url": "https://api.github.com/users/tranhd95/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | open | false | {
"login": "avinashsai",
"id": 22453634,
"node_id": "MDQ6VXNlcjIyNDUzNjM0",
"avatar_url": "https://avatars.githubusercontent.com/u/22453634?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/avinashsai",
"html_url": "https://github.com/avinashsai",
"followers_url": "https://api.github.com/users/avinashsai/followers",
"following_url": "https://api.github.com/users/avinashsai/following{/other_user}",
"gists_url": "https://api.github.com/users/avinashsai/gists{/gist_id}",
"starred_url": "https://api.github.com/users/avinashsai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/avinashsai/subscriptions",
"organizations_url": "https://api.github.com/users/avinashsai/orgs",
"repos_url": "https://api.github.com/users/avinashsai/repos",
"events_url": "https://api.github.com/users/avinashsai/events{/privacy}",
"received_events_url": "https://api.github.com/users/avinashsai/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "avinashsai",
"id": 22453634,
"node_id": "MDQ6VXNlcjIyNDUzNjM0",
"avatar_url": "https://avatars.githubusercontent.com/u/22453634?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/avinashsai",
"html_url": "https://github.com/avinashsai",
"followers_url": "https://api.github.com/users/avinashsai/followers",
"following_url": "https://api.github.com/users/avinashsai/following{/other_user}",
"gists_url": "https://api.github.com/users/avinashsai/gists{/gist_id}",
"starred_url": "https://api.github.com/users/avinashsai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/avinashsai/subscriptions",
"organizations_url": "https://api.github.com/users/avinashsai/orgs",
"repos_url": "https://api.github.com/users/avinashsai/repos",
"events_url": "https://api.github.com/users/avinashsai/events{/privacy}",
"received_events_url": "https://api.github.com/users/avinashsai/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi! Linking a comment to provide more info on the issue: https://stackoverflow.com/a/39458225. This means we should replace all (most of) the occurrences of `List` with `Sequence` in function signatures.\r\n\r\n@tranhd95 Would you be interested in submitting a PR?",
"Hi all! I tried to reproduce this issue and didn't work for me. Also in your example i noticed that the variables have different names: `list_of_filenames` and `list_of_files`, could this be related to that?\r\n```python\r\n#I found random data in parquet format:\r\n!wget \"https://github.com/Teradata/kylo/raw/master/samples/sample-data/parquet/userdata1.parquet\"\r\n!wget \"https://github.com/Teradata/kylo/raw/master/samples/sample-data/parquet/userdata2.parquet\"\r\n\r\n#Then i try reproduce\r\nlist_of_files = [\"userdata1.parquet\", \"userdata2.parquet\"]\r\nds = Dataset.from_parquet(list_of_files)\r\n```\r\n**My output:**\r\n```python\r\nWARNING:datasets.builder:Using custom data configuration default-e287d097dc54e046\r\nDownloading and preparing dataset parquet/default to /root/.cache/huggingface/datasets/parquet/default-e287d097dc54e046/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\r\nDownloading data files: 100%\r\n1/1 [00:00<00:00, 40.38it/s]\r\nExtracting data files: 100%\r\n1/1 [00:00<00:00, 23.43it/s]\r\nDataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/parquet/default-e287d097dc54e046/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\r\n```\r\nP.S. This is my first experience with open source. So do not judge strictly if I do not understand something)",
"@dantema There is indeed a typo in variable names. Nevertheless, I'm sorry if I was not clear but the output is from `mypy` type checker. You can run the code snippet without issues. The problem is with the type checking.",
"However, I found out that the type annotation is actually misleading. The [`from_parquet`](https://github.com/huggingface/datasets/blob/5ef1ab1cc06c2b7a574bf2df454cd9fcb071ccb2/src/datasets/arrow_dataset.py#L1039) method should also accept list of [`PathLike`](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/typing.py#L8) objects which includes [`os.PathLike`](https://docs.python.org/3/library/os.html#os.PathLike). But if I would ran the code snippet below, an exception is thrown.\r\n\r\n**Code**\r\n```py\r\nfrom pathlib import Path\r\n\r\nlist_of_filenames = [Path(\"foo.parquet\"), Path(\"bar.parquet\")]\r\nds = Dataset.from_parquet(list_of_filenames)\r\n```\r\n**Output**\r\n```py\r\n[/usr/local/lib/python3.8/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in from_parquet(path_or_paths, split, features, cache_dir, keep_in_memory, columns, **kwargs)\r\n 1071 from .io.parquet import ParquetDatasetReader\r\n 1072 \r\n-> 1073 return ParquetDatasetReader(\r\n 1074 path_or_paths,\r\n 1075 split=split,\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/io/parquet.py](https://localhost:8080/#) in __init__(self, path_or_paths, split, features, cache_dir, keep_in_memory, streaming, **kwargs)\r\n 35 path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}\r\n 36 hash = _PACKAGED_DATASETS_MODULES[\"parquet\"][1]\r\n---> 37 self.builder = Parquet(\r\n 38 cache_dir=cache_dir,\r\n 39 data_files=path_or_paths,\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/builder.py](https://localhost:8080/#) in __init__(self, cache_dir, config_name, hash, base_path, info, features, use_auth_token, repo_id, data_files, data_dir, name, **config_kwargs)\r\n 298 \r\n 299 if data_files is not None and not isinstance(data_files, DataFilesDict):\r\n--> 300 data_files = DataFilesDict.from_local_or_remote(\r\n 301 sanitize_patterns(data_files), base_path=base_path, use_auth_token=use_auth_token\r\n 302 )\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/data_files.py](https://localhost:8080/#) in from_local_or_remote(cls, patterns, base_path, allowed_extensions, use_auth_token)\r\n 794 for key, patterns_for_key in patterns.items():\r\n 795 out[key] = (\r\n--> 796 DataFilesList.from_local_or_remote(\r\n 797 patterns_for_key,\r\n 798 base_path=base_path,\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/data_files.py](https://localhost:8080/#) in from_local_or_remote(cls, patterns, base_path, allowed_extensions, use_auth_token)\r\n 762 ) -> \"DataFilesList\":\r\n 763 base_path = base_path if base_path is not None else str(Path().resolve())\r\n--> 764 data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n 765 origin_metadata = _get_origin_metadata_locally_or_by_urls(data_files, use_auth_token=use_auth_token)\r\n 766 return cls(data_files, origin_metadata)\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/data_files.py](https://localhost:8080/#) in resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n 357 data_files = []\r\n 358 for pattern in patterns:\r\n--> 359 if is_remote_url(pattern):\r\n 360 data_files.append(Url(pattern))\r\n 361 else:\r\n\r\n[/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py](https://localhost:8080/#) in is_remote_url(url_or_filename)\r\n 62 \r\n 63 def is_remote_url(url_or_filename: str) -> bool:\r\n---> 64 parsed = urlparse(url_or_filename)\r\n 65 return parsed.scheme in (\"http\", \"https\", \"s3\", \"gs\", \"hdfs\", \"ftp\")\r\n 66 \r\n\r\n[/usr/lib/python3.8/urllib/parse.py](https://localhost:8080/#) in urlparse(url, scheme, allow_fragments)\r\n 373 Note that we don't break the components up in smaller bits\r\n 374 (e.g. netloc is a single string) and we don't expand % escapes.\"\"\"\r\n--> 375 url, scheme, _coerce_result = _coerce_args(url, scheme)\r\n 376 splitresult = urlsplit(url, scheme, allow_fragments)\r\n 377 scheme, netloc, url, query, fragment = splitresult\r\n\r\n[/usr/lib/python3.8/urllib/parse.py](https://localhost:8080/#) in _coerce_args(*args)\r\n 125 if str_input:\r\n 126 return args + (_noop,)\r\n--> 127 return _decode_args(args) + (_encode_result,)\r\n 128 \r\n 129 # Result objects are more helpful than simple tuples\r\n\r\n[/usr/lib/python3.8/urllib/parse.py](https://localhost:8080/#) in _decode_args(args, encoding, errors)\r\n 109 def _decode_args(args, encoding=_implicit_encoding,\r\n 110 errors=_implicit_errors):\r\n--> 111 return tuple(x.decode(encoding, errors) if x else '' for x in args)\r\n 112 \r\n 113 def _coerce_args(*args):\r\n\r\n[/usr/lib/python3.8/urllib/parse.py](https://localhost:8080/#) in <genexpr>(.0)\r\n 109 def _decode_args(args, encoding=_implicit_encoding,\r\n 110 errors=_implicit_errors):\r\n--> 111 return tuple(x.decode(encoding, errors) if x else '' for x in args)\r\n 112 \r\n 113 def _coerce_args(*args):\r\n\r\nAttributeError: 'PosixPath' object has no attribute 'decode'\r\n```\r\n\r\n@mariosasko Should I create a new issue? ",
"@mariosasko I would like to take this issue up. ",
"@avinashsai Hi, I've assigned you the issue.\r\n\r\n@tranhd95 Yes, feel free to report this in a new issue."
] | 2022-12-12T15:39:45 | 2023-02-24T16:15:46 | null | NONE | null | null | null | ### Feature request
Hi, please consider using `Sequence` type annotation instead of `List` in function arguments such as in [`Dataset.from_parquet()`](https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L1088). It leads to type checking errors, see below.
**How to reproduce**
```py
list_of_filenames = ["foo.parquet", "bar.parquet"]
ds = Dataset.from_parquet(list_of_filenames)
```
**Expected mypy output:**
```
Success: no issues found
```
**Actual mypy output:**
```py
test.py:19: error: Argument 1 to "from_parquet" of "Dataset" has incompatible type "List[str]"; expected "Union[Union[str, bytes, PathLike[Any]], List[Union[str, bytes, PathLike[Any]]]]" [arg-type]
test.py:19: note: "List" is invariant -- see https://mypy.readthedocs.io/en/stable/common_issues.html#variance
test.py:19: note: Consider using "Sequence" instead, which is covariant
```
**Env:** mypy 0.991, Python 3.10.0, datasets 2.7.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5354/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5354/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5353 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5353/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5353/comments | https://api.github.com/repos/huggingface/datasets/issues/5353/events | https://github.com/huggingface/datasets/issues/5353 | 1,491,880,500 | I_kwDODunzps5Y7Eo0 | 5,353 | Support remote file systems for `Audio` | {
"login": "OllieBroadhurst",
"id": 46894149,
"node_id": "MDQ6VXNlcjQ2ODk0MTQ5",
"avatar_url": "https://avatars.githubusercontent.com/u/46894149?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/OllieBroadhurst",
"html_url": "https://github.com/OllieBroadhurst",
"followers_url": "https://api.github.com/users/OllieBroadhurst/followers",
"following_url": "https://api.github.com/users/OllieBroadhurst/following{/other_user}",
"gists_url": "https://api.github.com/users/OllieBroadhurst/gists{/gist_id}",
"starred_url": "https://api.github.com/users/OllieBroadhurst/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/OllieBroadhurst/subscriptions",
"organizations_url": "https://api.github.com/users/OllieBroadhurst/orgs",
"repos_url": "https://api.github.com/users/OllieBroadhurst/repos",
"events_url": "https://api.github.com/users/OllieBroadhurst/events{/privacy}",
"received_events_url": "https://api.github.com/users/OllieBroadhurst/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"Just seen https://github.com/huggingface/datasets/issues/5281"
] | 2022-12-12T13:22:13 | 2022-12-12T13:37:14 | 2022-12-12T13:37:14 | NONE | null | null | null | ### Feature request
Hi there!
It would be super cool if `Audio()`, and potentially other features, could read files from a remote file system.
### Motivation
Large amounts of data is often stored in buckets. `load_from_disk` is able to retrieve data from cloud storage but to my knowledge actually copies the datasets across first, so if you're working off a system with smaller disk specs (like a VM), you can run out of space very quickly.
### Your contribution
Something like this (for Google Cloud Platform in this instance):
```python
from datasets import Dataset, Audio
import gcsfs
fs = gcsfs.GCSFileSystem()
list_of_audio_fp = {'audio': ['1', '2', '3']}
ds = Dataset.from_dict(list_of_audio_fp)
ds = ds.cast_column("audio", Audio(sampling_rate=16000, fs=fs))
```
Under the hood:
```python
import librosa
from io import BytesIO
def load_audio(fp, sampling_rate=None, fs=None):
if fs is not None:
with fs.open(fp, 'rb') as f:
arr, sr = librosa.load(BytesIO(f), sr=sampling_rate)
else:
# Perform existing io operations
```
Written from memory so some things could be wrong. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5353/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5353/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5352 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5352/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5352/comments | https://api.github.com/repos/huggingface/datasets/issues/5352/events | https://github.com/huggingface/datasets/issues/5352 | 1,490,796,414 | I_kwDODunzps5Y279- | 5,352 | __init__() got an unexpected keyword argument 'input_size' | {
"login": "J-shel",
"id": 82662111,
"node_id": "MDQ6VXNlcjgyNjYyMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/82662111?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/J-shel",
"html_url": "https://github.com/J-shel",
"followers_url": "https://api.github.com/users/J-shel/followers",
"following_url": "https://api.github.com/users/J-shel/following{/other_user}",
"gists_url": "https://api.github.com/users/J-shel/gists{/gist_id}",
"starred_url": "https://api.github.com/users/J-shel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/J-shel/subscriptions",
"organizations_url": "https://api.github.com/users/J-shel/orgs",
"repos_url": "https://api.github.com/users/J-shel/repos",
"events_url": "https://api.github.com/users/J-shel/events{/privacy}",
"received_events_url": "https://api.github.com/users/J-shel/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi @J-shel, thanks for reporting.\r\n\r\nI think the issue comes from your call to `load_dataset`. As first argument, you should pass:\r\n- either the name of your dataset (\"mrf\") if this is already published on the Hub\r\n- or the path to the loading script of your dataset (\"path/to/your/local/mrf.py\").",
"Hi, following your suggestion, I changed my call to load_dataset. Below is the latest:\r\nreader = load_dataset('data/mrf.py',\"default\", input_size=1024, split=split, streaming=True, keep_in_memory=None)\r\nHowever, I still got the same error.\r\nI have one question that is if I only define input_size=2048 in BUILDER_CONFIGS, may I specify input_size=1024 when loading the dataset? Cause I found that I could only specify name=\"default\" since I only define name=\"default\" in BUILDER_CONFIGS."
] | 2022-12-12T02:52:03 | 2022-12-19T01:38:48 | null | NONE | null | null | null | ### Describe the bug
I try to define a custom configuration with a input_size attribute following the instructions by "Specifying several dataset configurations" in https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
But when I load the dataset, I got an error "__init__() got an unexpected keyword argument 'input_size'"
### Steps to reproduce the bug
Following is the code to define the dataset:
class CsvConfig(datasets.BuilderConfig):
"""BuilderConfig for CSV."""
input_size: int = 2048
class MRF(datasets.ArrowBasedBuilder):
"""Archival MRF data"""
BUILDER_CONFIG_CLASS = CsvConfig
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
CsvConfig(name="default", version=VERSION, description="MRF data", input_size=2048),
]
...
def _generate_examples(self):
input_size = self.config.input_size
if input_size > 1000:
numin = 10000
else:
numin = 15000
Below is the code to load the dataset:
reader = load_dataset("default", input_size=1024)
### Expected behavior
I hope to pass the "input_size" parameter to MRF datasets, and change "input_size" to any value when loading the datasets.
### Environment info
- `datasets` version: 2.5.1
- Platform: Linux-4.18.0-305.3.1.el8.x86_64-x86_64-with-glibc2.31
- Python version: 3.9.12
- PyArrow version: 9.0.0
- Pandas version: 1.5.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5352/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5352/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5351 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5351/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5351/comments | https://api.github.com/repos/huggingface/datasets/issues/5351/events | https://github.com/huggingface/datasets/issues/5351 | 1,490,659,504 | I_kwDODunzps5Y2aiw | 5,351 | Do we need to implement `_prepare_split`? | {
"login": "jmwoloso",
"id": 7530947,
"node_id": "MDQ6VXNlcjc1MzA5NDc=",
"avatar_url": "https://avatars.githubusercontent.com/u/7530947?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jmwoloso",
"html_url": "https://github.com/jmwoloso",
"followers_url": "https://api.github.com/users/jmwoloso/followers",
"following_url": "https://api.github.com/users/jmwoloso/following{/other_user}",
"gists_url": "https://api.github.com/users/jmwoloso/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jmwoloso/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmwoloso/subscriptions",
"organizations_url": "https://api.github.com/users/jmwoloso/orgs",
"repos_url": "https://api.github.com/users/jmwoloso/repos",
"events_url": "https://api.github.com/users/jmwoloso/events{/privacy}",
"received_events_url": "https://api.github.com/users/jmwoloso/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! `DatasetBuilder` is a parent class for concrete builders: `GeneratorBasedBuilder`, `ArrowBasedBuilder` and `BeamBasedBuilder`. When writing a builder script, these classes are the ones you should inherit from. And since all of them implement `_prepare_split`, you only have to implement the three methods mentioned above.",
"Thanks so much @mariosasko for the fast response! I've been referencing [this page in the docs](https://huggingface.co/docs/datasets/v2.4.0/en/about_dataset_load) because it it pretty comprehensive in terms of what we have to do and I figured since we subclass the `BuilderConfig` the same pattern would hold, but I've also seen the page with those sub-classed builders as well, so that fills in a knowledge gap for me.",
"cc @stevhliu who may have some ideas on how to improve this part of the docs.",
"one more question for my understanding @mariosasko. the requirement of a loading script has always seemed counterintuitive to me. if i have to provide a script with every dataset, what is the point of using `datasets` if we're doing all the work of loading it, I can just do that in my code and skip the datasets integration (this of course discounts other potential benefits around metadata management, etc., my example is just simplest use case though for the sake of discussion).\r\n\r\nso i figured I would implement my own `BuilderConfig` and `DatasetBuilder` to handle that portion of it and not have to make a script. i _thought_ this would result in `datasets` (via `download_and_prepare`) then making me something that I could load using `load_dataset` moving forward.\r\n\r\nConcretely, i envisioned this pattern being possible:\r\n\r\n ```\r\nclass MyBuilderConfig(BuilderConfig):\r\n def __init__(self, name=\"my_named_dataset\", ...):\r\n super().__init__(name, ...)\r\n\r\nclass MyDatasetBuilder(GeneratorBasedBuilder):\r\n BUILDER_CONFIG_CLASS = MyBuilderConfig\r\n ....\r\n\r\nmy_builder = MyDatasetBuilder(...)\r\n\r\n# this doesn't exactly work like I thought; I don't get a dataset back, but NoneType instead\r\n# though I can see it loading the files and it generates the cache, etc.\r\nmy_dataset = my_builder.download_and_prepare()\r\n\r\n# load the dataset in the future by referencing it by name and loading from the cached arrow version\r\nnew_instance_of_my_dataset = load_dataset(\"my_named_dataset\")\r\n```\r\n\r\nI've seen references to the `save_to_disk` method which might be the next step I need in order to load it by name, in which case, that makes sense, then i just need to debug why `download_and_prepare` isn't returning me a dataset, but I feel like I still have a larger conceptual knowledge gap on how to use the library correctly.\r\n\r\nThanks again in advance!",
"> the requirement of a loading script has always seemed counterintuitive to me\r\n\r\nThis is a requirement only for datasets not stored in standard formats such as CSV, JSON, SQL, Parquet, ImageFolder, etc. \r\n\r\n> if i have to provide a script with every dataset, what is the point of using datasets if we're doing all the work of loading it, I can just do that in my code and skip the datasets integration (this of course discounts other potential benefits around metadata management, etc., my example is just simplest use case though for the sake of discussion)\r\n\r\nOur README/documentation lists the main features... \r\n\r\nOne of the main ones is that our library makes it easy to work with datasets larger than RAM (thanks to Arrow and the caching mechanism), and this is not trivial to implement.\r\n\r\nRegarding the step-by-step builder, this is the pattern:\r\n```python\r\nfrom datasets import load_dataset_builder\r\nbuilder = load_dataset_builder(\"path/to/script\") # or direct instantiation with MyDatasetBuilder(...)\r\nbuilder.download_and_prepare()\r\ndset = builder.as_dataset()\r\n```",
"ok, that makes sense. thank you @mariosasko. I realized i'd never looked on the hub at any of the files associated with any datasets. just did that now and it appears that i'll need to have a script regardless _but_ that will just contain my custom config and builder classes, so without realizing it I was already making my script, I just need to wrap that in a file that sits alongside my data (I looked at Glue and realized I was already doing what I thought didn't make sense to have to do, lol).\r\n\r\n`download_and_prepare` isn't returning me a dataset though, but I'll look into that and open another issue if I can't figure it out.",
"`download_and_prepare` downloads and prepares the arrow files. You need to call `as_dataset` on the builder to get the dataset.",
"ok, I think I was assigning the output of `builder.download_and_prepare` but it's an inplace op, so that explains the `NoneType` i was getting back. Now I'm getting:\r\n\r\n```\r\nArrowInvalid Traceback (most recent call last)\r\n<ipython-input-7-3ed50fb87c70> in <module>\r\n----> 1 ds = dataset_builder.as_dataset()\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in as_dataset(self, split, run_post_process, ignore_verifications, in_memory)\r\n 1020 \r\n 1021 # Create a dataset for each of the given splits\r\n-> 1022 datasets = map_nested(\r\n 1023 partial(\r\n 1024 self._build_single_dataset,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)\r\n 442 num_proc = 1\r\n 443 if num_proc <= 1 or len(iterable) < parallel_min_length:\r\n--> 444 mapped = [\r\n 445 _single_map_nested((function, obj, types, None, True, None))\r\n 446 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in <listcomp>(.0)\r\n 443 if num_proc <= 1 or len(iterable) < parallel_min_length:\r\n 444 mapped = [\r\n--> 445 _single_map_nested((function, obj, types, None, True, None))\r\n 446 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n 447 ]\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in _single_map_nested(args)\r\n 344 # Singleton first to spare some computation\r\n 345 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):\r\n--> 346 return function(data_struct)\r\n 347 \r\n 348 # Reduce logging to keep things readable in multiprocessing with tqdm\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in _build_single_dataset(self, split, run_post_process, ignore_verifications, in_memory)\r\n 1051 \r\n 1052 # Build base dataset\r\n-> 1053 ds = self._as_dataset(\r\n 1054 split=split,\r\n 1055 in_memory=in_memory,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in _as_dataset(self, split, in_memory)\r\n 1120 \"\"\"\r\n 1121 cache_dir = self._fs._strip_protocol(self._output_dir)\r\n-> 1122 dataset_kwargs = ArrowReader(cache_dir, self.info).read(\r\n 1123 name=self.name,\r\n 1124 instructions=split,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read(self, name, instructions, split_infos, in_memory)\r\n 236 msg = f'Instruction \"{instructions}\" corresponds to no data!'\r\n 237 raise ValueError(msg)\r\n--> 238 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)\r\n 239 \r\n 240 def read_files(\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read_files(self, files, original_instructions, in_memory)\r\n 257 \"\"\"\r\n 258 # Prepend path to filename\r\n--> 259 pa_table = self._read_files(files, in_memory=in_memory)\r\n 260 # If original_instructions is not None, convert it to a human-readable NamedSplit\r\n 261 if original_instructions is not None:\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in _read_files(self, files, in_memory)\r\n 192 f[\"filename\"] = os.path.join(self._path, f[\"filename\"])\r\n 193 for f_dict in files:\r\n--> 194 pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n 195 pa_tables.append(pa_table)\r\n 196 pa_tables = [t for t in pa_tables if len(t) > 0]\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in _get_table_from_filename(self, filename_skip_take, in_memory)\r\n 327 filename_skip_take[\"take\"] if \"take\" in filename_skip_take else None,\r\n 328 )\r\n--> 329 table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n 330 if take == -1:\r\n 331 take = len(table) - skip\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read_table(filename, in_memory)\r\n 348 \"\"\"\r\n 349 table_cls = InMemoryTable if in_memory else MemoryMappedTable\r\n--> 350 return table_cls.from_file(filename)\r\n 351 \r\n 352 \r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/table.py in from_file(cls, filename, replays)\r\n 1034 @classmethod\r\n 1035 def from_file(cls, filename: str, replays=None):\r\n-> 1036 table = _memory_mapped_arrow_table_from_file(filename)\r\n 1037 table = cls._apply_replays(table, replays)\r\n 1038 return cls(table, filename, replays)\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/table.py in _memory_mapped_arrow_table_from_file(filename)\r\n 48 def _memory_mapped_arrow_table_from_file(filename: str) -> pa.Table:\r\n 49 memory_mapped_stream = pa.memory_map(filename)\r\n---> 50 opened_stream = pa.ipc.open_stream(memory_mapped_stream)\r\n 51 pa_table = opened_stream.read_all()\r\n 52 return pa_table\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.py in open_stream(source)\r\n 152 reader : RecordBatchStreamReader\r\n 153 \"\"\"\r\n--> 154 return RecordBatchStreamReader(source)\r\n 155 \r\n 156 \r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.py in __init__(self, source)\r\n 43 \r\n 44 def __init__(self, source):\r\n---> 45 self._open(source)\r\n 46 \r\n 47 \r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.pxi in pyarrow.lib._RecordBatchStreamReader._open()\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()\r\n\r\nArrowInvalid: Tried reading schema message, was null or length 0\r\n```\r\n\r\n",
"looks like my arrow files are all empty @mariosasko \r\n\r\n![image](https://user-images.githubusercontent.com/7530947/208179977-9ae62c9a-866c-472b-9a09-25d1191188fb.png)\r\n\r\n\r\ni also see the `incomplete_info.lock` file a level up too. seems like the data isn't being persisted to disk when I call `download_and_prepare`. is there something else i need to do before then, perhaps?",
"quick update @mariosasko. i got it working! i had to downgrade to `datasets==2.4.0`. testing other versions now and will let you know the results.",
"I've tested with every version of `datasets>2.4.0` and i get the same error with all of them."
] | 2022-12-12T01:38:54 | 2022-12-20T18:20:57 | 2022-12-12T16:48:56 | NONE | null | null | null | ### Describe the bug
I'm not sure this is a bug or if it's just missing in the documentation, or i'm not doing something correctly, but I'm subclassing `DatasetBuilder` and getting the following error because on the `DatasetBuilder` class the `_prepare_split` method is abstract (as are the others we are required to implement, hence the genesis of my question):
```
Traceback (most recent call last):
File "/home/jason/source/python/prism_machine_learning/examples/create_hf_datasets.py", line 28, in <module>
dataset_builder.download_and_prepare()
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 704, in download_and_prepare
self._download_and_prepare(
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 793, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 1124, in _prepare_split
raise NotImplementedError()
NotImplementedError
```
### Steps to reproduce the bug
I will share implementation if it turns out that everything should be working (i.e. we only need to implement those 3 methods the docs mention), but I don't want to distract from the original question.
