text
stringlengths
105
19.5k
label
int64
0
4
label_text
stringclasses
5 values
The degree of inactivation by ultraviolet radiation is directly related to the UV dose applied to the water. The dosage, a product of UV light intensity and exposure time, is usually measured in microjoules per square centimeter, or equivalently as microwatt seconds per square centimeter (μW·s/cm) = 10 mW·s/m = 0.01 W·s/m, the latter might be better, giving two-digit values for the ones in this article-->. Dosages for a 90% kill of most bacteria and viruses range between 2,000 and 8,000 μW·s/cm. Larger parasites such as Cryptosporidium require a lower dose for inactivation. As a result, US EPA has accepted UV disinfection as a method for drinking water plants to obtain Cryptosporidium, Giardia or virus inactivation credits. For example, for a 90% reduction of Cryptosporidium, a minimum dose of 2,500 μW·s/cm is required based on EPA's 2006 guidance manual.
4
Ultraviolet Radiation
Antifreeze proteins (AFPs) or ice structuring proteins refer to a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival in temperatures below the freezing point of water. AFPs bind to small ice crystals to inhibit the growth and recrystallization of ice that would otherwise be fatal. There is also increasing evidence that AFPs interact with mammalian cell membranes to protect them from cold damage. This work suggests the involvement of AFPs in cold acclimatization.
0
Cryobiology
Sublimation is historically used as a generic term to describe a two-step phase transition ― a solid-to-gas transition (sublimation in a more precise definition) followed by a gas-to-solid transition (deposition). (See below)
1
Separation Processes
The plants contain the enzyme myrosinase, which, in the presence of water, cleaves off the glucose group from a glucosinolate. The remaining molecule then quickly converts to an isothiocyanate, a nitrile, or a thiocyanate; these are the active substances that serve as defense for the plant. Glucosinolates are also called mustard oil glycosides. The standard product of the reaction is the isothiocyanate (mustard oil); the other two products mainly occur in the presence of specialised plant proteins that alter the outcome of the reaction. In the chemical reaction illustrated above, the red curved arrows in the left side of figure are simplified compared to reality, as the role of the enzyme myrosinase is not shown. However, the mechanism shown is fundamentally in accordance with the enzyme-catalyzed reaction. In contrast, the reaction illustrated by red curved arrows at the right side of the figure, depicting the rearrangement of atoms resulting in the isothiocyanate, is expected to be non-enzymatic. This type of rearrangement can be named a Lossen rearrangement, or a Lossen-like rearrangement, since this name was first used for the analogous reaction leading to an organic isocyanate (R-N=C=O). To prevent damage to the plant itself, the myrosinase and glucosinolates are stored in separate compartments of the cell or in different cells in the tissue, and come together only or mainly under conditions of physical injury (see Myrosinase).
2
Carbohydrates
When the modeling phase is complete, selected systems are validated using a professional third party to provide oversight and to determine how closely the model is able to predict the reality of system performance. System validation uses non-pathogenic surrogates such as MS 2 phage or Bacillus subtilis to determine the Reduction Equivalent Dose within an envelope of flow and transmittance. To validate effectiveness in drinking water systems, the method described in the EPA UV guidance manual is typically used by US water utilities, whilst Europe has adopted Germany's DVGW 294 standard. For wastewater systems, the NWRI/AwwaRF Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse protocols are typically used, especially in wastewater reuse applications.
4
Ultraviolet Radiation
A still is an apparatus used to distill liquid mixtures by heating to selectively boil and then cooling to condense the vapor. A still uses the same concepts as a basic distillation apparatus, but on a much larger scale. Stills have been used to produce perfume and medicine, water for injection (WFI) for pharmaceutical use, generally to separate and purify different chemicals, and to produce distilled beverages containing ethanol.
1
Separation Processes
Many women of sub-Saharan Africa choose to foster their children to infertile women. IVF enables these infertile women to have their own children, which imposes new ideals to a culture in which fostering children is seen as both natural and culturally important. Many infertile women are able to earn more respect in their society by taking care of the children of other mothers, and this may be lost if they choose to use IVF instead. As IVF is seen as unnatural, it may even hinder their societal position as opposed to making them equal with fertile women. It is also economically advantageous for infertile women to raise foster children as it gives these children greater ability to access resources that are important for their development and also aids the development of their society at large. If IVF becomes more popular without the birth rate decreasing, there could be more large family homes with fewer options to send their newborn children. This could result in an increase of orphaned children and/or a decrease in resources for the children of large families. This would ultimately stifle the childrens and the communitys growth. In the US, the pineapple has emerged as a symbol of IVF users, possibly because some people thought, without scientific evidence, that eating pineapple might slightly increase the success rate for the procedure.
0
Cryobiology
Lung hysteresis is evident when observing the compliance of a lung on inspiration versus expiration. The difference in compliance (Δvolume/Δpressure) is due to the additional energy required to overcome surface tension forces during inspiration to recruit and inflate additional alveoli. The transpulmonary pressure vs Volume curve of inhalation is different from the Pressure vs Volume curve of exhalation, the difference being described as hysteresis. Lung volume at any given pressure during inhalation is less than the lung volume at any given pressure during exhalation.
