text
stringlengths
105
19.5k
label
int64
0
8
label_text
stringclasses
9 values
Gough is a cell biologist. She studied cell- and immunobiology, and molecular pathology and toxicology at the University of Leicester, graduating with a BSc in 1993 and an MSc in 1994, respectively. She continued her doctoral studies at the University of Nottingham, earning her PhD in Biomaterials in 1998. Between 1998 and 2002, she furthered her studies at both Nottingham and Imperial College London as a postdoctoral fellow working on novel composites and bioactive glasses for bone repair.
2
Tissue Engineering
Cosmetic implants — often prosthetics — attempt to bring some portion of the body back to an acceptable aesthetic norm. They are used as a follow-up to mastectomy due to breast cancer, for correcting some forms of disfigurement, and modifying aspects of the body (as in buttock augmentation and chin augmentation). Examples include the breast implant, nose prosthesis, ocular prosthesis, and injectable filler.
2
Tissue Engineering
A sensor-based sorting equipment supplier with large installed base in the industries mining, recycling and food. Tomras sensor-based sorting equipment and services for the precious metals and base metals segment are marketed through a cooperation agreement with Outotec from Finland, which brings the extensive comminution, processing and application experience of Outotec together with Tomras sensor-based ore sorting technology and application expertise.
5
Separation Processes
Osazone formation was developed by Emil Fischer, who used the reaction as a test to identify monosaccharides. The formation of a pair of hydrazone functionalities involves both oxidation and condensation reactions. Since the reaction requires a free carbonyl group, only "reducing sugars" participate. Sucrose, which is nonreducing, does not form an osazone.
6
Carbohydrates
** After considering the concept for some time, John Nuckolls publishes the concept of inertial confinement fusion. The laser, introduced the same year, appears to be a suitable "driver". ** The Soviet Union test the Tsar Bomba (50 megatons), the most powerful thermonuclear weapon ever. ** Plasma temperatures of approximately 40 million degrees Celsius and a few billion deuteron-deuteron fusion reactions per discharge were achieved at LANL with the Scylla IV device. ** At an international meeting at the UKs new fusion research centre in Culham, the Soviets release early results showing greatly improved performance in toroidal pinch machines. The announcement is met by scepticism, especially by the UK team whos ZETA was largely identical. Spitzer, chairing the meeting, essentially dismisses it out of hand. ** At the same meeting, odd results from the ZETA machine are published. It will be years before the significance of these results are realized. ** By the end of the meeting, it is clear that most fusion efforts have stalled. All of the major designs, including the stellarator, pinch machines and magnetic mirrors are all losing plasma at rates that are simply too high to be useful in a reactor setting. Less-known designs like the levitron and astron are faring no better. ** The 12-beam "4 pi laser" using ruby as the lasing medium is developed at Lawrence Livermore National Laboratory (LLNL) includes a gas-filled target chamber of about 20 centimeters in diameter. ** Demonstration of Farnsworth-Hirsch Fusor appeared to generate neutrons in a nuclear reaction. ** Hans Bethe wins the 1967 Nobel Prize in physics for his publication on how fusion powers the stars in work of 1939. ** Robert L. Hirsch is hired by Amasa Bishop of the Atomic Energy Commission as staff physicist. Hirsch would eventually end up running the fusion program during the 1970s. ** Further results from the T-3 tokamak, similar to the toroidal pinch machine mentioned in 1965, claims temperatures to be over an order of magnitude higher than any other device. The Western scientists remain highly sceptical. ** The Soviets invite a UK team from ZETA to perform independent measurements on T-3. ** The UK team, nicknamed "The Culham Five", confirm the Soviet results early in the year. They publish their results in Octobers edition of Nature'. This leads to a "veritable stampede" of tokamak construction around the world. ** After learning of the Culham Five's results in August, a furious debate breaks out in the US establishment over whether or not to build a tokamak. After initially pooh-poohing the concept, the Princeton group eventually decides to convert their stellarator to a tokamak.
3
Nuclear Fusion
The photochemical mechanisms that give rise to the ozone layer were discovered by the British physicist Sydney Chapman in 1930. Ozone in the Earth's stratosphere is created by ultraviolet light striking ordinary oxygen molecules containing two oxygen atoms (O), splitting them into individual oxygen atoms (atomic oxygen); the atomic oxygen then combines with unbroken O to create ozone, O. The ozone molecule is unstable (although, in the stratosphere, long-lived) and when ultraviolet light hits ozone it splits into a molecule of O and an individual atom of oxygen, a continuing process called the ozone-oxygen cycle. Chemically, this can be described as: About 90 percent of the ozone in the atmosphere is contained in the stratosphere. Ozone concentrations are greatest between about , where they range from about 2 to 8 parts per million. If all of the ozone were compressed to the pressure of the air at sea level, it would be only thick.
8
Ultraviolet Radiation
Brighteners are commonly added to laundry detergents to make the clothes appear cleaner. Normally cleaned laundry appears yellowish, which consumers do not like. Optical brighteners have replaced bluing which was formerly used to produce the same effect. Brighteners are used in many papers, especially high brightness papers, resulting in their strongly fluorescent appearance under UV illumination. Paper brightness is typically measured at 457 nm, well within the fluorescent activity range of brighteners. Paper used for banknotes does not contain optical brighteners, so a common method for detecting counterfeit notes is to check for fluorescence. Optical brighteners have also found use in cosmetics. One application is to formulas for washing and conditioning grey or blonde hair, where the brightener can not only increase the luminance and sparkle of the hair, but can also correct dull, yellowish discoloration without darkening the hair. Some advanced face and eye powders contain optical brightener microspheres that brighten shadowed or dark areas of the skin, such as "tired eyes". End uses of optical brighteners include: # Detergent whitener (instead of bluing agents) # Paper brightening (internal or in a coating) # Fiber whitening (internal, added to polymer melts) # Textile whitening (external, added to fabric finishes) # Color-correcting or brightening additive in advanced cosmetic formulas (shampoos, conditioners, eye makeup)
0
Luminescence
The plants contain the enzyme myrosinase, which, in the presence of water, cleaves off the glucose group from a glucosinolate. The remaining molecule then quickly converts to an isothiocyanate, a nitrile, or a thiocyanate; these are the active substances that serve as defense for the plant. Glucosinolates are also called mustard oil glycosides. The standard product of the reaction is the isothiocyanate (mustard oil); the other two products mainly occur in the presence of specialised plant proteins that alter the outcome of the reaction. In the chemical reaction illustrated above, the red curved arrows in the left side of figure are simplified compared to reality, as the role of the enzyme myrosinase is not shown. However, the mechanism shown is fundamentally in accordance with the enzyme-catalyzed reaction. In contrast, the reaction illustrated by red curved arrows at the right side of the figure, depicting the rearrangement of atoms resulting in the isothiocyanate, is expected to be non-enzymatic. This type of rearrangement can be named a Lossen rearrangement, or a Lossen-like rearrangement, since this name was first used for the analogous reaction leading to an organic isocyanate (R-N=C=O). To prevent damage to the plant itself, the myrosinase and glucosinolates are stored in separate compartments of the cell or in different cells in the tissue, and come together only or mainly under conditions of physical injury (see Myrosinase).
6
Carbohydrates
* Molecular structures of glycans, glycopolymers and glycoconjugates: primary structure, aglycon information, polymerization degree and class of molecule. Structural scope includes molecules composed of residues (monosaccharides, alditols, amino acids, fatty acids etc.) linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds, in which at least one residue is a monosaccharide or its derivative. * Bibliography associated with structures: imprint data, keywords, abstracts, IDs in bibliographic databases * Biological context of structures: associated taxon, strain, serogroup, host organism, disease information. The covered domains are: prokaryotes, plants, fungi and selected pathogenic unicellular metazoa. The database contains only glycans originating from these domains or obtained by chemical modification of such glycans. * Assigned NMR spectra and experimental conditions. * Glycosyltransferases associated with taxons: gene and enzyme identifiers, full structures, donor and substrates, methods used to prove enzymatic activity, trustworthiness level. * References to other databases * Other data collected from original publications * Conformation maps of disaccharides derived from molecular dynamics simulations.
6
Carbohydrates
The term cryostasis was introduced to name the reversible preservation technology for live biological objects which is based on using clathrate-forming gaseous substances under increased hydrostatic pressure and hypothermic temperatures. Living tissues cooled below the freezing point of water are damaged by the dehydration of the cells as ice is formed between the cells. The mechanism of freezing damage in living biological tissues has been elucidated by Renfret. The vapor pressure of the ice is lower than the vapor pressure of the solute water in the surrounding cells and as heat is removed at the freezing point of the solutions, the ice crystals grow between the cells, extracting water from them. As the ice crystals grow, the volume of the cells shrinks, and the cells are crushed between the ice crystals. Additionally, as the cells shrink, the solutes inside the cells are concentrated in the remaining water, increasing the intracellular ionic strength and interfering with the organization of the proteins and other organized intercellular structures. Eventually, the solute concentration inside the cells reaches the eutectic and freezes. The final state of frozen tissues is pure ice in the former extracellular spaces, and inside the cell membranes a mixture of concentrated cellular components in ice and bound water. In general, this process is not reversible to the point of restoring the tissues to life. Cryostasis utilizes clathrate-forming gases that penetrate and saturate the biological tissues causing clathrate hydrates formation (under specific pressure-temperature conditions) inside the cells and in the extracellular matrix. Clathrate hydrates are a class of solids in which gas molecules occupy "cages" made up of hydrogen-bonded water molecules. These "cages" are unstable when empty, collapsing into conventional ice crystal structure, but they are stabilised by the inclusion of the gas molecule within them. Most low molecular weight gases (including CH, HS, Ar, Kr, and Xe) will form a hydrate under some pressure-temperature conditions. Clathrates formation will prevent the biological tissues from dehydration which will cause irreversible inactivation of intracellular enzymes.
1
Cryobiology
Cryo- is from the Ancient Greek κρύος (krúos, “ice, icy cold, chill, frost”). Uses of the prefix Cryo- include:
1
Cryobiology
Over the years, concerns over population declines of the northern white rhinoceros (Ceratotherium simum cottoni) have increased with the increasing value of their horns to poachers. Specifically, the population has declined nearly seventy percent from 2011 to 2019. Processes like SCNT can help aid in conservation efforts towards the revival of their population. Researchers are looking towards induced pluripotent stem cells (iPSC), as they hold limitless possibilities. With the lack of natural mating occurring within the species due to the limited number of them, this sub-species provides researchers the opportunity for iPSC intervention. Other methods, including artificial insemination with fresh semen (AI), have been used successfully in another sub-species, the Southern White Rhinoceros (Ceratotherium simum simum). Frozen-thawed semen has been tested and has seen some successes, helping solve issues with reproduction of the species as a whole.
1
Cryobiology
The process of light ion acceleration using electrostatic fields and deuterium ions to produce fusion in solid deuterated targets was first demonstrated by Cockcroft and Walton in 1932 (see Cockcroft–Walton generator). That process is used in miniaturized versions of their original accelerator, in the form of small sealed tube neutron generators, for petroleum exploration. The process of pyroelectricity has been known from ancient times. The first use of a pyroelectric field to accelerate deuterons was in a 1997 experiment conducted by Drs. V.D. Dougar Jabon, G.V. Fedorovich, and N.V. Samsonenko. This group was the first to utilize a lithium tantalate () pyroelectric crystal in fusion experiments. The novel idea with the pyroelectric approach to fusion is in its application of the pyroelectric effect to generate accelerating electric fields. This is done by heating the crystal from −34 °C to +7 °C over a period of a few minutes. Nuclear D-D fusion driven by pyroelectric crystals was proposed by Naranjo and Putterman in 2002. It was also discussed by Brownridge and Shafroth in 2004. The possibility of using pyroelectric crystals in a neutron production device (by D-D fusion) was proposed in a conference paper by Geuther and Danon in 2004 and later in a publication discussing electron and ion acceleration by pyroelectric crystals. None of these later authors had prior knowledge of the earlier 1997 experimental work conducted by Dougar Jabon, Fedorovich, and Samsonenko which mistakenly believed that fusion occurred within the crystals. The key ingredient of using a tungsten needle to produce sufficient ion beam current for use with a pyroelectric crystal power supply was first demonstrated in the 2005 Nature paper, although in a broader context tungsten emitter tips have been used as ion sources in other applications for many years. In 2010, it was found that tungsten emitter tips are not necessary to increase the acceleration potential of pyroelectric crystals; the acceleration potential can allow positive ions to reach kinetic energies between 300 and 310 keV.