### Expected behavior
I just need to know if there are additional methods we need to implement when subclassing `DatasetBuilder` besides what the documentation specifies -> `_info`, `_split_generators` and `_generate_examples`
### Environment info
- `datasets` version: 2.4.0
- Platform: Linux-5.4.0-135-generic-x86_64-with-glibc2.2.5
- Python version: 3.8.12
- PyArrow version: 7.0.0
- Pandas version: 1.4.1
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5351/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5351/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5350 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5350/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5350/comments | https://api.github.com/repos/huggingface/datasets/issues/5350/events | https://github.com/huggingface/datasets/pull/5350 | 1,487,559,904 | PR_kwDODunzps5E8y2E | 5,350 | Clean up Loading methods docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-09T22:25:30 | 2022-12-12T17:27:20 | 2022-12-12T17:24:01 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5350",
"html_url": "https://github.com/huggingface/datasets/pull/5350",
"diff_url": "https://github.com/huggingface/datasets/pull/5350.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5350.patch",
"merged_at": "2022-12-12T17:24:01"
} | Clean up for the docstrings in Loading methods! | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5350/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5350/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5349 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5349/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5349/comments | https://api.github.com/repos/huggingface/datasets/issues/5349/events | https://github.com/huggingface/datasets/pull/5349 | 1,487,396,780 | PR_kwDODunzps5E8N6G | 5,349 | Clean up remaining Main Classes docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-09T20:17:15 | 2022-12-12T17:27:17 | 2022-12-12T17:24:13 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5349",
"html_url": "https://github.com/huggingface/datasets/pull/5349",
"diff_url": "https://github.com/huggingface/datasets/pull/5349.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5349.patch",
"merged_at": "2022-12-12T17:24:13"
} | This PR cleans up the remaining docstrings in Main Classes (`IterableDataset`, `IterableDatasetDict`, and `Features`). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5349/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5349/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5348 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5348/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5348/comments | https://api.github.com/repos/huggingface/datasets/issues/5348/events | https://github.com/huggingface/datasets/issues/5348 | 1,486,975,626 | I_kwDODunzps5YoXKK | 5,348 | The data downloaded in the download folder of the cache does not respect `umask` | {
"login": "SaulLu",
"id": 55560583,
"node_id": "MDQ6VXNlcjU1NTYwNTgz",
"avatar_url": "https://avatars.githubusercontent.com/u/55560583?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SaulLu",
"html_url": "https://github.com/SaulLu",
"followers_url": "https://api.github.com/users/SaulLu/followers",
"following_url": "https://api.github.com/users/SaulLu/following{/other_user}",
"gists_url": "https://api.github.com/users/SaulLu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SaulLu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SaulLu/subscriptions",
"organizations_url": "https://api.github.com/users/SaulLu/orgs",
"repos_url": "https://api.github.com/users/SaulLu/repos",
"events_url": "https://api.github.com/users/SaulLu/events{/privacy}",
"received_events_url": "https://api.github.com/users/SaulLu/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"note, that `datasets` already did some of that umask fixing in the past and also at the hub - the recent work on the hub about the same: https://github.com/huggingface/huggingface_hub/pull/1220\r\n\r\nAlso I noticed that each file has a .json counterpart and the latter always has the correct perms:\r\n\r\n```\r\n-rw------- 1 uue59kq cnw 173M Dec 9 01:37 537596e64721e2ae3d98785b91d30fda0360c196a8224e29658ad629e7303a4d\r\n-rw-rw---- 1 uue59kq cnw 101 Dec 9 01:37 537596e64721e2ae3d98785b91d30fda0360c196a8224e29658ad629e7303a4d.json\r\n```\r\n\r\nso perhaps cheating is possible and syncing the perms between the 2 will do the trick."
] | 2022-12-09T15:46:27 | 2022-12-09T17:21:26 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
For a project on a cluster we are several users to share the same cache for the datasets library. And we have a problem with the permissions on the data downloaded in the cache.
Indeed, it seems that the data is downloaded by giving read and write permissions only to the user launching the command (and no permissions to the group). In our case, those permissions don't respect the `umask` of this user, which was `0007`.
Traceback:
```
Using custom data configuration default
Downloading and preparing dataset text_caps/default to /gpfswork/rech/cnw/commun/datasets/HuggingFaceM4___text_caps/default/1.0.0/2b9ad220cd90fcf2bfb454645bc54364711b83d6d39401ffdaf8cc40882e9141...
Downloading data files: 100%|████████████████████| 3/3 [00:00<00:00, 921.62it/s]
---------------------------------------------------------------------------
PermissionError Traceback (most recent call last)
Cell In [3], line 1
----> 1 ds = load_dataset(dataset_name)
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/load.py:1746, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1743 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1745 # Download and prepare data
-> 1746 builder_instance.download_and_prepare(
1747 download_config=download_config,
1748 download_mode=download_mode,
1749 ignore_verifications=ignore_verifications,
1750 try_from_hf_gcs=try_from_hf_gcs,
1751 use_auth_token=use_auth_token,
1752 )
1754 # Build dataset for splits
1755 keep_in_memory = (
1756 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1757 )
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/builder.py:704, in DatasetBuilder.download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
702 logger.warning("HF google storage unreachable. Downloading and preparing it from source")
703 if not downloaded_from_gcs:
--> 704 self._download_and_prepare(
705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
706 )
707 # Sync info
708 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/builder.py:1227, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verify_infos)
1226 def _download_and_prepare(self, dl_manager, verify_infos):
-> 1227 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/builder.py:771, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
769 split_dict = SplitDict(dataset_name=self.name)
770 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 771 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
773 # Checksums verification
774 if verify_infos and dl_manager.record_checksums:
File /gpfswork/rech/cnw/commun/modules/datasets_modules/datasets/HuggingFaceM4--TextCaps/2b9ad220cd90fcf2bfb454645bc54364711b83d6d39401ffdaf8cc40882e9141/TextCaps.py:125, in TextCapsDataset._split_generators(self, dl_manager)
123 def _split_generators(self, dl_manager):
124 # urls = _URLS[self.config.name] # TODO later
--> 125 data_dir = dl_manager.download_and_extract(_URLS)
126 gen_kwargs = {
127 split_name: {
128 f"{dir_name}_path": Path(data_dir[dir_name][split_name])
(...)
133 for split_name in ["train", "val", "test"]
134 }
136 for split_name in ["train", "val", "test"]:
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/download/download_manager.py:431, in DownloadManager.download_and_extract(self, url_or_urls)
415 def download_and_extract(self, url_or_urls):
416 """Download and extract given url_or_urls.
417
418 Is roughly equivalent to:
(...)
429 extracted_path(s): `str`, extracted paths of given URL(s).
430 """
--> 431 return self.extract(self.download(url_or_urls))
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/download/download_manager.py:324, in DownloadManager.download(self, url_or_urls)
321 self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())))
323 start_time = datetime.now()
--> 324 self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
325 duration = datetime.now() - start_time
326 logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min")
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/download/download_manager.py:229, in DownloadManager._record_sizes_checksums(self, url_or_urls, downloaded_path_or_paths)
226 """Record size/checksum of downloaded files."""
227 for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()):
228 # call str to support PathLike objects
--> 229 self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict(
230 path, record_checksum=self.record_checksums
231 )
File /gpfswork/rech/cnw/commun/conda/lucile-m4_3/lib/python3.8/site-packages/datasets/utils/info_utils.py:82, in get_size_checksum_dict(path, record_checksum)
80 if record_checksum:
81 m = sha256()
---> 82 with open(path, "rb") as f:
83 for chunk in iter(lambda: f.read(1 << 20), b""):
84 m.update(chunk)
PermissionError: [Errno 13] Permission denied: '/gpfswork/rech/cnw/commun/datasets/downloads/1e6aa6d23190c30885194fabb193dce3874d902d7636b66315ee8aaa584e80d6'
```
### Steps to reproduce the bug
I think the following will reproduce the bug.
Given 2 users belonging to the same group with `umask` set to `0007`
- first run with User 1:
```python
from datasets import load_dataset
ds_name = "HuggingFaceM4/VQAv2"
ds = load_dataset(ds_name)
```
- then run with User 2:
```python
from datasets import load_dataset
ds_name = "HuggingFaceM4/TextCaps"
ds = load_dataset(ds_name)
```
### Expected behavior
No `PermissionError`
### Environment info
- `datasets` version: 2.4.0
- Platform: Linux-4.18.0-305.65.1.el8_4.x86_64-x86_64-with-glibc2.17
- Python version: 3.8.13
- PyArrow version: 7.0.0
- Pandas version: 1.4.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5348/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5348/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5347 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5347/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5347/comments | https://api.github.com/repos/huggingface/datasets/issues/5347/events | https://github.com/huggingface/datasets/pull/5347 | 1,486,920,261 | PR_kwDODunzps5E6jb1 | 5,347 | Force soundfile to return float32 instead of the default float64 | {
"login": "qmeeus",
"id": 25608944,
"node_id": "MDQ6VXNlcjI1NjA4OTQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/25608944?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qmeeus",
"html_url": "https://github.com/qmeeus",
"followers_url": "https://api.github.com/users/qmeeus/followers",
"following_url": "https://api.github.com/users/qmeeus/following{/other_user}",
"gists_url": "https://api.github.com/users/qmeeus/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qmeeus/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qmeeus/subscriptions",
"organizations_url": "https://api.github.com/users/qmeeus/orgs",
"repos_url": "https://api.github.com/users/qmeeus/repos",
"events_url": "https://api.github.com/users/qmeeus/events{/privacy}",
"received_events_url": "https://api.github.com/users/qmeeus/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"cc @polinaeterna",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5347). All of your documentation changes will be reflected on that endpoint.",
"Cool ! Feel free to add a comment in the code to explain that and we can merge :)",
"I'm not sure if this is a good change since we plan to get rid of `torchaudio` in the next couple of months...",
"What do you think @polinaeterna @patrickvonplaten ? Models are usually using float32 (e.g. Wev2vec2 in `transformers`) IIRC",
"IMO we can safely assume that float32 is always good enough when using audio models in inference or training. Nevertheless there might be use cases for audio datasets in the future where float64 is needed. \r\n\r\n=> I would by default always cast to float32, but then possible allow the user to cast to float64 ",
"> I'm not sure if this is a good change since we plan to get rid of torchaudio in the next couple of months...\r\n\r\n@mariosasko I agree but who knows how long we will have to wait until we are really able to do so (https://github.com/bastibe/libsndfile-binaries/pull/17 is a draft. so as @patrickvonplaten is okay with float32, I'd merge.\r\n\r\n\r\n",
"@polinaeterna Can you comment on the linked PR to see why it's still a draft? Maybe we can help somehow to get this merged finally.\r\n\r\nI think it's weird to align `soundfile` with `torchaudio` when the latter is only used for MP3 (and prob for not much longer). "
] | 2022-12-09T15:10:24 | 2023-01-17T16:12:49 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5347",
"html_url": "https://github.com/huggingface/datasets/pull/5347",
"diff_url": "https://github.com/huggingface/datasets/pull/5347.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5347.patch",
"merged_at": null
} | (Fixes issue #5345) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5347/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5347/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5346 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5346/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5346/comments | https://api.github.com/repos/huggingface/datasets/issues/5346/events | https://github.com/huggingface/datasets/issues/5346 | 1,486,884,983 | I_kwDODunzps5YoBB3 | 5,346 | [Quick poll] Give your opinion on the future of the Hugging Face Open Source ecosystem! | {
"login": "LysandreJik",
"id": 30755778,
"node_id": "MDQ6VXNlcjMwNzU1Nzc4",
"avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/LysandreJik",
"html_url": "https://github.com/LysandreJik",
"followers_url": "https://api.github.com/users/LysandreJik/followers",
"following_url": "https://api.github.com/users/LysandreJik/following{/other_user}",
"gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions",
"organizations_url": "https://api.github.com/users/LysandreJik/orgs",
"repos_url": "https://api.github.com/users/LysandreJik/repos",
"events_url": "https://api.github.com/users/LysandreJik/events{/privacy}",
"received_events_url": "https://api.github.com/users/LysandreJik/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"As the survey is finished, can we close this issue, @LysandreJik ?",
"Yes! I'll post a public summary on the forums shortly."
] | 2022-12-09T14:48:02 | 2023-01-25T19:35:41 | 2023-01-25T19:35:40 | MEMBER | null | null | null | Thanks to all of you, Datasets is just about to pass 15k stars!
Since the last survey, a lot has happened: the [diffusers](https://github.com/huggingface/diffusers), [evaluate](https://github.com/huggingface/evaluate) and [skops](https://github.com/skops-dev/skops) libraries were born. `timm` joined the Hugging Face ecosystem. There were 25 new releases of `transformers`, 21 new releases of `datasets`, 13 new releases of `accelerate`.
If you have a couple of minutes and want to participate in shaping the future of the ecosystem, please share your thoughts:
[**hf.co/oss-survey**](https://docs.google.com/forms/d/e/1FAIpQLSf4xFQKtpjr6I_l7OfNofqiR8s-WG6tcNbkchDJJf5gYD72zQ/viewform?usp=sf_link)
(please reply in the above feedback form rather than to this thread)
Thank you all on behalf of the HuggingFace team! 🤗 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5346/reactions",
"total_count": 3,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 3,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5346/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5345 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5345/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5345/comments | https://api.github.com/repos/huggingface/datasets/issues/5345/events | https://github.com/huggingface/datasets/issues/5345 | 1,486,555,384 | I_kwDODunzps5Ymwj4 | 5,345 | Wrong dtype for array in audio features | {
"login": "qmeeus",
"id": 25608944,
"node_id": "MDQ6VXNlcjI1NjA4OTQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/25608944?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qmeeus",
"html_url": "https://github.com/qmeeus",
"followers_url": "https://api.github.com/users/qmeeus/followers",
"following_url": "https://api.github.com/users/qmeeus/following{/other_user}",
"gists_url": "https://api.github.com/users/qmeeus/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qmeeus/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qmeeus/subscriptions",
"organizations_url": "https://api.github.com/users/qmeeus/orgs",
"repos_url": "https://api.github.com/users/qmeeus/repos",
"events_url": "https://api.github.com/users/qmeeus/events{/privacy}",
"received_events_url": "https://api.github.com/users/qmeeus/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"After some more investigation, this is due to [this line of code](https://github.com/huggingface/datasets/blob/main/src/datasets/features/audio.py#L279). The function `sf.read(file)` should be updated to `sf.read(file, dtype=\"float32\")`\r\n\r\nIndeed, the default value in soundfile is `float64` ([see here](https://pysoundfile.readthedocs.io/en/latest/#soundfile.read)). \r\n",
"@qmeeus I agree, decoding of different audio formats should return the same dtypes indeed!\r\n\r\nBut note that here you are concatenating datasets with different sampling rates: 48000 for CommonVoice and 16000 for Voxpopuli. So you should cast them to the same sampling rate value before interleaving, for example:\r\n```\r\ncv = cv.cast_column(\"audio\", Audio(sampling_rate=16000))\r\n```\r\notherwise you would get the same error because features of the same column (\"audio\") are not the same.\r\n\r\nAlso, the error you get is unexpected. Could you please confirm that you use the latest main version of the `datasets`? We had an issue that could lead to an error like this after using `rename_column` method, but it was fixed in https://github.com/huggingface/datasets/pull/5287 ",
"Hi Polina,\r\nSorry for the late answer\r\nIt is possible that the issue was due to a bug that is now fixed. I installed an editable version of datasets from github, but I don't recall whether I had updated it at the time of the issue. My research led me to other directions so I did not follow through on the interleave datasets.\r\n"
] | 2022-12-09T11:05:11 | 2023-02-10T14:39:28 | null | NONE | null | null | null | ### Describe the bug
When concatenating/interleaving different datasets, I stumble into an error because the features can't be aligned. After some investigation, I understood that the audio arrays had different dtypes, namely `float32` and `float64`. Consequently, the datasets cannot be merged.
### Steps to reproduce the bug
For example, for `facebook/voxpopuli` and `mozilla-foundation/common_voice_11_0`:
```
from datasets import load_dataset, interleave_datasets
covost = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True)
voxpopuli = datasets.load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True)
sample_cv, = covost.take(1)
sample_vp, = voxpopuli.take(1)
assert sample_cv["audio"]["array"].dtype == sample_vp["audio"]["array"].dtype
# Fails
dataset = interleave_datasets([covost, voxpopuli])
# ValueError: The features can't be aligned because the key audio of features {'audio_id': Value(dtype='string', id=None), 'language': Value(dtype='int64', id=None), 'audio': {'array': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'path': Value(dtype='string', id=None), 'sampling_rate': Value(dtype='int64', id=None)}, 'normalized_text': Value(dtype='string', id=None), 'gender': Value(dtype='string', id=None), 'speaker_id': Value(dtype='string', id=None), 'is_gold_transcript': Value(dtype='bool', id=None), 'accent': Value(dtype='string', id=None), 'sentence': Value(dtype='string', id=None)} has unexpected type - {'array': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'path': Value(dtype='string', id=None), 'sampling_rate': Value(dtype='int64', id=None)} (expected either Audio(sampling_rate=16000, mono=True, decode=True, id=None) or Value("null").
```
### Expected behavior
The audio should be loaded to arrays with a unique dtype (I guess `float32`)
### Environment info
```
- `datasets` version: 2.7.1.dev0
- Platform: Linux-4.18.0-425.3.1.el8.x86_64-x86_64-with-glibc2.28
- Python version: 3.9.15
- PyArrow version: 10.0.1
- Pandas version: 1.5.2
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5345/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5344 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5344/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5344/comments | https://api.github.com/repos/huggingface/datasets/issues/5344/events | https://github.com/huggingface/datasets/pull/5344 | 1,485,628,319 | PR_kwDODunzps5E2BPN | 5,344 | Clean up Dataset and DatasetDict | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-09T00:02:08 | 2022-12-13T00:56:07 | 2022-12-13T00:53:02 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5344",
"html_url": "https://github.com/huggingface/datasets/pull/5344",
"diff_url": "https://github.com/huggingface/datasets/pull/5344.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5344.patch",
"merged_at": "2022-12-13T00:53:01"
} | This PR cleans up the docstrings for the other half of the methods in `Dataset` and finishes `DatasetDict`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5344/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5344/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5343 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5343/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5343/comments | https://api.github.com/repos/huggingface/datasets/issues/5343/events | https://github.com/huggingface/datasets/issues/5343 | 1,485,297,823 | I_kwDODunzps5Yh9if | 5,343 | T5 for Q&A produces truncated sentence | {
"login": "junyongyou",
"id": 13484072,
"node_id": "MDQ6VXNlcjEzNDg0MDcy",
"avatar_url": "https://avatars.githubusercontent.com/u/13484072?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/junyongyou",
"html_url": "https://github.com/junyongyou",
"followers_url": "https://api.github.com/users/junyongyou/followers",
"following_url": "https://api.github.com/users/junyongyou/following{/other_user}",
"gists_url": "https://api.github.com/users/junyongyou/gists{/gist_id}",
"starred_url": "https://api.github.com/users/junyongyou/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/junyongyou/subscriptions",
"organizations_url": "https://api.github.com/users/junyongyou/orgs",
"repos_url": "https://api.github.com/users/junyongyou/repos",
"events_url": "https://api.github.com/users/junyongyou/events{/privacy}",
"received_events_url": "https://api.github.com/users/junyongyou/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2022-12-08T19:48:46 | 2022-12-08T19:57:17 | 2022-12-08T19:57:17 | NONE | null | null | null | Dear all, I am fine-tuning T5 for Q&A task using the MedQuAD ([GitHub - abachaa/MedQuAD: Medical Question Answering Dataset of 47,457 QA pairs created from 12 NIH websites](https://github.com/abachaa/MedQuAD)) dataset. In the dataset, there are many long answers with thousands of words. I have used pytorch_lightning to train the T5-large model. I have two questions.
For example, I set both the max_length, max_input_length, max_output_length to 128.
How to deal with those long answers? I just left them as is and the T5Tokenizer can automatically handle. I would assume the tokenizer just truncates an answer at the position of 128th word (or 127th). Is it possible that I manually split an answer into different parts, each part has 128 words; and then all these sub-answers serve as a separate answer to the same question?
Another question is that I get incomplete (truncated) answers when using the fine-tuned model in inference, even though the predicted answer is shorter than 128 words. I found a message posted 2 years ago saying that one should add at the end of texts when fine-tuning T5. I followed that but then got a warning message that duplicated were found. I am assuming that this is because the tokenizer truncates an answer text, thus is missing in the truncated answer, such that the end token is not produced in predicted answer. However, I am not sure. Can anybody point out how to address this issue?
Any suggestions are highly appreciated.
Below is some code snippet.
`
import pytorch_lightning as pl
from torch.utils.data import DataLoader
import torch
import numpy as np
import time
from pathlib import Path
from transformers import (
Adafactor,
T5ForConditionalGeneration,
T5Tokenizer,
get_linear_schedule_with_warmup
)
from torch.utils.data import RandomSampler
from question_answering.utils import *
class T5FineTuner(pl.LightningModule):
def __init__(self, hyparams):
super(T5FineTuner, self).__init__()
self.hyparams = hyparams
self.model = T5ForConditionalGeneration.from_pretrained(hyparams.model_name_or_path)
self.tokenizer = T5Tokenizer.from_pretrained(hyparams.tokenizer_name_or_path)
if self.hyparams.freeze_embeds:
self.freeze_embeds()
if self.hyparams.freeze_encoder:
self.freeze_params(self.model.get_encoder())
# assert_all_frozen()
self.step_count = 0
self.output_dir = Path(self.hyparams.output_dir)
n_observations_per_split = {
'train': self.hyparams.n_train,
'validation': self.hyparams.n_val,
'test': self.hyparams.n_test
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.em_score_list = []
self.subset_score_list = []
data_folder = r'C:\Datasets\MedQuAD-master'
self.train_data, self.val_data, self.test_data = load_medqa_data(data_folder)
def freeze_params(self, model):
for param in model.parameters():
param.requires_grad = False
def freeze_embeds(self):
try:
self.freeze_params(self.model.model.shared)
for d in [self.model.model.encoder, self.model.model.decoder]:
self.freeze_params(d.embed_positions)
self.freeze_params(d.embed_tokens)
except AttributeError:
self.freeze_params(self.model.shared)
for d in [self.model.encoder, self.model.decoder]:
self.freeze_params(d.embed_tokens)
def lmap(self, f, x):
return list(map(f, x))
def is_logger(self):
return self.trainer.proc_rank <= 0
def forward(self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, labels=None):
return self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=labels
)
def _step(self, batch):
labels = batch['target_ids']
labels[labels[:, :] == self.tokenizer.pad_token_id] = -100
outputs = self(
input_ids = batch['source_ids'],
attention_mask=batch['source_mask'],
labels=labels,
decoder_attention_mask=batch['target_mask']
)
loss = outputs[0]
return loss
def ids_to_clean_text(self, generated_ids):
gen_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
return self.lmap(str.strip, gen_text)
def _generative_step(self, batch):
t0 = time.time()
generated_ids = self.model.generate(
batch["source_ids"],
attention_mask=batch["source_mask"],
use_cache=True,
decoder_attention_mask=batch['target_mask'],
max_length=128,
num_beams=2,
early_stopping=True
)
preds = self.ids_to_clean_text(generated_ids)
targets = self.ids_to_clean_text(batch["target_ids"])
gen_time = (time.time() - t0) / batch["source_ids"].shape[0]
loss = self._step(batch)
base_metrics = {'val_loss': loss}
summ_len = np.mean(self.lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=targets)
em_score, subset_match_score = calculate_scores(preds, targets)
self.em_score_list.append(em_score)
self.subset_score_list.append(subset_match_score)
em_score = torch.tensor(em_score, dtype=torch.float32)
subset_match_score = torch.tensor(subset_match_score, dtype=torch.float32)
base_metrics.update(em_score=em_score, subset_match_score=subset_match_score)
# rouge_results = self.rouge_metric.compute()
# rouge_dict = self.parse_score(rouge_results)
return base_metrics
def training_step(self, batch, batch_idx):
loss = self._step(batch)
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
def training_epoch_end(self, outputs):
avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean()
tensorboard_logs = {'avg_train_loss': avg_train_loss}
# return {'avg_train_loss': avg_train_loss, 'log': tensorboard_logs, 'progress_bar': tensorboard_logs}
def validation_step(self, batch, batch_idx):
return self._generative_step(batch)
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
if len(self.em_score_list) <= 2:
average_em_score = sum(self.em_score_list) / len(self.em_score_list)
average_subset_match_score = sum(self.subset_score_list) / len(self.subset_score_list)
else:
latest_em_score = self.em_score_list[:-2]
latest_subset_score = self.subset_score_list[:-2]
average_em_score = sum(latest_em_score) / len(latest_em_score)
average_subset_match_score = sum(latest_subset_score) / len(latest_subset_score)
average_em_score = torch.tensor(average_em_score, dtype=torch.float32)
average_subset_match_score = torch.tensor(average_subset_match_score, dtype=torch.float32)
tensorboard_logs.update(em_score=average_em_score, subset_match_score=average_subset_match_score)
self.target_gen = []
self.prediction_gen = []
return {
'avg_val_loss': avg_loss,
'em_score': average_em_score,
'subset_match_socre': average_subset_match_score,
'log': tensorboard_logs,
'progress_bar': tensorboard_logs
}
def configure_optimizers(self):
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hyparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = Adafactor(optimizer_grouped_parameters, lr=self.hyparams.learning_rate, scale_parameter=False,
relative_step=False)
self.opt = optimizer
return [optimizer]
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure=None,
on_tpu=False, using_native_amp=False, using_lbfgs=False):
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
self.lr_scheduler.step()
def get_tqdm_dict(self):
tqdm_dict = {"loss": "{:.3f}".format(self.trainer.avg_loss), "lr": self.lr_scheduler.get_last_lr()[-1]}
return tqdm_dict
def train_dataloader(self):
n_samples = self.n_obs['train']
train_dataset = get_dataset(tokenizer=self.tokenizer, data=self.train_data, num_samples=n_samples,
args=self.hyparams)
sampler = RandomSampler(train_dataset)
dataloader = DataLoader(train_dataset, sampler=sampler, batch_size=self.hyparams.train_batch_size,
drop_last=True, num_workers=4)
# t_total = (
# (len(dataloader.dataset) // (self.hyparams.train_batch_size * max(1, self.hyparams.n_gpu)))
# // self.hyparams.gradient_accumulation_steps
# * float(self.hyparams.num_train_epochs)
# )
t_total = 100000
scheduler = get_linear_schedule_with_warmup(
self.opt, num_warmup_steps=self.hyparams.warmup_steps, num_training_steps=t_total
)
self.lr_scheduler = scheduler
return dataloader
def val_dataloader(self):
n_samples = self.n_obs['validation']
validation_dataset = get_dataset(tokenizer=self.tokenizer, data=self.val_data, num_samples=n_samples,
args=self.hyparams)
sampler = RandomSampler(validation_dataset)
return DataLoader(validation_dataset, shuffle=False, batch_size=self.hyparams.eval_batch_size, sampler=sampler, num_workers=4)
def test_dataloader(self):
n_samples = self.n_obs['test']
test_dataset = get_dataset(tokenizer=self.tokenizer, data=self.test_data, num_samples=n_samples, args=self.hyparams)
return DataLoader(test_dataset, batch_size=self.hyparams.eval_batch_size, num_workers=4)
def on_save_checkpoint(self, checkpoint):
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
import os
import argparse
import pytorch_lightning as pl
from question_answering.t5_closed_book import T5FineTuner
if __name__ == '__main__':
args_dict = dict(
output_dir="", # path to save the checkpoints
model_name_or_path='t5-large',
tokenizer_name_or_path='t5-large',
max_input_length=128,
max_output_length=128,
freeze_encoder=False,
freeze_embeds=False,
learning_rate=1e-5,
weight_decay=0.0,
adam_epsilon=1e-8,
warmup_steps=0,
train_batch_size=4,
eval_batch_size=4,
num_train_epochs=2,
gradient_accumulation_steps=10,
n_gpu=1,
resume_from_checkpoint=None,
val_check_interval=0.5,
n_val=4000,
n_train=-1,
n_test=-1,
early_stop_callback=False,
fp_16=False,
opt_level='O1',
max_grad_norm=1.0,
seed=101,
)
args_dict.update({'output_dir': 't5_large_MedQuAD_256', 'num_train_epochs': 100,
'train_batch_size': 16, 'eval_batch_size': 16, 'learning_rate': 1e-3})
args = argparse.Namespace(**args_dict)
checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath=args.output_dir, monitor="em_score", mode="max", save_top_k=1)
## If resuming from checkpoint, add an arg resume_from_checkpoint
train_params = dict(
accumulate_grad_batches=args.gradient_accumulation_steps,
gpus=args.n_gpu,
max_epochs=args.num_train_epochs,
# early_stop_callback=False,
precision=16 if args.fp_16 else 32,
# amp_level=args.opt_level,
# resume_from_checkpoint=args.resume_from_checkpoint,
gradient_clip_val=args.max_grad_norm,
checkpoint_callback=checkpoint_callback,
val_check_interval=args.val_check_interval,
# accelerator='dp'
# logger=wandb_logger,
# callbacks=[LoggingCallback()],
)
model = T5FineTuner(args)
trainer = pl.Trainer(**train_params)
trainer.fit(model)
` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5343/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5343/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5342 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5342/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5342/comments | https://api.github.com/repos/huggingface/datasets/issues/5342/events | https://github.com/huggingface/datasets/issues/5342 | 1,485,244,178 | I_kwDODunzps5YhwcS | 5,342 | Emotion dataset cannot be downloaded | {
"login": "cbarond",
"id": 78887193,
"node_id": "MDQ6VXNlcjc4ODg3MTkz",
"avatar_url": "https://avatars.githubusercontent.com/u/78887193?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cbarond",
"html_url": "https://github.com/cbarond",
"followers_url": "https://api.github.com/users/cbarond/followers",
"following_url": "https://api.github.com/users/cbarond/following{/other_user}",
"gists_url": "https://api.github.com/users/cbarond/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cbarond/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cbarond/subscriptions",
"organizations_url": "https://api.github.com/users/cbarond/orgs",
"repos_url": "https://api.github.com/users/cbarond/repos",
"events_url": "https://api.github.com/users/cbarond/events{/privacy}",
"received_events_url": "https://api.github.com/users/cbarond/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892865,
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate",
"name": "duplicate",
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists"
}
] | closed | false | null | [] | null | [
"Hi @cbarond there's already an open issue at https://github.com/dair-ai/emotion_dataset/issues/5, as the data seems to be missing now, so check that issue instead 👍🏻 ",
"Thanks @cbarond for reporting and @alvarobartt for pointing to the issue we opened in the author's repo.\r\n\r\nIndeed, this issue was first raised in the \"emotion\" dataset Community tab: https://huggingface.co/datasets/emotion/discussions/3\r\n\r\nI'm closing this issue and leave the issue above for the subsequent updates.\r\n\r\nDuplicate of: https://huggingface.co/datasets/emotion/discussions/3",
"try using \"SetFit/emotion\" instead",
"> try using \"SetFit/emotion\" instead\r\n\r\nI' replaced \"emotion\" with \"SetFit/Emotion\", but the code is getting stuck at\r\n\r\n`emotions = load_dataset(\"SetFit/emotion\")`\r\n\r\nI pause execution using the debugger, and it takes me to filelock.py:226\r\n\r\n`with self._thread_lock:`\r\n\r\nDo you know a way to get past this issue?",
"thanks @honeyimholm - worked for me",
"> try using \"SetFit/emotion\" instead\r\n\r\nIt really helps a lot, thank you!",
"The dataset loading script has been fixed: https://huggingface.co/datasets/emotion/discussions/4"
] | 2022-12-08T19:07:09 | 2023-02-23T19:13:19 | 2022-12-09T10:46:11 | NONE | null | null | null | ### Describe the bug
The emotion dataset gives a FileNotFoundError. The full error is: `FileNotFoundError: Couldn't find file at https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1`.