3
Magnetic Ordering
UV pinning is the process of applying a dose of low intensity ultraviolet (UV) light to a UV curable ink (UV ink). The lights wavelengths must be correctly matched to the inks photochemical properties. As a result, the ink droplets move to a higher viscosity state, but stop short of full cure. This is also referred to as the "gelling" of the ink. UV pinning is typically used in UV ink jet applications (e.g. the printing of labels, the printing of electronics, and the fabrication of 3-D microstructures).
4
Ultraviolet Radiation
Glycation (non-enzymatic glycosylation) is the covalent attachment of a sugar to a protein, lipid or nucleic acid molecule. Typical sugars that participate in glycation are glucose, fructose, and their derivatives. Glycation is the non-enzymatic process responsible for many (e.g. micro and macrovascular) complications in diabetes mellitus and is implicated in some diseases and in aging. Glycation end products are believed to play a causative role in the vascular complications of diabetes mellitus. In contrast with glycation, glycosylation is the enzyme-mediated ATP-dependent attachment of sugars to protein or lipid. Glycosylation occurs at defined sites on the target molecule. It is a common form of post-translational modification of proteins and is required for the functioning of the mature protein.
2
Carbohydrates
Vat level and drum speed are the two basic operating parameters for any rotary vacuum drum filter. These parameters are adjusted dependently to each other to optimize the filtration performance. Valve level determines the proportion filter cycle in the filter. The filter cycle consist of the filter drum rotation, release of cake formation from slurry and the drying period for the cake formation shown in figure 1. By default, operate the vat at its maximum level to maximise the rate of filtration. Reduce vat level if discharged solid is in the form of thin and slimy cake or if the discharged solid is very thick. Decrease in the vat level eventually leads to a decrease in the portion of the drum being submerge under the slurry, more surface exposure for the cake dying surface hence, larger cake formation to dry time ratio. This result in less moisture content of formed solid and lessen the thickness of the form solid. In addition to operating at lower vat level, the flow rate per drum revolution decreases and ultimately thinner cake formation occurs. In the case of pre coat discharge the filter aid efficiency increases. Drum speed is the driving factor for the filter output and its units is in the form of minutes per drum revolution. At steady operating conditions, adjusting the drum speed gives a proportional relationship with the filter throughput as shown as in figure 2.
1
Separation Processes
* Bethea, R. M. 1978. Air Pollution Control Technology. New York: Van Nostrand Reinhold. * National Asphalt Pavement Association. 1978. The Maintenance and Operation of Exhaust Systems in the Hot Mix Batch Plant. 2nd ed. Information Series 52. * Perry, J. H. (Ed.). 1973. Chemical Engineers’ Handbook. 5th ed. New York: McGraw-Hill. * Richards, J. R. 1995. Control of Particulate Emissions (APTI Course 413). U.S. Environmental Protection Agency. * Richards, J. R. 1995. Control of Gaseous Emissions. (APTI Course 415). U.S. Environmental Protection Agency. * Schifftner, K. C. 1979, April. Venturi scrubber operation and maintenance. Paper presented at the U.S. EPA Environmental Research Information Center. Atlanta, GA. * Semrau, K. T. 1977. Practical process design of particulate scrubbers. Chemical Engineering. 84:87-91. * U.S. Environmental Protection Agency. 1982, September. Control Techniques for Particulate Emissions from Stationary Sources. Vol. 1. EPA 450/3-81-005a. * Wechselblatt, P. M. 1975. Wet scrubbers (particulates). In F. L. Cross and H. E. Hesketh (Eds.), Handbook for the Operation and Maintenance of Air Pollution Control Equipment. Westport: Technomic Publishing.
1
Separation Processes
The utilization of UVGI for air disinfection began in earnest in the mid-1930s. William F. Wells demonstrated in 1935 that airborne infectious organisms, specifically aerosolized B. coli exposed to 254 nm UV, could be rapidly inactivated. This built upon earlier theories of infectious droplet nuclei transmission put forth by Carl Flüugge and Wells himself. Prior to this, UV radiation had been studied predominantly in the context of liquid or solid media, rather than airborne microbes. Shortly after Wells' initial experiments, high-intensity UVGI was employed to disinfect a hospital operating room at Duke University in 1936. The method proved a success, reducing postoperative wound infections from 11.62% without the use of UVGI to 0.24% with the use of UVGI. Soon, this approach was extended to other hospitals and infant wards using UVGI "light curtains", designed to prevent respiratory cross-infections, with noticeable success. Adjustments in the application of UVGI saw a shift from "light curtains" to upper-room UVGI, confining germicidal irradiation above human head level. Despite its dependency on good vertical air movement, this approach yielded favorable outcomes in preventing cross-infections. This was exemplified by Wells' successful usage of upper-room UVGI between 1937 and 1941 to curtail the spread of measles in suburban Philadelphia day schools. His study found that 53.6% of susceptibles in schools without UVGI became infected, while only 13.3% of susceptibles in schools with UVGI were infected. Richard L. Riley, initially a student of Wells, continued the study of airborne infection and UVGI throughout the 1950s and 60s, conducting significant experiments in a Veterans Hospital TB ward. Riley successfully demonstrated that UVGI could efficiently inactivate airborne pathogens and prevent the spread of tuberculosis. Despite initial successes, the use of UVGI declined in the second half of the 20th century era due to various factors, including a rise in alternative infection control and prevention methods, inconsistent efficacy results, and concerns regarding its safety and maintenance requirements. However, recent events like a rise in multiple drug-resistant bacteria and the COVID-19 pandemic have renewed interest in UVGI for air disinfection.