3
Nuclear Fusion
There are several methods termed natural cycle IVF: * IVF using no drugs for ovarian hyperstimulation, while drugs for ovulation suppression may still be used. * IVF using ovarian hyperstimulation, including gonadotropins, but with a GnRH antagonist protocol so that the cycle initiates from natural mechanisms. * Frozen embryo transfer; IVF using ovarian hyperstimulation, followed by embryo cryopreservation, followed by embryo transfer in a later, natural, cycle. IVF using no drugs for ovarian hyperstimulation was the method for the conception of Louise Brown. This method can be successfully used when people want to avoid taking ovarian stimulating drugs with its associated side-effects. HFEA has estimated the live birth rate to be approximately 1.3% per IVF cycle using no hyperstimulation drugs for women aged between 40 and 42. Mild IVF is a method where a small dose of ovarian stimulating drugs are used for a short duration during a natural menstrual cycle aimed at producing 2–7 eggs and creating healthy embryos. This method appears to be an advance in the field to reduce complications and side-effects for women, and it is aimed at quality, and not quantity of eggs and embryos. One study comparing a mild treatment (mild ovarian stimulation with GnRH antagonist co-treatment combined with single embryo transfer) to a standard treatment (stimulation with a GnRH agonist long-protocol and transfer of two embryos) came to the result that the proportions of cumulative pregnancies that resulted in term live birth after 1 year were 43.4% with mild treatment and 44.7% with standard treatment. Mild IVF can be cheaper than conventional IVF and with a significantly reduced risk of multiple gestation and OHSS.
1
Cryobiology
Using UV light for disinfection of drinking water dates back to 1910 in Marseille, France. The prototype plant was shut down after a short time due to poor reliability. In 1955, UV water treatment systems were applied in Austria and Switzerland; by 1985 about 1,500 plants were employed in Europe. In 1998 it was discovered that protozoa such as cryptosporidium and giardia were more vulnerable to UV light than previously thought; this opened the way to wide-scale use of UV water treatment in North America. By 2001, over 6,000 UV water treatment plants were operating in Europe. Over time, UV costs have declined as researchers develop and use new UV methods to disinfect water and wastewater. Several countries have published regulations and guidance for the use of UV to disinfect drinking water supplies, including the US and the UK.
8
Ultraviolet Radiation
A similar concept is being attempted by TAE Technologies, formerly Tri-Alpha Energy (TAE), based largely on the ideas of Norman Rostoker, a professor at University of California, Irvine. Early publications from the early 1990s show devices using conventional intersecting storage rings and refocussing arrangements, but later documents from 1996 on use a very different system firing fuel ions into a field-reversed configuration (FRC). The FRC is a self-stable arrangement of plasma which geometry looks like a mix of a vortex ring and a thick-walled tube. The magnetic fields keep the particles trapped between the tube walls, circulating rapidly. TAE intends to first produce a stable FRC, and then use accelerators to fire additional fuel ions into it so they become trapped. The ions make up for any radiative losses from the FRC, and inject more magnetic helicity into the FRC to keep its shape. The ions from the accelerators collide to produce fusion. When the concept was first revealed, it garnered several negative reviews in the journals. These issues were explained away and the construction of several small experimental devices followed. , the best-reported performance of the system is approximately 10 away from breakeven. In early 2019, it was announced that the system would instead be developed using conventional D-T fuels and the company changed its name to TAE.
3
Nuclear Fusion
The helium hydride ion is formed during the decay of tritium in the molecule HT or tritium molecule T. Although excited by the recoil from the beta decay, the molecule remains bound together.
4
Acids + Bases
Exposure limits for UV, particularly the germicidal UV-C range, have evolved over time due to scientific research and changing technology. The American Conference of Governmental Industrial Hygienists (ACGIH) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) have set exposure limits to safeguard against both immediate and long-term effects of UV exposure. These limits, also referred to as Threshold Limit Values (TLVs), form the basis for emission limits in product safety standards. The UV-C photobiological spectral band is defined as 100–280 nm, with limits currently applying only from 180 to 280 nm. This reflects concerns about acute damage such as erythema and photokeratitis as well as long-term delayed effects like photocarcinogenesis. However, with the increased safety evidence surrounding UV-C for germicidal applications, the existing ACGIH TLVs were revised in 2022. The TLVs for the 222 nm UV-C wavelength (peak emissions from KrCl excimer lamps), following the 2022 revision, are now 161 mJ/cm for eye exposure and 479 mJ/cm for skin exposure over an eight-hour period. For the 254 nm UV wavelength, the updated exposure limit is now set at 6 mJ/cm for eyes and 10 mJ/cm for skin.
8
Ultraviolet Radiation
NFP is used in the development of a to scale, direct-write nanomanufacturing platform. The platform is capable of constructing complex, highly-functional nanoscale devices from a diverse suite of materials (e.g., nanoparticles, catalysts (increase rate of reaction), biomolecules, and chemical solutions). Demonstrated nanopatterning capabilities include: • Biomolecules (proteins, DNA) for biodetection assays or cell adhesion studies • Functional nanoparticles for drug delivery studies and nanosystems making (fabrication) • Catalysts for carbon nanotube growth in nanodevice fabrication • Thiols for directed self-assembly of nanostructures.
2
Tissue Engineering
Since ethanol boils at a much lower temperature than water, simple distillation can separate ethanol from water by applying heat to the mixture. Historically, a copper vessel was used for this purpose, since copper removes undesirable sulfur-based compounds from the alcohol. However, many modern stills are made of stainless steel pipes with copper linings to prevent erosion of the entire vessel and lower copper levels in the waste product (which in large distilleries is processed to become animal feed). Copper is the preferred material for stills because it yields an overall better-tasting spirit. The taste is improved by the chemical reaction between the copper in the still and the sulfur compounds created by the yeast during fermentation. These unwanted and flavor-changing sulfur compounds are chemically removed from the final product resulting in a smoother, better-tasting drink. All copper stills will require repairs about every eight years due to the precipitation of copper-sulfur compounds. The beverage industry was the first to implement a modern distillation apparatus and led the way in developing equipment standards which are now widely accepted in the chemical industry. There is also an increasing usage of the distillation of gin under glass and PTFE, and even at reduced pressures, to facilitate a fresher product. This is irrelevant to alcohol quality because the process starts with triple distilled grain alcohol, and the distillation is used solely to harvest botanical flavors such as limonene and other terpene like compounds. The ethyl alcohol is relatively unchanged. The simplest standard distillation apparatus is commonly known as a pot still, consisting of a single heated chamber and a vessel to collect purified alcohol. A pot still incorporates only one condensation, whereas other types of distillation equipment have multiple stages which result in higher purification of the more volatile component (alcohol). Pot still distillation gives an incomplete separation, but this can be desirable for the flavor of some distilled beverages. If a purer distillate is desired, a reflux still is the most common solution. Reflux stills incorporate a fractionating column, commonly created by filling copper vessels with glass beads to maximize available surface area. As alcohol boils, condenses, and reboils through the column, the effective number of distillations greatly increases. Vodka and gin and other neutral grain spirits are distilled by this method, then diluted to concentrations appropriate for human consumption. Alcoholic products from home distilleries are common throughout the world but are sometimes in violation of local statutes. The product of illegal stills in the United States is commonly referred to as moonshine and in Ireland, poitín. However, poitín, although made illegal in 1661, has been legal for export in Ireland since 1997. Note that the term moonshine itself is often misused as many believe it to be a specific kind of high-proof alcohol that was distilled from corn, but the term can refer to any illicitly distilled alcohol.
5
Separation Processes
Fellows of Tissue Engineering and Regenerative Medicine (FTERM) recipients are: * Alini, Mauro * Atala, Anthony * Badylak, Stephen * Cancedda, Ranieri * Cao, Yilin * Chatzinikolaidou, Maria * El Haj, Alicia * Fontanilla, Marta * Germain, Lucie * Gomes, Manuela * Griffith, Linda * Guldberg, Robert * Hellman, Kiki * Hilborn, Jöns * Hubbell, Jeffrey * Hutmacher, Dietmar * Khang, Gilson * Kirkpatrick, C. James * Langer, Robert * Lee, Hai-Bang * Lee, Jin Ho * Lewandowska-Szumiel, Malgorzata * Marra, Kacey * Martin, Ivan * McGuigan, Alison * Mikos, Antonios * Mooney, David * Motta, Antonella * Naughton, Gail * Okano, Teruo * Pandit, Abhay * Parenteau, Nancy * Radisic, Milica * Ratner, Buddy * Redl, Heinz * Reis, Rui L. * Richards, R. Geoff * Russell, Alan * Schenke-Layland, Katja * Shoichet, Molly * Smith, David * Tabata, Yasuhiko * Tuan, Rocky * Vacanti, Charles * Vacanti, Joseph * van Osch, Gerjo * Vunjak-Novakovic, Gordana * Wagner, William * Weiss, Anthony S. Emeritus * Johnson, Peter * Williams, David Deceased Fellows *Nerem, Robert
2
Tissue Engineering
Nutritionists often refer to carbohydrates as either simple or complex. However, the exact distinction between these groups can be ambiguous. The term complex carbohydrate was first used in the U.S. Senate Select Committee on Nutrition and Human Needs publication Dietary Goals for the United States (1977) where it was intended to distinguish sugars from other carbohydrates (which were perceived to be nutritionally superior). However, the report put "fruit, vegetables and whole-grains" in the complex carbohydrate column, despite the fact that these may contain sugars as well as polysaccharides. This confusion persists as today some nutritionists use the term complex carbohydrate to refer to any sort of digestible saccharide present in a whole food, where fiber, vitamins and minerals are also found (as opposed to processed carbohydrates, which provide energy but few other nutrients). The standard usage, however, is to classify carbohydrates chemically: simple if they are sugars (monosaccharides and disaccharides) and complex if they are polysaccharides (or oligosaccharides). In any case, the simple vs. complex chemical distinction has little value for determining the nutritional quality of carbohydrates. Some simple carbohydrates (e.g. fructose) raise blood glucose rapidly, while some complex carbohydrates (starches), raise blood sugar slowly. The speed of digestion is determined by a variety of factors including which other nutrients are consumed with the carbohydrate, how the food is prepared, individual differences in metabolism, and the chemistry of the carbohydrate. Carbohydrates are sometimes divided into "available carbohydrates", which are absorbed in the small intestine and "unavailable carbohydrates", which pass to the large intestine, where they are subject to fermentation by the gastrointestinal microbiota. The USDAs Dietary Guidelines for Americans 2010' call for moderate- to high-carbohydrate consumption from a balanced diet that includes six one-ounce servings of grain foods each day, at least half from whole grain sources and the rest are from enriched. The glycemic index (GI) and glycemic load concepts have been developed to characterize food behavior during human digestion. They rank carbohydrate-rich foods based on the rapidity and magnitude of their effect on blood glucose levels. Glycemic index is a measure of how quickly food glucose is absorbed, while glycemic load is a measure of the total absorbable glucose in foods. The insulin index is a similar, more recent classification method that ranks foods based on their effects on blood insulin levels, which are caused by glucose (or starch) and some amino acids in food.