It was working yesterday (December 7, 2022), but stopped working today (December 8, 2022).
### Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("emotion")
```
### Expected behavior
The dataset should load properly.
### Environment info
- `datasets` version: 2.7.1
- Platform: Windows-10-10.0.19045-SP0
- Python version: 3.9.13
- PyArrow version: 10.0.1
- Pandas version: 1.5.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5342/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5342/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5341 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5341/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5341/comments | https://api.github.com/repos/huggingface/datasets/issues/5341/events | https://github.com/huggingface/datasets/pull/5341 | 1,484,376,644 | PR_kwDODunzps5Exohx | 5,341 | Remove tasks.json | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-08T11:04:35 | 2022-12-09T12:26:21 | 2022-12-09T12:23:20 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5341",
"html_url": "https://github.com/huggingface/datasets/pull/5341",
"diff_url": "https://github.com/huggingface/datasets/pull/5341.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5341.patch",
"merged_at": "2022-12-09T12:23:20"
} | After discussions in https://github.com/huggingface/datasets/pull/5335 we should remove this file that is not used anymore. We should update https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts instead. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5341/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5341/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5340 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5340/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5340/comments | https://api.github.com/repos/huggingface/datasets/issues/5340/events | https://github.com/huggingface/datasets/pull/5340 | 1,483,182,158 | PR_kwDODunzps5EtWo3 | 5,340 | Clean up DatasetInfo and Dataset docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-08T00:17:53 | 2022-12-08T19:33:14 | 2022-12-08T19:30:10 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5340",
"html_url": "https://github.com/huggingface/datasets/pull/5340",
"diff_url": "https://github.com/huggingface/datasets/pull/5340.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5340.patch",
"merged_at": "2022-12-08T19:30:10"
} | This PR cleans up the docstrings for `DatasetInfo` and about half of the methods in `Dataset`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5340/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5340/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5339 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5339/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5339/comments | https://api.github.com/repos/huggingface/datasets/issues/5339/events | https://github.com/huggingface/datasets/pull/5339 | 1,482,817,424 | PR_kwDODunzps5EsC8N | 5,339 | Add Video feature, videofolder, and video-classification task | {
"login": "nateraw",
"id": 32437151,
"node_id": "MDQ6VXNlcjMyNDM3MTUx",
"avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nateraw",
"html_url": "https://github.com/nateraw",
"followers_url": "https://api.github.com/users/nateraw/followers",
"following_url": "https://api.github.com/users/nateraw/following{/other_user}",
"gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nateraw/subscriptions",
"organizations_url": "https://api.github.com/users/nateraw/orgs",
"repos_url": "https://api.github.com/users/nateraw/repos",
"events_url": "https://api.github.com/users/nateraw/events{/privacy}",
"received_events_url": "https://api.github.com/users/nateraw/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5339). All of your documentation changes will be reflected on that endpoint.",
"@lhoestq I think I need some serious help with the tests 😅...I started this locally but it got too time consuming.\n\nOne issue I remember running into is with lossless audio encoding/decoding. I started thinking of using the underlying Audio feature instead of PyAV so I didn't have to rewrite similar logic here...but assumed that would turn into a mess w/ underlying logic"
] | 2022-12-07T20:48:34 | 2023-01-05T23:54:12 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5339",
"html_url": "https://github.com/huggingface/datasets/pull/5339",
"diff_url": "https://github.com/huggingface/datasets/pull/5339.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5339.patch",
"merged_at": null
} | This PR does the following:
- Adds `Video` feature (Resolves #5225 )
- Adds `video-classification` task
- Adds `videofolder` packaged module for easy loading of local video classification datasets
TODO:
- [ ] add tests
- [ ] add docs | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5339/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5339/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5338 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5338/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5338/comments | https://api.github.com/repos/huggingface/datasets/issues/5338/events | https://github.com/huggingface/datasets/issues/5338 | 1,482,646,151 | I_kwDODunzps5YX2KH | 5,338 | `map()` stops every 1000 steps | {
"login": "bayartsogt-ya",
"id": 43239645,
"node_id": "MDQ6VXNlcjQzMjM5NjQ1",
"avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bayartsogt-ya",
"html_url": "https://github.com/bayartsogt-ya",
"followers_url": "https://api.github.com/users/bayartsogt-ya/followers",
"following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}",
"gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions",
"organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs",
"repos_url": "https://api.github.com/users/bayartsogt-ya/repos",
"events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}",
"received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi !\r\n\r\n> It starts using all the cores (I am not sure why because I did not pass num_proc)\r\n\r\nThe tokenizer uses Rust code that is multithreaded. And maybe the `feature_extractor` might run some things in parallel as well - but I'm not super familiar with its internals.\r\n\r\n> then progress bar stops at every 1k steps. (starts using a single core)\r\n\r\nEvery 1000 examples we flush the processed examples to disk. It is this way because Arrow is a columnar format: you must write data chunk by chunk. The processing in on hold while writing right now - maybe this can be improved in the future.",
"Hi @lhoestq \r\nThanks for the explanation! it was so helpful! Let me check why `feature_extractor` is running on multiple cpus."
] | 2022-12-07T19:09:40 | 2022-12-10T00:39:29 | 2022-12-10T00:39:28 | NONE | null | null | null | ### Describe the bug
I am passing the following `prepare_dataset` function to `Dataset.map` (code is inspired from [here](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py#L454))
```python3
def prepare_dataset(batch):
# load and resample audio data from 48 to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch[text_column]).input_ids
return batch
...
train_ds = train_ds.map(prepare_dataset)
```
Here is the exact code I am running https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/train.py#L70-L71
It starts using all the cores (I am not sure why because I did not pass `num_proc`)
then progress bar stops at every 1k steps. (starts using a single core)
then come back to using all the cores again.
link to [screen record](https://youtu.be/jPQpQQGp6Gc)
Can someone explain this process and maybe provide a way to improve this pipeline? cc: @lhoestq
### Steps to reproduce the bug
1. load the dataset
2. create a Whisper processor
3. create a `prepare_dataset` function
4. pass the function to `dataset.map(prepare_dataset)`
### Expected behavior
- Use a single core per a function
- not to stop at some point?
### Environment info
- `datasets` version: 2.7.1.dev0
- Platform: Linux-5.4.0-109-generic-x86_64-with-glibc2.27
- Python version: 3.8.10
- PyArrow version: 10.0.1
- Pandas version: 1.5.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5338/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5338/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5337 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5337/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5337/comments | https://api.github.com/repos/huggingface/datasets/issues/5337/events | https://github.com/huggingface/datasets/issues/5337 | 1,481,692,156 | I_kwDODunzps5YUNP8 | 5,337 | Support webdataset format | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"I like the idea of having `webdataset` as an optional dependency to ensure our loader generates web datasets the same way as the main project.",
"Webdataset is the one of the most popular dataset formats for large scale computer vision tasks. Upvote for this issue. ",
"Any updates on this?"
] | 2022-12-07T11:32:25 | 2023-05-26T05:24:19 | null | MEMBER | null | null | null | Webdataset is an efficient format for iterable datasets. It would be nice to support it in `datasets`, as discussed in https://github.com/rom1504/img2dataset/issues/234.
In particular it would be awesome to be able to load one using `load_dataset` in streaming mode (either from a local directory, or from a dataset on the Hugging Face Hub). Some datasets on the Hub are already in webdataset format.
It terms of implementation, we can have something similar to the Parquet loader.
I also think it's fine to have webdataset as an optional dependency. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5337/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5337/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5336 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5336/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5336/comments | https://api.github.com/repos/huggingface/datasets/issues/5336/events | https://github.com/huggingface/datasets/pull/5336 | 1,479,649,900 | PR_kwDODunzps5Egzed | 5,336 | Set `IterableDataset.map` param `batch_size` typing as optional | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5336). All of your documentation changes will be reflected on that endpoint.",
"Hi @mariosasko, @lhoestq I was wondering whether we should include `batched` as a `pytest.mark` param for the functions testing `IterableDataset.map` so as to ensure that the changes done in this PR work fine without breaking anything of the actual functionality.\r\n\r\nI've pushed updated tests just for one of the unit testing functions to be run as `pytest tests/test_iterable_dataset.py::test_mapped_examples_iterable -s --durations 0`, but some are still missing `batched` param, it was just to ask you whether we're supposed to do this for the rest of the functions or not, if it's a yes I'll push the commit as it's ready, but didn't want to push extra stuff that may be discarded later!\r\n\r\nThanks :hugs:",
"Thanks for the feedback @lhoestq, I agree with keeping `Optional` instead of `Union[type, None]` for now 👍🏻"
] | 2022-12-06T17:08:10 | 2022-12-07T14:14:56 | 2022-12-07T14:06:27 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5336",
"html_url": "https://github.com/huggingface/datasets/pull/5336",
"diff_url": "https://github.com/huggingface/datasets/pull/5336.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5336.patch",
"merged_at": "2022-12-07T14:06:27"
} | This PR solves #5325
~Indeed we're using the typing for optional values as `Union[type, None]` as it's similar to how Python 3.10 handles optional values as `type | None`, instead of using `Optional[type]`.~
~Do we want to start using `Union[type, None]` for type-hinting optional values or just keep on using `Optional`?~ -> Keeping `Optional` still for consistency with the rest of the code in `datasets`
Also we now allow `batch_size` to be `None` for `IterableDataset.map` and `IterableDataset.filter`e.g. `MappedExamplesIterable` as `map` is internally instantiating those and propagating the `batch_size` param so if it can be `None` for `map` it should also do so for `MappedExamplesIterable`, as well as for `FilteredExamplesIterable` when calling `IterableDataset.filter`.
## TODOs
- [x] Add integration tests
- [x] Handle scenario where `batched=True` and `batch_size=None` or `batch_size<=0` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5336/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5336/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5335 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5335/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5335/comments | https://api.github.com/repos/huggingface/datasets/issues/5335/events | https://github.com/huggingface/datasets/pull/5335 | 1,478,890,788 | PR_kwDODunzps5EeHdA | 5,335 | Update tasks.json | {
"login": "sayakpaul",
"id": 22957388,
"node_id": "MDQ6VXNlcjIyOTU3Mzg4",
"avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sayakpaul",
"html_url": "https://github.com/sayakpaul",
"followers_url": "https://api.github.com/users/sayakpaul/followers",
"following_url": "https://api.github.com/users/sayakpaul/following{/other_user}",
"gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions",
"organizations_url": "https://api.github.com/users/sayakpaul/orgs",
"repos_url": "https://api.github.com/users/sayakpaul/repos",
"events_url": "https://api.github.com/users/sayakpaul/events{/privacy}",
"received_events_url": "https://api.github.com/users/sayakpaul/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I think the only place where we need to add it is here https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts\r\n\r\nAnd I think we can remove tasks.json completely from this repo",
"Isn't tasks.json used anymore in this repo?",
"> I think the only place where we need to add it is here https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts\r\n> \r\n> And I think we can remove tasks.json completely from this repo\r\n\r\nWhat about the warning I mentioned in https://github.com/huggingface/datasets/issues/5255#issuecomment-1339013527? Also, the depth estimation entry is already present in https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts. ",
"The update is based on what I received in the output of the export job (c.f. https://github.com/huggingface/datasets/issues/5255#issuecomment-1339107195). \r\n\r\nEdit: Oh, are you referring to the dataset card of NYU Depth V2?",
"Yes, my suggestion was for the dataset card: you got the error message because you tried to set `depth-estimation` in `class_ids` instead of `class_categories`.",
"> What about the warning I mentioned in https://github.com/huggingface/datasets/issues/5255#issuecomment-1339013527? Also, the depth estimation entry is already present in https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts.\r\n\r\nif you place it in `task_categories` you should be good :)",
"yes i would suggest rm'ing tasks.json here for clarity",
"Closing it. ",
"It's not clear if we can remove it btw, since old versions of `evaluate` rely on it (see https://github.com/huggingface/evaluate/pull/309)\r\n\r\ncc @lvwerra ",
"Actually it can be removed without incidence in old versions of evaluate since we kept an hardcoded `known_task_ids` that is marked \"DEPRECATED\""
] | 2022-12-06T11:37:57 | 2022-12-08T11:05:33 | 2022-12-07T12:46:03 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5335",
"html_url": "https://github.com/huggingface/datasets/pull/5335",
"diff_url": "https://github.com/huggingface/datasets/pull/5335.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5335.patch",
"merged_at": null
} | Context:
* https://github.com/huggingface/datasets/issues/5255#issuecomment-1339107195
Cc: @osanseviero | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5335/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5335/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5334 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5334/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5334/comments | https://api.github.com/repos/huggingface/datasets/issues/5334/events | https://github.com/huggingface/datasets/pull/5334 | 1,477,421,927 | PR_kwDODunzps5EY9zN | 5,334 | Clean up docstrings | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Thanks ! Let us know if we can help :)\r\n\r\nSmall pref for having multiple PRs",
"Awesome, thanks! Sorry this one is a little big, I'll open some smaller ones next :)"
] | 2022-12-05T20:56:08 | 2022-12-09T01:44:25 | 2022-12-09T01:41:44 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5334",
"html_url": "https://github.com/huggingface/datasets/pull/5334",
"diff_url": "https://github.com/huggingface/datasets/pull/5334.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5334.patch",
"merged_at": "2022-12-09T01:41:44"
} | As raised by @polinaeterna in #5324, some of the docstrings are a bit of a mess because it has both Markdown and Sphinx syntax. This PR fixes the docstring for `DatasetBuilder`.
I'll start working on cleaning up the rest of the docstrings and removing the old Sphinx syntax (let me know if you prefer one big PR with all the cleaned changes or multiple smaller ones)! 🧼 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5334/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5334/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5333 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5333/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5333/comments | https://api.github.com/repos/huggingface/datasets/issues/5333/events | https://github.com/huggingface/datasets/pull/5333 | 1,476,890,156 | PR_kwDODunzps5EXGQ2 | 5,333 | fix: 🐛 pass the token to get the list of config names | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-05T16:06:09 | 2022-12-06T08:25:17 | 2022-12-06T08:22:49 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5333",
"html_url": "https://github.com/huggingface/datasets/pull/5333",
"diff_url": "https://github.com/huggingface/datasets/pull/5333.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5333.patch",
"merged_at": "2022-12-06T08:22:49"
} | Otherwise, get_dataset_infos doesn't work on gated or private datasets, even with the correct token. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5333/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5333/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5332 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5332/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5332/comments | https://api.github.com/repos/huggingface/datasets/issues/5332/events | https://github.com/huggingface/datasets/issues/5332 | 1,476,513,072 | I_kwDODunzps5YAc0w | 5,332 | Passing numpy array to ClassLabel names causes ValueError | {
"login": "freddyheppell",
"id": 1475568,
"node_id": "MDQ6VXNlcjE0NzU1Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1475568?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/freddyheppell",
"html_url": "https://github.com/freddyheppell",
"followers_url": "https://api.github.com/users/freddyheppell/followers",
"following_url": "https://api.github.com/users/freddyheppell/following{/other_user}",
"gists_url": "https://api.github.com/users/freddyheppell/gists{/gist_id}",
"starred_url": "https://api.github.com/users/freddyheppell/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/freddyheppell/subscriptions",
"organizations_url": "https://api.github.com/users/freddyheppell/orgs",
"repos_url": "https://api.github.com/users/freddyheppell/repos",
"events_url": "https://api.github.com/users/freddyheppell/events{/privacy}",
"received_events_url": "https://api.github.com/users/freddyheppell/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Should `datasets` allow `ClassLabel` input parameter to be an `np.array` even though internally we need to cast it to a Python list? @lhoestq @mariosasko ",
"Hi! No, I don't think so. The `names` parameter is [annotated](https://github.com/huggingface/datasets/blob/582236640b9109988e5f7a16a8353696ffa09a16/src/datasets/features/features.py#L892) as `List[str]` (**NumPy arrays are not lists**), and considering that type checking is not a common practice in Python, I think we can leave the code as-is.",
"I appreciate it is the wrong type, and that type checking is not common, but I think there's a few circumstances that make it a good idea from a usability perspective.\r\n\r\nIt's quite a difficult error to debug because it comes from a utility function (so it's not immediately obvious which parameter caused it). What makes it even more difficult is the exception happens when the features instance is used to instantiate the dataset, **not** when when the wrong type is actually passed when the features is instantiated. When I was debugging the error, I didn't really consider it could be an issue with the features instance because it had instantiated fine. It's also not one of the more common exceptions caused by trying to use a non-list as a list.\r\n\r\nIt's also relatively easy to accidentally get a numpy array of class types (e.g. calling `unique()` on a pandas dataframe column). Additionally, passing in a `set` instead of the list (again, relatively easy because people may run `set(classes)` to generate uniques) causes an error when the features instance is used, albeit a slightly more obvious one.\r\n\r\nThe names list is already being processed and validated in the `__post_init__` method anyway, so it would not really be adding any complexity to check it is actually a list here too. I'm happy to contribute this change if you change your mind about whether it's worthwhile.",
"I agree that it's not easy to debug this issue, so perhaps we could add some basic type checking (e.g. `not isinstance(names, list)` -> error) to make debugging easier. Feel free to submit a PR.\r\n\r\n> Additionally, passing in a set instead of the list (again, relatively easy because people may run set(classes) to generate uniques) causes an error when the features instance is used, albeit a slightly more obvious one.\r\n\r\n`set` is an unordered structure (it's ordered in Python 3.6+, but this is CPython's implementation detail), and the order of ClassLabel `names` matters, so this doesn't require a fix.",
"What about checking for `Sequence` instead? I think users can pass a list or a tuple as well."
] | 2022-12-05T12:59:03 | 2022-12-22T16:32:50 | 2022-12-22T16:32:50 | CONTRIBUTOR | null | null | null | ### Describe the bug
If a numpy array is passed to the names argument of ClassLabel, creating a dataset with those features causes an error.
### Steps to reproduce the bug
https://colab.research.google.com/drive/1cV_es1PWZiEuus17n-2C-w0KEoEZ68IX
TLDR:
If I define my classes as:
```
my_classes = np.array(['one', 'two', 'three'])
```
Then this errors:
```py
features = Features({'value': Value('string'), 'label': ClassLabel(names=my_classes)})
dataset = Dataset.from_list(my_data, features=features)
```
```
ValueError Traceback (most recent call last)
[<ipython-input-8-a8a9d53ec82f>](https://localhost:8080/#) in <module>
----> 1 dataset = Dataset.from_list(my_data, features=features)
11 frames
[/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in _asdict_inner(obj)
183 for f in fields(obj):
184 value = _asdict_inner(getattr(obj, f.name))
--> 185 if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False):
186 result[f.name] = value
187 return result
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
```
But this works:
```
features2 = Features({'value': Value('string'), 'label': ClassLabel(names=list(my_classes))})
dataset2 = Dataset.from_list(my_data, features=features2)
```
### Expected behavior
If I provide a numpy array of class names, I would expect either an error that the names list is the wrong type, or for it to be cast internally.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.10
- Python version: 3.8.15
- PyArrow version: 10.0.1
- Pandas version: 1.5.2
Additionally:
- Numpy version: 1.23.5
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5332/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5332/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5331 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5331/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5331/comments | https://api.github.com/repos/huggingface/datasets/issues/5331/events | https://github.com/huggingface/datasets/pull/5331 | 1,473,146,738 | PR_kwDODunzps5EKDpr | 5,331 | Support for multiple configs in packaged modules via metadata yaml info | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5331). All of your documentation changes will be reflected on that endpoint.",
"feel free to merge `main` into your PR to fix the CI :)",
"Let me see if I can fix the pattern thing ^^'",
"Hmm I think it would be easier to specify the `data_files` in the end, because having a split pattern like `{split}-...` at the root of the repository can lead to unexpected behaviors IMO, and we probably don't want to have a different behavior for `data_files` depending if it's inside a `data_dir` or not\r\n\r\nMaybe something like\r\n```yaml\r\nbuilder_config:\r\n data_dir: data_dir\r\n data_files:\r\n - split: train\r\n pattern: train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*\r\n```",
" > Also, I'm not sure if it's a good idea to have this field in the YAML metadata - Transformers use this part of the card only for Hub-related stuff (widgets, tags, CO2 emission, etc.), and I think we should aim to do the same in Datasets. We could achieve this by having these kwargs in a special file (they can be seen as a faster way of defining a builder (builder script) that subclasses a packaged builder) and removing the dataset_info field (the only useful info there seem to be features and we can fetch those directly from a dataset script/Parquet files).\r\n\r\nSomething like `config.json`?\r\n\r\n```json\r\n{\r\n \"data_dir\": \"data\"\r\n \"data_files\": {\r\n \"train\": \"train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*\"\r\n }\r\n}\r\n```\r\n\r\nwe could also support lists for several configs",
"opened https://github.com/huggingface/datasets/issues/5694",
"I opened a PR to this PR to add data_files in YAML: https://github.com/polinaeterna/datasets/pull/1\r\n\r\n```yaml\r\nbuilder_config:\r\n data_files:\r\n - split: train\r\n pattern: data/train-*\r\n```",
"Let me open a PR to see if I can move the data files resolution outside of the MetadataConfigs to not modify it in-place",
"I wonder if we can make the cache backward compatible: we could just check if the cache directory with the old path exists. It will be useful for the research team which has a big datasets cache",
"> I wonder if we can make the cache backward compatible: we could just check if the cache directory with the old path exists. It will be useful for the research team which has a big datasets cache\r\n\r\n![image](https://github.com/huggingface/datasets/assets/16348744/90a96e79-2a0d-4d37-95bd-b75fa962c094)\r\n\r\nIn the next PR maybe? :D \r\nIt's possible but requires some additional logic to correctly pass old `config_kwargs` (which used to include `data_files` but now it's `None` for builders from metadata) to generate the hash which is used to create the path.",
"If we only consider datasets that were pushed to hub, it's just a matter of using `\"{username}__parquet\"` instead of `\"{username}__{dataset_name}\"` in the cache directory name. The hashes stay the same :)\r\n\r\nEDIT: and the config name\r\nEDIT2: and the arrow file names",
"Did a small PR for backward compatibility, it was easy to add in the end: https://github.com/polinaeterna/datasets/pull/3",
"Just created a branch [dev-3.0](https://github.com/huggingface/datasets/tree/dev-3.0) in which we can merge this one and the other datasets 3.0 related PRs",
"@lhoestq why can't we merge it in main?",
"We can, it was just in case we had other things to merge after @mariosasko or @albertvillanova 's reviews"
] | 2022-12-02T16:43:44 | 2023-05-25T17:38:02 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5331",
"html_url": "https://github.com/huggingface/datasets/pull/5331",
"diff_url": "https://github.com/huggingface/datasets/pull/5331.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5331.patch",
"merged_at": null
} | will solve https://github.com/huggingface/datasets/issues/5209 and https://github.com/huggingface/datasets/issues/5151 and many other...
Config parameters for packaged builders are parsed from `“builder_config”` field in README.md file (separate firs-level field, not part of “dataset_info”), example:
```yaml
---
dataset_info:
...
builder_config:
- config_name: v1
data_dir: v1
drop_labels: true
- config_name: v2
data_dir: v2
drop_labels: false
```
I tried to align packaged builders with custom configs parsed from metadata with scripts dataset builder as much as possible. Their builders are created dynamically (see `configure_builder_class()` in load.py`) and have `BUILDER_CONFIGS` attribute filled with `BuilderConfig` objects in the same way as for datasets with script.
## load_dataset
1. If there is single config in meta and it doesn’t have a name, the name becomes “default” (as we do for “dataset_info”), [example](https://huggingface.co/datasets/polinaeterna/audiofolder_one_default_config_in_metadata/blob/main/README.md):
```python
load_dataset("ds") == load_dataset("ds", "default") # load with the params provided in metadata
load_dataset("ds", "random name") # ValueError: BuilderConfig 'random_name' not found. Available: ['default']
```
2. If there is single config in metadata with `config_name` provided, it becomes a default one (loaded when no `config_name` is specified, [example](https://huggingface.co/datasets/polinaeterna/audiofolder_one_nondefault_config_in_metadata)
```python
load_dataset("ds") == load_dataset("ds", "custom") # load with the params provided in meta
load_dataset("ds", "random name") # ValueError: BuilderConfig 'random_name' not found. Available: ['custom']
```
3. If there are several configs in metadata with names [example](https://huggingface.co/datasets/polinaeterna/audiofolder_two_configs_in_metadata/blob/main/README.md)
```python
load_dataset("ds", "v1") # load with "v1" params
load_dataset("ds", "v2") # load with "v2" params
load_dataset("ds") # ValueError: BuilderConfig 'default' not found. Available: ['v1', 'v2']
```
Thanks to @lhoestq and [this change](https://github.com/polinaeterna/datasets/pull/1), it's possible to add `"default"` field in yaml and set it to True, to make the config a default one (loaded when no config is specified):
```yaml
builder_config:
- config_name: v1
drop_labels: true
default: true
- config_name: v2
...