4
Ultraviolet Radiation
It is a common observation that when oil and water are poured into the same container, they separate into two phases or layers, because they are immiscible. In general, aqueous (or water-based) solutions, being polar, are immiscible with non-polar organic solvents (cooking oil, chloroform, toluene, hexane etc.) and form a two-phase system. However, in an ABS, both immiscible components are water-based. The formation of the distinct phases is affected by the pH, temperature and ionic strength of the two components, and separation occurs when the amount of a polymer present exceeds a certain limiting concentration (which is determined by the above factors).
1
Separation Processes
A sperm donor will usually be required to enter into a contract with a sperm bank to supply their semen, typically for a period of six to twenty-four months depending on the number of pregnancies which the sperm bank intends to produce from the donor. If a sperm bank has access to world markets e.g. by direct sales, or sales to clinics outside their own jurisdiction, a man may donate for a longer period than two years, as the risk of consanguinity is reduced (although local laws vary widely). Some sperm banks with access to world markets impose their own rules on the number of pregnancies which can be achieved in a given regional area or a state or country, and these sperm banks may permit donors to donate for four or five years, or even longer. The contract may also specify the place and hours for donation, a requirement to notify the sperm bank in the case of acquiring a sexual infection, and the requirement not to have intercourse or to masturbate for a period of usually 2–3 days before making a donation. The contract may also describe the types of treatment for which the donated sperm may be used, such as artificial insemination and IVF, and whether the donors sperm may be used in surrogacy arrangements. It may also stipulate whether the sperm may be used for research or training purposes. In certain cases, a sperm donor may specify the maximum number of offspring or families which may be produced from the donors sperm. Family may be defined as a couple who may each bear children from the same donor. The contract may also require consent if the donor's samples are to be exported. In the United Kingdom, for example, the maximum number of families for which a donor is permitted to bear children is ten, but a sperm bank or fertility center in the UK may export sperm to other fertility centers so that this may be used to produce more pregnancies abroad. Where this happens, consent must be provided by the donor. Faced with a growing demand for donor sperm, sperm banks may try to maximize the use of a donor whilst still reducing the risk of consanguinity. In legislations with a national register of sperm donors or a national regulatory body, a sperm donor may be required to fill in a separate form of consent which will be registered with the regulatory authority. In the United Kingdom this body is the HFEA. A sperm donor generally produces and collects sperm at a sperm bank or clinic by masturbation in a private room or cabin, known as a mens production room (UK), donor cabin' (DK) or a masturbatorium (US). Many of these facilities contain pornography such as videos/DVD, magazines, and/or photographs which may assist the donor in becoming aroused in order to facilitate production of the ejaculate, also known as the "semen sample" but the increasing usage of porn in the U.S. has dulled many men to its effects. Often, using any type of personal lubricant, saliva, oil or anything else to lubricate and stimulate the genitals is prohibited as it can contaminate the semen sample and have negative impacts on the quality and health of sperm. In some circumstances, it may also be possible for semen from donors to be collected during sexual intercourse with the use of a collection condom which results in higher sperm counts.
0
Cryobiology
Indoor tanning is prohibited for under-18s in British Columbia, Alberta, Manitoba, Saskatchewan, Ontario, Quebec, and Prince Edward Island; and for under-19s in New Brunswick, Nova Scotia, Newfoundland and Labrador, and the Northwest Territories. Health Canada recommends against the use of tanning equipment.
4
Ultraviolet Radiation
Sensor-based ore sorting is in comparison to other coarse particle separation technologies relatively cheap. While the costs for the equipment itself are relatively high in capital expenditure and operating costs, the absence of extensive infrastructure in a system results in operating costs that are to be compared to jigging. The specific costs are very much depending on the average particle size of the feed and on the ease of the separation. Coarser particles imply higher capacity and thus less costs. Detailed costing can be conducted after the mini-bulk stage in the technical feasibility evaluation. Prejudice against waste rejection with sensor-based sorting widely spread, that the loss of valuables, thus the recovery penalty of this process, supersedes the potential downstream cost savings and is therefore economically not viable. It must be noted that for waste rejection the aim for the separation with sensor-based ore sorting must be put onto maximum recovery, which means that only low grade or barren waste is rejected because the financial feasibility is very much sensitive to that factor. Nevertheless, through the rejection of waste before comminution and concentration steps, recovery can be often increased in the downstream process, meaning that the overall recovery is equal or even higher than the one in the base case, meaning that instead of losing product, additional product can be produced, which adds the additional revenue to the cost savings on the positive side in the cash flow. If the rejected material is replaced with additional higher grade material, the main economic benefit unfolds through the additional production. It implies, that in conjunction with sensor-based ore sorting, the capacity of the crushing station is increased, to allow for the additional mass-flow that is subsequently taken out by the sensor-based ore sorters as waste.