6
Carbohydrates
Gastric organoids recapitulate at least partly the physiology of the stomach. Gastric organoids have been generated directly from pluripotent stem cells through the temporal manipulation of the FGF, WNT, BMP, retinoic acid and EGF signalling pathways in three-dimensional culture conditions. Gastric organoids have also been generated using LGR5 expressing stomach adult stem cells. Gastric organoids have been used as model for the study of cancer along with human disease and development. For example, one study investigated the underlying genetic alterations behind a patients metastatic tumor population, and identified that unlike the patients primary tumor, the metastasis had both alleles of the TGFBR2 gene mutated. To further assess the role of TGFBR2 in the metastasis, the investigators created organoids where TGFBR2 expression is knocked down, through which they were able to demonstrate that reduced TGFBR2 activity leads to invasion and metastasis of cancerous tumors both in vitro and in vivo.
2
Tissue Engineering
Abbreviations: *Ex (nm): Excitation wavelength in nanometers *Em (nm): Emission wavelength in nanometers *MW: Molecular weight *QY: Quantum yield *BR: Brightness: Molar absorption coefficient * quantum yield / 1000 *PS: Photostability: time [sec] to reduce brightness by 50%
0
Luminescence
One example of the powerful biological attributes of lectins is the biochemical warfare agent ricin. The protein ricin is isolated from seeds of the castor oil plant and comprises two protein domains. Abrin from the jequirity pea is similar: * One domain is a lectin that binds cell surface galactosyl residues and enables the protein to enter cells. * The second domain is an N-glycosidase that cleaves nucleobases from ribosomal RNA, resulting in inhibition of protein synthesis and cell death.
6
Carbohydrates
Quenching of the triplet state by O (which has a triplet ground state) as a result of Dexter energy transfer is well known in solutions of phosphorescent heavy-metal complexes and doped polymers. In recent years, phosphorescence porous materials(such as Metal–organic frameworks and Covalent organic frameworks) have shown promising oxygen sensing capabilities, for their non-linear gas-adsorption in ultra-low partial pressures of oxygen.
0
Luminescence
The "upper phase" is formed by the more hydrophobic polyethylene glycol (PEG), which is of lower density than the "lower phase," consisting of the more hydrophilic and denser dextran solution. Although PEG is inherently denser than water, it occupies the upper layer. This is believed to be due to its solvent ordering properties, which excludes excess water, creating a low density water environment. The degree of polymerization of PEG also affects the phase separation and the partitioning of molecules during extraction.
5
Separation Processes
Thermoluminescence dating is used for material where radiocarbon dating is not available, like sediments. Its use is now common in the authentication of old ceramic wares, for which it gives the approximate date of the last firing. An example of this can be seen in [http://www.antiquity.ac.uk/ant/079/ant0790390.htm Rink and Bartoll, 2005]. Thermoluminescence dating was modified for use as a passive sand migration analysis tool by [http://www.jcronline.org/perlserv/?request=get-abstract&doi=10.2112%2F04-0406.1 Keizars, et al., 2008] (Figure 3), demonstrating the direct consequences resulting from the improper replenishment of starving beaches using fine sands, as well as providing a passive method of policing sand replenishment and observing riverine or other sand inputs along shorelines (Figure 4).
0
Luminescence
In the second half of the 20th century, radium was progressively replaced with paint containing promethium-147. Promethium is a low-energy beta-emitter, which, unlike alpha emitters like radium, does not degrade the phosphor lattice, so the luminosity of the material will not degrade so quickly. It also does not emit the penetrating gamma rays which radium does. The half-life of Pm is only 2.62 years, so in a decade the radioactivity of a promethium dial will decline to only 1/16 of its original value, making it safer to dispose of, compared to radium with its half life of 1600 years. This short half-life meant that the luminosity of promethium dials also dropped by half every 2.62 years, giving them a short useful life, which led to promethium's replacement by tritium. Promethium-based paint was used to illuminate Apollo Lunar Module electrical switch tips and painted on control panels of the Lunar Roving Vehicle.
0
Luminescence
Tissue engineering emerged during the 1990s as a potentially powerful option for regenerating tissue and research initiatives were established in various cities in the US and in European countries including the UK, Italy, Germany and Switzerland, and also in Japan. Soon fledgling societies were formed in these countries in order to represent these new sciences, notably the European Tissue Engineering Society (ETES) and, in the US, the Tissue Engineering Society (TES), soon to become the Tissue Engineering Society international (TESi) and the Regenerative Medicine Society (RMS). Because of the overlap between the activities of these societies and the increasing globalization of science and medicine, considerations of a merger between TESI and ETES and RMS were initiated in 2004 and agreement was reached during 2005 about the formation of the consolidated society, the Tissue Engineering and Regenerative Medicine International Society (TERMIS). Election of officers for TERMIS took place in September 2005, and the by-laws were approved by the Board. Rapid progress in the organization of TERMIS took place during late 2005 and 2006. The SYIS, Student and Young Investigator Section was established in January 2006, website and newsletter launched and membership dues procedures put in place.
2
Tissue Engineering
American chemist William Draper Harkins was the first to propose the concept of nuclear fusion in 1915. Then in 1921, Arthur Eddington suggested hydrogen–helium fusion could be the primary source of stellar energy. Quantum tunneling was discovered by Friedrich Hund in 1927, and shortly afterwards Robert Atkinson and Fritz Houtermans used the measured masses of light elements to demonstrate that large amounts of energy could be released by fusing small nuclei. Building on the early experiments in artificial nuclear transmutation by Patrick Blackett, laboratory fusion of hydrogen isotopes was accomplished by Mark Oliphant in 1932. In the remainder of that decade, the theory of the main cycle of nuclear fusion in stars was worked out by Hans Bethe. Research into fusion for military purposes began in the early 1940s as part of the Manhattan Project. Self-sustaining nuclear fusion was first carried out on 1 November 1952, in the Ivy Mike hydrogen (thermonuclear) bomb test. While fusion was achieved in the operation of the hydrogen bomb (H-bomb), the reaction must be controlled and sustained in order for it to be a useful energy source. Research into developing controlled fusion inside fusion reactors has been ongoing since the 1930s, but the technology is still in its developmental phase. The US National Ignition Facility, which uses laser-driven inertial confinement fusion, was designed with a goal of break-even fusion; the first large-scale laser target experiments were performed in June 2009 and ignition experiments began in early 2011. On 13 December 2022, the United States Department of Energy announced that on 5 December 2022, they had successfully accomplished break-even fusion, "delivering 2.05 megajoules (MJ) of energy to the target, resulting in 3.15 MJ of fusion energy output." Prior to this breakthrough, controlled fusion reactions had been unable to produce break-even (self-sustaining) controlled fusion. The two most advanced approaches for it are magnetic confinement (toroid designs) and inertial confinement (laser designs). Workable designs for a toroidal reactor that theoretically will deliver ten times more fusion energy than the amount needed to heat plasma to the required temperatures are in development (see ITER). The ITER facility is expected to finish its construction phase in 2025. It will start commissioning the reactor that same year and initiate plasma experiments in 2025, but is not expected to begin full deuterium–tritium fusion until 2035. Private companies pursuing the commercialization of nuclear fusion received $2.6 billion in private funding in 2021 alone, going to many notable startups including but not limited to Commonwealth Fusion Systems, Helion Energy Inc., General Fusion, TAE Technologies Inc. and Zap Energy Inc.
3
Nuclear Fusion
High incidence of acid assaults have been reported in some African countries, including Nigeria, Uganda, and South Africa. Unlike occurrences in South Asia, acid attacks in these countries show less gender discrimination. In Uganda, 57% of acid assault victims were female and 43% were male. A study focusing on chemical burns in Nigeria revealed a reversal in findings: 60% of the acid attack patients were male while 40% were female. In both nations, younger individuals were more likely to suffer from an acid attack: the average age in the Nigeria study was 20.6 years, while Ugandan analysis shows 59% of survivors were 19–34 years of age. Motivation for acid assault in these African countries is similar to that of Cambodia. Relationship conflicts caused 35% of acid attacks in Uganda in 1985–2011, followed by property conflicts at 8%, and business conflicts at 5%. Disaggregated data was not available in the Nigeria study, but they reported that 71% of acid assaults resulted from an argument with either a jilted lover, family member, or business partner. As with the other nations, researchers believe these statistics to be under-representative of the actual scope and magnitude of acid attacks in African nations. In August 2013, two Jewish women volunteer teachers – Katie Gee and Kirstie Trup from the UK – were injured by an acid attack by men on a moped near Stone Town in Tanzania. A few cases also occurred in Ethiopia and Nigeria.
4
Acids + Bases
These equations were made using five major assumptions, with four of them being common to all the equations: # The bubble remains spherical # The bubble contents obey the ideal gas law # The internal pressure remains uniform throughout the bubble # No evaporation or condensation occurs inside the bubble The fifth assumption, which changes between each formulation, pertains to the thermodynamic behavior of the liquid surrounding the bubble. These assumptions severely limit the models when the pulsations are large and the wall velocities reach the speed of sound.
0
Luminescence
The Keller–Miksis formulation is an equation derived for the large, radial oscillations of a bubble trapped in a sound field. When the frequency of the sound field approaches the natural frequency of the bubble, it will result in large amplitude oscillations. The Keller–Miksis equation takes into account the viscosity, surface tension, incident sound wave, and acoustic radiation coming from the bubble, which was previously unaccounted for in Lauterborns calculations. Lauterborn solved the equation that Plesset, et al. modified from Rayleighs original analysis of large oscillating bubbles. Keller and Miksis obtained the following formula: where is the radius of the bubble, the dots indicate first and second time derivatives, is the density of the liquid, is the speed of sound through the liquid, is the pressure on the liquid side of the bubble's interface, is time, and is the time-delayed driving pressure.
0
Luminescence
This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the effective field, with an additional damping term arising from the coupling of the magnetic system to the environment. The equation can be written in the so-called Gilbert form (or implicit form) as: where γ is the electron gyromagnetic ratio and α the Gilbert damping constant. It can be shown that this is mathematically equivalent to the following Landau-Lifshitz (or explicit) form: Where is the Gilbert Damping constant, characterizing how quickly the damping term takes away energy from the system ( = 0, no damping, permanent precession).
7
Magnetic Ordering
Color By Blue (CBB) was developed in 2003. The Color By Blue process achieves higher luminance and better performance than the previous triple pattern process, with increased contrast, grayscale rendition, and color uniformity across the panel. Color By Blue is based on the physics of photoluminescence. High luminance inorganic blue phosphor is used in combination with specialized color conversion materials, which absorb the blue light and re-emit red or green light, to generate the other colors.
0
Luminescence
A carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where m may or may not be different from n), which does not mean the H has covalent bonds with O (for example with , H has a covalent bond with C but not with O). However, not all carbohydrates conform to this precise stoichiometric definition (e.g., uronic acids, deoxy-sugars such as fucose), nor are all chemicals that do conform to this definition automatically classified as carbohydrates (e.g. formaldehyde and acetic acid). The term is most common in biochemistry, where it is a synonym of saccharide (), a group that includes sugars, starch, and cellulose. The saccharides are divided into four chemical groups: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Monosaccharides and disaccharides, the smallest (lower molecular weight) carbohydrates, are commonly referred to as sugars. While the scientific nomenclature of carbohydrates is complex, the names of the monosaccharides and disaccharides very often end in the suffix -ose, which was originally taken from the word glucose (), and is used for almost all sugars, e.g. fructose (fruit sugar), sucrose (cane or beet sugar), ribose, lactose (milk sugar), etc. Carbohydrates perform numerous roles in living organisms. Polysaccharides serve as an energy store (e.g. starch and glycogen) and as structural components (e.g. cellulose in plants and chitin in arthropods). The 5-carbon monosaccharide ribose is an important component of coenzymes (e.g. ATP, FAD and NAD) and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development. Carbohydrates are central to nutrition and are found in a wide variety of natural and processed foods. Starch is a polysaccharide and is abundant in cereals (wheat, maize, rice), potatoes, and processed food based on cereal flour, such as bread, pizza or pasta. Sugars appear in human diet mainly as table sugar (sucrose, extracted from sugarcane or sugar beets), lactose (abundant in milk), glucose and fructose, both of which occur naturally in honey, many fruits, and some vegetables. Table sugar, milk, or honey are often added to drinks and many prepared foods such as jam, biscuits and cakes. Cellulose, a polysaccharide found in the cell walls of all plants, is one of the main components of insoluble dietary fiber. Although it is not digestible by humans, cellulose and insoluble dietary fiber generally help maintain a healthy digestive system by facilitating bowel movements. Other polysaccharides contained in dietary fiber include resistant starch and inulin, which feed some bacteria in the microbiota of the large intestine, and are metabolized by these bacteria to yield short-chain fatty acids.