```
then `load_dataset("ds") == load_dataset("ds", "v1")`.
## dataset_name and cache
I decided that it’s reasonable to add a `dataset_name` attribute to `DatasetBuilder` class which would be equal to `name` for scripts dataset but reflect a real dataset name for packaged builders (last part of path/name from hub). This is mostly to reorganize cache structure (I believe we can do this in the major release?) because otherwise, with custom configs for packaged builders which were all stored in the same directory, i it was becoming a mess. And in general it makes much more sense like this, from datasets server perspective too, though it’s a breaking change
So the cache dir has the following structure: `"{namespace__}<dataset_name>/<config_name>/<version>/<hash>/"` and arrow/parquet filenames are also `"<dataset_name>-<split>.arrow"`.
For example `polinaeterna___audiofolder_two_configs_in_metadata/v1-5532fac9443ea252/0.0.0/6cbdd16f8688354c63b4e2a36e1585d05de285023ee6443ffd71c4182055c0fc/` for `polinaeterna/audiofolder_two_configs_in_metadata` Hub dataset, train arrow file is `audiofolder_two_configs_in_metadata-train.arrow`.
For script datasets it remains unchanged.
## push_to_hub
To support custom configs with `push_to_hub`, the data is put under directory named either as `<config_name>` if `config_name` is **not** "default" or "data" if `config_name` is omitted or "default" (for backward compatibility). `"builder_config"` field is added to README.md, with `config_name` (optional) and `data_files` fields. for `"data_files"`, `"pattern"` parameter is introduced, to resolve data files correctly, see https://github.com/polinaeterna/datasets/pull/1.
- `ds.push_to_hub("ds")` --> one config ("default"), put under "data" directory, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_single_config/blob/main/README.md)
```yaml
dataset_info:
...
builder_config:
data_files:
- split: train
pattern: data/train-*
...
```
- `ds.push_to_hub("ds", "custom")` --> put under "custom" directory, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_singe_nondefault_config/blob/main/README.md)
```yaml
builder_config:
config_name: custom
data_files:
- split: train
pattern: custom/train-*
...
```
- for many configs, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_many_configs/blob/main/README.md):
```yaml
builder_config:
- config_name: v1
data_files:
- split: train
pattern: v1/train-*
...
- config_name: v2
data_files:
- split: train
pattern: v2/train-*
...
```
Thanks to @lhoestq and https://github.com/polinaeterna/datasets/pull/1, when pushing to datasets created **before** this change, README.md is updated accordingly (config for old data is added along with the one that is being pushed).
`"dataset_info"` yaml field is updated accordingly (new configs are added).
This shouldn't break anything!
TODO in separate PRs:
- [ ] docs
- [ ] probably update test cli util (make --save_info not rewrite `builder_config` in readme) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5331/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5331/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5329 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5329/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5329/comments | https://api.github.com/repos/huggingface/datasets/issues/5329/events | https://github.com/huggingface/datasets/pull/5329 | 1,471,999,125 | PR_kwDODunzps5EGK3y | 5,329 | Clarify imagefolder is for small datasets | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I think it's also reasonable to add the same note to the AudioFolder decription",
"Thank you ! I think \"regular\" is more appropriate than \"small\". It can easily scale to a few thousands of images - just not millions x)",
"Replaced \"small\" with \"several thousand\" since what is considered \"regular\" and even \"small\" can be kind of vague!"
] | 2022-12-01T21:47:29 | 2022-12-06T17:20:04 | 2022-12-06T17:16:53 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5329",
"html_url": "https://github.com/huggingface/datasets/pull/5329",
"diff_url": "https://github.com/huggingface/datasets/pull/5329.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5329.patch",
"merged_at": "2022-12-06T17:16:53"
} | Based on feedback from [here](https://github.com/huggingface/datasets/issues/5317#issuecomment-1334108824), this PR adds a note to the `imagefolder` loading and creating docs that `imagefolder` is designed for small scale image datasets. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5329/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5329/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5328 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5328/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5328/comments | https://api.github.com/repos/huggingface/datasets/issues/5328/events | https://github.com/huggingface/datasets/pull/5328 | 1,471,661,437 | PR_kwDODunzps5EFAyT | 5,328 | Fix docs building for main | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"EDIT\r\nAt least the docs for ~~main~~ PR branch are now built:\r\n- https://github.com/huggingface/datasets/actions/runs/3594847760/jobs/6053620813",
"Build documentation for main branch was triggered after this PR being merged: https://github.com/huggingface/datasets/actions/runs/3603370082/jobs/6071482470"
] | 2022-12-01T17:07:45 | 2022-12-02T16:29:00 | 2022-12-02T16:26:00 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5328",
"html_url": "https://github.com/huggingface/datasets/pull/5328",
"diff_url": "https://github.com/huggingface/datasets/pull/5328.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5328.patch",
"merged_at": "2022-12-02T16:26:00"
} | This PR reverts the triggering event for building documentation introduced by:
- #5250
Fix #5326. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5328/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5328/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5327 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5327/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5327/comments | https://api.github.com/repos/huggingface/datasets/issues/5327/events | https://github.com/huggingface/datasets/pull/5327 | 1,471,657,247 | PR_kwDODunzps5EE_3Q | 5,327 | Avoid unwanted behaviour when splits from script and metadata are not matching because of outdated metadata | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5327). All of your documentation changes will be reflected on that endpoint."
] | 2022-12-01T17:05:23 | 2023-01-23T12:48:29 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5327",
"html_url": "https://github.com/huggingface/datasets/pull/5327",
"diff_url": "https://github.com/huggingface/datasets/pull/5327.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5327.patch",
"merged_at": null
} | will fix #5315 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5327/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5327/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5326 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5326/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5326/comments | https://api.github.com/repos/huggingface/datasets/issues/5326/events | https://github.com/huggingface/datasets/issues/5326 | 1,471,634,168 | I_kwDODunzps5Xt1r4 | 5,326 | No documentation for main branch is built | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2022-12-01T16:50:58 | 2022-12-02T16:26:01 | 2022-12-02T16:26:01 | MEMBER | null | null | null | Since:
- #5250
- Commit: 703b84311f4ead83c7f79639f2dfa739295f0be6
the docs for main branch are no longer built.
The change introduced only triggers the docs building for releases. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5326/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5326/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5325 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5325/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5325/comments | https://api.github.com/repos/huggingface/datasets/issues/5325/events | https://github.com/huggingface/datasets/issues/5325 | 1,471,536,822 | I_kwDODunzps5Xtd62 | 5,325 | map(...batch_size=None) for IterableDataset | {
"login": "frankier",
"id": 299380,
"node_id": "MDQ6VXNlcjI5OTM4MA==",
"avatar_url": "https://avatars.githubusercontent.com/u/299380?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/frankier",
"html_url": "https://github.com/frankier",
"followers_url": "https://api.github.com/users/frankier/followers",
"following_url": "https://api.github.com/users/frankier/following{/other_user}",
"gists_url": "https://api.github.com/users/frankier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/frankier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/frankier/subscriptions",
"organizations_url": "https://api.github.com/users/frankier/orgs",
"repos_url": "https://api.github.com/users/frankier/repos",
"events_url": "https://api.github.com/users/frankier/events{/privacy}",
"received_events_url": "https://api.github.com/users/frankier/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi! I agree it makes sense for `IterableDataset.map` to support the `batch_size=None` case. This should be super easy to fix.",
"@mariosasko as this is something simple maybe I can include it as part of https://github.com/huggingface/datasets/pull/5311? Let me know :+1:",
"#self-assign",
"Feel free to close this @lhoestq as part of https://github.com/huggingface/datasets/pull/5336 :hugs:",
"Thanks again :)\r\n\r\n> For practical usages, an alternative to this would be to convert from an iterable dataset to a map-style dataset, but it is not obvious how to do this.\r\n\r\nThis is interesting as well, if anyone wants to explore"
] | 2022-12-01T15:43:42 | 2022-12-07T15:54:43 | 2022-12-07T15:54:42 | CONTRIBUTOR | null | null | null | ### Feature request
Dataset.map(...) allows batch_size to be None. It would be nice if IterableDataset did too.
### Motivation
Although it may seem a bit of a spurious request given that `IterableDataset` is meant for larger than memory datasets, but there are a couple of reasons why this might be nice.
One is that load_dataset(...) can return either IterableDataset or Dataset. mypy will then complain if batch_size=None even if we know it is Dataset. Of course we can do:
assert isinstance(d, datasets.DatasetDict)
But it is a mild inconvenience. What's more annoying is that whenever we use something like e.g. `combine_datasets(...)`, we end up with the union again, and so have to do the assert again.
Another is that we could actually end up with an IterableDataset small enough for memory in normal/correct usage, e.g. by filtering a massive IterableDataset.
For practical usages, an alternative to this would be to convert from an iterable dataset to a map-style dataset, but it is not obvious how to do this.
### Your contribution
Not this time. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5325/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5325/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5324 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5324/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5324/comments | https://api.github.com/repos/huggingface/datasets/issues/5324/events | https://github.com/huggingface/datasets/issues/5324 | 1,471,524,512 | I_kwDODunzps5Xta6g | 5,324 | Fix docstrings and types in documentation that appears on the website | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] | open | false | null | [] | null | [
"I agree we have a mess with docstrings...",
"Ok, I believe we've cleaned up most of the old syntax we were using for the user-facing docs! There are still a couple of `:obj:`'s and `:class:` floating around in the docstrings we don't expose that I'll track down :)"
] | 2022-12-01T15:34:53 | 2022-12-13T19:03:55 | null | CONTRIBUTOR | null | null | null | While I was working on https://github.com/huggingface/datasets/pull/5313 I've noticed that we have a mess in how we annotate types and format args and return values in the code. And some of it is displayed in the [Reference section](https://huggingface.co/docs/datasets/package_reference/builder_classes) of the documentation on the website.
Would be nice someday, maybe before releasing datasets 3.0.0, to unify it...... | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5324/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5324/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5323 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5323/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5323/comments | https://api.github.com/repos/huggingface/datasets/issues/5323/events | https://github.com/huggingface/datasets/issues/5323 | 1,471,518,803 | I_kwDODunzps5XtZhT | 5,323 | Duplicated Keys in Taskmaster-2 Dataset | {
"login": "liaeh",
"id": 52380283,
"node_id": "MDQ6VXNlcjUyMzgwMjgz",
"avatar_url": "https://avatars.githubusercontent.com/u/52380283?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/liaeh",
"html_url": "https://github.com/liaeh",
"followers_url": "https://api.github.com/users/liaeh/followers",
"following_url": "https://api.github.com/users/liaeh/following{/other_user}",
"gists_url": "https://api.github.com/users/liaeh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/liaeh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/liaeh/subscriptions",
"organizations_url": "https://api.github.com/users/liaeh/orgs",
"repos_url": "https://api.github.com/users/liaeh/repos",
"events_url": "https://api.github.com/users/liaeh/events{/privacy}",
"received_events_url": "https://api.github.com/users/liaeh/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @liaeh.\r\n\r\nWe are having a look at it. ",
"I have transferred the discussion to the Community tab of the dataset: https://huggingface.co/datasets/taskmaster2/discussions/1"
] | 2022-12-01T15:31:06 | 2022-12-01T16:26:06 | 2022-12-01T16:26:06 | NONE | null | null | null | ### Describe the bug
Loading certain splits () of the taskmaster-2 dataset fails because of a DuplicatedKeysError. This occurs for the following domains: `'hotels', 'movies', 'music', 'sports'`. The domains `'flights', 'food-ordering', 'restaurant-search'` load fine.
Output:
### Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset("taskmaster2", "music")
```
Output:
```
---------------------------------------------------------------------------
DuplicatedKeysError Traceback (most recent call last)
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1532, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1531](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1530) example = self.info.features.encode_example(record) if self.info.features is not None else record
-> [1532](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1531) writer.write(example, key)
[1533](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1532) num_examples_progress_update += 1
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:475, in ArrowWriter.write(self, example, key, writer_batch_size)
[474](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=473) if self._check_duplicates:
--> [475](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=474) self.check_duplicate_keys()
[476](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=475) # Re-intializing to empty list for next batch
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self)
[486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [
[487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index)
[488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record)
[489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash
[490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ]
--> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices)
[493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else:
DuplicatedKeysError: Found multiple examples generated with the same key
The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735
During handling of the above exception, another exception occurred:
DuplicatedKeysError Traceback (most recent call last)
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1541, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1540](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1539) num_shards = shard_id + 1
-> [1541](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1540) num_examples, num_bytes = writer.finalize()
[1542](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1541) writer.close()
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:563, in ArrowWriter.finalize(self, close_stream)
[562](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=561) if self._check_duplicates:
--> [563](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=562) self.check_duplicate_keys()
[564](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=563) # Re-intializing to empty list for next batch
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self)
[486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [
[487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index)
[488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record)
[489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash
[490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ]
--> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices)
[493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else:
DuplicatedKeysError: Found multiple examples generated with the same key
The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Cell In[23], line 1
----> 1 dataset = load_dataset("taskmaster2", "music")
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py:1741, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)
[1738](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1737) try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
[1740](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1739) # Download and prepare data
-> [1741](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1740) builder_instance.download_and_prepare(
[1742](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1741) download_config=download_config,
[1743](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1742) download_mode=download_mode,
[1744](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1743) ignore_verifications=ignore_verifications,
[1745](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1744) try_from_hf_gcs=try_from_hf_gcs,
[1746](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1745) use_auth_token=use_auth_token,
[1747](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1746) num_proc=num_proc,
[1748](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1747) )
[1750](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1749) # Build dataset for splits
[1751](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1750) keep_in_memory = (
[1752](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1751) keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
[1753](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1752) )
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:822, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
[820](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=819) if num_proc is not None:
[821](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=820) prepare_split_kwargs["num_proc"] = num_proc
--> [822](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=821) self._download_and_prepare(
[823](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=822) dl_manager=dl_manager,
[824](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=823) verify_infos=verify_infos,
[825](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=824) **prepare_split_kwargs,
[826](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=825) **download_and_prepare_kwargs,
[827](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=826) )
[828](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=827) # Sync info
[829](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=828) self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1555, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs)
[1554](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1553) def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs):
-> [1555](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1554) super()._download_and_prepare(
[1556](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1555) dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs
[1557](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1556) )
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:913, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
[909](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=908) split_dict.add(split_generator.split_info)
[911](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=910) try:
[912](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=911) # Prepare split will record examples associated to the split
--> [913](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=912) self._prepare_split(split_generator, **prepare_split_kwargs)
[914](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=913) except OSError as e:
[915](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=914) raise OSError(
[916](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=915) "Cannot find data file. "
[917](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=916) + (self.manual_download_instructions or "")
[918](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=917) + "\nOriginal error:\n"
[919](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=918) + str(e)
[920](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=919) ) from None
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1396, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)
[1394](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1393) gen_kwargs = split_generator.gen_kwargs
[1395](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1394) job_id = 0
-> [1396](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1395) for job_id, done, content in self._prepare_split_single(
[1397](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1396) {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
[1398](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1397) ):
[1399](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1398) if done:
[1400](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1399) result = content
File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1550, in GeneratorBasedBuilder._prepare_split_single(self, arg)
[1548](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1547) if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
[1549](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1548) e = e.__context__
-> [1550](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1549) raise DatasetGenerationError("An error occurred while generating the dataset") from e
[1552](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1551) yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
Loads the dataset
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.13.0-40-generic-x86_64-with-glibc2.31
- Python version: 3.9.7
- PyArrow version: 10.0.1
- Pandas version: 1.5.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5323/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5323/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5322 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5322/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5322/comments | https://api.github.com/repos/huggingface/datasets/issues/5322/events | https://github.com/huggingface/datasets/pull/5322 | 1,471,502,162 | PR_kwDODunzps5EEeQP | 5,322 | Raise error for `.tar` archives in the same way as for `.tar.gz` and `.tgz` in `_get_extraction_protocol` | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-01T15:19:28 | 2022-12-14T16:37:16 | 2022-12-14T16:33:30 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5322",
"html_url": "https://github.com/huggingface/datasets/pull/5322",
"diff_url": "https://github.com/huggingface/datasets/pull/5322.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5322.patch",
"merged_at": "2022-12-14T16:33:30"
} | Currently `download_and_extract` doesn't throw an error when it is used with files with `.tar` extension in streaming mode because `_get_extraction_protocol` doesn't do it (like it does for `tar.gz` and `tgz`). `_get_extraction_protocol` returns formatted url as if we support tar protocol but we don't.
That means that in dataset scripts `.tar` files would be attempted to load and fail during examples generation (after `download_and_extract` execution). So this PR raises error for `tar` files too.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5322/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5322/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5321 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5321/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5321/comments | https://api.github.com/repos/huggingface/datasets/issues/5321/events | https://github.com/huggingface/datasets/pull/5321 | 1,471,430,667 | PR_kwDODunzps5EEOhE | 5,321 | Fix loading from HF GCP cache | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> Do you know why this stopped working?\r\n\r\nIt comes from the changes in https://github.com/huggingface/datasets/pull/5107/files#diff-355ae5c229f95f86895404b72378ecd6e966c41cbeebb674af6fe6e9611bc126"
] | 2022-12-01T14:39:06 | 2022-12-01T16:10:09 | 2022-12-01T16:07:02 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5321",
"html_url": "https://github.com/huggingface/datasets/pull/5321",
"diff_url": "https://github.com/huggingface/datasets/pull/5321.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5321.patch",
"merged_at": "2022-12-01T16:07:02"
} | As reported in https://discuss.huggingface.co/t/error-loading-wikipedia-dataset/26599/4 it's not possible to download a cached version of Wikipedia from the HF GCP cache
I fixed it and added an integration test (runs in 10sec) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5321/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5321/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5320 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5320/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5320/comments | https://api.github.com/repos/huggingface/datasets/issues/5320/events | https://github.com/huggingface/datasets/pull/5320 | 1,471,360,910 | PR_kwDODunzps5ED_UQ | 5,320 | [Extract] Place the lock file next to the destination directory | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-01T13:55:49 | 2022-12-01T15:36:44 | 2022-12-01T15:33:58 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5320",
"html_url": "https://github.com/huggingface/datasets/pull/5320",
"diff_url": "https://github.com/huggingface/datasets/pull/5320.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5320.patch",
"merged_at": "2022-12-01T15:33:58"
} | Previously it was placed next to the archive to extract, but the archive can be in a read-only directory as noticed in https://github.com/huggingface/datasets/issues/5295
Therefore I moved the lock location to be next to the destination directory, which is required to have write permissions | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5320/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5320/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5319 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5319/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5319/comments | https://api.github.com/repos/huggingface/datasets/issues/5319/events | https://github.com/huggingface/datasets/pull/5319 | 1,470,945,515 | PR_kwDODunzps5ECkfc | 5,319 | Fix Text sample_by paragraph | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-12-01T09:08:09 | 2022-12-01T15:21:44 | 2022-12-01T15:19:00 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5319",
"html_url": "https://github.com/huggingface/datasets/pull/5319",
"diff_url": "https://github.com/huggingface/datasets/pull/5319.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5319.patch",
"merged_at": "2022-12-01T15:19:00"
} | Fix #5316. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5319/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5319/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5318 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5318/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5318/comments | https://api.github.com/repos/huggingface/datasets/issues/5318/events | https://github.com/huggingface/datasets/pull/5318 | 1,470,749,750 | PR_kwDODunzps5EB6RM | 5,318 | Origin/fix missing features error | {
"login": "eunseojo",
"id": 12104720,
"node_id": "MDQ6VXNlcjEyMTA0NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/12104720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eunseojo",
"html_url": "https://github.com/eunseojo",
"followers_url": "https://api.github.com/users/eunseojo/followers",
"following_url": "https://api.github.com/users/eunseojo/following{/other_user}",
"gists_url": "https://api.github.com/users/eunseojo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eunseojo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eunseojo/subscriptions",
"organizations_url": "https://api.github.com/users/eunseojo/orgs",
"repos_url": "https://api.github.com/users/eunseojo/repos",
"events_url": "https://api.github.com/users/eunseojo/events{/privacy}",
"received_events_url": "https://api.github.com/users/eunseojo/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"please review :) @lhoestq @ola13 thankoo",
"Thanks :) I just updated the test to make sure it works even when there's a column missing, and did a minor change to json.py to add the missing columns for the other kinds of JSON files as well (I moved the code to`self._cast_table`)",
"Thanks Unso! If @lhoestq is happy then I'm also happy :D",
"When I noticed the ping, this PR had already been merged...\r\n\r\nLuckily, PyArrow's `read_json` behaves the same when `explicit_schema` is given via `ParseOptions`, so I'm okay with this change (our JSON loader doesn't use `read_json` for decoding JSON in some scenarios, so this manual approach is the right one).\r\n"
] | 2022-12-01T06:18:39 | 2022-12-12T19:06:42 | 2022-12-04T05:49:39 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5318",
"html_url": "https://github.com/huggingface/datasets/pull/5318",
"diff_url": "https://github.com/huggingface/datasets/pull/5318.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5318.patch",
"merged_at": "2022-12-04T05:49:39"
} | This fixes the problem of when the dataset_load function reads a function with "features" provided but some read batches don't have columns that later show up. For instance, the provided "features" requires columns A,B,C but only columns B,C show. This fixes this by adding the column A with nulls. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5318/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5318/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5317 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5317/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5317/comments | https://api.github.com/repos/huggingface/datasets/issues/5317/events | https://github.com/huggingface/datasets/issues/5317 | 1,470,390,164 | I_kwDODunzps5XpF-U | 5,317 | `ImageFolder` performs poorly with large datasets | {
"login": "salieri",
"id": 1086393,
"node_id": "MDQ6VXNlcjEwODYzOTM=",
"avatar_url": "https://avatars.githubusercontent.com/u/1086393?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/salieri",
"html_url": "https://github.com/salieri",
"followers_url": "https://api.github.com/users/salieri/followers",
"following_url": "https://api.github.com/users/salieri/following{/other_user}",
"gists_url": "https://api.github.com/users/salieri/gists{/gist_id}",
"starred_url": "https://api.github.com/users/salieri/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/salieri/subscriptions",
"organizations_url": "https://api.github.com/users/salieri/orgs",
"repos_url": "https://api.github.com/users/salieri/repos",
"events_url": "https://api.github.com/users/salieri/events{/privacy}",
"received_events_url": "https://api.github.com/users/salieri/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! ImageFolder is made for small scale datasets indeed. For large scale image datasets you better group your images in TAR archives or Arrow/Parquet files. This is true not just for ImageFolder loading performance, but also because having millions of files is not ideal for your filesystem or when moving the data around.\r\n\r\nOption 1. use TAR archives\r\n\r\nI'd suggest you to take a look at how we load [Imagenet](https://huggingface.co/datasets/imagenet-1k/tree/main) for example. The dataset is sharded in multiple TAR archives and there is a [script](https://huggingface.co/datasets/imagenet-1k/blob/main/imagenet-1k.py) that iterates over the archives to load the images.\r\n\r\nOption 2. use Arrow/Parquet\r\n\r\nYou can load your images as an Arrow Dataset with\r\n```python\r\nfrom datasets import Dataset, Image, load_from_disk, load_dataset\r\n\r\nds = Dataset.from_dict({\"image\": list(glob.glob(\"path/to/dir/**/*.jpg\"))})\r\n\r\ndef add_metadata(example):\r\n ...\r\n\r\nds = ds.map(add_metadata, num_proc=16) # num_proc for multiprocessing\r\nds = ds.cast_column(\"image\", Image())\r\n\r\n# save as Arrow locally\r\nds.save_to_disk(\"output_dir\")\r\nreloaded = load_from_disk(\"output_dir\")\r\n\r\n# OR save as Parquet on the HF Hub\r\nds.push_to_hub(\"username/dataset_name\")\r\nreloaded = load_dataset(\"username/dataset_name\")\r\n# reloaded = load_dataset(\"username/dataset_name\", num_proc=16) # to use multiprocessing\r\n```\r\n\r\nPS: maybe we can actually have something similar to ImageFolder but for image archives at one point ?",
"@lhoestq Thanks!\r\n\r\nPerhaps it'd be worth adding a note on the documentation that `ImageFolder` is not intended for large datasets? This limitation is not intuitively obvious to someone who has not used it before, I think.",
"Thanks for the feedback @salieri! I opened #5329 to make it clear `ImageFolder` is not intended for large datasets. Please feel free to comment if you have any other feedback! 🙂 "
] | 2022-12-01T00:04:21 | 2022-12-01T21:49:26 | null | NONE | null | null | null | ### Describe the bug
While testing image dataset creation, I'm seeing significant performance bottlenecks with imagefolders when scanning a directory structure with large number of images.
## Setup
* Nested directories (5 levels deep)
* 3M+ images
* 1 `metadata.jsonl` file
## Performance Degradation Point 1
Degradation occurs because [`get_data_files_patterns`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L231-L243) runs the exact same scan for many different types of patterns, and there doesn't seem to be a way to easily limit this. It's controlled by the definition of [`ALL_DEFAULT_PATTERNS`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L82-L85).
One scan with 3M+ files takes about 10-15 minutes to complete on my setup, so having those extra scans really slows things down – from 10 minutes to 60+. Most of the scans return no matches, but they still take a significant amount of time to complete – hence the poor performance.
As a side effect, when this scan is run on 3M+ image files, Python also consumes up to 12 GB of RAM, which is not ideal.
## Performance Degradation Point 2
The second performance bottleneck is in [`PackagedDatasetModuleFactory.get_module`](https://github.com/huggingface/datasets/blob/d7dfbc83d68e87ba002c5eb2555f7a932e59038a/src/datasets/load.py#L707-L711), which calls `DataFilesDict.from_local_or_remote`.
It runs for a long time (60min+), consuming significant amounts of RAM – even more than the point 1 above. Based on `iostat -d 2`, it performs **zero** disk operations, which to me suggests that there is a code based bottleneck there that could be sorted out.
### Steps to reproduce the bug
```python
from datasets import load_dataset
import os
import huggingface_hub
dataset = load_dataset(
'imagefolder',
data_dir='/some/path',
# just to spell it out:
split=None,
drop_labels=True,
keep_in_memory=False
)
dataset.push_to_hub('account/dataset', private=True)
```
### Expected behavior
While it's certainly possible to write a custom loader to replace `ImageFolder` with, it'd be great if the off-the-shelf `ImageFolder` would by default have a setup that can scale to large datasets.
Or perhaps there could be a dedicated loader just for large datasets that trades off flexibility for performance? As in, maybe you have to define explicitly how you want it to work rather than it trying to guess your data structure like `_get_data_files_patterns()` does?
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-4.14.296-222.539.amzn2.x86_64-x86_64-with-glibc2.2.5
- Python version: 3.7.10
- PyArrow version: 10.0.1
- Pandas version: 1.3.5
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5317/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5317/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5316 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5316/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5316/comments | https://api.github.com/repos/huggingface/datasets/issues/5316/events | https://github.com/huggingface/datasets/issues/5316 | 1,470,115,681 | I_kwDODunzps5XoC9h | 5,316 | Bug in sample_by="paragraph" | {
"login": "adampauls",
"id": 1243668,
"node_id": "MDQ6VXNlcjEyNDM2Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1243668?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adampauls",
"html_url": "https://github.com/adampauls",
"followers_url": "https://api.github.com/users/adampauls/followers",
"following_url": "https://api.github.com/users/adampauls/following{/other_user}",
"gists_url": "https://api.github.com/users/adampauls/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adampauls/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adampauls/subscriptions",
"organizations_url": "https://api.github.com/users/adampauls/orgs",
"repos_url": "https://api.github.com/users/adampauls/repos",
"events_url": "https://api.github.com/users/adampauls/events{/privacy}",
"received_events_url": "https://api.github.com/users/adampauls/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @adampauls.\r\n\r\nWe are having a look at it. "
] | 2022-11-30T19:24:13 | 2022-12-01T15:19:02 | 2022-12-01T15:19:02 | NONE | null | null | null | ### Describe the bug
I think [this line](https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/text/text.py#L96) is wrong and should be `batch = f.read(self.config.chunksize)`. Otherwise it will never terminate because even when `f` is finished reading, `batch` will still be truthy from the last iteration.