1
Separation Processes
Carnobacterium pleistocenium is a recently discovered bacterium from the arctic part of Alaska. It was found in permafrost, seemingly frozen there for 32,000 years. Melting the ice, however, brought these extremophiles back to life. This is the first case of an organism "coming back to life" from ancient ice. These bacterial cells were discovered in a tunnel dug by the Army Corps of Engineers in the 1960s to allow scientists to study the permafrost in preparation for the construction of the Trans-Alaska pipeline system. The discovery of this bacterium is of particular interest for NASA, for it may be possible for such life to exist in the permafrost of Mars or on the surface of Europa. It is also of interest for scientists investigating the potential for cryogenically freezing life forms to reduce the transportation costs (in terms of life support systems) that would be associated with long-duration space travel.
0
Cryobiology
Electrofiltration is a method that combines membrane filtration and electrophoresis in a dead-end process. Electrofiltration is regarded as an appropriate technique for concentration and fractionation of biopolymers. The film formation on the filter membrane which hinders filtration can be minimized or completely avoided by the application of electric field, improving filtration’s performance and increasing selectivity in case of fractionation. This approach reduces significantly the expenses for downstream processing in bioprocesses.
1
Separation Processes
The equilibrium shapes of bubbles expanding and contracting on capillaries (blunt needles) can exhibit hysteresis depending on the relative magnitude of the maximum capillary pressure to ambient pressure, and the relative magnitude of the bubble volume at the maximum capillary pressure to the dead volume in the system. The bubble shape hysteresis is a consequence of gas compressibility, which causes the bubbles to behave differently across expansion and contraction. During expansion, bubbles undergo large non equilibrium jumps in volume, while during contraction the bubbles are more stable and undergo a relatively smaller jump in volume resulting in an asymmetry across expansion and contraction. The bubble shape hysteresis is qualitatively similar to the adsorption hysteresis, and as in the contact angle hysteresis, the interfacial properties play an important role in bubble shape hysteresis. The existence of the bubble shape hysteresis has important consequences in interfacial rheology experiments involving bubbles. As a result of the hysteresis, not all sizes of the bubbles can be formed on a capillary. Further the gas compressibility causing the hysteresis leads to unintended complications in the phase relation between the applied changes in interfacial area to the expected interfacial stresses. These difficulties can be avoided by designing experimental systems to avoid the bubble shape hysteresis.
3
Magnetic Ordering
Besides the experimental study, it is important to have a good thermodynamic model to describe and predict liquid-liquid equilibrium conditions in engineering and design. To obtain global and reliable parameters for thermodynamic models usually, phase equilibrium data is suitable for this purpose. As there are polymer, electrolyte and water in polymer/salt systems, all different types of interactions should be taken into account. Up to now, several models have been used such as NRTL, Chen-NRTL, Wilson, UNIQUAC, NRTL-NRF and UNIFAC-NRF. It has been shown that, in all cases, the mentioned models were successful in reproducing tie-line data of polymer/salt aqueous two-phase systems. In most of the previous works, excess Gibbs functions have been used for modeling.
1
Separation Processes
A vacuum ceramic filter is designed to separate liquids from solids for dewatering of ore concentrates purposes. The device consists of a rotator, slurry tank, ceramic filter plate, distributor, discharge scraper, cleaning device, frame, agitating device, pipe system, vacuum system, automatic acid dosing system, automatic lubricating system, valve and discharge chute. The operation and construction principle of vacuum ceramic filter resemble those of a conventional disc filter, but the filter medium is replaced by a finely porous ceramic disc. The disc material is inert, has a long operational life and is resistant to almost all chemicals. Performance can be optimized by taking into account all those factors which affect the overall efficiency of the separation process. Some of the variables affecting the performance of a vacuum ceramic filter include the solid concentration, speed rotation of the disc, slurry level in the feed basin, temperature of the feed slurry, and the pressure during dewatering stages and filter cake formation.