6
Carbohydrates
Autologous grafts are used to transfer tissue from one site to another on the same body. The use of autologous grafts prevents transplantation rejection reactions. Grafts used for oral reconstruction are preferably taken from the oral cavity itself (such as gingival and palatal grafts). However, their limited availability and small size leads to the use of either skin transplants or intestinal mucosa to be able to cover bigger defects. Other than tissue shortage, donor site morbidity is a common problem that may occur when using autologous grafts. When tissue is obtained from somewhere other than the oral cavity (such as the intestine or skin) there is a risk of the graft not being able to lose its original donor tissue characteristics. For example, skin grafts are often taken from the radial forearm or lateral upper arm when covering more extensive defects. A positive aspect of using skin grafts is the large availability of skin. However, skin grafts differ from oral mucosa in: consistency, color and keratinization pattern. The transplanted skin graft often continues to grow hair in the oral cavity.
2
Tissue Engineering
Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment. Following the success of the modern hard disk, there is much current interest in future magnetic data storage and using spin waves for things such as magnonic logic and data storage. Similarly, spintronics looks to utilize the inherent spin degree of freedom to complement the already successful charge property of the electron used in contemporary electronics. Modern magnetism is concerned with furthering the understanding of the behaviour of the magnetisation on very small (sub-micrometre) length scales and very fast (sub-nanosecond) timescales and how this can be applied to improving existing or generating new technologies and computing concepts. A magnon torque device was invented and later perfected at the National University of Singapore's Electrical & Computer Engineering department, which is based on such potential uses, with results published on November 29, 2019, in Science. A magnonic crystal is a magnetic metamaterial with alternating magnetic properties. Like conventional metamaterials, their properties arise from geometrical structuring, rather than their bandstructure or composition directly. Small spatial inhomogeneities create an effective macroscopic behaviour, leading to properties not readily found in nature. By alternating parameters such as the relative permeability or saturation magnetisation, there exists the possibility to tailor magnonic bandgaps in the material. By tuning the size of this bandgap, only spin wave modes able to cross the bandgap would be able to propagate through the media, leading to selective propagation of certain spin wave frequencies. See Surface magnon polariton.
7
Magnetic Ordering
In 2017, the University of Maryland simulated an N-Body beam system to determine if recirculating ion-beams could reach fusion conditions. Models showed that the concept was fundamentally limited because it could not reach sufficient densities needed for fusion power.
3
Nuclear Fusion
The release of energy with the fusion of light elements is due to the interplay of two opposing forces: the nuclear force, a manifestation of the strong interaction, which holds protons and neutrons tightly together in the atomic nucleus; and the Coulomb force, which causes positively charged protons in the nucleus to repel each other. Lighter nuclei (nuclei smaller than iron and nickel) are sufficiently small and proton-poor to allow the nuclear force to overcome the Coulomb force. This is because the nucleus is sufficiently small that all nucleons feel the short-range attractive force at least as strongly as they feel the infinite-range Coulomb repulsion. Building up nuclei from lighter nuclei by fusion releases the extra energy from the net attraction of particles. For larger nuclei, however, no energy is released, because the nuclear force is short-range and cannot act across larger nuclei. Fusion powers stars and produces virtually all elements in a process called nucleosynthesis. The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second. The fusion of lighter elements in stars releases energy and the mass that always accompanies it. For example, in the fusion of two hydrogen nuclei to form helium, 0.645% of the mass is carried away in the form of kinetic energy of an alpha particle or other forms of energy, such as electromagnetic radiation. It takes considerable energy to force nuclei to fuse, even those of the lightest element, hydrogen. When accelerated to high enough speeds, nuclei can overcome this electrostatic repulsion and be brought close enough such that the attractive nuclear force is greater than the repulsive Coulomb force. The strong force grows rapidly once the nuclei are close enough, and the fusing nucleons can essentially "fall" into each other and the result is fusion and net energy produced. The fusion of lighter nuclei, which creates a heavier nucleus and often a free neutron or proton, generally releases more energy than it takes to force the nuclei together; this is an exothermic process that can produce self-sustaining reactions. Energy released in most nuclear reactions is much larger than in chemical reactions, because the binding energy that holds a nucleus together is greater than the energy that holds electrons to a nucleus. For example, the ionization energy gained by adding an electron to a hydrogen nucleus is —less than one-millionth of the released in the deuterium–tritium (D–T) reaction shown in the adjacent diagram. Fusion reactions have an energy density many times greater than nuclear fission; the reactions produce far greater energy per unit of mass even though individual fission reactions are generally much more energetic than individual fusion ones, which are themselves millions of times more energetic than chemical reactions. Only direct conversion of mass into energy, such as that caused by the annihilatory collision of matter and antimatter, is more energetic per unit of mass than nuclear fusion. (The complete conversion of one gram of matter would release of energy.)
3
Nuclear Fusion
Agarose is a polysaccharide derived from seaweed used for nanoencapsulation of cells and the cell/agarose suspension can be modified to form microbeads by reducing the temperature during preparation. However, one drawback with the microbeads so obtained is the possibility of cellular protrusion through the polymeric matrix wall after formation of the capsules.
2
Tissue Engineering
In the main isotopes of light elements, such as carbon, nitrogen and oxygen, the most stable combination of neutrons and of protons occurs when the numbers are equal (this continues to element 20, calcium). However, in heavier nuclei, the disruptive energy of protons increases, since they are confined to a tiny volume and repel each other. The energy of the strong force holding the nucleus together also increases, but at a slower rate, as if inside the nucleus, only nucleons close to each other are tightly bound, not ones more widely separated. The net binding energy of a nucleus is that of the nuclear attraction, minus the disruptive energy of the electric force. As nuclei get heavier than helium, their net binding energy per nucleon (deduced from the difference in mass between the nucleus and the sum of masses of component nucleons) grows more and more slowly, reaching its peak at iron. As nucleons are added, the total nuclear binding energy always increases—but the total disruptive energy of electric forces (positive protons repelling other protons) also increases, and past iron, the second increase outweighs the first. Iron-56 (Fe) is the most efficiently bound nucleus meaning that it has the least average mass per nucleon. However, nickel-62 is the most tightly bound nucleus in terms of binding energy per nucleon. (Nickel-62s higher binding energy does not translate to a larger mean mass loss than Fe, because Ni has a slightly higher ratio of neutrons/protons than does iron-56, and the presence of the heavier neutrons increases nickel-62s average mass per nucleon). To reduce the disruptive energy, the weak interaction allows the number of neutrons to exceed that of protons—for instance, the main isotope of iron has 26 protons and 30 neutrons. Isotopes also exist where the number of neutrons differs from the most stable number for that number of nucleons. If changing one proton into a neutron or one neutron into a proton increases the stability (lowering the mass), then this will happen through beta decay, meaning the nuclide will be radioactive. The two methods for this conversion are mediated by the weak force, and involve types of beta decay. In the simplest beta decay, neutrons are converted to protons by emitting a negative electron and an antineutrino. This is always possible outside a nucleus because neutrons are more massive than protons by an equivalent of about 2.5 electrons. In the opposite process, which only happens within a nucleus, and not to free particles, a proton may become a neutron by ejecting a positron and an electron neutrino. This is permitted if enough energy is available between parent and daughter nuclides to do this (the required energy difference is equal to 1.022 MeV, which is the mass of 2 electrons). If the mass difference between parent and daughter is less than this, a proton-rich nucleus may still convert protons to neutrons by the process of electron capture, in which a proton simply electron captures one of the atom's K orbital electrons, emits a neutrino, and becomes a neutron. Among the heaviest nuclei, starting with tellurium nuclei (element 52) containing 104 or more nucleons, electric forces may be so destabilizing that entire chunks of the nucleus may be ejected, usually as alpha particles, which consist of two protons and two neutrons (alpha particles are fast helium nuclei). (Beryllium-8 also decays, very quickly, into two alpha particles.) This type of decay becomes more and more probable as elements rise in atomic weight past 104. The curve of binding energy is a graph that plots the binding energy per nucleon against atomic mass. This curve has its main peak at iron and nickel and then slowly decreases again, and also a narrow isolated peak at helium, which is more stable than other low-mass nuclides. The heaviest nuclei in more than trace quantities in nature, uranium U, are unstable, but having a half-life of 4.5 billion years, close to the age of the Earth, they are still relatively abundant; they (and other nuclei heavier than helium) have formed in stellar evolution events like supernova explosions preceding the formation of the Solar System. The most common isotope of thorium, Th, also undergoes alpha particle emission, and its half-life (time over which half a number of atoms decays) is even longer, by several times. In each of these, radioactive decay produces daughter isotopes that are also unstable, starting a chain of decays that ends in some stable isotope of lead.
3
Nuclear Fusion
Cold fusion researchers (McKubre since 1994, ENEA in 2011) have speculated that a cell that is loaded with a deuterium/palladium ratio lower than 100% (or 1:1) will not produce excess heat. Since most of the negative replications from 1989 to 1990 did not report their ratios, this has been proposed as an explanation for failed reproducibility. This loading ratio is hard to obtain, and some batches of palladium never reach it because the pressure causes cracks in the palladium, allowing the deuterium to escape. Fleischmann and Pons never disclosed the deuterium/palladium ratio achieved in their cells; there are no longer any batches of the palladium used by Fleischmann and Pons (because the supplier now uses a different manufacturing process), and researchers still have problems finding batches of palladium that achieve heat production reliably.
3
Nuclear Fusion
*1.[https://web.archive.org/web/20060118094514/http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5039 Nanotechnology: Molecular Speculations on Global Abundance] *2.[https://www.amazon.com/gp/product/354067215X Functional MRI]
1
Cryobiology
Antiferromagnetic structures were first shown through neutron diffraction of transition metal oxides such as nickel, iron, and manganese oxides. The experiments, performed by Clifford Shull, gave the first results showing that magnetic dipoles could be oriented in an antiferromagnetic structure. Antiferromagnetic materials occur commonly among transition metal compounds, especially oxides. Examples include hematite, metals such as chromium, alloys such as iron manganese (FeMn), and oxides such as nickel oxide (NiO). There are also numerous examples among high nuclearity metal clusters. Organic molecules can also exhibit antiferromagnetic coupling under rare circumstances, as seen in radicals such as 5-dehydro-m-xylylene. Antiferromagnets can couple to ferromagnets, for instance, through a mechanism known as exchange bias, in which the ferromagnetic film is either grown upon the antiferromagnet or annealed in an aligning magnetic field, causing the surface atoms of the ferromagnet to align with the surface atoms of the antiferromagnet. This provides the ability to "pin" the orientation of a ferromagnetic film, which provides one of the main uses in so-called spin valves, which are the basis of magnetic sensors including modern hard disk drive read heads. The temperature at or above which an antiferromagnetic layer loses its ability to "pin" the magnetization direction of an adjacent ferromagnetic layer is called the blocking temperature of that layer and is usually lower than the Néel temperature.
7
Magnetic Ordering
From the 1960s through the 1970s, methods have been developed to extract electrical energy directly from a hot gas (a plasma) in motion within a channel fitted with electromagnets (producing a transverse magnetic field), and electrodes (connected to load resistors). Charge carriers (free electrons and ions) incoming with the flow are then separated by the Lorentz force and an electric potential difference can be retrieved from pairs of connected electrodes. Shock tubes used as pulsed MHD generators were for example able to produce several megawatts of electricity in channels the size of a beverage can.