### Steps to reproduce the bug
```
> cat test.txt
a b c
d e f
````
```python
>>> import datasets
>>> datasets.load_dataset("text", data_files={"train":"test.txt"}, sample_by="paragraph")
```
This will go on forever.
### Expected behavior
Terminates very quickly.
### Environment info
`version = "2.6.1"` but I think the bug is still there on main. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5316/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5316/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5315 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5315/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5315/comments | https://api.github.com/repos/huggingface/datasets/issues/5315/events | https://github.com/huggingface/datasets/issues/5315 | 1,470,026,797 | I_kwDODunzps5XntQt | 5,315 | Adding new splits to a dataset script with existing old splits info in metadata's `dataset_info` fails | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | open | false | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"EDIT:\r\nI think in this case, the metadata files (either README or JSON) should not be read (i.e. `self.info.splits` should be None).\r\n\r\nOne idea: \r\n- I think ideally we should set this behavior when we pass `--save_info` to the CLI `test`\r\n- However, currently, the builder is unaware of this: `save_info` arg is not passed to it",
"> I think in this case\r\n\r\n@albertvillanova You mean in cases when the script was changed? \r\n\r\nI suggest that we:\r\n* add a check on the slice (like 'split_name[n%]) kind of format here: https://github.com/huggingface/datasets/blob/main/src/datasets/splits.py#L523 to catch things like this. \r\n* Error here happens before splits verification, but in `_prepare_split`, and `_prepare_split` doesn't perform any verification and don't know about it. so we can pass this parameter and take splits from `split_generator`, not from `split.info` in case when `verify_infos` is False\r\n* we can check if split **names** from split_generators and self.info.splits are the same **before** preparing splits (if `verify_info=True`) so that we don't spend time on generating unwanted data. \r\n* provide some user-friendly warnings about `ignore_verifications` parameter so that users know that if something is not matching they can ignore it\r\n\r\nI started it here: https://github.com/huggingface/datasets/pull/5327/files\r\n\r\nWhat do you think @albertvillanova ?",
"I edited my previous comment:\r\n- First I proposed setting `self.info.splits` to None when `ignore_verifications=True`\r\n - I thought it was the easiest implementation because `ignore_verifications` is passed to `DatasetBuilder.download_and_prepare`\r\n - However, afterwards, I realized this might not be a good idea for this use case:\r\n - A user wants to optimize the loading of the dataset, and passes `ignore_verifications=False` to avoid all the verifications\r\n - In this case, we want `self.info.splits` to be read from metadata file\r\n- Then, I thought that it might be better to set `self.info.splits` to None when we pass `--save_info` to the CLI test: if we are going to save the info to the metadata file, it makes no sense to read the info from the metadata file\r\n - This implementation is not so easy because the Builder knows nothing about `--save_info`\r\n\r\nI agree with you there are 2 things to be addressed here:\r\n- One is what I have just commented: `self.info.splits` should be None in this case\r\n- The other, a validation should be implemented when calling `make_file_instructions` and/or `SplitDict.__getitem__`, so that when passing \"training\" to it, we get a more descriptive error other than `TypeError: expected str, bytes or os.PathLike object, not NoneType` "
] | 2022-11-30T18:02:15 | 2022-12-02T07:02:53 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
If you first create a custom dataset with a specific set of splits, generate metadata with `datasets-cli test ... --save_info`, then change your script to include more splits, it fails.
That's what happened in https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/discussions/2#6385fd1269634850f8ddff48.
### Steps to reproduce the bug
1. create a dataset with a custom split that returns, for example, only `"train"` split in `_splits_generators'`. specifically, if really want to reproduce, copy `https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py
2. run `datasets-cli test dataset_script.py --save_info --all_configs` - this would generate metadata yaml in `README.md` that would contain info about splits, for example, like this:
```
splits:
- name: train
num_bytes: 2973286
num_examples: 19747
```
3. make changes to your script so that it returns another set of splits, for example, `"train"` and `"test"` (uncomment [these lines](https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py#L271))
4. run `load_dataset` and get the following error:
```python
Traceback (most recent call last):
File "/home/daniel/code/pytorch/env/bin/datasets-cli", line 8, in <module>
sys.exit(main())
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/datasets_cli.py", line 39, in main
service.run()
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/test.py", line 141, in run
builder.download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare
super()._download_and_prepare(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 913, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1356, in _prepare_split
split_info = self.info.splits[split_generator.name]
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/splits.py", line 525, in __getitem__
instructions = make_file_instructions(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 111, in make_file_instructions
name2filenames = {
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 112, in <dictcomp>
info.name: filenames_for_dataset_split(
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 78, in filenames_for_dataset_split
prefix = filename_prefix_for_split(dataset_name, split)
File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 57, in filename_prefix_for_split
if os.path.basename(name) != name:
File "/home/daniel/code/pytorch/env/lib/python3.8/posixpath.py", line 143, in basename
p = os.fspath(p)
TypeError: expected str, bytes or os.PathLike object, not NoneType
```
5. bonus: try to regenerate metadata in `README.md` with `datasets-cli` as in step 2 and get the same error.
This is because `dataset.info.splits` contains only `"train"` split so when we are doing `self.info.splits[split_generator.name]` it tries to infer smth like `info.splits['train[50%]']` and that's not the case and it fails.
### Expected behavior
to be discussed?
This can be solved by removing splits information from metadata file first. But I wonder if there is a better way.
### Environment info
- Datasets version: 2.7.1
- Python version: 3.8.13 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5315/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5315/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5314 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5314/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5314/comments | https://api.github.com/repos/huggingface/datasets/issues/5314/events | https://github.com/huggingface/datasets/issues/5314 | 1,469,685,118 | I_kwDODunzps5XmZ1- | 5,314 | Datasets: classification_report() got an unexpected keyword argument 'suffix' | {
"login": "JonathanAlis",
"id": 42126634,
"node_id": "MDQ6VXNlcjQyMTI2NjM0",
"avatar_url": "https://avatars.githubusercontent.com/u/42126634?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JonathanAlis",
"html_url": "https://github.com/JonathanAlis",
"followers_url": "https://api.github.com/users/JonathanAlis/followers",
"following_url": "https://api.github.com/users/JonathanAlis/following{/other_user}",
"gists_url": "https://api.github.com/users/JonathanAlis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JonathanAlis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JonathanAlis/subscriptions",
"organizations_url": "https://api.github.com/users/JonathanAlis/orgs",
"repos_url": "https://api.github.com/users/JonathanAlis/repos",
"events_url": "https://api.github.com/users/JonathanAlis/events{/privacy}",
"received_events_url": "https://api.github.com/users/JonathanAlis/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"This seems similar to https://github.com/huggingface/datasets/issues/2512 Can you try to update seqeval ? ",
"@JonathanAlis also note that the metrics are deprecated in our `datasets` library.\r\n\r\nPlease, use the new library 🤗 Evaluate instead: https://huggingface.co/docs/evaluate"
] | 2022-11-30T14:01:03 | 2022-12-01T15:00:46 | null | NONE | null | null | null | https://github.com/huggingface/datasets/blob/main/metrics/seqeval/seqeval.py
> import datasets
predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
seqeval = datasets.load_metric("seqeval")
results = seqeval.compute(predictions=predictions, references=references)
print(list(results.keys()))
print(results["overall_f1"])
print(results["PER"]["f1"])
It raises the error:
> TypeError: classification_report() got an unexpected keyword argument 'suffix'
For context, versions on my pip list -v
> datasets 1.12.1
seqeval 1.2.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5314/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5314/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5313 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5313/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5313/comments | https://api.github.com/repos/huggingface/datasets/issues/5313/events | https://github.com/huggingface/datasets/pull/5313 | 1,468,484,136 | PR_kwDODunzps5D6Qfb | 5,313 | Fix description of streaming in the docs | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-29T18:00:28 | 2022-12-01T14:55:30 | 2022-12-01T14:00:34 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5313",
"html_url": "https://github.com/huggingface/datasets/pull/5313",
"diff_url": "https://github.com/huggingface/datasets/pull/5313.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5313.patch",
"merged_at": "2022-12-01T14:00:34"
} | We say that "the data is being downloaded progressively" which is not true, it's just streamed, so I fixed it. Probably I missed some other places where it is written?
Also changed docstrings for `StreamingDownloadManager`'s `download` and `extract` to reflect the same, as these docstrings are displayed in the documentation cc @lhoestq | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5313/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5313/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5312 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5312/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5312/comments | https://api.github.com/repos/huggingface/datasets/issues/5312/events | https://github.com/huggingface/datasets/pull/5312 | 1,468,352,562 | PR_kwDODunzps5D5zxI | 5,312 | Add DatasetDict.to_pandas | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The current implementation is what I had in mind, i.e. concatenate all splits by default.\r\n\r\nHowever, I think most tabular datasets would come as a single split. So for that usecase, it wouldn't change UX if we raise when there are more than one splits.\r\n\r\nAnd for multiple splits, the user either passes a list, or they can pass `splits=\"all\"` to have all splits concatenated.",
"I think it's better to raise an error in cases when there are multiple splits but no split is specified so that users know for sure with which data they are working. I imagine a case when a user loads a dataset that they don't know much about (like what splits it has), and if they get a concatenation of everything, it might lead to incorrect processing or interpretations and it would be hard to notice it.\r\n(\"explicit is better than implicit\")",
"I just changed to raise an error if there are multiple splits. The error shows an example of how to choose a split to convert.",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5312). All of your documentation changes will be reflected on that endpoint.",
"Thanks for the review, I've updated the type hint and added a line to raise an error on bad splits :)",
"Merging https://github.com/huggingface/datasets/pull/5301 would eliminate the need for this PR, no?\r\n\r\nIn the meantime, I find the current API cleaner.",
"This solution is simpler than https://github.com/huggingface/datasets/pull/5301 and covers most cases for tabular datasets, so I'm in favor of merging this one and put https://github.com/huggingface/datasets/pull/5301 on stand by",
"Let me know if it sounds good to you @mariosasko @albertvillanova :)",
"I'm still not convinced. If `DatasetDict` needs this method and there is no other way, then IMO it would make more sense to return a dictionary with the splits converted to `pd.DataFrame`. ",
"@mariosasko the issue we're dealing with is that in tabular scenarios, we often don't have splits in the dataset, and imposing that concept to people dealing with the library hampers adoption.",
"@adrinjalali This PR proposes a solution inconsistent with the existing API (in other words, a solution that clutters our API 🙂). Moreover, our library primarily focuses on larger-than-RAM datasets, and tabular datasets don't (directly) fall into this group.\r\n\r\nInstead of the temporary \"fix\" proposed here, it makes much more sense to align `load_dataset` with both tabular and DL workflows \"in a consistent way\", so I suggest we continue our discussion from https://github.com/huggingface/datasets/issues/5189 to have this resolved by version 3.0.",
"closing this one for now"
] | 2022-11-29T16:30:02 | 2023-01-25T17:33:43 | 2023-01-25T17:33:42 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5312",
"html_url": "https://github.com/huggingface/datasets/pull/5312",
"diff_url": "https://github.com/huggingface/datasets/pull/5312.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5312.patch",
"merged_at": null
} | From discussions in https://github.com/huggingface/datasets/issues/5189, for tabular data it doesn't really make sense to have to do
```python
df = load_dataset(...)["train"].to_pandas()
```
because many datasets are not split.
In this PR I added `to_pandas` to `DatasetDict` which returns the DataFrame:
If there's only one split, you don't need to specify the split name:
```python
df = load_dataset(...).to_pandas()
```
EDIT: and if a dataset has multiple splits:
```python
df = load_dataset(...).to_pandas(splits=["train", "test"])
# or
df = load_dataset(...).to_pandas(splits="all")
# raises an error because you need to select the split(s) to convert
load_dataset(...).to_pandas()
```
I do have one question though @merveenoyan @adrinjalali @mariosasko:
Should we raise an error if there are multiple splits and ask the user to choose one explicitly ?
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5312/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5312/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5311 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5311/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5311/comments | https://api.github.com/repos/huggingface/datasets/issues/5311/events | https://github.com/huggingface/datasets/pull/5311 | 1,467,875,153 | PR_kwDODunzps5D4Mm3 | 5,311 | Add `features` param to `IterableDataset.map` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-29T11:08:34 | 2022-12-06T15:45:02 | 2022-12-06T15:42:04 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5311",
"html_url": "https://github.com/huggingface/datasets/pull/5311",
"diff_url": "https://github.com/huggingface/datasets/pull/5311.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5311.patch",
"merged_at": "2022-12-06T15:42:04"
} | ## Description
As suggested by @lhoestq in #3888, we should be adding the param `features` to `IterableDataset.map` so that the features can be preserved (not turned into `None` as that's the default behavior) whenever the user passes those as param, so as to be consistent with `Dataset.map`, as it provides the `features` param so that those are not inferred by default, but specified by the user, and later validated by `ArrowWriter`.
This is internally handled already by the functions relying on `IterableDataset.map` such as `rename_column`, `rename_columns`, and `remove_columns` as described in #5287.
## Usage Example
```python
from datasets import load_dataset, Features
ds = load_dataset("rotten_tomatoes", split="validation", streaming=True)
print(ds.info.features)
ds = ds.map(
lambda x: {"target": x["label"]},
features=Features(
{"target": ds.info.features["label"], "label": ds.info.features["label"], "text": ds.info.features["text"]}
),
)
print(ds.info.features)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5311/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5311/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5310 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5310/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5310/comments | https://api.github.com/repos/huggingface/datasets/issues/5310/events | https://github.com/huggingface/datasets/pull/5310 | 1,467,719,635 | PR_kwDODunzps5D3rGw | 5,310 | Support xPath for Windows pathnames | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-29T09:20:47 | 2022-11-30T12:00:09 | 2022-11-30T11:57:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5310",
"html_url": "https://github.com/huggingface/datasets/pull/5310",
"diff_url": "https://github.com/huggingface/datasets/pull/5310.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5310.patch",
"merged_at": "2022-11-30T11:57:16"
} | This PR implements a string representation of `xPath`, which is valid for local paths (also windows) and remote URLs.
Additionally, some `os.path` methods are fixed for remote URLs on Windows machines.
Now, on Windows machines:
```python
In [2]: str(xPath("C:\\dir\\file.txt"))
Out[2]: 'C:\\dir\\file.txt'
In [3]: str(xPath("http://domain.com/file.txt"))
Out[3]: 'http://domain.com/file.txt'
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5310/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5310/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5309 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5309/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5309/comments | https://api.github.com/repos/huggingface/datasets/issues/5309/events | https://github.com/huggingface/datasets/pull/5309 | 1,466,758,987 | PR_kwDODunzps5D0g1y | 5,309 | Close stream in `ArrowWriter.finalize` before inference error | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-28T16:59:39 | 2022-12-07T12:55:20 | 2022-12-07T12:52:15 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5309",
"html_url": "https://github.com/huggingface/datasets/pull/5309",
"diff_url": "https://github.com/huggingface/datasets/pull/5309.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5309.patch",
"merged_at": "2022-12-07T12:52:15"
} | Ensure the file stream is closed in `ArrowWriter.finalize` before raising the `SchemaInferenceError` to avoid the `PermissionError` on Windows in `incomplete_dir`'s `shutil.rmtree`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5309/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5309/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5308 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5308/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5308/comments | https://api.github.com/repos/huggingface/datasets/issues/5308/events | https://github.com/huggingface/datasets/pull/5308 | 1,466,552,281 | PR_kwDODunzps5Dz0Tv | 5,308 | Support `topdown` parameter in `xwalk` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I like the `kwargs` approach, thanks!"
] | 2022-11-28T14:42:41 | 2022-12-09T12:58:55 | 2022-12-09T12:55:59 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5308",
"html_url": "https://github.com/huggingface/datasets/pull/5308",
"diff_url": "https://github.com/huggingface/datasets/pull/5308.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5308.patch",
"merged_at": "2022-12-09T12:55:59"
} | Add support for the `topdown` parameter in `xwalk` when `fsspec>=2022.11.0` is installed. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5308/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5308/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5307 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5307/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5307/comments | https://api.github.com/repos/huggingface/datasets/issues/5307/events | https://github.com/huggingface/datasets/pull/5307 | 1,466,477,427 | PR_kwDODunzps5Dzj8r | 5,307 | Use correct dataset type in `from_generator` docs | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-28T13:59:10 | 2022-11-28T15:30:37 | 2022-11-28T15:27:26 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5307",
"html_url": "https://github.com/huggingface/datasets/pull/5307",
"diff_url": "https://github.com/huggingface/datasets/pull/5307.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5307.patch",
"merged_at": "2022-11-28T15:27:26"
} | Use the correct dataset type in the `from_generator` docs (example with sharding). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5307/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5307/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5306 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5306/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5306/comments | https://api.github.com/repos/huggingface/datasets/issues/5306/events | https://github.com/huggingface/datasets/issues/5306 | 1,465,968,639 | I_kwDODunzps5XYOf_ | 5,306 | Can't use custom feature description when loading a dataset | {
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Forgot to actually convert the feature dict to a Feature object. Closing."
] | 2022-11-28T07:55:44 | 2022-11-28T08:11:45 | 2022-11-28T08:11:44 | CONTRIBUTOR | null | null | null | ### Describe the bug
I have created a feature dictionary to describe my datasets' column types, to use when loading the dataset, following [the doc](https://huggingface.co/docs/datasets/main/en/about_dataset_features). It crashes at dataset load.
### Steps to reproduce the bug
```python
# Creating features
task_list = [f"motif_G{i}" for i in range(19, 53)]
features = {t: Sequence(feature=Value(dtype="float64")) for t in task_list}
for col_name in ["class_label"]:
features[col_name] = Sequence(feature=Value(dtype="int64"))
for col_name in ["num_nodes"]:
features[col_name] = Value(dtype="int64")
for col_name in ["num_bridges", "num_cycles", "avg_shortest_path_len"]:
features[col_name] = Sequence(feature=Value(dtype="float64"))
for col_name in ["edge_attr", "node_feat", "edge_index"]:
features[col_name] = Sequence(feature=Sequence(feature=Value(dtype="int64")))
print(features)
dataset = load_dataset(path=f"graphs-datasets/unbalanced-motifs-500K", split="train", features=features)
```
Last line will crash and say 'TypeError: argument of type 'Sequence' is not iterable'.
Full stack:
```
Traceback (most recent call last):
File "pretrain_tokengt.py", line 131, in <module>
main(output_folder = "../workspace/pretraining",
File "pretrain_tokengt.py", line 52, in main
dataset = load_dataset(path=f"graphs-datasets/{dataset_name}", split="train", features=features)
File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1718, in load_dataset
builder_instance = load_dataset_builder(
File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1514, in load_dataset_builder
builder_instance: DatasetBuilder = builder_cls(
File "huggingface_env/lib/python3.8/site-packages/datasets/builder.py", line 321, in __init__
info.update(self._info())
File "huggingface_env/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 62, in _info
return datasets.DatasetInfo(features=self.config.features)
File "<string>", line 20, in __init__
File "huggingface_env/lib/python3.8/site-packages/datasets/info.py", line 155, in __post_init__
self.features = Features.from_dict(self.features)
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1599, in from_dict
obj = generate_from_dict(dic)
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in generate_from_dict
return {key: generate_from_dict(value) for key, value in obj.items()}
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in <dictcomp>
return {key: generate_from_dict(value) for key, value in obj.items()}
File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1281, in generate_from_dict
if "_type" not in obj or isinstance(obj["_type"], dict):
TypeError: argument of type 'Sequence' is not iterable
```
### Expected behavior
For it not to crash.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.14.0-1054-oem-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 8.0.0
- Pandas version: 1.4.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5306/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5306/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5305 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5305/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5305/comments | https://api.github.com/repos/huggingface/datasets/issues/5305/events | https://github.com/huggingface/datasets/issues/5305 | 1,465,627,826 | I_kwDODunzps5XW7Sy | 5,305 | Dataset joelito/mc4_legal does not work with multiple files | {
"login": "JoelNiklaus",
"id": 3775944,
"node_id": "MDQ6VXNlcjM3NzU5NDQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/3775944?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JoelNiklaus",
"html_url": "https://github.com/JoelNiklaus",
"followers_url": "https://api.github.com/users/JoelNiklaus/followers",
"following_url": "https://api.github.com/users/JoelNiklaus/following{/other_user}",
"gists_url": "https://api.github.com/users/JoelNiklaus/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JoelNiklaus/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JoelNiklaus/subscriptions",
"organizations_url": "https://api.github.com/users/JoelNiklaus/orgs",
"repos_url": "https://api.github.com/users/JoelNiklaus/repos",
"events_url": "https://api.github.com/users/JoelNiklaus/events{/privacy}",
"received_events_url": "https://api.github.com/users/JoelNiklaus/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting @JoelNiklaus.\r\n\r\nPlease note that since we moved all dataset loading scripts to the Hub, the issues and pull requests relative to specific datasets are directly handled on the Hub, in their Community tab. I'm transferring this issue there: https://huggingface.co/datasets/joelito/mc4_legal/discussions\r\n\r\nI am also having a look at the bug in your script.",
"Issue transferred to: https://huggingface.co/datasets/joelito/mc4_legal/discussions/1"
] | 2022-11-28T00:16:16 | 2022-11-28T07:22:42 | 2022-11-28T07:22:42 | CONTRIBUTOR | null | null | null | ### Describe the bug
The dataset https://huggingface.co/datasets/joelito/mc4_legal works for languages like bg with a single data file, but not for languages with multiple files like de. It shows zero rows for the de dataset.
joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main) [1]> python test_mc4_legal.py (debug)
Found cached dataset mc4_legal (/Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/de/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f)
Dataset({
features: ['index', 'url', 'timestamp', 'matches', 'text'],
num_rows: 0
})
joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main)> python test_mc4_legal.py (debug)
Downloading and preparing dataset mc4_legal/bg to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f...
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1240.55it/s]
Dataset mc4_legal downloaded and prepared to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f. Subsequent calls will reuse this data.
Dataset({
features: ['index', 'url', 'timestamp', 'matches', 'text'],
num_rows: 204
})
### Steps to reproduce the bug
import datasets
from datasets import load_dataset, get_dataset_config_names
language = "bg"
test = load_dataset("joelito/mc4_legal", language, split='train')
### Expected behavior
It should display the correct number of rows for the de dataset which should be a large number (thousands or more).
### Environment info
Package Version
------------------------ --------------
absl-py 1.3.0
aiohttp 3.8.1
aiosignal 1.2.0
astunparse 1.6.3
async-timeout 4.0.2
attrs 22.1.0
beautifulsoup4 4.11.1
blinker 1.4
blis 0.7.8
Bottleneck 1.3.4
brotlipy 0.7.0
cachetools 5.2.0
catalogue 2.0.7
certifi 2022.5.18.1
cffi 1.15.1
chardet 4.0.0
charset-normalizer 2.1.0
click 8.0.4
conllu 4.5.2
cryptography 38.0.1
cymem 2.0.6
datasets 2.6.1
dill 0.3.5.1
docker-pycreds 0.4.0
fasttext 0.9.2
fasttext-langdetect 1.0.3
filelock 3.0.12
flatbuffers 20210226132247
frozenlist 1.3.0
fsspec 2022.5.0
gast 0.4.0
gcloud 0.18.3
gitdb 4.0.9
GitPython 3.1.27
google-auth 2.9.0
google-auth-oauthlib 0.4.6
google-pasta 0.2.0
googleapis-common-protos 1.57.0
grpcio 1.47.0
h5py 3.7.0
httplib2 0.21.0
huggingface-hub 0.8.1
idna 3.4
importlib-metadata 4.12.0
Jinja2 3.1.2
joblib 1.0.1
keras 2.9.0
Keras-Preprocessing 1.1.2
langcodes 3.3.0
lxml 4.9.1
Markdown 3.3.7
MarkupSafe 2.1.1
mkl-fft 1.3.1
mkl-random 1.2.2
mkl-service 2.4.0
multidict 6.0.2
multiprocess 0.70.13
murmurhash 1.0.7
numexpr 2.8.1
numpy 1.22.3
oauth2client 4.1.3
oauthlib 3.2.1
opt-einsum 3.3.0
packaging 21.3
pandas 1.4.2
pathtools 0.1.2
pathy 0.6.1
pip 21.1.2
preshed 3.0.6
promise 2.3
protobuf 4.21.9
psutil 5.9.1
pyarrow 8.0.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pybind11 2.9.2
pycountry 22.3.5
pycparser 2.21
pydantic 1.8.2
PyJWT 2.4.0
pylzma 0.5.0
pyOpenSSL 22.0.0
pyparsing 3.0.4
PySocks 1.7.1
python-dateutil 2.8.2
pytz 2021.3
PyYAML 6.0
regex 2021.4.4
requests 2.28.1
requests-oauthlib 1.3.1
responses 0.18.0
rsa 4.8
sacremoses 0.0.45
scikit-learn 1.1.1
scipy 1.8.1
sentencepiece 0.1.96
sentry-sdk 1.6.0
setproctitle 1.2.3
setuptools 65.5.0
shortuuid 1.0.9
six 1.16.0
smart-open 5.2.1
smmap 5.0.0
soupsieve 2.3.2.post1
spacy 3.3.1
spacy-legacy 3.0.9
spacy-loggers 1.0.2
srsly 2.4.3
tabulate 0.8.9
tensorboard 2.9.1
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorflow 2.9.1
tensorflow-estimator 2.9.0
termcolor 2.1.0
thinc 8.0.17
threadpoolctl 3.1.0
tokenizers 0.12.1
torch 1.13.0
tqdm 4.64.0
transformers 4.20.1
typer 0.4.1
typing-extensions 4.3.0
Unidecode 1.3.6
urllib3 1.26.12
wandb 0.12.20
wasabi 0.9.1
web-anno-tsv 0.0.1
Werkzeug 2.1.2
wget 3.2
wheel 0.35.1
wrapt 1.14.1
xxhash 3.0.0
yarl 1.8.1
zipp 3.8.0
Python 3.8.10
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5305/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5305/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5304 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5304/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5304/comments | https://api.github.com/repos/huggingface/datasets/issues/5304/events | https://github.com/huggingface/datasets/issues/5304 | 1,465,110,367 | I_kwDODunzps5XU89f | 5,304 | timit_asr doesn't load the test split. | {
"login": "seyong92",
"id": 17842800,
"node_id": "MDQ6VXNlcjE3ODQyODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/17842800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/seyong92",
"html_url": "https://github.com/seyong92",
"followers_url": "https://api.github.com/users/seyong92/followers",
"following_url": "https://api.github.com/users/seyong92/following{/other_user}",
"gists_url": "https://api.github.com/users/seyong92/gists{/gist_id}",
"starred_url": "https://api.github.com/users/seyong92/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/seyong92/subscriptions",
"organizations_url": "https://api.github.com/users/seyong92/orgs",
"repos_url": "https://api.github.com/users/seyong92/repos",
"events_url": "https://api.github.com/users/seyong92/events{/privacy}",
"received_events_url": "https://api.github.com/users/seyong92/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The [timit_asr.py](https://huggingface.co/datasets/timit_asr/blob/main/timit_asr.py) script iterates over the WAV files per split directory using this:\r\n```python\r\nwav_paths = sorted(Path(data_dir).glob(f\"**/{split}/**/*.wav\"))\r\nwav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f\"**/{split.upper()}/**/*.WAV\"))\r\n```\r\n\r\nCan you check that there is a directory named \"test\" somewhere in your timit data directory ?"