1
Separation Processes
Many metabolic chemical reporters have been developed to identify O-GlcNAc. Metabolic chemical reporters are generally sugar analogues that bear an additional chemical moiety allowing for additional reactivity. For example, peracetylated GlcNAc (AcGlcNAz) is a cell-permeable azido sugar that is de-esterified intracellularly by esterases to GlcNAz and converted to UDP-GlcNAz in the hexosamine salvage pathway. UDP-GlcNAz can be utilized as a sugar donor by OGT to yield the O-GlcNAz modification. The presence of the azido sugar can then be visualized via alkyne-containing bioorthogonal chemical probes in an azide-alkyne cycloaddition reaction. These probes can incorporate easily identifiable tags such as the FLAG peptide, biotin, and dye molecules. Mass tags based on polyethylene glycol (PEG) have also been used to measure O-GlcNAc stoichiometry. Conjugation of 5 kDa PEG molecules leads to a mass shift for modified proteins - more heavily O-GlcNAcylated proteins will have multiple PEG molecules and thus migrate more slowly in gel electrophoresis. Other metabolic chemical reporters bearing azides or alkynes (generally at the 2 or 6 positions) have been reported. Instead of GlcNAc analogues, GalNAc analogues may be used as well as UDP-GalNAc is in equilibrium with UDP-GlcNAc in cells due to the action of UDP-galactose-4-epimerase (GALE). Treatment with AcGalNAz was found to result in enhanced labeling of O-GlcNAc relative to AcGlcNAz, possibly due to a bottleneck in UDP-GlcNAc pyrophosphorylase processing of GlcNAz-1-P to UDP-GlcNAz. AcGlcN-β-Ala-NBD-α-1-P(Ac-SATE), a metabolic chemical reporter that is processed intracellularly to a fluorophore-labeled UDP-GlcNAc analogue, has been shown to achieve one-step fluorescent labeling of O-GlcNAc in live cells. Metabolic labeling may also be used to identify binding partners of O-GlcNAcylated proteins. The N-acetyl group may be elongated to incorporate a diazirine moiety. Treatment of cells with peracetylated, phosphate-protected AcGlcNDAz-1-P(Ac-SATE) leads to modification of proteins with O-GlcNDAz. UV irradiation then induces photocrosslinking between proteins bearing the O'-GlcNDaz modification and interacting proteins. Some issues have been identified with various metabolic chemical reporters, e.g., their use may inhibit the hexosamine biosynthetic pathway, they may not be recognized by OGA and therefore are not able to capture O-GlcNAc cycling, or they may be incorporated into glycosylation modifications besides O-GlcNAc as seen in secreted proteins. Metabolic chemical reporters with chemical handles at the N-acetyl position may also label acetylated proteins as the acetyl group may be hydrolyzed into acetate analogues that can be utilized for protein acetylation. Additionally, per-O-acetylated monosaccharides have been identified to react cysteines leading to artificial S-glycosylation. This occurs via an elimination-addition mechanism.
2
Carbohydrates
UV-A presents a potential hazard when eyes and skin are exposed, especially to high power sources. According to the World Health Organization, UV-A is responsible for the initial tanning of skin and it contributes to skin ageing and wrinkling. UV-A may also contribute to the progression of skin cancers. Additionally, UV-A can have negative effects on eyes in both the short-term and long-term.
4
Ultraviolet Radiation
Low-pressure mercury lamps are very similar to a fluorescent lamp, with a wavelength of 253.7 nm (1182.5 THz). The most common form of germicidal lamp looks similar to an ordinary fluorescent lamp but the tube contains no fluorescent phosphor. In addition, rather than being made of ordinary borosilicate glass, the tube is made of fused quartz or vycor 7913 glass. These two changes combine to allow the 253.7 nm ultraviolet light produced by the mercury arc to pass out of the lamp unmodified (whereas, in common fluorescent lamps, it causes the phosphor to fluoresce, producing visible light). Germicidal lamps still produce a small amount of visible light due to other mercury radiation bands. An older design looks like an incandescent lamp but with the envelope containing a few droplets of mercury. In this design, the incandescent filament heats the mercury, producing a vapor which eventually allows an arc to be struck, short circuiting the incandescent filament. As with all gas-discharge lamps, low- and high-pressure mercury lamps exhibit negative resistance and require the use of an external ballast to regulate the current flow. The older lamps that resembled an incandescent lamp were often operated in series with an ordinary 40 W incandescent "appliance" lamp; the incandescent lamp acted as the ballast for the germicidal lamp.
4
Ultraviolet Radiation
Low-pressure mercury-vapor lamps generate primarily 254 nm UVC energy, and are most commonly used in disinfection applications. Operated at lower temperatures and with less voltage than medium-pressure lamps, they, like all UV sources, require shielding when operated to prevent excess exposure of skin and eyes.
4
Ultraviolet Radiation
The basic room purge equation is used in industrial hygiene. It determines the time required to reduce a known vapor concentration existing in a closed space to a lower vapor concentration. The equation can only be applied when the purged volume of vapor or gas is replaced with "clean" air or gas. For example, the equation can be used to calculate the time required at a certain ventilation rate to reduce a high carbon monoxide concentration in a room. Sometimes the equation is also written as: where *D = time required; the unit of time used is the same as is used for Q *V = air or gas volume of the closed space or room in cubic feet, cubic metres or litres *Q = ventilation rate into or out of the room in cubic feet per minute, cubic metres per hour or litres per second *C = initial concentration of a vapor inside the room measured in ppm *C = final reduced concentration of the vapor inside the room in ppm
1
Separation Processes
Some sperm banks enable recipients to choose the sex of their child, through methods of sperm sorting. Although the methods used do not guarantee 100% success, the chances of being able to select the gender of a child are held to be considerably increased. One of the processes used is the swim up method, whereby a sperm extender is added to the donor's freshly ejaculated sperm and the test-tube is left to settle. After about half-an-hour, the lighter sperm, containing the male chromosome pair (XY), will have swum to the top, leaving the heavier sperm, containing the female chromosome pair (XX), at the bottom, thus allowing selection and storage according to sex. The alternative process is the Percoll Method which is similar to the swim up method but involves additionally the centrifuging of the sperm in a similar way to the washing of samples produced for IUI inseminations, or for IVF purposes. Sex selection is not permitted in a number of countries, including the UK.