3
Nuclear Fusion
Another phenomena that exists in animal models is the presence of gradient fields in early development. More specifically, this has been shown in the aquatic amphibian: the newt. These "gradient fields" as they are known in developmental biology, have the ability to form the appropriate tissues that they are designed to form when cells from other parts of the embryo are introduced or transplanted into specific fields. The first reporting of this was in 1934. Originally, the specific mechanism behind this rather bizarre phenomenon was not known, however Hox genes have been shown to be prevalent behind this process. More specifically, a concept now known as polarity has been implemented as one - but not the only one - of the mechanisms that are driving this development. Studies done by Oliver and colleagues in 1988 showed that different concentrations of XIHbox 1 antigen was present along the anterior-posterior mesoderm of various developing animal models. One conclusion that this varied concentration of protein expression is actually causing differentiation amongst various tissues and could be one of the culprits behind these so-called "gradient fields". While the protein products of Hox genes are strongly involved in these fields and differentiation in amphibians and reptiles, there are other causality factors involved. For example, retinoic acid and other growth factors have been shown to play a role in these gradient fields.
2
Tissue Engineering
The expert conference “Sensor-Based Sorting” is addressing new developments and applications in the field of automatic sensor separation techniques for primary and secondary raw materials. The conference provides a platform for plant operators, manufacturers, developers and scientists to exchange know-how and experiences. The congress is hosted by the Department of Processing and Recycling and the Unit for Mineral Processing (AMR) of RWTH Aachen University in cooperation with the GDMB Society of Metallurgists and Miners, Clausthal. Scientific supervisors are Professor Thomas Pretz and Professor Hermann Wotruba.
5
Separation Processes
Elemental crystalline neodymium is paramagnetic at room temperature and becomes an antiferromagnet with incommensurate order upon cooling below 19.9 K. Below this transition temperature it exhibits a complex set of magnetic phases that have long spin relaxation times and spin-glass behavior that does not rely on structural disorder.
7
Magnetic Ordering
Fusion–fission designs essentially replace the lithium blanket with a blanket of fission fuel, either natural uranium ore or even nuclear waste. The fusion neutrons have more than enough energy to cause fission in the U, as well as many of the other elements in the fuel, including some of the transuranic waste elements. The reaction can continue even when all of the U is burned off; the rate is controlled not by the neutrons from the fission events, but the neutrons being supplied by the fusion reactor. Fission occurs naturally because each event gives off more than one neutron capable of producing additional fission events. Fusion, at least in D-T fuel, gives off only a single neutron, and that neutron is not capable of producing more fusion events. When that neutron strikes fissile material in the blanket, one of two reactions may occur. In many cases, the kinetic energy of the neutron will cause one or two neutrons to be struck out of the nucleus without causing fission. These neutrons still have enough energy to cause other fission events. In other cases the neutron will be captured and cause fission, which will release two or three neutrons. This means that every fusion neutron in the fusion–fission design can result in anywhere between two and four neutrons in the fission fuel. This is a key concept in the hybrid concept, known as fission multiplication. For every fusion event, several fission events may occur, each of which gives off much more energy than the original fusion, about 11 times. This greatly increases the total power output of the reactor. This has been suggested as a way to produce practical fusion reactors in spite of the fact that no fusion reactor has yet reached break-even, by multiplying the power output using cheap fuel or waste. However, a number of studies have repeatedly demonstrated that this only becomes practical when the overall reactor is very large, 2 to 3 GWt, which makes it expensive to build. These processes also have the side-effect of breeding Pu or U, which can be removed and used as fuel in conventional fission reactors. This leads to an alternate design where the primary purpose of the fusion–fission reactor is to reprocess waste into new fuel. Although far less economical than chemical reprocessing, this process also burns off some of the nastier elements instead of simply physically separating them out. This also has advantages for non-proliferation, as enrichment and reprocessing technologies are also associated with nuclear weapons production. However, the cost of the nuclear fuel produced is very high, and is unlikely to be able to compete with conventional sources.
3
Nuclear Fusion
The magnetocrystalline anisotropy parameters have a strong dependence on temperature. They generally decrease rapidly as the temperature approaches the Curie temperature, so the crystal becomes effectively isotropic. Some materials also have an isotropic point at which . Magnetite (), a mineral of great importance to rock magnetism and paleomagnetism, has an isotropic point at 130 kelvin. Magnetite also has a phase transition at which the crystal symmetry changes from cubic (above) to monoclinic or possibly triclinic below. The temperature at which this occurs, called the Verwey temperature, is 120 Kelvin.
7
Magnetic Ordering
The alpha process generally occurs in large quantities only if the star is sufficiently massive, ( being the mass of the sun); these stars contract as they age, increasing core temperature and density to high enough levels to enable the alpha process. Requirements increase with atomic mass, especially in later stages -- sometimes referred to as silicon burning -- and thus most commonly occur in supernovae. Type II supernovae mainly synthesize oxygen and the alpha-elements (Ne, Mg, Si, S, Ar, Ca, and Ti) while Type Ia supernovae mainly produce elements of the iron peak (Ti, V, Cr, Mn, Fe, Co, and Ni). Sufficiently massive stars can synthesize elements up to and including the iron peak solely from the hydrogen and helium that initially comprises the star. Typically, the first stage of the alpha process (or alpha-capture) follows from the helium-burning stage of the star once helium becomes depleted; at this point, free capture helium to produce . This process continues after the core finishes the helium burning phase as a shell around the core will continue burning helium and convecting into the core. The second stage (neon burning) starts as helium is freed by the photodisintegration of one atom, allowing another to continue up the alpha ladder. Silicon burning is then later initiated through the photodisintegration of in a similar fashion; after this point, the peak discussed previously is reached. The supernova shock wave produced by stellar collapse provides ideal conditions for these processes to briefly occur. During this terminal heating involving photodisintegration and rearrangement, nuclear particles are converted to their most stable forms during the supernova and subsequent ejection through, in part, alpha processes. Starting at and above, all the product elements are radioactive and will therefore decay into a more stable isotope -- e.g. is formed and decays into .
3
Nuclear Fusion
A good ion source should provide a strong ion beam without consuming much of the gas. For hydrogen isotopes, production of atomic ions is favored over molecular ions, as atomic ions have higher neutron yield on collision. The ions generated in the ion source are then extracted by an electric field into the accelerator region, and accelerated towards the target. The gas consumption is chiefly caused by the pressure difference between the ion generating and ion accelerating spaces that has to be maintained. Ion currents of 10 mA at gas consumptions of 40 cm/hour are achievable. For a sealed neutron tube, the ideal ion source should use low gas pressure, give high ion current with large proportion of atomic ions, have low gas clean-up, use low power, have high reliability and high lifetime, its construction has to be simple and robust and its maintenance requirements have to be low. Gas can be efficiently stored in a replenisher, an electrically heated coil of zirconium wire. Its temperature determines the rate of absorption/desorption of hydrogen by the metal, which regulates the pressure in the enclosure.
3
Nuclear Fusion
* Acellular Dermis. An acellular dermis is made by removing the cells (epidermis and dermal fibroblasts) from split-thickness skin. It has two sides: one side has a basal lamina suitable for the epithelial cells, and the other is suitable for fibroblast infiltration because it has intact vessel channels. It is durable, able to keep its structure and does not trigger immune reactions (non-immunogenic). * Amniotic Membrane. The amniotic membrane, the inner part of the placenta, has a thick basement membrane of collagen type IV and laminin and avascular connective tissue.
2
Tissue Engineering
Hypothermia continues to be a major limitation to swimming or diving in cold water. The reduction in finger dexterity due to pain or numbness decreases general safety and work capacity, which consequently increases the risk of other injuries. Other factors predisposing to immersion hypothermia include dehydration, inadequate rewarming between repetitive dives, starting a dive while wearing cold, wet dry suit undergarments, sweating with work, inadequate thermal insulation, and poor physical conditioning. Heat is lost much more quickly in water than in air. Thus, water temperatures that would be quite reasonable as outdoor air temperatures can lead to hypothermia in survivors, although this is not usually the direct clinical cause of death for those who are not rescued. A water temperature of can lead to death in as little as one hour, and water temperatures near freezing can cause death in as little as 15 minutes. During the sinking of the Titanic, most people who entered the water died in 15–30 minutes. The actual cause of death in cold water is usually the bodily reactions to heat loss and to freezing water, rather than hypothermia (loss of core temperature) itself. For example, plunged into freezing seas, around 20% of victims die within two minutes from cold shock (uncontrolled rapid breathing, and gasping, causing water inhalation, massive increase in blood pressure and cardiac strain leading to cardiac arrest, and panic); another 50% die within 15–30 minutes from cold incapacitation: inability to use or control limbs and hands for swimming or gripping, as the body "protectively" shuts down the peripheral muscles of the limbs to protect its core. Exhaustion and unconsciousness cause drowning, claiming the rest within a similar time.
1
Cryobiology
The ancient Greeks postulated whether parts of the body could be regenerated in the 700s BC. Skin grafting, invented in the late 19th century, can be thought of as the earliest major attempt to recreate bodily tissue to restore structure and function. Advances in transplanting body parts in the 20th century further pushed the theory that body parts could regenerate and grow new cells. These advances led to tissue engineering, and from this field, the study of regenerative medicine expanded and began to take hold. This began with cellular therapy, which led to the stem cell research that is widely being conducted today. The first cell therapies were intended to slow the aging process. This began in the 1930s with Paul Niehans, a Swiss doctor who was known to have treated famous historical figures such as Pope Pius XII, Charlie Chaplin, and king Ibn Saud of Saudi Arabia. Niehans would inject cells of young animals (usually lambs or calves) into his patients in an attempt to rejuvenate them. In 1956, a more sophisticated process was created to treat leukemia by inserting bone marrow from a healthy person into a patient with leukemia. This process worked mostly due to both the donor and receiver in this case being identical twins. Nowadays, bone marrow can be taken from people who are similar enough to the patient who needs the cells to prevent rejection. The term "regenerative medicine" was first used in a 1992 article on hospital administration by Leland Kaiser. Kaiser's paper closes with a series of short paragraphs on future technologies that will impact hospitals. One paragraph had "Regenerative Medicine" as a bold print title and stated, "A new branch of medicine will develop that attempts to change the course of chronic disease and in many instances will regenerate tired and failing organ systems." The term was brought into the popular culture in 1999 by William A. Haseltine when he coined the term during a conference on Lake Como, to describe interventions that restore to normal function that which is damaged by disease, injured by trauma, or worn by time. Haseltine was briefed on the project to isolate human embryonic stem cells and embryonic germ cells at Geron Corporation in collaboration with researchers at the University of Wisconsin–Madison and Johns Hopkins School of Medicine. He recognized that these cells' unique ability to differentiate into all the cell types of the human body (pluripotency) had the potential to develop into a new kind of regenerative therapy. Explaining the new class of therapies that such cells could enable, he used the term "regenerative medicine" in the way that it is used today: "an approach to therapy that ... employs human genes, proteins and cells to re-grow, restore or provide mechanical replacements for tissues that have been injured by trauma, damaged by disease or worn by time" and "offers the prospect of curing diseases that cannot be treated effectively today, including those related to aging". Later, Haseltine would go on to explain that regenerative medicine acknowledges the reality that most people, regardless of which illness they have or which treatment they require, simply want to be restored to normal health. Designed to be applied broadly, the original definition includes cell and stem cell therapies, gene therapy, tissue engineering, genomic medicine, personalized medicine, biomechanical prosthetics, recombinant proteins, and antibody treatments. It also includes more familiar chemical pharmacopeia—in short, any intervention that restores a person to normal health. In addition to functioning as shorthand for a wide range of technologies and treatments, the term “regenerative medicine” is also patient friendly. It solves the problem that confusing or intimidating language discourages patients. The term regenerative medicine is increasingly conflated with research on stem cell therapies. Some academic programs and departments retain the original broader definition while others use it to describe work on stem cell research. From 1995 to 1998 Michael D. West, PhD, organized and managed the research between Geron Corporation and its academic collaborators James Thomson at the University of Wisconsin–Madison and John Gearhart of Johns Hopkins University that led to the first isolation of human embryonic stem and human embryonic germ cells, respectively. In March 2000, Haseltine, Antony Atala, M.D., Michael D. West, Ph.D., and other leading researchers founded E-Biomed: The Journal of Regenerative Medicine. The peer-reviewed journal facilitated discourse around regenerative medicine by publishing innovative research on stem cell therapies, gene therapies, tissue engineering, and biomechanical prosthetics. The Society for Regenerative Medicine, later renamed the Regenerative Medicine and Stem Cell Biology Society, served a similar purpose, creating a community of like-minded experts from around the world. In June 2008, at the Hospital Clínic de Barcelona, Professor Paolo Macchiarini and his team, of the University of Barcelona, performed the first tissue engineered trachea (wind pipe) transplantation. Adult stem cells were extracted from the patients bone marrow, grown into a large population, and matured into cartilage cells, or chondrocytes, using an adaptive method originally devised for treating osteoarthritis. The team then seeded the newly grown chondrocytes, as well as epithelial cells, into a decellularised (free of donor cells) tracheal segment that was donated from a 51-year-old transplant donor who had died of cerebral hemorrhage. After four days of seeding, the graft was used to replace the patients left main bronchus. After one month, a biopsy elicited local bleeding, indicating that the blood vessels had already grown back successfully. In 2009, the SENS Foundation was launched, with its stated aim as "the application of regenerative medicine – defined to include the repair of living cells and extracellular material in situ – to the diseases and disabilities of ageing". In 2012, Professor Paolo Macchiarini and his team improved upon the 2008 implant by transplanting a laboratory-made trachea seeded with the patient's own cells. On September 12, 2014, surgeons at the Institute of Biomedical Research and Innovation Hospital in Kobe, Japan, transplanted a 1.3 by 3.0 millimeter sheet of retinal pigment epithelium cells, which were differentiated from iPS cells through directed differentiation, into an eye of an elderly woman, who suffers from age-related macular degeneration. In 2016, Paolo Macchiarini was fired from Karolinska University in Sweden due to falsified test results and lies. The TV-show Experimenten aired on Swedish Television and detailed all the lies and falsified results.