] | 2022-11-26T10:18:22 | 2023-02-10T16:33:21 | 2023-02-10T16:33:21 | NONE | null | null | null | ### Describe the bug
When I use the function ```timit = load_dataset('timit_asr', data_dir=data_dir)```, it only loads train split, not test split.
I tried to change the directory and filename to lower case to upper case for the test split, but it does not work at all.
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 0
})
})
```
The directory structure of both splits are same. (DIALECT_REGION / SPEAKER_CODE / DATA_FILES)
### Steps to reproduce the bug
1. just use ```timit = load_dataset('timit_asr', data_dir=data_dir)```
### Expected behavior
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 1680
})
})
```
### Environment info
- ubuntu 20.04
- python 3.9.13
- datasets 2.7.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5304/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5304/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5303 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5303/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5303/comments | https://api.github.com/repos/huggingface/datasets/issues/5303/events | https://github.com/huggingface/datasets/pull/5303 | 1,464,837,251 | PR_kwDODunzps5DuVTa | 5,303 | Skip dataset verifications by default | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"100% agree that the checksum verification is overkill and not super useful. But I think this PR would also disable the check on num_examples no ?\r\n \r\nAs a user I would like to know if the dataset I'm loading changed significantly.\r\nAnd I also think it can be useful to make sure the metadata are up to date.\r\n\r\nWhat do you think ?\r\n\r\nWe could have a default `ignore_verifications=\"ignore_checksums\"`",
"> We could have a default `ignore_verifications=\"ignore_checksums\"`\r\n\r\nAccepting multiple types (booleans and strings) at the same time is not the best design. Maybe we could define an enum for this parameter?",
"Yes an enum sounds good !",
"so we can have three verification levels, - smth like \"ignore_all\" (to skip both checksums and all other info like num_examples verification), \"ignore_checksums\" (to skip only checksums verification), and \"verify_all\" (to perform all verification)?\r\nand deprecate `ignore_verifications` param.\r\n\r\n@mariosasko if you're not going to work on this PR in the coming days, I can take over it if you want (this PR will help me with [this issue](https://github.com/huggingface/datasets/issues/5315), not super urgent though).",
"Okay, I propose deprecating `ignore_verifications` in favor of `verification_mode` (`load_dataset` already has `download_mode`; some other projects use this name for verification control). `verification_mode` would accept the following enum (or strings in the same manner as `download_mode` does):\r\n\r\n```python\r\nclass VerificationMode(enum.Enum):\r\n FULL = \"full\" # runs all verification checks \r\n BASIC = \"basic\" # default, runs only the cheap ones (skips the checksum check)\r\n NONE = \"none\" # skips all the checks\r\n```\r\n\r\nWDTY?",
"(copy paste from my message on slack)\r\n\r\nWhat do you think of a config variable in config.py to switch from one verification mode to another ? This way we don’t deprecate anything\r\n\r\nMany users are familiar with ignore_verifications=True, it might be overkill to deprecate it",
"@lhoestq So we have \"basic\" verification mode in `config.py` and continue to have `False` as a default \r\nvalue for `ignore_verifications`? That way running all verifications including checksums would not be possible without switching the config var, right? \r\n\r\nI like having a `VerificationMode` enum because it's aligned with `DownloadMode` and sounds more natural to me (`ignore_verifications` feels a bit semantically reverted but this is probably just my feeling) and it's flexible (no need to worry about `config.py`, I'm not sure that users even know it exists, wdyt?).\r\n\r\nThe usage point seems also valid to me, but cases when users are stuck with NonMatchingX errors also happen from time to time and to figure out what's wrong is non-trivial here. \r\n\r\nAs a note aside - I suggest to add instructions to the NonMatchingX error message (how to use `ignore_verifications` / `verification_mode`), this would save users who don't know about this param a lot of time.",
"Ok I see. I'm fine with the new parameter then (even though I had a small pref for the config variable) :)",
"I like the idea of an enum and the `verification_mode` parameter. \r\n\r\nIn relation with the config parameter, we could additionally add a `DEFAULT_VERIFICATION_MODE`, maybe only if users require it. Note that until now there wasn't any config parameter for a default `ignore_verifications` value: I guess people are explicitly passing `ignore_verifications=True`...\r\n\r\nAs a note aside, I like the suggestion by @polinaeterna: we could give actionable messages when verifying checksums. This could be done in other PR.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012891 / 0.011353 (0.001538) | 0.006474 / 0.011008 (-0.004535) | 0.144038 / 0.038508 (0.105530) | 0.036151 / 0.023109 (0.013042) | 0.404366 / 0.275898 (0.128468) | 0.479988 / 0.323480 (0.156508) | 0.010219 / 0.007986 (0.002233) | 0.005319 / 0.004328 (0.000990) | 0.099705 / 0.004250 (0.095455) | 0.046639 / 0.037052 (0.009586) | 0.398997 / 0.258489 (0.140508) | 0.478431 / 0.293841 (0.184590) | 0.069125 / 0.128546 (-0.059421) | 0.019603 / 0.075646 (-0.056043) | 0.400829 / 0.419271 (-0.018443) | 0.066549 / 0.043533 (0.023016) | 0.398343 / 0.255139 (0.143204) | 0.417928 / 0.283200 (0.134728) | 0.121124 / 0.141683 (-0.020559) | 1.751513 / 1.452155 (0.299358) | 1.821239 / 1.492716 (0.328523) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251603 / 0.018006 (0.233597) | 0.579916 / 0.000490 (0.579427) | 0.003257 / 0.000200 (0.003058) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031502 / 0.037411 (-0.005909) | 0.134688 / 0.014526 (0.120162) | 0.152306 / 0.176557 (-0.024251) | 0.198943 / 0.737135 (-0.538192) | 0.142551 / 0.296338 (-0.153788) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634672 / 0.215209 (0.419463) | 6.370215 / 2.077655 (4.292561) | 2.548123 / 1.504120 (1.044003) | 2.184263 / 1.541195 (0.643069) | 2.239026 / 1.468490 (0.770536) | 1.233340 / 4.584777 (-3.351437) | 5.791824 / 3.745712 (2.046112) | 5.093032 / 5.269862 (-0.176830) | 2.849833 / 4.565676 (-1.715844) | 0.143787 / 0.424275 (-0.280488) | 0.015279 / 0.007607 (0.007672) | 0.757984 / 0.226044 (0.531939) | 7.883604 / 2.268929 (5.614675) | 3.321591 / 55.444624 (-52.123033) | 2.671777 / 6.876477 (-4.204700) | 2.685215 / 2.142072 (0.543142) | 1.546709 / 4.805227 (-3.258519) | 0.247186 / 6.500664 (-6.253478) | 0.085117 / 0.075469 (0.009648) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679809 / 1.841788 (-0.161979) | 18.528893 / 8.074308 (10.454585) | 23.168590 / 10.191392 (12.977198) | 0.277618 / 0.680424 (-0.402806) | 0.045109 / 0.534201 (-0.489092) | 0.568873 / 0.579283 (-0.010410) | 0.695017 / 0.434364 (0.260653) | 0.671024 / 0.540337 (0.130687) | 0.823817 / 1.386936 (-0.563119) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009809 / 0.011353 (-0.001544) | 0.006890 / 0.011008 (-0.004118) | 0.099211 / 0.038508 (0.060703) | 0.035387 / 0.023109 (0.012278) | 0.507603 / 0.275898 (0.231705) | 0.535553 / 0.323480 (0.212073) | 0.007346 / 0.007986 (-0.000640) | 0.007559 / 0.004328 (0.003231) | 0.099132 / 0.004250 (0.094882) | 0.048048 / 0.037052 (0.010996) | 0.518096 / 0.258489 (0.259607) | 0.561134 / 0.293841 (0.267294) | 0.057580 / 0.128546 (-0.070966) | 0.023665 / 0.075646 (-0.051982) | 0.138409 / 0.419271 (-0.280862) | 0.061989 / 0.043533 (0.018456) | 0.510568 / 0.255139 (0.255429) | 0.552722 / 0.283200 (0.269522) | 0.115990 / 0.141683 (-0.025693) | 1.884900 / 1.452155 (0.432745) | 1.990604 / 1.492716 (0.497888) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280638 / 0.018006 (0.262632) | 0.592837 / 0.000490 (0.592347) | 0.000465 / 0.000200 (0.000265) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030253 / 0.037411 (-0.007158) | 0.141580 / 0.014526 (0.127054) | 0.135114 / 0.176557 (-0.041443) | 0.190003 / 0.737135 (-0.547133) | 0.160230 / 0.296338 (-0.136109) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.699762 / 0.215209 (0.484553) | 6.632344 / 2.077655 (4.554689) | 2.718803 / 1.504120 (1.214683) | 2.485294 / 1.541195 (0.944099) | 2.579889 / 1.468490 (1.111399) | 1.268795 / 4.584777 (-3.315982) | 5.777745 / 3.745712 (2.032033) | 3.232551 / 5.269862 (-2.037311) | 2.127699 / 4.565676 (-2.437977) | 0.146570 / 0.424275 (-0.277705) | 0.015971 / 0.007607 (0.008364) | 0.803181 / 0.226044 (0.577137) | 8.377192 / 2.268929 (6.108264) | 3.551242 / 55.444624 (-51.893382) | 2.865228 / 6.876477 (-4.011249) | 2.774869 / 2.142072 (0.632797) | 1.553856 / 4.805227 (-3.251371) | 0.264510 / 6.500664 (-6.236154) | 0.087918 / 0.075469 (0.012449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.653396 / 1.841788 (-0.188391) | 18.703863 / 8.074308 (10.629555) | 22.067331 / 10.191392 (11.875939) | 0.257424 / 0.680424 (-0.422999) | 0.026448 / 0.534201 (-0.507753) | 0.550100 / 0.579283 (-0.029183) | 0.647296 / 0.434364 (0.212932) | 0.657476 / 0.540337 (0.117138) | 0.781119 / 1.386936 (-0.605817) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c4a9cb95f8742a2850f11d59abbef71d6c1f60c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008889 / 0.011353 (-0.002464) | 0.004563 / 0.011008 (-0.006445) | 0.101627 / 0.038508 (0.063118) | 0.030526 / 0.023109 (0.007417) | 0.297175 / 0.275898 (0.021277) | 0.368454 / 0.323480 (0.044974) | 0.007246 / 0.007986 (-0.000740) | 0.003565 / 0.004328 (-0.000763) | 0.078644 / 0.004250 (0.074394) | 0.038616 / 0.037052 (0.001564) | 0.310521 / 0.258489 (0.052032) | 0.348014 / 0.293841 (0.054173) | 0.033463 / 0.128546 (-0.095083) | 0.011544 / 0.075646 (-0.064102) | 0.323281 / 0.419271 (-0.095990) | 0.040187 / 0.043533 (-0.003346) | 0.298015 / 0.255139 (0.042876) | 0.326392 / 0.283200 (0.043193) | 0.088730 / 0.141683 (-0.052952) | 1.503387 / 1.452155 (0.051233) | 1.548704 / 1.492716 (0.055988) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185983 / 0.018006 (0.167977) | 0.451889 / 0.000490 (0.451400) | 0.001433 / 0.000200 (0.001233) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023396 / 0.037411 (-0.014015) | 0.118236 / 0.014526 (0.103710) | 0.124594 / 0.176557 (-0.051962) | 0.159089 / 0.737135 (-0.578047) | 0.129369 / 0.296338 (-0.166969) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423161 / 0.215209 (0.207952) | 4.228211 / 2.077655 (2.150556) | 1.853862 / 1.504120 (0.349742) | 1.649471 / 1.541195 (0.108276) | 1.708631 / 1.468490 (0.240141) | 0.697456 / 4.584777 (-3.887321) | 3.473244 / 3.745712 (-0.272468) | 1.942586 / 5.269862 (-3.327275) | 1.291592 / 4.565676 (-3.274084) | 0.082758 / 0.424275 (-0.341517) | 0.012256 / 0.007607 (0.004649) | 0.528355 / 0.226044 (0.302311) | 5.277620 / 2.268929 (3.008691) | 2.299604 / 55.444624 (-53.145020) | 1.954940 / 6.876477 (-4.921537) | 2.055543 / 2.142072 (-0.086529) | 0.814723 / 4.805227 (-3.990505) | 0.149937 / 6.500664 (-6.350727) | 0.064529 / 0.075469 (-0.010941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266240 / 1.841788 (-0.575547) | 14.144016 / 8.074308 (6.069708) | 14.331733 / 10.191392 (4.140340) | 0.138963 / 0.680424 (-0.541461) | 0.029034 / 0.534201 (-0.505167) | 0.397325 / 0.579283 (-0.181958) | 0.405293 / 0.434364 (-0.029071) | 0.480745 / 0.540337 (-0.059592) | 0.573386 / 1.386936 (-0.813550) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007214 / 0.011353 (-0.004139) | 0.004569 / 0.011008 (-0.006439) | 0.078718 / 0.038508 (0.040209) | 0.031104 / 0.023109 (0.007995) | 0.342562 / 0.275898 (0.066664) | 0.387802 / 0.323480 (0.064322) | 0.005378 / 0.007986 (-0.002608) | 0.003414 / 0.004328 (-0.000915) | 0.077249 / 0.004250 (0.072999) | 0.044337 / 0.037052 (0.007285) | 0.341397 / 0.258489 (0.082907) | 0.385536 / 0.293841 (0.091695) | 0.033257 / 0.128546 (-0.095289) | 0.011825 / 0.075646 (-0.063821) | 0.086723 / 0.419271 (-0.332549) | 0.045951 / 0.043533 (0.002418) | 0.340914 / 0.255139 (0.085775) | 0.367126 / 0.283200 (0.083926) | 0.096326 / 0.141683 (-0.045357) | 1.608612 / 1.452155 (0.156458) | 1.687251 / 1.492716 (0.194534) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227595 / 0.018006 (0.209589) | 0.418502 / 0.000490 (0.418013) | 0.000392 / 0.000200 (0.000192) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026232 / 0.037411 (-0.011179) | 0.101020 / 0.014526 (0.086494) | 0.110017 / 0.176557 (-0.066539) | 0.153497 / 0.737135 (-0.583639) | 0.110602 / 0.296338 (-0.185737) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433789 / 0.215209 (0.218579) | 4.329350 / 2.077655 (2.251696) | 2.052136 / 1.504120 (0.548016) | 1.848457 / 1.541195 (0.307262) | 1.936791 / 1.468490 (0.468301) | 0.700609 / 4.584777 (-3.884168) | 3.391983 / 3.745712 (-0.353729) | 1.903220 / 5.269862 (-3.366642) | 1.179463 / 4.565676 (-3.386213) | 0.084025 / 0.424275 (-0.340250) | 0.012743 / 0.007607 (0.005136) | 0.536816 / 0.226044 (0.310772) | 5.420230 / 2.268929 (3.151302) | 2.507438 / 55.444624 (-52.937187) | 2.178907 / 6.876477 (-4.697570) | 2.228586 / 2.142072 (0.086514) | 0.812527 / 4.805227 (-3.992701) | 0.153382 / 6.500664 (-6.347282) | 0.069932 / 0.075469 (-0.005537) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256861 / 1.841788 (-0.584927) | 14.309236 / 8.074308 (6.234928) | 13.740323 / 10.191392 (3.548931) | 0.142698 / 0.680424 (-0.537726) | 0.016998 / 0.534201 (-0.517203) | 0.385489 / 0.579283 (-0.193794) | 0.391515 / 0.434364 (-0.042849) | 0.472704 / 0.540337 (-0.067633) | 0.565042 / 1.386936 (-0.821894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4b0713ddf2e2e7129d9ccda791d265684c96675c \"CML watermark\")\n",
"This is ready for review. \r\n\r\nIf `verification_mode` is None, it defaults to `VerificationMode.BASIC` instead of `VerificationMode.NONE`, so maybe we should find a better name for the latter to avoid confusion.\r\n\r\nPS: `ignore_verifications` is still present in the `test`/`run_beam` commands for simplicity. Let me know if you think these commands should support all three modes.",
"> I would also prefer to change the name for the NONE verification mode, but don't have really good ideas in mind. maybe smth like SKIP_ALL ?\r\n\r\nI decided to go with the following names:\r\n* `no_checks` (previously `none`)\r\n* `basic_checks` (previously `basic`)\r\n* `all_checks` (previously `full`)\r\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008900 / 0.011353 (-0.002453) | 0.004492 / 0.011008 (-0.006516) | 0.100957 / 0.038508 (0.062449) | 0.030145 / 0.023109 (0.007036) | 0.302531 / 0.275898 (0.026633) | 0.344072 / 0.323480 (0.020592) | 0.007032 / 0.007986 (-0.000953) | 0.004150 / 0.004328 (-0.000178) | 0.078272 / 0.004250 (0.074021) | 0.034142 / 0.037052 (-0.002910) | 0.310798 / 0.258489 (0.052308) | 0.350077 / 0.293841 (0.056236) | 0.034497 / 0.128546 (-0.094050) | 0.011417 / 0.075646 (-0.064230) | 0.323427 / 0.419271 (-0.095844) | 0.045664 / 0.043533 (0.002132) | 0.304688 / 0.255139 (0.049549) | 0.336591 / 0.283200 (0.053391) | 0.086116 / 0.141683 (-0.055567) | 1.519278 / 1.452155 (0.067123) | 1.576728 / 1.492716 (0.084011) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242482 / 0.018006 (0.224476) | 0.403548 / 0.000490 (0.403058) | 0.001217 / 0.000200 (0.001017) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023466 / 0.037411 (-0.013945) | 0.095220 / 0.014526 (0.080694) | 0.104119 / 0.176557 (-0.072438) | 0.141107 / 0.737135 (-0.596029) | 0.107236 / 0.296338 (-0.189102) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416290 / 0.215209 (0.201081) | 4.159068 / 2.077655 (2.081413) | 1.846014 / 1.504120 (0.341894) | 1.634789 / 1.541195 (0.093594) | 1.724687 / 1.468490 (0.256196) | 0.696887 / 4.584777 (-3.887890) | 3.313861 / 3.745712 (-0.431851) | 1.907239 / 5.269862 (-3.362622) | 1.266815 / 4.565676 (-3.298861) | 0.081660 / 0.424275 (-0.342615) | 0.012290 / 0.007607 (0.004683) | 0.522866 / 0.226044 (0.296822) | 5.237356 / 2.268929 (2.968428) | 2.294645 / 55.444624 (-53.149979) | 1.946407 / 6.876477 (-4.930069) | 1.995441 / 2.142072 (-0.146632) | 0.808340 / 4.805227 (-3.996887) | 0.149670 / 6.500664 (-6.350994) | 0.065162 / 0.075469 (-0.010307) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219476 / 1.841788 (-0.622312) | 13.868709 / 8.074308 (5.794401) | 14.115783 / 10.191392 (3.924391) | 0.149403 / 0.680424 (-0.531021) | 0.028514 / 0.534201 (-0.505686) | 0.398194 / 0.579283 (-0.181089) | 0.410898 / 0.434364 (-0.023466) | 0.485763 / 0.540337 (-0.054574) | 0.574924 / 1.386936 (-0.812012) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006906 / 0.011353 (-0.004447) | 0.004446 / 0.011008 (-0.006562) | 0.075936 / 0.038508 (0.037428) | 0.027693 / 0.023109 (0.004584) | 0.339505 / 0.275898 (0.063607) | 0.383315 / 0.323480 (0.059835) | 0.005138 / 0.007986 (-0.002847) | 0.004636 / 0.004328 (0.000308) | 0.074829 / 0.004250 (0.070578) | 0.040327 / 0.037052 (0.003274) | 0.340516 / 0.258489 (0.082027) | 0.388569 / 0.293841 (0.094729) | 0.031562 / 0.128546 (-0.096984) | 0.011585 / 0.075646 (-0.064061) | 0.084753 / 0.419271 (-0.334518) | 0.041310 / 0.043533 (-0.002223) | 0.338272 / 0.255139 (0.083133) | 0.367243 / 0.283200 (0.084043) | 0.092653 / 0.141683 (-0.049029) | 1.515973 / 1.452155 (0.063818) | 1.582869 / 1.492716 (0.090152) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229366 / 0.018006 (0.211360) | 0.414404 / 0.000490 (0.413914) | 0.002922 / 0.000200 (0.002723) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026391 / 0.037411 (-0.011020) | 0.106754 / 0.014526 (0.092228) | 0.110718 / 0.176557 (-0.065839) | 0.145786 / 0.737135 (-0.591350) | 0.113180 / 0.296338 (-0.183159) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446340 / 0.215209 (0.231131) | 4.499756 / 2.077655 (2.422101) | 2.071485 / 1.504120 (0.567365) | 1.873223 / 1.541195 (0.332029) | 1.931562 / 1.468490 (0.463071) | 0.699270 / 4.584777 (-3.885507) | 3.452383 / 3.745712 (-0.293329) | 2.970630 / 5.269862 (-2.299232) | 1.300859 / 4.565676 (-3.264817) | 0.083971 / 0.424275 (-0.340304) | 0.012489 / 0.007607 (0.004882) | 0.544190 / 0.226044 (0.318146) | 5.460097 / 2.268929 (3.191169) | 2.700244 / 55.444624 (-52.744380) | 2.396694 / 6.876477 (-4.479783) | 2.376334 / 2.142072 (0.234262) | 0.812845 / 4.805227 (-3.992382) | 0.154441 / 6.500664 (-6.346223) | 0.069510 / 0.075469 (-0.005959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278836 / 1.841788 (-0.562952) | 14.153158 / 8.074308 (6.078850) | 13.821290 / 10.191392 (3.629898) | 0.160464 / 0.680424 (-0.519960) | 0.016742 / 0.534201 (-0.517459) | 0.379840 / 0.579283 (-0.199443) | 0.391903 / 0.434364 (-0.042461) | 0.461646 / 0.540337 (-0.078691) | 0.550691 / 1.386936 (-0.836245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aeb637daab938d51b8b15ad4d175d06817e99512 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009858 / 0.011353 (-0.001495) | 0.005383 / 0.011008 (-0.005625) | 0.100527 / 0.038508 (0.062019) | 0.037176 / 0.023109 (0.014067) | 0.295204 / 0.275898 (0.019306) | 0.364511 / 0.323480 (0.041031) | 0.008486 / 0.007986 (0.000500) | 0.004273 / 0.004328 (-0.000055) | 0.076538 / 0.004250 (0.072288) | 0.046250 / 0.037052 (0.009197) | 0.307102 / 0.258489 (0.048613) | 0.339313 / 0.293841 (0.045472) | 0.040783 / 0.128546 (-0.087763) | 0.012323 / 0.075646 (-0.063323) | 0.336216 / 0.419271 (-0.083055) | 0.050480 / 0.043533 (0.006947) | 0.293689 / 0.255139 (0.038550) | 0.315034 / 0.283200 (0.031834) | 0.113775 / 0.141683 (-0.027908) | 1.438738 / 1.452155 (-0.013416) | 1.499874 / 1.492716 (0.007157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202392 / 0.018006 (0.184386) | 0.442784 / 0.000490 (0.442295) | 0.003004 / 0.000200 (0.002804) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027792 / 0.037411 (-0.009620) | 0.110886 / 0.014526 (0.096360) | 0.121041 / 0.176557 (-0.055515) | 0.166803 / 0.737135 (-0.570333) | 0.127617 / 0.296338 (-0.168722) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409762 / 0.215209 (0.194553) | 4.073297 / 2.077655 (1.995643) | 1.836375 / 1.504120 (0.332255) | 1.651507 / 1.541195 (0.110312) | 1.734134 / 1.468490 (0.265644) | 0.690900 / 4.584777 (-3.893877) | 3.812045 / 3.745712 (0.066333) | 2.101378 / 5.269862 (-3.168483) | 1.438242 / 4.565676 (-3.127434) | 0.083256 / 0.424275 (-0.341020) | 0.012436 / 0.007607 (0.004829) | 0.501702 / 0.226044 (0.275658) | 5.007679 / 2.268929 (2.738751) | 2.315158 / 55.444624 (-53.129466) | 2.003934 / 6.876477 (-4.872543) | 2.154658 / 2.142072 (0.012586) | 0.831749 / 4.805227 (-3.973478) | 0.165058 / 6.500664 (-6.335606) | 0.062166 / 0.075469 (-0.013303) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212435 / 1.841788 (-0.629353) | 15.022673 / 8.074308 (6.948365) | 14.649631 / 10.191392 (4.458239) | 0.172121 / 0.680424 (-0.508303) | 0.028791 / 0.534201 (-0.505410) | 0.440290 / 0.579283 (-0.138993) | 0.437359 / 0.434364 (0.002995) | 0.543603 / 0.540337 (0.003265) | 0.643241 / 1.386936 (-0.743695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007572 / 0.011353 (-0.003781) | 0.005207 / 0.011008 (-0.005801) | 0.074427 / 0.038508 (0.035919) | 0.033384 / 0.023109 (0.010275) | 0.334538 / 0.275898 (0.058640) | 0.371556 / 0.323480 (0.048076) | 0.006453 / 0.007986 (-0.001532) | 0.004010 / 0.004328 (-0.000319) | 0.073488 / 0.004250 (0.069238) | 0.048082 / 0.037052 (0.011030) | 0.337325 / 0.258489 (0.078836) | 0.395143 / 0.293841 (0.101302) | 0.036714 / 0.128546 (-0.091832) | 0.012089 / 0.075646 (-0.063557) | 0.086008 / 0.419271 (-0.333263) | 0.049277 / 0.043533 (0.005744) | 0.333848 / 0.255139 (0.078709) | 0.354003 / 0.283200 (0.070803) | 0.105012 / 0.141683 (-0.036671) | 1.450769 / 1.452155 (-0.001386) | 1.554538 / 1.492716 (0.061821) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208407 / 0.018006 (0.190400) | 0.438778 / 0.000490 (0.438288) | 0.000399 / 0.000200 (0.000199) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030180 / 0.037411 (-0.007232) | 0.115432 / 0.014526 (0.100906) | 0.126106 / 0.176557 (-0.050451) | 0.167508 / 0.737135 (-0.569627) | 0.130566 / 0.296338 (-0.165772) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421408 / 0.215209 (0.206198) | 4.208492 / 2.077655 (2.130838) | 2.024177 / 1.504120 (0.520057) | 1.834356 / 1.541195 (0.293161) | 1.923234 / 1.468490 (0.454744) | 0.699548 / 4.584777 (-3.885229) | 3.933775 / 3.745712 (0.188063) | 2.124526 / 5.269862 (-3.145336) | 1.360934 / 4.565676 (-3.204742) | 0.086568 / 0.424275 (-0.337707) | 0.012351 / 0.007607 (0.004744) | 0.517431 / 0.226044 (0.291387) | 5.175428 / 2.268929 (2.906499) | 2.471031 / 55.444624 (-52.973593) | 2.131529 / 6.876477 (-4.744948) | 2.202512 / 2.142072 (0.060440) | 0.849364 / 4.805227 (-3.955863) | 0.171505 / 6.500664 (-6.329159) | 0.065864 / 0.075469 (-0.009605) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270054 / 1.841788 (-0.571734) | 15.254502 / 8.074308 (7.180194) | 13.874969 / 10.191392 (3.683577) | 0.144131 / 0.680424 (-0.536293) | 0.017743 / 0.534201 (-0.516458) | 0.421990 / 0.579283 (-0.157293) | 0.423924 / 0.434364 (-0.010439) | 0.522560 / 0.540337 (-0.017778) | 0.626159 / 1.386936 (-0.760777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#05bd726a575a3c1c337022424fa7d226f1a2ebee \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008643 / 0.011353 (-0.002710) | 0.004479 / 0.011008 (-0.006529) | 0.102372 / 0.038508 (0.063864) | 0.029703 / 0.023109 (0.006594) | 0.301479 / 0.275898 (0.025581) | 0.370970 / 0.323480 (0.047490) | 0.007044 / 0.007986 (-0.000942) | 0.004868 / 0.004328 (0.000540) | 0.079568 / 0.004250 (0.075318) | 0.035344 / 0.037052 (-0.001708) | 0.308091 / 0.258489 (0.049602) | 0.353812 / 0.293841 (0.059971) | 0.033406 / 0.128546 (-0.095140) | 0.011476 / 0.075646 (-0.064170) | 0.324343 / 0.419271 (-0.094929) | 0.040293 / 0.043533 (-0.003240) | 0.300007 / 0.255139 (0.044868) | 0.334410 / 0.283200 (0.051210) | 0.086553 / 0.141683 (-0.055130) | 1.463814 / 1.452155 (0.011659) | 1.501580 / 1.492716 (0.008864) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198032 / 0.018006 (0.180025) | 0.409970 / 0.000490 (0.409480) | 0.001075 / 0.000200 (0.000875) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022941 / 0.037411 (-0.014471) | 0.097320 / 0.014526 (0.082794) | 0.106445 / 0.176557 (-0.070111) | 0.139073 / 0.737135 (-0.598063) | 0.108408 / 0.296338 (-0.187930) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419315 / 0.215209 (0.204106) | 4.199273 / 2.077655 (2.121618) | 1.877689 / 1.504120 (0.373569) | 1.670442 / 1.541195 (0.129247) | 1.735034 / 1.468490 (0.266544) | 0.694691 / 4.584777 (-3.890086) | 3.323644 / 3.745712 (-0.422069) | 2.884349 / 5.269862 (-2.385513) | 1.518882 / 4.565676 (-3.046794) | 0.082390 / 0.424275 (-0.341886) | 0.012884 / 0.007607 (0.005277) | 0.525103 / 0.226044 (0.299058) | 5.277297 / 2.268929 (3.008369) | 2.328639 / 55.444624 (-53.115985) | 1.983210 / 6.876477 (-4.893267) | 2.037985 / 2.142072 (-0.104088) | 0.809520 / 4.805227 (-3.995707) | 0.150150 / 6.500664 (-6.350514) | 0.065578 / 0.075469 (-0.009891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221971 / 1.841788 (-0.619817) | 13.692361 / 8.074308 (5.618052) | 13.874582 / 10.191392 (3.683190) | 0.138182 / 0.680424 (-0.542242) | 0.028618 / 0.534201 (-0.505583) | 0.395104 / 0.579283 (-0.184179) | 0.397169 / 0.434364 (-0.037195) | 0.457509 / 0.540337 (-0.082829) | 0.537275 / 1.386936 (-0.849661) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006835 / 0.011353 (-0.004518) | 0.004585 / 0.011008 (-0.006423) | 0.076877 / 0.038508 (0.038369) | 0.027305 / 0.023109 (0.004196) | 0.349085 / 0.275898 (0.073187) | 0.401416 / 0.323480 (0.077936) | 0.004912 / 0.007986 (-0.003074) | 0.003315 / 0.004328 (-0.001014) | 0.075676 / 0.004250 (0.071425) | 0.038960 / 0.037052 (0.001907) | 0.346196 / 0.258489 (0.087707) | 0.403185 / 0.293841 (0.109344) | 0.032054 / 0.128546 (-0.096493) | 0.011742 / 0.075646 (-0.063905) | 0.086631 / 0.419271 (-0.332640) | 0.041633 / 0.043533 (-0.001900) | 0.343519 / 0.255139 (0.088380) | 0.385413 / 0.283200 (0.102213) | 0.091430 / 0.141683 (-0.050253) | 1.478886 / 1.452155 (0.026731) | 1.546873 / 1.492716 (0.054156) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.167882 / 0.018006 (0.149876) | 0.396464 / 0.000490 (0.395974) | 0.003629 / 0.000200 (0.003429) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024829 / 0.037411 (-0.012583) | 0.099607 / 0.014526 (0.085081) | 0.106187 / 0.176557 (-0.070370) | 0.142379 / 0.737135 (-0.594756) | 0.109307 / 0.296338 (-0.187032) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442276 / 0.215209 (0.227067) | 4.427099 / 2.077655 (2.349444) | 2.093407 / 1.504120 (0.589287) | 1.880973 / 1.541195 (0.339778) | 1.915592 / 1.468490 (0.447102) | 0.708196 / 4.584777 (-3.876581) | 3.417649 / 3.745712 (-0.328063) | 2.859953 / 5.269862 (-2.409909) | 1.528380 / 4.565676 (-3.037297) | 0.084054 / 0.424275 (-0.340221) | 0.012585 / 0.007607 (0.004978) | 0.537614 / 0.226044 (0.311569) | 5.409915 / 2.268929 (3.140987) | 2.555853 / 55.444624 (-52.888771) | 2.195075 / 6.876477 (-4.681402) | 2.232775 / 2.142072 (0.090703) | 0.814994 / 4.805227 (-3.990233) | 0.152882 / 6.500664 (-6.347782) | 0.067467 / 0.075469 (-0.008002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306007 / 1.841788 (-0.535780) | 13.923981 / 8.074308 (5.849673) | 13.385881 / 10.191392 (3.194489) | 0.150712 / 0.680424 (-0.529712) | 0.016731 / 0.534201 (-0.517470) | 0.376557 / 0.579283 (-0.202726) | 0.379396 / 0.434364 (-0.054968) | 0.456251 / 0.540337 (-0.084087) | 0.545731 / 1.386936 (-0.841205) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cc637d107ef3e3b9948691379312a8099b6476aa \"CML watermark\")\n"
] | 2022-11-25T18:39:09 | 2023-02-13T16:50:42 | 2023-02-13T16:43:47 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5303",
"html_url": "https://github.com/huggingface/datasets/pull/5303",
"diff_url": "https://github.com/huggingface/datasets/pull/5303.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5303.patch",
"merged_at": "2023-02-13T16:43:47"
} | Skip the dataset verifications (split and checksum verifications, duplicate keys check) by default unless a dataset is being tested (`datasets-cli test/run_beam`). The main goal is to avoid running the checksum check in the default case due to how expensive it can be for large datasets.