0
Cryobiology
The settling particles can contact each other and arise when approaching the floor of the sedimentation tanks at very high particle concentration. So that further settling will only occur in adjust matrix as the sedimentation rate decreasing. This is can be illustrated by the lower region of the zone-settling diagram (Figure 3). In Compression zone, the settled solids are compressed by gravity (the weight of solids), as the settled solids are compressed under the weight of overlying solids, and water is squeezed out while the space gets smaller.
1
Separation Processes
Ferrimagnetic materials have high resistivity and have anisotropic properties. The anisotropy is actually induced by an external applied field. When this applied field aligns with the magnetic dipoles, it causes a net magnetic dipole moment and causes the magnetic dipoles to precess at a frequency controlled by the applied field, called Larmor or precession frequency. As a particular example, a microwave signal circularly polarized in the same direction as this precession strongly interacts with the magnetic dipole moments; when it is polarized in the opposite direction, the interaction is very low. When the interaction is strong, the microwave signal can pass through the material. This directional property is used in the construction of microwave devices like isolators, circulators, and gyrators. Ferrimagnetic materials are also used to produce optical isolators and circulators. Ferrimagnetic minerals in various rock types are used to study ancient geomagnetic properties of Earth and other planets. That field of study is known as paleomagnetism. In addition, it has been shown that ferrimagnets such as magnetite can be used for thermal energy storage.
3
Magnetic Ordering
Excimer lamps emit narrow-band UVC and vacuum-ultraviolet radiation at a variety of wavelengths depending on the medium. They are mercury-free and reach full output quicker than a mercury lamp, and generate less heat. Excimer emission at 207 and 222 nm appears to be safer than traditional 254 nm germicidal radiation, due to greatly reduced penetration of these wavelengths in human skin.
4
Ultraviolet Radiation
One application of SPMR is the detection of disease and cancer. This is accomplished by functionalizing the NP with biomarkers, including cell antibodies (Ab). The functionalized NP+Ab may be subsequently attached to cells targeted by the biomarker in cell cultures, blood and marrow samples, as well as animal models. A variety of biochemical procedures are used to conjugate the NP with the biomarker. The resulting NP+Ab are either directly mixed with incubated blood or diseased cells, or injected into animals. Following injection the functionalized NP reside in the bloodstream until encountering cells that are specific to the biomarker attached to the Ab. Conjugation of NP with Ab followed by attachment to cells is accomplished by identifying particular cell lines expressing varying levels of the Ab by flow cytometry. The Ab is conjugated to the superparamagnetic iron oxide NP by different methods including the carbodiimide method. The conjugated NP+Ab are then incubated with the cell lines and may be examined by transmission-electron microscopy (TEM) to confirm that the NP+Ab are attached to the cells. Other methods to determine whether NP are present on the surface of the cell are confocal microscopy, Prussian blue histochemistry, and SPMR. The resulting carboxylate functionality of the polymer-encapsulated NPs by this method allows conjugation of amine groups on the Ab to the carboxylate anions on the surface of the NPs using standard two-step EDC/NHS chemistry.
3
Magnetic Ordering
The major disadvantage to the DSSC design is the use of the liquid electrolyte, which has temperature stability problems. At low temperatures the electrolyte can freeze, halting power production and potentially leading to physical damage. Higher temperatures cause the liquid to expand, making sealing the panels a serious problem. Another disadvantage is that costly ruthenium (dye), platinum (catalyst) and conducting glass or plastic (contact) are needed to produce a DSSC. A third major drawback is that the electrolyte solution contains volatile organic compounds (or VOC's), solvents which must be carefully sealed as they are hazardous to human health and the environment. This, along with the fact that the solvents permeate plastics, has precluded large-scale outdoor application and integration into flexible structure. Replacing the liquid electrolyte with a solid has been a major ongoing field of research. Recent experiments using solidified melted salts have shown some promise, but currently suffer from higher degradation during continued operation, and are not flexible.