2
Tissue Engineering
Antifreeze proteins (AFPs) or ice structuring proteins refer to a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival in temperatures below the freezing point of water. AFPs bind to small ice crystals to inhibit the growth and recrystallization of ice that would otherwise be fatal. There is also increasing evidence that AFPs interact with mammalian cell membranes to protect them from cold damage. This work suggests the involvement of AFPs in cold acclimatization.
1
Cryobiology
A key issue for the fusion–fission concept is the number and lifetime of the neutrons in the various processes, the so-called neutron economy. In a pure fusion design, the neutrons are used for breeding tritium in a lithium blanket. Natural lithium consists of about 92% Li and the rest is mostly Li. Li breeding requires neutron energies even higher than those released by fission, around 5 MeV, well within the range of energies provided by fusion. This reaction produces tritium and helium-4, and another slow neutron. Li can react with high or low energy neutrons, including those released by the Li reaction. This means that a single fusion reaction can produce several tritiums, which is a requirement if the reactor is going to make up for natural decay and losses in the fusion processes. When the lithium blanket is replaced, or supplanted, by fission fuel in the hybrid design, neutrons that do react with the fissile material are no longer available for tritium breeding. The new neutrons released from the fission reactions can be used for this purpose, but only in Li. One could process the lithium to increase the amount of Li in the blanket, making up for these losses, but the downside to this process is that the Li reaction only produces one tritium atom. Only the high-energy reaction between the fusion neutron and Li can create more than one tritium, and this is essential for keeping the reactor running. To address this issue, at least some of the fission neutrons must also be used for tritium breeding in Li. Every one that does is no longer available for fission, reducing the reactor output. This requires a very careful balance if one wants the reactor to be able to produce enough tritium to keep itself running, while also producing enough fission events to keep the fission side energy positive. If these cannot be accomplished simultaneously, there is no reason to build a hybrid. Even if this balance can be maintained, it might only occur at a level that is economically infeasible.
3
Nuclear Fusion
GDP-mannose is produced from GTP and mannose-6-phosphate by the enzyme mannose-1-phosphate guanylyltransferase. The degradation of mannans (and many related forms of hemicellulose) has been well studied. The hydrolysis of the main mannan backbone is catalyzed by various enzymes including β-mannosidase, β-glucosidase, and β-mannase. The side chains are degraded by esterases and α-galactosidase. When a long chain of mannan is hydrolyzed into shorter chains, these smaller molecules are known as mannan oligosaccharide (MOS). MOS by definition can be produced from either insoluble galactomannan or soluble glucomannan, although the latter type is more widely marketed. Glucomannan MOS is used as prebiotics in animal husbandry and nutritional supplements due to its bioactivity.
6
Carbohydrates
Mass defect (also called "mass deficit") is the difference between the mass of an object and the sum of the masses of its constituent particles. Discovered by Albert Einstein in 1905, it can be explained using his formula E = mc, which describes the equivalence of energy and mass. The decrease in mass is equal to the energy emitted in the reaction of an atoms creation divided by c'. By this formula, adding energy also increases mass (both weight and inertia), whereas removing energy decreases mass. For example, a helium atom containing four nucleons has a mass about 0.8% less than the total mass of four hydrogen atoms (each containing one nucleon). The helium nucleus has four nucleons bound together, and the binding energy which holds them together is, in effect, the missing 0.8% of mass. If a combination of particles contains extra energy—for instance, in a molecule of the explosive TNT—weighing it reveals some extra mass, compared to its end products after an explosion. (The end products must be weighed after they have been stopped and cooled, however, as the extra mass must escape from the system as heat before its loss can be noticed, in theory.) On the other hand, if one must inject energy to separate a system of particles into its components, then the initial mass is less than that of the components after they are separated. In the latter case, the energy injected is "stored" as potential energy, which shows as the increased mass of the components that store it. This is an example of the fact that energy of all types is seen in systems as mass, since mass and energy are equivalent, and each is a "property" of the other. The latter scenario is the case with nuclei such as helium: to break them up into protons and neutrons, one must inject energy. On the other hand, if a process existed going in the opposite direction, by which hydrogen atoms could be combined to form helium, then energy would be released. The energy can be computed using E = Δmc for each nucleus, where Δm is the difference between the mass of the helium nucleus and the mass of four protons (plus two electrons, absorbed to create the neutrons of helium). For lighter elements, the energy that can be released by assembling them from lighter elements decreases, and energy can be released when they fuse. This is true for nuclei lighter than iron/nickel. For heavier nuclei, more energy is needed to bind them, and that energy may be released by breaking them up into fragments (known as nuclear fission). Nuclear power is generated at present by breaking up uranium nuclei in nuclear power reactors, and capturing the released energy as heat, which is converted to electricity. As a rule, very light elements can fuse comparatively easily, and very heavy elements can break up via fission very easily; elements in the middle are more stable and it is difficult to make them undergo either fusion or fission in an environment such as a laboratory. The reason the trend reverses after iron is the growing positive charge of the nuclei, which tends to force nuclei to break up. It is resisted by the strong nuclear interaction, which holds nucleons together. The electric force may be weaker than the strong nuclear force, but the strong force has a much more limited range: in an iron nucleus, each proton repels the other 25 protons, while the nuclear force only binds close neighbors. So for larger nuclei, the electrostatic forces tend to dominate and the nucleus will tend over time to break up. As nuclei grow bigger still, this disruptive effect becomes steadily more significant. By the time polonium is reached (84 protons), nuclei can no longer accommodate their large positive charge, but emit their excess protons quite rapidly in the process of alpha radioactivity—the emission of helium nuclei, each containing two protons and two neutrons. (Helium nuclei are an especially stable combination.) Because of this process, nuclei with more than 94 protons are not found naturally on Earth (see periodic table). The isotopes beyond uranium (atomic number 92) with the longest half-lives are plutonium-244 (80 million years) and curium-247 (16 million years).
3
Nuclear Fusion
The isothiocyanates formed from glucosinolates are under laboratory research to assess the expression and activation of enzymes that metabolize xenobiotics, such as carcinogens. Observational studies have been conducted to determine if consumption of cruciferous vegetables affects cancer risk in humans, but there is insufficient clinical evidence to indicate that consuming isothiocyanates in cruciferous vegetables is beneficial, according to a 2017 review.
6
Carbohydrates
The helium hydride ion has six relatively stable isotopologues, that differ in the isotopes of the two elements, and hence in the total atomic mass number (A) and the total number of neutrons (N) in the two nuclei: * or (A = 4, N = 1) * or (A = 5, N = 2) * or (A = 6, N = 3; radioactive) * or (A = 5, N = 2) * or (A = 6, N = 3) * or (A = 7, N = 4; radioactive) They all have three protons and two electrons. The first three are generated by radioactive decay of tritium in the molecules HT = , DT = , and = , respectively. The last three can be generated by ionizing the appropriate isotopologue of in the presence of helium-4. The following isotopologues of the helium hydride ion, of the dihydrogen ion , and of the trihydrogen ion have the same total atomic mass number A: * , , , (A = 4) * , , , , (A = 5) * , , , , (A = 6) * , , (A = 7) The masses in each row above are not equal, though, because the binding energies in the nuclei are different.
4
Acids + Bases
A clinical trial in cardiac arrest patients showed that hypothermia improved neurological outcome and reduced mortality. A retrospective study of the use of hypothermia for cardiac arrest patients showed favorable neurological outcome and survival. Osborn waves on electrocardiogram (ECG) are frequent during TTM after cardiac arrest, particularly in patients treated with 33 °C. Osborn waves are not associated with increased risk of ventricular arrhythmia, and may be considered a benign physiological phenomenon, associated with lower mortality in univariable analyses.
1
Cryobiology
Using multi-spectral imaging it is possible to read illegible papyrus, such as the burned papyri of the Villa of the Papyri or of Oxyrhynchus, or the Archimedes palimpsest. The technique involves taking pictures of the illegible document using different filters in the infrared or ultraviolet range, finely tuned to capture certain wavelengths of light. Thus, the optimum spectral portion can be found for distinguishing ink from paper on the papyrus surface. Simple NUV sources can be used to highlight faded iron-based ink on vellum.
8
Ultraviolet Radiation
Selection favors different traits in captive populations than it does in wild populations, so this may result in adaptations that are beneficial in captivity but are deleterious in the wild. This reduces the success of re-introductions, so it is important to manage captive populations in order to reduce adaptations to captivity. Adaptations to captivity can be reduced by minimizing the number of generations in captivity and by maximizing the number of migrants from wild populations. Minimizing selection on captive populations by creating an environment that is similar to their natural environment is another method of reducing adaptations to captivity, but it is important to find a balance between an environment that minimizes adaptation to captivity and an environment that permits adequate reproduction. Adaptations to captivity can also be reduced by managing the captive population as a series of population fragments. In this management strategy, the captive population is split into several sub-populations or fragments which are maintained separately. Smaller populations have lower adaptive potentials, so the population fragments are less likely to accumulate adaptations associated with captivity. The fragments are maintained separately until inbreeding becomes a concern. Immigrants are then exchanged between the fragments to reduce inbreeding, and then the fragments are managed separately again.
1
Cryobiology
For people who are alert and able to swallow, drinking warm (not hot) sweetened liquids can help raise the temperature. General medical consensus advises against alcohol and caffeinated drinks. As most hypothermic people are moderately dehydrated due to cold-induced diuresis, warmed intravenous fluids to a temperature of are often recommended.