PS: Maybe we should deprecate `ignore_verifications`, which is `True` now by default, and give it a different name? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5303/reactions",
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5303/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5302 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5302/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5302/comments | https://api.github.com/repos/huggingface/datasets/issues/5302/events | https://github.com/huggingface/datasets/pull/5302 | 1,464,778,901 | PR_kwDODunzps5DuJJp | 5,302 | Improve `use_auth_token` docstring and deprecate `use_auth_token` in `download_and_prepare` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-25T17:09:21 | 2022-12-09T14:20:15 | 2022-12-09T14:17:20 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5302",
"html_url": "https://github.com/huggingface/datasets/pull/5302",
"diff_url": "https://github.com/huggingface/datasets/pull/5302.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5302.patch",
"merged_at": "2022-12-09T14:17:20"
} | Clarify in the docstrings what happens when `use_auth_token` is `None` and deprecate the `use_auth_token` param in `download_and_prepare`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5302/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5302/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5301 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5301/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5301/comments | https://api.github.com/repos/huggingface/datasets/issues/5301/events | https://github.com/huggingface/datasets/pull/5301 | 1,464,749,156 | PR_kwDODunzps5DuCzR | 5,301 | Return a split Dataset in load_dataset | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5301). All of your documentation changes will be reflected on that endpoint.",
"Just noticed that now we have to deal with indexed & split datasets. The remaining tests are failing because one should be able to get an indexed dataset when accessing the split of a dataset made of indexed splits (right now the index is just trashed)"
] | 2022-11-25T16:35:54 | 2023-02-21T13:13:13 | 2023-02-21T13:13:13 | MEMBER | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5301",
"html_url": "https://github.com/huggingface/datasets/pull/5301",
"diff_url": "https://github.com/huggingface/datasets/pull/5301.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5301.patch",
"merged_at": null
} | ...instead of a DatasetDict.
```python
# now supported
ds = load_dataset("squad")
ds[0]
for example in ds:
pass
# still works
ds["train"]
ds["validation"]
# new
ds.splits # Dict[str, Dataset] | None
# soon to be supported (not in this PR)
ds = load_dataset("dataset_with_no_splits")
ds[0]
for example in ds:
pass
```
I implemented `Dataset.__getitem__` and `IterableDataset.__getitem__` to be able to get a split from a dataset.
The splits are defined by the `ds.info.splits` dictionary.
Therefore a dataset is a table that optionally has some splits defined in the dataset info. And a split dataset is the concatenation of all its splits.
I made as little breaking changes as possible. Notable breaking changes:
- `load_dataset("potato").keys() / .items() / .values() /` don't work anymore, since we don't return a dict
- same for `for split_name in load_dataset("potato")`, since we now iterate on the examples
- ..
TODO:
- [x] Update push_to_hub
- [x] Update save_to_disk/load_from_disk
- [ ] check for other breaking changes
- [ ] fix existing tests
- [ ] add new tests
- [ ] docs
This is related to https://github.com/huggingface/datasets/issues/5189, to extend `load_dataset` to return datasets without splits | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5301/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5301/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5300 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5300/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5300/comments | https://api.github.com/repos/huggingface/datasets/issues/5300/events | https://github.com/huggingface/datasets/pull/5300 | 1,464,697,136 | PR_kwDODunzps5Dt3uK | 5,300 | Use same `num_proc` for dataset download and generation | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I noticed this bug the other day and was going to look into it! \"Where are these processes coming from?\" ;-)"
] | 2022-11-25T15:37:42 | 2022-12-07T12:55:39 | 2022-12-07T12:52:51 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5300",
"html_url": "https://github.com/huggingface/datasets/pull/5300",
"diff_url": "https://github.com/huggingface/datasets/pull/5300.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5300.patch",
"merged_at": "2022-12-07T12:52:50"
} | Use the same `num_proc` value for data download and generation. Additionally, do not set `num_proc` to 16 in `DownloadManager` by default (`num_proc` now has to be specified explicitly). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5300/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5300/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5299 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5299/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5299/comments | https://api.github.com/repos/huggingface/datasets/issues/5299/events | https://github.com/huggingface/datasets/pull/5299 | 1,464,695,091 | PR_kwDODunzps5Dt3Sk | 5,299 | Fix xopen for Windows pathnames | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-25T15:35:28 | 2022-11-29T08:23:58 | 2022-11-29T08:21:24 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5299",
"html_url": "https://github.com/huggingface/datasets/pull/5299",
"diff_url": "https://github.com/huggingface/datasets/pull/5299.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5299.patch",
"merged_at": "2022-11-29T08:21:24"
} | This PR fixes a bug in `xopen` function for Windows pathnames.
Fix #5298. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5299/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5299/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5298 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5298/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5298/comments | https://api.github.com/repos/huggingface/datasets/issues/5298/events | https://github.com/huggingface/datasets/issues/5298 | 1,464,681,871 | I_kwDODunzps5XTUWP | 5,298 | Bug in xopen with Windows pathnames | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2022-11-25T15:21:32 | 2022-11-29T08:21:25 | 2022-11-29T08:21:25 | MEMBER | null | null | null | Currently, `xopen` function has a bug with local Windows pathnames:
From its implementation:
```python
def xopen(file: str, mode="r", *args, **kwargs):
file = _as_posix(PurePath(file))
main_hop, *rest_hops = file.split("::")
if is_local_path(main_hop):
return open(file, mode, *args, **kwargs)
```
On a Windows machine, if we pass the argument:
```python
xopen("C:\\Users\\USERNAME\\filename.txt")
```
it returns
```python
open("C:/Users/USERNAME/filename.txt")
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5298/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5298/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5297 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5297/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5297/comments | https://api.github.com/repos/huggingface/datasets/issues/5297/events | https://github.com/huggingface/datasets/pull/5297 | 1,464,554,491 | PR_kwDODunzps5DtZjg | 5,297 | Fix xjoin for Windows pathnames | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-25T13:30:17 | 2022-11-29T08:07:39 | 2022-11-29T08:05:12 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5297",
"html_url": "https://github.com/huggingface/datasets/pull/5297",
"diff_url": "https://github.com/huggingface/datasets/pull/5297.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5297.patch",
"merged_at": "2022-11-29T08:05:12"
} | This PR fixes a bug in `xjoin` function with Windows pathnames.
Fix #5296. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5297/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5297/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5296 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5296/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5296/comments | https://api.github.com/repos/huggingface/datasets/issues/5296/events | https://github.com/huggingface/datasets/issues/5296 | 1,464,553,580 | I_kwDODunzps5XS1Bs | 5,296 | Bug in xjoin with Windows pathnames | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2022-11-25T13:29:33 | 2022-11-29T08:05:13 | 2022-11-29T08:05:13 | MEMBER | null | null | null | Currently, `xjoin` function has a bug with local Windows pathnames: instead of returning the OS-dependent join pathname, it always returns it in POSIX format.
```python
from datasets.download.streaming_download_manager import xjoin
path = xjoin("C:\\Users\\USERNAME", "filename.txt")
```
Join path should be:
```python
"C:\\Users\\USERNAME\\filename.txt"
```
However it is:
```python
"C:/Users/USERNAME/filename.txt"
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5296/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5296/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5295 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5295/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5295/comments | https://api.github.com/repos/huggingface/datasets/issues/5295/events | https://github.com/huggingface/datasets/issues/5295 | 1,464,006,743 | I_kwDODunzps5XQvhX | 5,295 | Extractions failed when .zip file located on read-only path (e.g., SageMaker FastFile mode) | {
"login": "verdimrc",
"id": 2340781,
"node_id": "MDQ6VXNlcjIzNDA3ODE=",
"avatar_url": "https://avatars.githubusercontent.com/u/2340781?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/verdimrc",
"html_url": "https://github.com/verdimrc",
"followers_url": "https://api.github.com/users/verdimrc/followers",
"following_url": "https://api.github.com/users/verdimrc/following{/other_user}",
"gists_url": "https://api.github.com/users/verdimrc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/verdimrc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/verdimrc/subscriptions",
"organizations_url": "https://api.github.com/users/verdimrc/orgs",
"repos_url": "https://api.github.com/users/verdimrc/repos",
"events_url": "https://api.github.com/users/verdimrc/events{/privacy}",
"received_events_url": "https://api.github.com/users/verdimrc/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi ! Thanks for reporting. Indeed the lock file should be placed in a directory with write permission (e.g. in the directory where the archive is extracted).",
"I opened https://github.com/huggingface/datasets/pull/5320 to fix this - it places the lock file in the cache directory instead of trying to put in next to the ZIP where it's read-only"
] | 2022-11-25T03:59:43 | 2022-12-01T13:56:40 | null | NONE | null | null | null | ### Describe the bug
Hi,
`load_dataset()` does not work .zip files located on a read-only directory. Looks like it's because Dataset creates a lock file in the [same directory](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/utils/extract.py) as the .zip file.
Encountered this when attempting `load_dataset()` on a datadir with SageMaker FastFile mode.
### Steps to reproduce the bug
```python
# Showing relevant lines only.
hyperparameters = {
"dataset_name": "ydshieh/coco_dataset_script",
"dataset_config_name": 2017,
"data_dir": "/opt/ml/input/data/coco",
"cache_dir": "/tmp/huggingface-cache", # Fix dataset complains out-of-space.
...
}
estimator = PyTorch(
base_job_name="clip",
source_dir="../src/sm-entrypoint",
entry_point="run_clip.py", # Transformers/src/examples/pytorch/contrastive-image-text/run_clip.py
framework_version="1.12",
py_version="py38",
hyperparameters=hyperparameters,
instance_count=1,
instance_type="ml.p3.16xlarge",
volume_size=100,
distribution={"smdistributed": {"dataparallel": {"enabled": True}}},
)
fast_file = lambda x: TrainingInput(x, input_mode='FastFile')
estimator.fit(
{
"pre-trained": fast_file("s3://vm-sagemakerr-us-east-1/clip/pre-trained-checkpoint/"),
"coco": fast_file("s3://vm-sagemakerr-us-east-1/clip/coco-zip-files/"),
}
)
```
Error message:
```text
ErrorMessage "OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'
"""
The above exception was the direct cause of the following exception
Traceback (most recent call last)
File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/opt/conda/lib/python3.8/site-packages/mpi4py/__main__.py", line 7, in <module>
main()
File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 198, in main
run_command_line(args)
File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 47, in run_command_line
run_path(sys.argv[0], run_name='__main__')
File "/opt/conda/lib/python3.8/runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "/opt/conda/lib/python3.8/runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "run_clip_smddp.py", line 594, in <module>
File "run_clip_smddp.py", line 327, in main
dataset = load_dataset(
File "/opt/conda/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare
super()._download_and_prepare(
File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 891, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/root/.cache/huggingface/modules/datasets_modules/datasets/ydshieh--coco_dataset_script/e033205c0266a54c10be132f9264f2a39dcf893e798f6756d224b1ff5078998f/coco_dataset_script.py", line 123, in _split_generators
archive_path = dl_manager.download_and_extract(_DL_URLS)
File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 447, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 419, in extract
extracted_paths = map_nested(
File "/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 472, in map_nested
mapped = pool.map(_single_map_nested, split_kwds)
File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 364, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 771, in get
raise self._value
OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'"
```
### Expected behavior
`load_dataset()` to succeed, just like when .zip file is passed in SageMaker File mode.
### Environment info
* datasets-2.7.1
* transformers-4.24.0
* python-3.8
* torch-1.12
* SageMaker PyTorch DLC | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5295/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5295/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5294 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5294/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5294/comments | https://api.github.com/repos/huggingface/datasets/issues/5294/events | https://github.com/huggingface/datasets/pull/5294 | 1,463,679,582 | PR_kwDODunzps5DqgLW | 5,294 | Support streaming datasets with pathlib.Path.with_suffix | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-24T18:04:38 | 2022-11-29T07:09:08 | 2022-11-29T07:06:32 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5294",
"html_url": "https://github.com/huggingface/datasets/pull/5294",
"diff_url": "https://github.com/huggingface/datasets/pull/5294.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5294.patch",
"merged_at": "2022-11-29T07:06:32"
} | This PR extends the support in streaming mode for datasets that use `pathlib.Path.with_suffix`.
Fix #5293. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5294/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5294/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5293 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5293/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5293/comments | https://api.github.com/repos/huggingface/datasets/issues/5293/events | https://github.com/huggingface/datasets/issues/5293 | 1,463,669,201 | I_kwDODunzps5XPdHR | 5,293 | Support streaming datasets with pathlib.Path.with_suffix | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2022-11-24T17:52:08 | 2022-11-29T07:06:33 | 2022-11-29T07:06:33 | MEMBER | null | null | null | Extend support for streaming datasets that use `pathlib.Path.with_suffix`.
This feature will be useful e.g. for datasets containing text files and annotated files with the same name but different extension. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5293/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5293/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5292 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5292/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5292/comments | https://api.github.com/repos/huggingface/datasets/issues/5292/events | https://github.com/huggingface/datasets/issues/5292 | 1,463,053,832 | I_kwDODunzps5XNG4I | 5,292 | Missing documentation build for versions 2.7.1 and 2.6.2 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 4296013012,
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance",
"name": "maintenance",
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"- Build docs for 2.6.2:\r\n - Commit: a6a5a1cf4cdf1e0be65168aed5a327f543001fe8\r\n - Build docs GH Action: https://github.com/huggingface/datasets/actions/runs/3539470622/jobs/5941404044\r\n- Build docs for 2.7.1:\r\n - Commit: 5ef1ab1cc06c2b7a574bf2df454cd9fcb071ccb2\r\n - Build docs GH Action: https://github.com/huggingface/datasets/actions/runs/3539574442/jobs/5941636792"
] | 2022-11-24T09:42:10 | 2022-11-24T10:10:02 | 2022-11-24T10:10:02 | MEMBER | null | null | null | After the patch releases [2.7.1](https://github.com/huggingface/datasets/releases/tag/2.7.1) and [2.6.2](https://github.com/huggingface/datasets/releases/tag/2.6.2), the online docs were not properly built (the build_documentation workflow was not triggered).
There was a fix by:
- #5291
However, both documentations were built from main branch, instead of their corresponding version branch.
We are rebuilding them. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5292/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5292/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5291 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5291/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5291/comments | https://api.github.com/repos/huggingface/datasets/issues/5291/events | https://github.com/huggingface/datasets/pull/5291 | 1,462,983,472 | PR_kwDODunzps5DoKNC | 5,291 | [build doc] for v2.7.1 & v2.6.2 | {
"login": "mishig25",
"id": 11827707,
"node_id": "MDQ6VXNlcjExODI3NzA3",
"avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mishig25",
"html_url": "https://github.com/mishig25",
"followers_url": "https://api.github.com/users/mishig25/followers",
"following_url": "https://api.github.com/users/mishig25/following{/other_user}",
"gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mishig25/subscriptions",
"organizations_url": "https://api.github.com/users/mishig25/orgs",
"repos_url": "https://api.github.com/users/mishig25/repos",
"events_url": "https://api.github.com/users/mishig25/events{/privacy}",
"received_events_url": "https://api.github.com/users/mishig25/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"doc versions are built https://huggingface.co/docs/datasets/index"
] | 2022-11-24T08:54:47 | 2022-11-24T09:14:10 | 2022-11-24T09:11:15 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5291",
"html_url": "https://github.com/huggingface/datasets/pull/5291",
"diff_url": "https://github.com/huggingface/datasets/pull/5291.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5291.patch",
"merged_at": null
} | Do NOT merge. Using this PR to build docs for [v2.7.1](https://github.com/huggingface/datasets/pull/5291/commits/f4914af20700f611b9331a9e3ba34743bbeff934) & [v2.6.2](https://github.com/huggingface/datasets/pull/5291/commits/025f85300a0874eeb90a20393c62f25ac0accaa0) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5291/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5291/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5290 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5290/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5290/comments | https://api.github.com/repos/huggingface/datasets/issues/5290/events | https://github.com/huggingface/datasets/pull/5290 | 1,462,716,766 | PR_kwDODunzps5DnQsS | 5,290 | fix error where reading breaks when batch missing an assigned column feature | {
"login": "eunseojo",
"id": 12104720,
"node_id": "MDQ6VXNlcjEyMTA0NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/12104720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eunseojo",
"html_url": "https://github.com/eunseojo",
"followers_url": "https://api.github.com/users/eunseojo/followers",
"following_url": "https://api.github.com/users/eunseojo/following{/other_user}",
"gists_url": "https://api.github.com/users/eunseojo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eunseojo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eunseojo/subscriptions",
"organizations_url": "https://api.github.com/users/eunseojo/orgs",
"repos_url": "https://api.github.com/users/eunseojo/repos",
"events_url": "https://api.github.com/users/eunseojo/events{/privacy}",
"received_events_url": "https://api.github.com/users/eunseojo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5290). All of your documentation changes will be reflected on that endpoint."
] | 2022-11-24T03:53:46 | 2022-11-25T03:21:54 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5290",
"html_url": "https://github.com/huggingface/datasets/pull/5290",
"diff_url": "https://github.com/huggingface/datasets/pull/5290.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5290.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5290/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5290/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5289 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5289/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5289/comments | https://api.github.com/repos/huggingface/datasets/issues/5289/events | https://github.com/huggingface/datasets/pull/5289 | 1,462,543,139 | PR_kwDODunzps5Dmrk9 | 5,289 | Added support for JXL images. | {
"login": "alexjc",
"id": 445208,
"node_id": "MDQ6VXNlcjQ0NTIwOA==",
"avatar_url": "https://avatars.githubusercontent.com/u/445208?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alexjc",
"html_url": "https://github.com/alexjc",
"followers_url": "https://api.github.com/users/alexjc/followers",
"following_url": "https://api.github.com/users/alexjc/following{/other_user}",
"gists_url": "https://api.github.com/users/alexjc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alexjc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alexjc/subscriptions",
"organizations_url": "https://api.github.com/users/alexjc/orgs",
"repos_url": "https://api.github.com/users/alexjc/repos",
"events_url": "https://api.github.com/users/alexjc/events{/privacy}",
"received_events_url": "https://api.github.com/users/alexjc/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"I'm fine with the addition of jxl in the list of known image extensions, this way users that have the plugin can work with their JXL datasets. WDYT @mariosasko ?",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5289). All of your documentation changes will be reflected on that endpoint.",
"I think we should wait for official support from Pillow. Plus, the linked plugin doesn't support `Image.save`, which is one of the requirements for a format to be included in `IMAGE_EXTENSIONS`.\r\n\r\n@alexjc In the meantime, one option is to add these lines to the card:\r\n```python\r\nimport importlib\r\nimport datasets\r\n\r\nif \".jxl\" not in datasets.packaged_modules.imagefolder.IMAGE_EXTENSIONS:\r\n datasets.packaged_modules.imagefolder.IMAGE_EXTENSIONS.append(\".jxl\")\r\n\r\nif \"jxl\" not in datasets.packaged_modules._EXTENSION_TO_MODULE:\r\n datasets.packaged_modules._EXTENSION_TO_MODULE[\"jxl\"] = (\"imagefolder\", {})\r\n\r\nimportlib.reload(datasets.load)\r\nds = datasets.load_dataset(\"texturedesign/td01_natural-ground-textures\")\r\n```\r\nAnd you can add a note to the card that this dataset requires the \"jxlpy\" package to work. \r\n\r\nIn this case, you can also disable the viewer to avoid the discrepancy between the data displayed in the preview and the loaded data.\r\n\r\nAnother option is to define the loading script and add `jxlpy` to the list of dependencies [here](https://github.com/huggingface/datasets-server/blob/3012da62054a025467616abc14b0b46e1f11ea13/workers/first_rows/pyproject.toml#L8) to enable the viewer. This option requires more work, so let us know if you need help.",
"Thank you both for your thoughtful replies!\r\n\r\nOne questions and and update:\r\n* The jxlpy plugin does support saving, in the `_save` function of the JXLImagePlugin file. Did it not work? I'm working on the upgrade to the latest JXL, so it'd be good to know if it failed so I can fix it.\r\n* I wrote to the Pillow maintainer and the preferred solution would be to keep JXL as a separate plugin because they're a small team don't have the resources to maintain more code.\r\n\r\nWith that in mind, let me share the minimal set of features I'd need for this to work within the `datasets` library:\r\n1. Using `load_dataset()` with the HuggingFace dataset name correctly downloads the JXL files so they are available locally. Even if the `file_name` field is left intact and not loaded as a PIL image, this is the first step.\r\n2. With minimal monkey-patching, having the `load_dataset` correctly expand `file_name` into PIL `image` fields if JXL support is available.\r\n\r\nIf both of these work, then I can use HuggingFace's hub and the `datasets` library for an MVP even if not all features are there. I don't need automatic thumbnails or previews of the dataset on the server.\r\n\r\n\r\nGiven the reply from the Pillow maintainer, what solution can we come up with that works in a more permanent way than waiting for Pillow integration (which may not happen) — assuming users install the `jxlpy` plugin separately?",
"Link to my upgrade for the latest `libjxl`, pending review and merge. I tested load/save via Pillow extensively for this: https://github.com/olokelo/jxlpy/pull/13",
"After more research, here's my latest suggestion:\r\n* Depending on the build of pillow, the source (pip or conda), the platform even, certain formats may or may not be available — despite them being in the list. For example, webp support is not consistently available.\r\n* I'd suggest adding JXL to the list and simply catching the `PIL.UnidentifiedImageError` — printing a useful error message that sends them to a Wiki page to find out what to do.\r\n* On that page would be included instructions how to install support for the format and what to do for the dataset to load correctly on any platform, both with or without conda, etc.\r\n\r\nWhat do you think?",
"> The jxlpy plugin does support saving, in the _save function of the JXLImagePlugin file. Did it not work? I'm working on the upgrade to the latest JXL, so it'd be good to know if it failed so I can fix it.\r\n\r\nMy bad, I was referring to [this](https://github.com/google/brunsli/blob/2dd949e53ed05796eb44a31cc759fbf9e6c53e2f/contrib/py/jxl_library_patches/jxl_pillow.py) version of the plugin.\r\n\r\nI still think this involves too much work:\r\n* would require a new doc page\r\n* unofficial plugins have to be imported explicitly, leading to messier code on our side\r\n* etc.\r\n\r\nFor now, it seems more reasonable to create a loading script (faster than ImageFolder, as ImageFolder has to resolve the image files first) for this particular case and add `jxlpy` to the list of the `datasets-server`'s dependencies. Also, one additional advantage of this approach is that it reports if any of the modules imported in a script is missing, which is handy in your case for the plugin lib. WDYT?",
"OK, let me try it it and I'll report back.\r\n\r\nWill the JXL files (even if unknown format) be automatically downloaded if they are linked from the `.jsonl` file?\r\n\r\n(I had trouble getting that working before this patch.)",
"> Will the JXL files (even if unknown format) be automatically downloaded if they are linked from the .jsonl file?\r\n\r\nNo, they need to be downloaded explicitly.\r\n\r\nFeel free to use 🤗 Hub discussions in your dataset repo to ping us for help (our usernames are the same there)",
"Is it possible to add support for JXL files being downloaded without needing to add server-side rendering support?",
"In the loading script, data files are downloaded with `DownloadManager` (`dl_manager` in `_split_generators`), which doesn't have any requirements regarding the actual type of the downloaded files.\r\n\r\nPS: Let's use the forum or Hub discussions for further questions to avoid pinging other participants"
] | 2022-11-23T23:16:33 | 2022-11-29T18:49:46 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5289",
"html_url": "https://github.com/huggingface/datasets/pull/5289",
"diff_url": "https://github.com/huggingface/datasets/pull/5289.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5289.patch",
"merged_at": null
} | JPEG-XL is the most advanced of the next-generation of image codecs, supporting both lossless and lossy files — with better compression and quality than PNG and JPG respectively. It has reduced the disk sizes and bandwidth required for many of the datasets I use.