4
Ultraviolet Radiation
The structural changes that occur during 72-hour hypothermic storage of previously uninjured kidneys have been described by Mackay who showed how there was progressive vacuolation of the cytoplasm of the cells which particularly affected the proximal tubules. On electron microscopy the mitochondria were seen to become swollen with early separation of the internal cristal membranes and later loss of all internal structure. Lysosomal integrity was well preserved until late, and the destruction of the cell did not appear to be caused by lytic enzymes because there was no more injury immediately adjacent to the lysosomes than in the rest of the cell. Woods and Liu – when describing successful 5 and 7 day kidney storage - described the light microscopic changes seen at the end of perfusion and at post mortem, but found few gross abnormalities apart from some infiltration with lymphocytes and occasional tubular atrophy. The changes during short perfusions of human kidneys prior to reimplantation have been described by Hill who also performed biopsies 1 hour after reimplantation. On electron microscopy Hill found endothelial damage which correlated with the severity of the fibrin deposition after reimplantation. The changes that Hill saw in the glomeruli on light microscopy were occasional fibrin thrombi and infiltration with polymorphs. Hill suspected that these changes were an immunologically induced lesion, but found that there was no correlation between the severity of the histological lesion and the presence or absence of immunoglobulin deposits. There are several reports of the analysis of urine produced by kidneys during perfusion storage. Kastagir analysed urine produced during 24-hour perfusion and found it to be an ultrafiltrate of the perfusate, Scott found a trace of protein in the urine during 24-hour storage, and Pederson found only a trace of protein after 36 hours perfusion storage. Pederson mentioned that he had found heavy proteinuria during earlier experiments. Woods noted protein casts in the tubules of viable kidneys after 5 day storage, but he did not analyse the urine produced during perfusion. In Cohen's study there was a progressive increase in urinary protein concentration during 8 day preservation until the protein content of the urine equalled that of the perfusate. This may have been related to the swelling of the glomerular basement membranes and the progressive fusion of epithelial cell foot processes that was also observed during the same period of perfusion storage.
0
Cryobiology
There are many design criteria which vary according to the type of disc and the required filtering capacity. The typical filter for extracting iron contains 12 ceramic filtering plates of the filtering elements (discs), which have a diameter of about 2705 mm, making the total filter surface 120 m. This filter is most suited to filter feed slurries with high solid concentrations (5-20% w/w) and particles ranging in size from 1–700 µm. The area of the filters available in the ceramic filter is up to 45 m, making them useful for metal and mineral concentrate processing. The ceramic discs are available in two types, cast plate and membrane plate. The cast plate is a one piece ceramic plate with a homogeneous surface and a granulated core. The filter medium of the cast plate is the thick walls, separated by ceramic granules. These features form a rigid mechanical structure. The membrane plate type contains a thin membrane over a coarser core and a multi-layer porous structure made of aluminium oxide. The coarse part of the equipment provides mechanical strength to its structure while the intermediate layer acts as a membrane carrier. The outer layer membrane acts as a filtering layer. The filtration layer of the ceramic filter has uniform pores, which means that only a certain size of particles can be filtered by using vacuum ceramic filters.
1
Separation Processes
Photobiology is the scientific study of the beneficial and harmful interactions of non-ionizing radiation in living organisms, conventionally demarcated around 10 eV, the first ionization energy of oxygen. UV ranges roughly from 3 to 30 eV in energy. Hence photobiology entertains some, but not all, of the UV spectrum.
4
Ultraviolet Radiation
Alcohol consumption increases the risk of hypothermia in two ways: vasodilation and temperature controlling systems in the brain. Vasodilation increases blood flow to the skin, resulting in heat being lost to the environment. This produces the effect of feeling warm, when one is actually losing heat. Alcohol also affects the temperature-regulating system in the brain, decreasing the body's ability to shiver and use energy that would normally aid the body in generating heat. The overall effects of alcohol lead to a decrease in body temperature and a decreased ability to generate body heat in response to cold environments. Alcohol is a common risk factor for death due to hypothermia. Between 33% and 73% of hypothermia cases are complicated by alcohol.
0
Cryobiology
Medical organizations recommend that patients protect themselves from UV radiation by using sunscreen. Five sunscreen ingredients have been shown to protect mice against skin tumors. However, some sunscreen chemicals produce potentially harmful substances if they are illuminated while in contact with living cells. The amount of sunscreen that penetrates into the lower layers of the skin may be large enough to cause damage. Sunscreen reduces the direct DNA damage that causes sunburn, by blocking UV‑B, and the usual SPF rating indicates how effectively this radiation is blocked. SPF is, therefore, also called UVB-PF, for "UV‑B protection factor". This rating, however, offers no data about important protection against UVA, which does not primarily cause sunburn but is still harmful, since it causes indirect DNA damage and is also considered carcinogenic. Several studies suggest that the absence of UV‑A filters may be the cause of the higher incidence of melanoma found in sunscreen users compared to non-users. Some sunscreen lotions contain titanium dioxide, zinc oxide, and avobenzone, which help protect against UV‑A rays. The photochemical properties of melanin make it an excellent photoprotectant. However, sunscreen chemicals cannot dissipate the energy of the excited state as efficiently as melanin and therefore, if sunscreen ingredients penetrate into the lower layers of the skin, the amount of reactive oxygen species may be increased. The amount of sunscreen that penetrates through the stratum corneum may or may not be large enough to cause damage. In an experiment by Hanson et al. that was published in 2006, the amount of harmful reactive oxygen species (ROS) was measured in untreated and in sunscreen treated skin. In the first 20 minutes, the film of sunscreen had a protective effect and the number of ROS species was smaller. After 60 minutes, however, the amount of absorbed sunscreen was so high that the amount of ROS was higher in the sunscreen-treated skin than in the untreated skin. The study indicates that sunscreen must be reapplied within 2 hours in order to prevent UV light from penetrating to sunscreen-infused live skin cells.