1
Cryobiology
Fructose consumption results in the insulin-independent induction of several important hepatic lipogenic enzymes including pyruvate kinase, NADP-dependent malate dehydrogenase, citrate lyase, acetyl CoA carboxylase, fatty acid synthase, as well as pyruvate dehydrogenase. Although not a consistent finding among metabolic feeding studies, diets high in refined fructose have been shown to lead to hypertriglyceridemia in a wide range of populations including individuals with normal glucose metabolism as well as individuals with impaired glucose tolerance, diabetes, hypertriglyceridemia, and hypertension. The hypertriglyceridemic effects observed are a hallmark of increased dietary carbohydrate, and fructose appears to be dependent on a number of factors including the amount of dietary fructose consumed and degree of insulin resistance. ‡ = Mean ± SEM activity in nmol/min per mg protein § = 12 rats/group = Significantly different from control at p < 0.05
6
Carbohydrates
The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product.
2
Tissue Engineering
William Thomson (Lord Kelvin) first discovered ordinary magnetoresistance in 1856. He experimented with pieces of iron and discovered that the resistance increases when the current is in the same direction as the magnetic force and decreases when the current is at 90° to the magnetic force. He then did the same experiment with nickel and found that it was affected in the same way but the magnitude of the effect was greater. This effect is referred to as anisotropic magnetoresistance (AMR). In 2007, Albert Fert and Peter Grünberg were jointly awarded the Nobel Prize for the discovery of giant magnetoresistance.
7
Magnetic Ordering
The journal is abstracted and indexed in: According to the Journal Citation Reports, the journal has a 2020 impact factor of 3.715.
2
Tissue Engineering
Since the U.S. Food and Drug Administration issued a rule in 2001 requiring that virtually all fruit and vegetable juice producers follow HACCP controls, and mandating a 5-log reduction in pathogens, UVGI has seen some use in sterilization of juices such as fresh-pressed.
8
Ultraviolet Radiation
For displaying of a limited palette of colors, there are a few options. In beam penetration tubes, different color phosphors are layered and separated with dielectric material. The acceleration voltage is used to determine the energy of the electrons; lower-energy ones are absorbed in the top layer of the phosphor, while some of the higher-energy ones shoot through and are absorbed in the lower layer. So either the first color or a mixture of the first and second color is shown. With a display with red outer layer and green inner layer, the manipulation of accelerating voltage can produce a continuum of colors from red through orange and yellow to green. Another method is using a mixture of two phosphors with different characteristics. The brightness of one is linearly dependent on electron flux, while the other one's brightness saturates at higher fluxes—the phosphor does not emit any more light regardless of how many more electrons impact it. At low electron flux, both phosphors emit together; at higher fluxes, the luminous contribution of the nonsaturating phosphor prevails, changing the combined color. Such displays can have high resolution, due to absence of two-dimensional structuring of RGB CRT phosphors. Their color palette is, however, very limited. They were used e.g. in some older military radar displays.
0
Luminescence
The filtrate cakes that are thin and fragile are usually the end products of this discharge lie. The materials are capable of changing phases, from solid to liquid, due to instability and disturbance. Two rollers guide the strings back to drum surface and at the same time separation of the filtrate cake occurs as they pass the rollers. Application of the string discharge can be seen at the pharmaceutical and starch industries. String discharge is used if the high solid concentration slurry is used or if the slurry is easy to filter to produce cake formation or if the discharged solid is fibrous, stringy or pulpy or if a longer wear resistance is desired for the separation of the mentioned slurry.
5
Separation Processes
Neuropsychology, in exploring the neural correlates of consciousness, interfaces with neuroscience, although the complexity of the central nervous system is a challenge to its study (that is, its operation resists easy reduction). Context-dependent memory and state-dependent memory show hysteretic aspects of neurocognition.
7
Magnetic Ordering
Nitrosylsulfuric acid is the chemical compound with the formula . It is a colourless solid that is used industrially in the production of caprolactam, and was formerly part of the lead chamber process for producing sulfuric acid. The compound is the mixed anhydride of sulfuric acid and nitrous acid. In organic chemistry, it is used as a reagent for nitrosating, as a diazotizing agent, and as an oxidizing agent.
4
Acids + Bases
Although details have not surfaced, it appears that the University of Utah forced the 23 March 1989 Fleischmann and Pons announcement to establish priority over the discovery and its patents before the joint publication with Jones. The Massachusetts Institute of Technology (MIT) announced on 12 April 1989 that it had applied for its own patents based on theoretical work of one of its researchers, Peter L. Hagelstein, who had been sending papers to journals from 5 to 12 April. An MIT graduate student applied for a patent but was reportedly rejected by the USPTO in part by the citation of the "negative" MIT Plasma Fusion Center's cold fusion experiment of 1989. On 2 December 1993 the University of Utah licensed all its cold fusion patents to ENECO, a new company created to profit from cold fusion discoveries, and in March 1998 it said that it would no longer defend its patents. The U.S. Patent and Trademark Office (USPTO) now rejects patents claiming cold fusion. Esther Kepplinger, the deputy commissioner of patents in 2004, said that this was done using the same argument as with perpetual motion machines: that they do not work. Patent applications are required to show that the invention is "useful", and this utility is dependent on the inventions ability to function. In general USPTO rejections on the sole grounds of the inventions being "inoperative" are rare, since such rejections need to demonstrate "proof of total incapacity", and cases where those rejections are upheld in a Federal Court are even rarer: nevertheless, in 2000, a rejection of a cold fusion patent was appealed in a Federal Court and it was upheld, in part on the grounds that the inventor was unable to establish the utility of the invention. A U.S. patent might still be granted when given a different name to disassociate it from cold fusion, though this strategy has had little success in the US: the same claims that need to be patented can identify it with cold fusion, and most of these patents cannot avoid mentioning Fleischmann and Pons' research due to legal constraints, thus alerting the patent reviewer that it is a cold-fusion-related patent. David Voss said in 1999 that some patents that closely resemble cold fusion processes, and that use materials used in cold fusion, have been granted by the USPTO. The inventor of three such patents had his applications initially rejected when they were reviewed by experts in nuclear science; but then he rewrote the patents to focus more on the electrochemical parts so they would be reviewed instead by experts in electrochemistry, who approved them. When asked about the resemblance to cold fusion, the patent holder said that it used nuclear processes involving "new nuclear physics" unrelated to cold fusion. Melvin Miles was granted in 2004 a patent for a cold fusion device, and in 2007 he described his efforts to remove all instances of "cold fusion" from the patent description to avoid having it rejected outright. At least one patent related to cold fusion has been granted by the European Patent Office. A patent only legally prevents others from using or benefiting from one's invention. However, the general public perceives a patent as a stamp of approval, and a holder of three cold fusion patents said the patents were very valuable and had helped in getting investments.
3
Nuclear Fusion
For higher spins, say spin , replace with coming from the Lie algebra representation of the Lie algebra , of dimension . The XXX Hamiltonian is solvable by Bethe ansatz with Bethe equations
7
Magnetic Ordering
A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. Neutrinos are elementary particles with extremely small rest mass and a neutral electric charge. They only interact with matter via the weak interaction and gravity, making their detection very difficult. This has led to the now-resolved solar neutrino problem. Much is now known about solar neutrinos, but the research in this field is ongoing.
3
Nuclear Fusion
Cold hardening is the physiological and biochemical process by which an organism prepares for cold weather.
1
Cryobiology
Spin waves are observed through four experimental methods: inelastic neutron scattering, inelastic light scattering (Brillouin scattering, Raman scattering and inelastic X-ray scattering), inelastic electron scattering (spin-resolved electron energy loss spectroscopy), and spin-wave resonance (ferromagnetic resonance). * In inelastic neutron scattering the energy loss of a beam of neutrons that excite a magnon is measured, typically as a function of scattering vector (or equivalently momentum transfer), temperature and external magnetic field. Inelastic neutron scattering measurements can determine the dispersion curve for magnons just as they can for phonons. Important inelastic neutron scattering facilities are present at the ISIS neutron source in Oxfordshire, UK, the Institut Laue-Langevin in Grenoble, France, the High Flux Isotope Reactor at Oak Ridge National Laboratory in Tennessee, USA, and at the National Institute of Standards and Technology in Maryland, USA. * Brillouin scattering similarly measures the energy loss of photons (usually at a convenient visible wavelength) reflected from or transmitted through a magnetic material. Brillouin spectroscopy is similar to the more widely known Raman scattering, but probes a lower energy and has a superior energy resolution in order to be able to detect the meV energy of magnons. * Ferromagnetic (or antiferromagnetic) resonance instead measures the absorption of microwaves, incident on a magnetic material, by spin waves, typically as a function of angle, temperature and applied field. Ferromagnetic resonance is a convenient laboratory method for determining the effect of magnetocrystalline anisotropy on the dispersion of spin waves. One group at the Max Planck Institute of Microstructure Physics in Halle, Germany proved that by using spin polarized electron energy loss spectroscopy (SPEELS), very high energy surface magnons can be excited. This technique allows one to probe the dispersion of magnons in the ultrathin ferromagnetic films. The first experiment was performed for a 5 ML Fe film. With momentum resolution, the magnon dispersion was explored for an 8 ML fcc Co film on Cu(001) and an 8 ML hcp Co on W(110), respectively. The maximum magnon energy at the border of the surface Brillouin zone was 240 meV.
7
Magnetic Ordering
In a conventional n-type DSSC, sunlight enters the cell through the transparent SnO:F top contact, striking the dye on the surface of the TiO. Photons striking the dye with enough energy to be absorbed create an excited state of the dye, from which an electron can be "injected" directly into the conduction band of the TiO. From there it moves by diffusion (as a result of an electron concentration gradient) to the clear anode on top. Meanwhile, the dye molecule has lost an electron and the molecule will decompose if another electron is not provided. The dye strips one from iodide in electrolyte below the TiO, oxidizing it into triiodide. This reaction occurs quite quickly compared to the time that it takes for the injected electron to recombine with the oxidized dye molecule, preventing this recombination reaction that would effectively short-circuit the solar cell. The triiodide then recovers its missing electron by mechanically diffusing to the bottom of the cell, where the counter electrode re-introduces the electrons after flowing through the external circuit.
8
Ultraviolet Radiation
Ultraviolet sterilizers are often used to help control unwanted microorganisms in aquaria and ponds. UV irradiation ensures that pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Aquarium and pond sterilizers are typically small, with fittings for tubing that allows the water to flow through the sterilizer on its way from a separate external filter or water pump. Within the sterilizer, water flows as close as possible to the ultraviolet light source. Water pre-filtration is critical as water turbidity lowers UV-C penetration. Many of the better UV sterilizers have long dwell times and limit the space between the UV-C source and the inside wall of the UV sterilizer device.
8
Ultraviolet Radiation
Scaffold materials are designed to enhance tissue formation through control of the local and surrounding environments. Scaffolds are critical in regulating cellular growth and provide a volume in which vascularization and stem cell differentiation can occur. Scaffold geometry significantly affects tissue differentiation through physical growth ques. Predicting tissue formation computationally requires theories that link physical growth ques to cell differentiation. Current models rely on mechano-regulation theory, widely shaped by Prendergast et al. for predicting cell growth. Thus a quantitative analysis of geometry and materials commonly used in tissue scaffolds is capable. Such materials include: * Porous ceramic and demineralized bone matrix supports * Coralline cylinders * Biodegradable material such as poly(α-hydroxy esters) * Decellularized tissue matrices * Injectable biomaterials or hydrogels are typically composed of polysaccharides, proteins/peptide mimetics, or synthetic polymers such as (poly(ethylene glycol)). * Peptide amphiphile (PA) systems are self assembling and can form solid bioactive scaffolds after injection within the body. * Inert systems have been proven to be adequate for tissue formation. Cartilage formation has occurred by injecting an inert agarose gel beneath the periosteum in a rabbit model, vascularization was restricted. * fibrin * Sponges made from collagen
2
Tissue Engineering
Steinert provides sorting technologies for recycling and mining industries using a variety of sensors, like X-ray, inductive, NIR and color optical sensors and 3D laser camera, which can be combined for sorting a variety of materials. NIR technology is used in the recycling field.