Pillow does not yet support JXL, but there's a plugin as a separate Python library that does (`pip install jxlpy`), and I've tested that this change works as expected when the plugin is imported.
Dataset used for testing, you must `git pull` as loading it from Python won't work until `datasets-server` is also changed to support JXL files:
https://huggingface.co/datasets/texturedesign/td01_natural-ground-textures
The case where the plugin is not imported first raises an error:
```
PIL.UnidentifiedImageError: cannot identify image file 'td01/train/set01/01_145523.jxl'
```
In order to enable support for JXL even before pillow supports this, should this exception be handled with a better error message? I'd expect/hope JXL support to follow in one of the pillow quarterly releases in the next 6-9 months. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5289/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5289/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5288 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5288/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5288/comments | https://api.github.com/repos/huggingface/datasets/issues/5288/events | https://github.com/huggingface/datasets/issues/5288 | 1,462,134,067 | I_kwDODunzps5XJmUz | 5,288 | Lossy json serialization - deserialization of dataset info | {
"login": "anuragprat1k",
"id": 57542204,
"node_id": "MDQ6VXNlcjU3NTQyMjA0",
"avatar_url": "https://avatars.githubusercontent.com/u/57542204?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/anuragprat1k",
"html_url": "https://github.com/anuragprat1k",
"followers_url": "https://api.github.com/users/anuragprat1k/followers",
"following_url": "https://api.github.com/users/anuragprat1k/following{/other_user}",
"gists_url": "https://api.github.com/users/anuragprat1k/gists{/gist_id}",
"starred_url": "https://api.github.com/users/anuragprat1k/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/anuragprat1k/subscriptions",
"organizations_url": "https://api.github.com/users/anuragprat1k/orgs",
"repos_url": "https://api.github.com/users/anuragprat1k/repos",
"events_url": "https://api.github.com/users/anuragprat1k/events{/privacy}",
"received_events_url": "https://api.github.com/users/anuragprat1k/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! JSON is a lossy format indeed. If you want to keep the feature types or other metadata I'd encourage you to store them as well. For example you can use `dataset.info.write_to_directory` and `DatasetInfo.from_directory` to store the feature types, split info, description, license etc."
] | 2022-11-23T17:20:15 | 2022-11-25T12:53:51 | null | NONE | null | null | null | ### Describe the bug
Saving a dataset to disk as json (using `to_json`) and then loading it again (using `load_dataset`) results in features whose labels are not type-cast correctly. In the code snippet below, `features.label` should have a label of type `ClassLabel` but has type `Value` instead.
### Steps to reproduce the bug
```
from datasets import load_dataset
def test_serdes_from_json(d):
dataset = load_dataset(d, split="train")
dataset.to_json('_test')
dataset_loaded = load_dataset("json", data_files='_test', split='train')
try:
assert dataset_loaded.info.features == dataset.info.features, "features unequal!"
except Exception as ex:
print(f'{ex}')
print(f'expected {dataset.info.features}, \nactual { dataset_loaded.info.features }')
test_serdes_from_json('rotten_tomatoes')
```
Output
```
features unequal!
expected {'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['neg', 'pos'], id=None)},
actual {'text': Value(dtype='string', id=None), 'label': Value(dtype='int64', id=None)}
```
### Expected behavior
The deserialized `features.label` should have type `ClassLabel`.
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.10.144-127.601.amzn2.x86_64-x86_64-with-glibc2.17
- Python version: 3.7.13
- PyArrow version: 7.0.0
- Pandas version: 1.2.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5288/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5288/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5287 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5287/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5287/comments | https://api.github.com/repos/huggingface/datasets/issues/5287/events | https://github.com/huggingface/datasets/pull/5287 | 1,461,971,889 | PR_kwDODunzps5Dkttf | 5,287 | Fix methods using `IterableDataset.map` that lead to `features=None` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"_The documentation is not available anymore as the PR was closed or merged._",
"Maybe other options are:\r\n* Keep the `info.features` to `None` if those were initially `None`\r\n* Infer the features with pre-fetching just if the `info.features` is `None`\r\n* If the `info.features` are there, make sure that after `map` features is not `None`",
"Hi @lhoestq something that's still not clear to me is: should we infer the features always when applying a `map` if those are initially `None`, or just assume that if the features are initially `None` those should be left that way unless the user specifically sets those (or during iter)?\r\n\r\nIn this PR I'm using `from datasets.iterable_dataset import _infer_features_from_batch` to infer the features when those are `None` using pre-fetch of `self._head()`, but I'm not sure if that's the expected behavior.\r\n\r\nThanks in advance for your help!",
"Also, the PR still has some more work to do, but probably the most relevant thing to fix right now is that the `features` are being set to `None` in the functions `IterableDataset.rename_column`, `IterableDataset.rename_columns`, and `IterableDataset.remove_columns` when the `features` originally had a value. So once that's fixed maybe we can focus on improving the current `map`'s behavior, so as to avoid this from happening also when the user uses `map` directly and not through the functions mentioned above.",
"> Cool thank you ! Resolving the features can be expensive sometimes, so maybe we don't resolve the features and we can just rename/remove columns if the features are known (i.e. if they're not None). What do you think ?\r\n\r\nThanks for the feedback! Makes sense to me 👍🏻 I'll commit the comments now!",
"Already done @lhoestq, feel free to merge whenever you want! Also before merging, can you please link the following issues https://github.com/huggingface/datasets/issues/3888, https://github.com/huggingface/datasets/issues/5245, and https://github.com/huggingface/datasets/issues/5284, so that those are closed upon merge? Thanks!"
] | 2022-11-23T15:33:25 | 2022-11-28T15:43:14 | 2022-11-28T12:53:22 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5287",
"html_url": "https://github.com/huggingface/datasets/pull/5287",
"diff_url": "https://github.com/huggingface/datasets/pull/5287.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5287.patch",
"merged_at": "2022-11-28T12:53:22"
} | As currently `IterableDataset.map` is setting the `info.features` to `None` every time as we don't know the output of the dataset in advance, `IterableDataset` methods such as `rename_column`, `rename_columns`, and `remove_columns`. that internally use `map` lead to the features being `None`.
This PR is related to #3888, #5245, and #5284
## ✅ Current solution
The code in this PR is basically making sure that if the features were there since the beginning and a `rename_column`/`rename_columns` happens, those are kept and the rename is applied to the `Features` too. Also, if the features were not there before applying `rename_column`, `rename_columns` or `remove_columns`, a batch is prefetched and the features are being inferred (that could potentially be part of `IterableDataset.__init__` in case the `info.features` value is `None`).
## 💡 Ideas
Some ideas were proposed in https://github.com/huggingface/datasets/issues/3888, but probably the most consistent solution even though it may take some time is to actually do the type inferencing during the `IterableDataset.__init__` in case the provided `info.features` is `None`, otherwise, we can just use the provided features.
Additionally, as mentioned at https://github.com/huggingface/datasets/issues/3888, we could also include a `features` parameter to the `map` function, but that's probably more tedious.
Also thanks to @lhoestq for sharing some ideas in both https://github.com/huggingface/datasets/issues/3888 and https://github.com/huggingface/datasets/issues/5245 :hugs: | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5287/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5287/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5286 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5286/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5286/comments | https://api.github.com/repos/huggingface/datasets/issues/5286/events | https://github.com/huggingface/datasets/issues/5286 | 1,461,908,087 | I_kwDODunzps5XIvJ3 | 5,286 | FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json | {
"login": "roritol",
"id": 32490135,
"node_id": "MDQ6VXNlcjMyNDkwMTM1",
"avatar_url": "https://avatars.githubusercontent.com/u/32490135?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/roritol",
"html_url": "https://github.com/roritol",
"followers_url": "https://api.github.com/users/roritol/followers",
"following_url": "https://api.github.com/users/roritol/following{/other_user}",
"gists_url": "https://api.github.com/users/roritol/gists{/gist_id}",
"starred_url": "https://api.github.com/users/roritol/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/roritol/subscriptions",
"organizations_url": "https://api.github.com/users/roritol/orgs",
"repos_url": "https://api.github.com/users/roritol/repos",
"events_url": "https://api.github.com/users/roritol/events{/privacy}",
"received_events_url": "https://api.github.com/users/roritol/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I found a solution \r\n\r\nIf you specifically install datasets==1.18 and then run\r\n\r\nimport datasets\r\nwiki = datasets.load_dataset('wikipedia', '20200501.en')\r\nthen this should work (it worked for me.)"
] | 2022-11-23T14:54:15 | 2022-11-25T11:33:14 | 2022-11-25T11:33:14 | NONE | null | null | null | ### Describe the bug
I follow the steps provided on the website [https://huggingface.co/datasets/wikipedia](https://huggingface.co/datasets/wikipedia)
$ pip install apache_beam mwparserfromhell
>>> from datasets import load_dataset
>>> load_dataset("wikipedia", "20220301.en")
however this results in the following error:
raise MissingBeamOptions(
datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')`
If I then prompt the system with:
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
the following error occurs:
raise FileNotFoundError(f"Couldn't find file at {url}")
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
Here is the exact code:
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from datasets import load_dataset
>>> load_dataset('wikipedia', '20220301.en')
Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559...
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 22.2MB/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1879, in _download_and_prepare
raise MissingBeamOptions(
datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/
If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory).
Example of usage:
`load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')`
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559...
Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 18.8MB/s]
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset
builder_instance.download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1909, in _download_and_prepare
super()._download_and_prepare(
File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 891, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/rorytol/.cache/huggingface/modules/datasets_modules/datasets/wikipedia/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559/wikipedia.py", line 945, in _split_generators
downloaded_files = dl_manager.download_and_extract({"info": info_url})
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 447, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 311, in download
downloaded_path_or_paths = map_nested(
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 444, in map_nested
mapped = [
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 445, in <listcomp>
_single_map_nested((function, obj, types, None, True, None))
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested
return function(data_struct)
File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 338, in _download
return cached_path(url_or_filename, download_config=download_config)
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 183, in cached_path
output_path = get_from_cache(
File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 530, in get_from_cache
raise FileNotFoundError(f"Couldn't find file at {url}")
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
### Steps to reproduce the bug
$ pip install apache_beam mwparserfromhell
>>> from datasets import load_dataset
>>> load_dataset("wikipedia", "20220301.en")
>>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')
### Expected behavior
Download the dataset
### Environment info
Running linux on a remote workstation operated through a macbook terminal
Python 3.10.6
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5286/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5286/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5285 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5285/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5285/comments | https://api.github.com/repos/huggingface/datasets/issues/5285/events | https://github.com/huggingface/datasets/pull/5285 | 1,461,521,215 | PR_kwDODunzps5DjLgG | 5,285 | Save file name in embed_storage | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I updated the tests, met le know if it sounds good to you now :)"
] | 2022-11-23T10:55:54 | 2022-11-24T14:11:41 | 2022-11-24T14:08:37 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5285",
"html_url": "https://github.com/huggingface/datasets/pull/5285",
"diff_url": "https://github.com/huggingface/datasets/pull/5285.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5285.patch",
"merged_at": "2022-11-24T14:08:37"
} | Having the file name is useful in case we need to check the extension of the file (e.g. mp3), or in general in case it includes some metadata information (track id, image id etc.)
Related to https://github.com/huggingface/datasets/issues/5276 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5285/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5285/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5284 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5284/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5284/comments | https://api.github.com/repos/huggingface/datasets/issues/5284/events | https://github.com/huggingface/datasets/issues/5284 | 1,461,519,733 | I_kwDODunzps5XHQV1 | 5,284 | Features of IterableDataset set to None by remove column | {
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
},
{
"id": 3287858981,
"node_id": "MDU6TGFiZWwzMjg3ODU4OTgx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/streaming",
"name": "streaming",
"color": "fef2c0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Related to https://github.com/huggingface/datasets/issues/5245",
"#self-assign",
"Thanks @lhoestq and @alvarobartt!\r\n\r\nThis would be extremely helpful to have working for the Whisper fine-tuning event - we're **only** training using streaming mode, so it'll be quite important to have this feature working to make training as easy as possible!\r\n\r\n_c.f._ https://twitter.com/sanchitgandhi99/status/1592188332171493377",
"> Thanks @lhoestq and @alvarobartt!\n> \n> \n> \n> This would be extremely helpful to have working for the Whisper fine-tuning event - we're **only** training using streaming mode, so it'll be quite important to have this feature working to make training as easy as possible!\n> \n> \n> \n> _c.f._ https://twitter.com/sanchitgandhi99/status/1592188332171493377\n\nI'm almost done with at least a temporary fix to `rename_column`, `rename_columns`, and `remove_columns`, just trying to figure out how to extend it to the `map` function itself!\n\nI'll probably open the PR for review either tomorrow or Sunday hopefully! Glad I can help you and HuggingFace 🤗 ",
"Awesome - thank you so much for this PR @alvarobartt! Is much appreciated!",
"@sanchit-gandhi PR is ready and open for review at #5287, but there's still one issue I may need @lhoestq's input :hugs:",
"Let us know @sanchit-gandhi if you need a new release of `datasets` soon with this fix included :)",
"Thanks for the fix guys! We can direct people to install `datasets` from main if that's easier!",
"Hey guys, any update around this? I'm facing the same issue with a streamable dataset. ",
"Hi @asennoussi so this was already fixed and released as part of https://github.com/huggingface/datasets/releases/tag/2.8.0, so you should be able to install it as `pip install datasets==2.8.0` or just to use `pip install datasets --upgrade` to get the latest version, as of now, the https://github.com/huggingface/datasets/releases/tag/2.9.0 released last week! 🤗",
"Still facing the same issue though: \r\n```\r\nfrom datasets import IterableDatasetDict, load_dataset\r\n\r\nraw_datasets = vectorized_datasets = IterableDatasetDict()\r\n\r\n\r\nraw_datasets[\"train\"] = load_dataset(\"asennoussi/private\", split=\"train\", use_auth_token=True, streaming=True)\r\nraw_datasets[\"test\"] = load_dataset(\"asennoussi/private\", split=\"test\", use_auth_token=True, streaming=True)\r\n\r\nprint(\"Original features: \", raw_datasets['train'].features.keys())\r\n\r\n...\r\n\r\ndef prepare_dataset(batch):\r\n\r\n # load and (possibly) resample audio datato 16kHz\r\n audio = batch[\"audio\"]\r\n\r\n # compute log-Mel input features from input audio array \r\n batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\r\n # compute input length of audio sample in seconds\r\n batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\r\n \r\n # optional pre-processing steps\r\n transcription = batch[\"sentence\"]\r\n \r\n # encode target text to label ids\r\n batch[\"labels\"] = processor.tokenizer(transcription).input_ids\r\n batch[\"labels_length\"] = len(batch[\"labels\"])\r\n return batch\r\n...\r\nvectorized_datasets = vectorized_datasets.remove_columns(['input_length', 'labels_length']+list(next(iter(raw_datasets.values())).features))\r\nprint(\"Processed features: \", vectorized_datasets['train'].features)\r\nprint(\"First sample:\", next(iter(vectorized_datasets['train'])))\r\n\r\n```\r\n\r\nOutput: \r\n```\r\nOriginal features: dict_keys(['path', 'audio', 'sentence'])\r\nProcessed features: None\r\n```",
"Hmm weird, could you try to print\r\n\r\n```python\r\nprint(\"Processed features: \", vectorized_datasets['train'].features)\r\n```\r\n\r\nagain after iterating over the `vectorized_datasets`? In the code above, should be last line :)",
"Didn't seem to fix it: \r\n```\r\nOriginal features: dict_keys(['path', 'audio', 'sentence'])\r\nProcessed features: None\r\nProcessed features: None\r\n```",
"Actually the culprit looks to be this one: \r\n`vectorized_datasets = raw_datasets.map(prepare_dataset).with_format(\"torch\")`\r\nWhen I remove this line: `vectorized_datasets = vectorized_datasets.remove_columns(['input_length', 'labels_length']+list(next(iter(raw_datasets.values())).features))`\r\n\r\nI still get \r\n```\r\nProcessed features: None\r\n```",
"The culprit is definitely `.map` \r\nJust validated it. \r\nAny idea please? ",
"> The culprit is definitely `.map` Just validated it. Any idea please?\r\n\r\nYes, indeed `.map` losses the features, because AFAIK pre-fetching the data to infer the features is expensive and not ideal, that's part of this issue https://github.com/huggingface/datasets/issues/3888\r\n\r\nAnyway, now you can pass the `features` as a param to `.map` as follows:\r\n\r\n```python\r\nfrom datasets import Features\r\nvectorized_datasets = raw_datasets.map(\r\n prepare_dataset,\r\n features=Features(\r\n {\"path\": raw_datasets[\"train\"].info.features[\"path\"], \"audio\": raw_datasets[\"train\"].info.features[\"audio\"], \"sentence\": raw_datasets[\"train\"].info.features[\"sentence\"]}\r\n ),\r\n).with_format(\"torch\")\r\n```\r\n\r\nAlso, to let you know, when calling `.remove_columns` over an `IterableDataset`, the `features` are not lost, as well as `.rename_column` and `rename_columns` :)\r\n\r\nMore information about the latter at https://github.com/huggingface/datasets/pull/5287",
"@asennoussi alternatively you can just call `._resolve_features()` from your `IterableDataset` and it will pre-fetch the data to resolve the features, but note that feature-inference is not as accurate as if you manually specify which features and feature-types the `IterableDataset` has, as mentioned in the comment above, the alternative is to provide `features` param to `.map` :hugs:",
"Got it thanks a lot! "
] | 2022-11-23T10:54:59 | 2023-02-02T09:05:51 | 2022-11-28T12:53:24 | CONTRIBUTOR | null | null | null | ### Describe the bug
The `remove_column` method of the IterableDataset sets the dataset features to None.
### Steps to reproduce the bug
```python
from datasets import Audio, load_dataset
# load LS in streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# check original features
print("Original features: ", dataset.features.keys())
# define features to remove: we KEEP audio and text
COLUMNS_TO_REMOVE = ['chapter_id', 'speaker_id', 'file', 'id']
dataset = dataset.remove_columns(COLUMNS_TO_REMOVE)
# check processed features, uh-oh!
print("Processed features: ", dataset.features)
# streaming the first audio sample still works
print("First sample:", next(iter(ds)))
```
**Print Output:**
```
Original features: dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])
Processed features: None
First sample: {'audio': {'path': '2277-149896-0000.flac', 'array': array([ 0.00186157, 0.0005188 , 0.00024414, ..., -0.00097656,
-0.00109863, -0.00146484]), 'sampling_rate': 16000}, 'text': "HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE"}
```
### Expected behavior
The features should be those **not** removed by the `remove_column` method, i.e. audio and text.
### Environment info
- `datasets` version: 2.7.1
- Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.15
- PyArrow version: 9.0.0
- Pandas version: 1.3.5
(Running on Google Colab for a blog post: https://colab.research.google.com/drive/1ySCQREPZEl4msLfxb79pYYOWjUZhkr9y#scrollTo=8pRDGiVmH2ml)
cc @polinaeterna @lhoestq | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5284/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5284/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5283 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5283/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5283/comments | https://api.github.com/repos/huggingface/datasets/issues/5283/events | https://github.com/huggingface/datasets/pull/5283 | 1,460,291,003 | PR_kwDODunzps5De5M1 | 5,283 | Release: 2.6.2 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-22T17:36:24 | 2022-11-22T17:50:12 | 2022-11-22T17:47:02 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5283",
"html_url": "https://github.com/huggingface/datasets/pull/5283",
"diff_url": "https://github.com/huggingface/datasets/pull/5283.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5283.patch",
"merged_at": "2022-11-22T17:47:02"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5283/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5283/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5282 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5282/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5282/comments | https://api.github.com/repos/huggingface/datasets/issues/5282/events | https://github.com/huggingface/datasets/pull/5282 | 1,460,238,928 | PR_kwDODunzps5Det2_ | 5,282 | Release: 2.7.1 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2022-11-22T16:58:54 | 2022-11-22T17:21:28 | 2022-11-22T17:21:27 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5282",
"html_url": "https://github.com/huggingface/datasets/pull/5282",
"diff_url": "https://github.com/huggingface/datasets/pull/5282.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5282.patch",
"merged_at": "2022-11-22T17:21:27"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5282/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5282/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5281 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5281/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5281/comments | https://api.github.com/repos/huggingface/datasets/issues/5281/events | https://github.com/huggingface/datasets/issues/5281 | 1,459,930,271 | I_kwDODunzps5XBMSf | 5,281 | Support cloud storage in load_dataset | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 3761482852,
"node_id": "LA_kwDODunzps7gM6xk",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue",
"name": "good second issue",
"color": "BDE59C",
"default": false,
"description": "Issues a bit more difficult than \"Good First\" issues"
}
] | open | false | null | [] | null | [
"Or for example an archive on GitHub releases! Before I added support for JXL (locally only, PR still pending) I was considering hosting my files on GitHub instead...",
"+1 to this. I would like to use 'audiofolder' with a data_dir that's on S3, for example. I don't want to upload my dataset to the Hub, but I would find all the fingerprinting/caching features useful.",
"Adding to the conversation, Dask also uses `fsspec` for this feature.\r\n\r\n[Dask: How to connect to remote data](https://docs.dask.org/en/stable/how-to/connect-to-remote-data.html)\r\n\r\nHappy to help on this feature :D ",
"+1 to this feature request since I think it also tackles my use-case. I am collaborating with a team, working with a loading script which takes some time to generate the dataset artifacts. It would be very handy to use this as a cloud cache to avoid duplicating the effort. \r\n\r\nCurrently we could use `builder.download_and_prepare(path_to_cloud_storage, storage_options, ...)` to cache the artifacts to cloud storage, but then `builder.as_dataset()` yields `NotImplementedError: Loading a dataset cached in SomeCloudFileSystem is not supported`",
"Makes sense ! If you want to load locally a dataset that you download_and_prepared on a cloud storage, you would use `load_dataset(path_to_cloud_storage)` indeed. It would download the data from the cloud storage, cache them locally, and return a `Dataset`.",
"It seems currently the `cached_path` function handles all URLs by `get_from_cache` that only supports `ftp` and `http(s)` here:\r\nhttps://github.com/huggingface/datasets/blob/b5672a956d5de864e6f5550e493527d962d6ae55/src/datasets/utils/file_utils.py#L181\r\n\r\nI guess one can add another condition that handles `s3://` or `gs://` URLs via `fsspec` here.",
"I could use this functionality, so I put together a PR using @kyamagu's suggestion to use `fsspec` in `datasets.utils.file_utils`\r\n\r\nhttps://github.com/huggingface/datasets/pull/5580",
"Thanks @dwyatte for adding support for fsspec urls\r\n\r\nLet me just reopen this since the original issue is not resolved",
"I'm not yet understanding how to use https://github.com/huggingface/datasets/pull/5580 in order to use `load_dataset(data_files=\"s3://...\")`. Any help/example would be much appreciated :) thanks! ",
"It's still not officially supported x) But you can try to update `request_etag` in `file_utils.py` to use `fsspec_head` instead of `http_head`. It is responsible of getting the ETags of the remote files for caching. This change may do the trick for S3 urls",
"Thank you for your guys help on this and merging in #5580. I manually pulled the changes to my local datasets package (datasets.utils.file_utils.py) since it only seemed to be this file that was changed in the PR and I'm getting the error: \r\nInvalidSchema: No connection adapters were found for 's3://bucket/folder/'. I'm calling load_dataset using the S3 URI. When I use the S3 URL I get HTTPError: 403 Client Error. \r\nAm I not supposed to use the S3 URI? How do I pull in the changes from this merge? I'm running datasets 2.10.1. ",
"The current implementation depends on gcsfs/s3fs being able to authenticate through some other means e.g., environmental variables. For AWS, it looks like you can set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN`\r\n\r\nNote that while testing this just now, I did note a discrepancy between gcsfs and s3fs that we might want to address where gcsfs passes the timeout from `storage_options` [here](https://github.com/huggingface/datasets/blob/3e6269979fc80ae8939294d26298897f0db5b84d/src/datasets/utils/file_utils.py#L333) down into the `aiohttp.ClientSession.request`, but s3fs does not handle this (tries to pass to the `aiobotocore.session.AioSession` constructor raising `TypeError: __init__() got an unexpected keyword argument 'requests_timeout'`).\r\n\r\nIt seems like some work trying to unify kwargs across different fsspec implementations, so if the plan is to pass down `storage_options`, I wonder if we should just let users control the timeout (and other kwargs) using that and if not specified, use the default?",
"> Note that while testing this just now, I did note a discrepancy between gcsfs and s3fs that we might want to address where gcsfs passes the timeout from storage_options [here](https://github.com/huggingface/datasets/blob/3e6269979fc80ae8939294d26298897f0db5b84d/src/datasets/utils/file_utils.py#L333) down into the aiohttp.ClientSession.request, but s3fs does not handle this (tries to pass to the aiobotocore.session.AioSession constructor raising TypeError: __init__() got an unexpected keyword argument 'requests_timeout').\r\n\r\n> It seems like some work trying to unify kwargs across different fsspec implementations, so if the plan is to pass down storage_options, I wonder if we should just let users control the timeout (and other kwargs) and if not specified, use the default?\r\n\r\n@lhoestq here's a small PR for this: https://github.com/huggingface/datasets/pull/5673\r\n\r\n"
] | 2022-11-22T14:00:10 | 2023-05-10T12:20:44 | null | MEMBER | null | null | null | Would be nice to be able to do
```python
load_dataset("s3://...")
```
or even
```python
data_files=["gs://..."]
storage_options = {...}
load_dataset(..., data_files=data_files, storage_options=storage_options)
```
The idea would be to use `fsspec` as in `download_and_prepare` and `save_to_disk`.
This has been requested several times already. Some users want to use their data from private cloud storage to train models
related:
https://github.com/huggingface/datasets/issues/3490
https://github.com/huggingface/datasets/issues/5244
[forum](https://discuss.huggingface.co/t/how-to-use-s3-path-with-load-dataset-with-streaming-true/25739/2) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5281/reactions",
"total_count": 25,
"+1": 15,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 10,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5281/timeline | null | reopened | false |