5
Separation Processes
In 1935, Linus Pauling noted that the hydrogen atoms in water ice would be expected to remain disordered even at absolute zero. That is, even upon cooling to zero temperature, water ice is expected to have residual entropy, i.e., intrinsic randomness. This is due to the fact that the hexagonal crystalline structure of common water ice contains oxygen atoms with four neighboring hydrogen atoms. In ice, for each oxygen atom, two of the neighboring hydrogen atoms are near (forming the traditional HO molecule), and two are further away (being the hydrogen atoms of two neighboring water molecules). Pauling noted that the number of configurations conforming to this "two-near, two-far" ice rule grows exponentially with the system size, and, therefore, that the zero-temperature entropy of ice was expected to be extensive. Pauling's findings were confirmed by specific heat measurements, though pure crystals of water ice are particularly hard to create. Spin ices are materials that consist of regular corner-linked tetrahedra of magnetic ions, each of which has a non-zero magnetic moment, often abridged to "spin", which must satisfy in their low-energy state a "two-in, two-out" rule on each tetrahedron making the crystalline structure (see figure 2). This is highly analogous to the two-near, two far rule in water ice (see figure 1). Just as Pauling showed that the ice rule leads to an extensive entropy in water ice, so does the two-in, two-out rule in the spin ice systems – these exhibit the same residual entropy properties as water ice. Be that as it may, depending on the specific spin ice material, it is generally much easier to create large single crystals of spin ice materials than water ice crystals. Additionally, the ease to induce interaction of the magnetic moments with an external magnetic field in a spin ice system makes the spin ices more suitable than water ice for exploring how the residual entropy can be affected by external influences. While Philip Anderson had already noted in 1956 the connection between the problem of the frustrated Ising antiferromagnet on a (pyrochlore) lattice of corner-shared tetrahedra and Pauling's water ice problem, real spin ice materials were only discovered forty years later. The first materials identified as spin ices were the pyrochlores DyTiO (dysprosium titanate), HoTiO (holmium titanate). In addition, compelling evidence has been reported that DySnO (dysprosium stannate) and HoSnO (holmium stannate) are spin ices. These four compounds belong to the family of rare-earth pyrochlore oxides. CdErSe, a spinel in which the magnetic Er ions sit on corner-linked tetrahedra, also displays spin ice behavior. Spin ice materials are characterized by a random disorder in the orientation of the moment of the magnetic ions, even when the material is at very low temperatures. Alternating current (AC) magnetic susceptibility measurements find evidence for a dynamic freezing of the magnetic moments as the temperature is lowered somewhat below the temperature at which the specific heat displays a maximum. The broad maximum in the heat capacity does not correspond to a phase transition. Rather, the temperature at which the maximum occurs, about 1K in DyTiO, signals a rapid change in the number of tetrahedra where the two-in, two-out rule is violated. Tetrahedra where the rule is violated are sites where the aforementioned monopoles reside. Mathematically, spin ice configurations can be described by closed Eulerian paths.
7
Magnetic Ordering
Hubel majored in mechanical engineering at Iowa State University, graduating in 1983. She continued her studies at the Massachusetts Institute of Technology (MIT), where she earned a master's degree in 1989 and completed her Ph.D. in the same year. She worked as a research fellow at Massachusetts General Hospital from 1989 to 1990, and as an instructor at MIT from 1990 to 1993, before moving to the University of Minnesota in 1993 as a research associate in the Department of Laboratory Medicine and Pathology. In 1996 she became an assistant professor in that department, and in 2002 she moved to the Department of Mechanical Engineering as an associate professor. She was promoted to full professor in 2009, and became director of the Biopreservation Core Resource in 2010. With two of her students, she founded a spinoff company, BlueCube Bio (later renamed Evia Bio) to commercialize their technology for preserving cells in cell therapy. She continues to serve as chief scientific officer for Evia Bio. She became president-elect of the Society for Cryobiology for the 2022–2023 term, and will become president in the subsequent term.
1
Cryobiology
There are also current approaches that are manufacturing scaffolds and coupling them with biological cues. Fabricated scaffolds can also be manufactured using either biological, synthetic, or a combination of both materials from scratch to mimic the native heart valve observed using imaging techniques. Since the scaffold is created from raw materials, there is much more flexibility in controlling the scaffold's properties and can be more tailored. Some types of fabricated scaffolds include solid 3-D porous scaffolds that have a large pore network that permits the flow through of cellular debris, allowing further tissue and vascular growth. 3-D porous scaffolds can be manufactured through 3-D printing or various polymers, ranging from polyglycolic acid (PGA) and polylactic acid (PLA) to more natural polymers such as collagen. Fibrous scaffolds have the potential to closely match the structure of ECM through its use of fibers, which have a high growth factor. Techniques to produce fibrous scaffolds include electrospinning, in which a liquid solution of polymers is stretched from an applied high electric voltage to produce thin fibers. Conversely to the 3-D porous scaffolds, fibrous scaffolds have a very small pore size that prevents the pervasion of cells within the scaffold. Hydrogel scaffolds are created by cross-linking hydrophilic polymers through various reaction such as free radical polymerization or conjugate addition reaction. Hydrogels are beneficial because they have a high water content, which allows the ease of nutrients and small materials to pass through.
2
Tissue Engineering
Suspended solids (or SS), is the mass of dry solids retained by a filter of a given porosity related to the volume of the water sample. This includes particles 10 μm and greater. Colloids are particles of a size between 1 nm (0.001 µm) and 1 µm depending on the method of quantification. Because of Brownian motion and electrostatic forces balancing the gravity, they are not likely to settle naturally. The limit sedimentation velocity of a particle is its theoretical descending speed in clear and still water. In settling process theory, a particle will settle only if: # In a vertical ascending flow, the ascending water velocity is lower than the limit sedimentation velocity. # In a longitudinal flow, the ratio of the length of the tank to the height of the tank is higher than the ratio of the water velocity to the limit sedimentation velocity. Removal of suspended particles by sedimentation depends upon the size, zeta potential and specific gravity of those particles. Suspended solids retained on a filter may remain in suspension if their specific gravity is similar to water while very dense particles passing through the filter may settle. Settleable solids are measured as the visible volume accumulated at the bottom of an Imhoff cone after water has settled for one hour. Gravitational theory is employed, alongside the derivation from Newton's second law and the Navier–Stokes equations. Stokes' law explains the relationship between the settling rate and the particle diameter. Under specific conditions, the particle settling rate is directly proportional to the square of particle diameter and inversely proportional to liquid viscosity. The settling velocity, defined as the residence time taken for the particles to settle in the tank, enables the calculation of tank volume. Precise design and operation of a sedimentation tank is of high importance in order to keep the amount of sediment entering the diversion system to a minimum threshold by maintaining the transport system and stream stability to remove the sediment diverted from the system. This is achieved by reducing stream velocity as low as possible for the longest period of time possible. This is feasible by widening the approach channel and lowering its floor to reduce flow velocity thus allowing sediment to settle out of suspension due to gravity. The settling behavior of heavier particulates is also affected by the turbulence.
5
Separation Processes
Glucose, along with fructose, is one of the primary sugars found in wine grapes. In wine, glucose tastes less sweet than fructose. It is a six-carbon sugar molecule derived from the breakdown of sucrose. At the beginning of the ripening stage there is usually more glucose than fructose present in the grape (as much as five times more) but the rapid development of fructose shifts the ratio to where at harvest there are generally equal amounts. Grapes that are overripe, such as some late harvest wines, may have more fructose than glucose. During fermentation, yeast cells break down and convert glucose first. The linking of glucose molecules with aglycone, in a process that creates glycosides, also plays a role in the resulting flavor of the wine due to their relation and interactions with phenolic compounds like anthocyanins and terpenoids.
6
Carbohydrates
In Gaucher's disease, the enzyme glucocerebrosidase is nonfunctional and cannot break down glucocerebroside into glucose and ceramide in the lysosome. Affected macrophages, called Gaucher cells, have a distinct appearance similar to "wrinkled tissue paper" under light microscopy, because the substrates build-up within the lysosome.
6
Carbohydrates
The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.
3
Nuclear Fusion
As the neutron stars undergo accretion, the density in the crust increases, passing the electron capture threshold. As the electron capture threshold ( g cm) is exceeded, it allows for the formation of light nuclei from the process of double electron capture (), forming the light neon nuclei and free neutrons, which further increases the density of the crust. As the density increases, the crystal lattices of neutron-rich nuclei are forced closer together due to gravitational collapse of accreting material, and at a point where the nuclei are pushed so close together that their zero-point oscillations allow them to break through the Coulomb barrier, fusion occurs. While the main site of pycnonuclear fusion within neutron stars is the inner crust, pycnonuclear reactions between light nuclei can occur even in the plasma ocean. Since the core of neutron stars was approximated to be g cm, at such extreme densities, pycnonuclear reactions play a large role as demonstrated by Haensel & Zdunik, who showed that at densities of g cm, they serve as a major heat source. In the fusion processes of the inner crust, the burning of neutron-rich nuclei () releases a lot of heat, allowing pycnonuclear fusion to perform as a major energy source, possibly even acting as an energy basin for gamma-ray bursts. Further studies have established that most magnetars are found at densities of g cm, indicating that pycnonuclear reactions along with subsequent electron capture reactions could serve as major heat sources.
3
Nuclear Fusion
This method, also known as transdifferentiation or direct conversion, consists in overexpressing one or several factors, usually transcription factors, introduced in the cells. The starting material can be either pluripotent stem cells (PSCs), or either differentiated cell type such as fibroblasts. The principle was first demonstrated in 1987 with the myogenic factors MyoD. A drawback of this approach is the introduction of foreign nucleic acid in the cells and the forced expression of transcription factors which effects are not fully understood.
2
Tissue Engineering
Parkinsons disease is associated with aggregation of α-synuclein. As O-GlcNAc modification of α-synuclein has been found to inhibit its aggregation, elevating α-synuclein O-GlcNAc is being explored as a therapeutic strategy to treat Parkinsons disease.
6
Carbohydrates
Carbon nanotubes are meant to potentially solve the typical tradeoff between the permeability and the selectivity of RO membranes. CNTs present many ideal characteristics including: mechanical strength, electron affinity, and also exhibiting flexibility during modification. By restructuring carbon nanotubes and coating or impregnating them with other chemical compounds, scientists can manufacture these membranes to have all of the most desirable traits. The hope with CNT membranes is to find a combination of high water permeability while also decreasing the amount of neutral solutes taken out of the water. This would help decrease energy costs and the cost of remineralization after purification through the membrane.
5
Separation Processes
*Protein, peptide, and DNA patterning *Hydrogels *Sol gels *Conductive inks *Lipids *Silanes (liquid phase) written to glass or silicon
2
Tissue Engineering
Somatic tissue can be stored in vitro for short periods of time. This is done in a light and temperature controlled environment that regulates the growth of cells. As an ex situ conservation technique tissue culture is primary used for clonal propagation of vegetative tissue or immature seeds. This allows for the proliferation of clonal plants from a relatively small amount of parent tissue.
1
Cryobiology
A settling chamber where the two phases separate by static decantation. Coalescence plates facilitate the separation of the emulsion into two phases (heavy and light). The two phases then pass to continuous stages by overflowing the light phase and heavy phase weirs. The height of the heavy phase weir can be adjusted in order to position the heavy/light interphase in the settling chamber based on the density of each one of the phases. The settler is a calm pool downstream of the mixer where the liquids are allowed to separate by gravity. The liquids are then removed separately from the end of the mixer.
5
Separation Processes
As of 2015 hypothermia had shown no improvements in neurological outcomes or in mortality in neurosurgery.
1
Cryobiology