4
Ultraviolet Radiation
Plant mannans have β(1-4) linkages, occasionally with α(1-6) galactose branches, forming galactomannans. They are insoluble and a form of storage polysaccharide. Ivory nut is a source of mannans. An additional type is galactoglucomannan found in soft wood with a mixed mannose/glucose β(1-4) backbone. Many mannans are acetylated and some from marine sources, have sulfate esters side chains. Yeast and some plants such as conjac and salep have a different type of mannans in their cell wall, with a α(1-6) linked backbone and α(1-2) and α(1-3) linked glucose branches, hence "glucomannan". It is water soluble. It is serologically similar to structures found on mammalian glycoproteins. Detection of mannan leads to lysis in the mannan-binding lectin pathway.
2
Carbohydrates
There are a number of AFPs found in insects, including those from Dendroides, Tenebrio and Rhagium beetles, spruce budworm and pale beauty moths, and midges (same order as flies). Insect AFPs share certain similarities, with most having higher activity (i.e. greater thermal hysteresis value, termed hyperactive) and a repetitive structure with a flat ice-binding surface. Those from the closely related Tenebrio and Dendroides beetles are homologous and each 12–13 amino-acid repeat is stabilized by an internal disulfide bond. Isoforms have between 6 and 10 of these repeats that form a coil, or beta-solenoid. One side of the solenoid has a flat ice-binding surface that consists of a double row of threonine residues. Other beetles (genus Rhagium) have longer repeats without internal disulfide bonds that form a compressed beta-solenoid (beta sandwich) with four rows of threonine residus, and this AFP is structurally similar to that modelled for the non-homologous AFP from the pale beauty moth. In contrast, the AFP from the spruce budworm moth is a solenoid that superficially resembles the Tenebrio protein, with a similar ice-binding surface, but it has a triangular cross-section, with longer repeats that lack the internal disulfide bonds. The AFP from midges is structurally similar to those from Tenebrio and Dendroides, but the disulfide-braced beta-solenoid is formed from shorter 10 amino-acids repeats, and instead of threonine, the ice-binding surface consists of a single row of tyrosine residues. Springtails (Collembola) are not insects, but like insects, they are arthropods with six legs. A species found in Canada, which is often called a "snow flea", produces hyperactive AFPs. Although they are also repetitive and have a flat ice-binding surface, the similarity ends there. Around 50% of the residues are glycine (Gly), with repeats of Gly-Gly- X or Gly-X-X, where X is any amino acid. Each 3-amino-acid repeat forms one turn of a polyproline type II helix. The helices then fold together, to form a bundle that is two helices thick, with an ice-binding face dominated by small hydrophobic residues like alanine, rather than threonine. Other insects, such as an Alaskan beetle, produce hyperactive antifreezes that are even less similar, as they are polymers of sugars (xylomannan) rather than polymers of amino acids (proteins). Taken together, this suggests that most of the AFPs and antifreezes arose after the lineages that gave rise to these various insects diverged. The similarities they do share are the result of convergent evolution.
0
Cryobiology
In molecular biology and biochemistry, glycoconjugates are the classification family for carbohydrates – referred to as glycans – which are covalently linked with chemical species such as proteins, peptides, lipids, and other compounds. Glycoconjugates are formed in processes termed glycosylation. Glycoconjugates are very important compounds in biology and consist of many different categories such as glycoproteins, glycopeptides, peptidoglycans, glycolipids, glycosides, and lipopolysaccharides. They are involved in cell–cell interactions, including cell–cell recognition; in cell–matrix interactions; in detoxification processes. Generally, the carbohydrate part(s) play an integral role in the function of a glycoconjugate; prominent examples of this are neural cell adhesion molecule (NCAM) and blood proteins where fine details in the carbohydrate structure determine cell binding (or not) or lifetime in circulation. Although the important molecular species DNA, RNA, ATP, cAMP, cGMP, NADH, NADPH, and coenzyme A all contain a carbohydrate part, generally they are not considered as glycoconjugates. Glycocojugates of carbohydrates covalently linked to antigens and protein scaffolds can achieve a long term immunological response in the body. Immunization with glycoconjugates successfully induced long term immune memory against carbohydrates antigens. Glycoconjugate vaccines was introduced since the 1990s have yielded effective results against influenza and meningococcus. In 2021 glycoRNAs were observed for the first time.
2
Carbohydrates
UVC radiation is able to break chemical bonds. This leads to rapid aging of plastics and other material, and insulation and gaskets. Plastics sold as "UV-resistant" are tested only for the lower-energy UVB since UVC does not normally reach the surface of the Earth. When UV is used near plastic, rubber, or insulation, these materials may be protected by metal tape or aluminum foil.
4
Ultraviolet Radiation
The waste stream is irradiated with Ultraviolet radiation. The UV radiation disinfect by disrupting the pathogen cell to be mutated and prevent the cell from replicating. Eventually the mutated cell becomes extinct and this process eliminates odour.
1
Separation Processes
Lactulose is not absorbed in the small intestine nor broken down by human enzymes, thus stays in the digestive bolus through most of its course, causing retention of water through osmosis leading to softer, easier-to-pass stool. It has a secondary laxative effect in the colon, where it is fermented by the gut flora, producing metabolites which have osmotic powers and peristalsis-stimulating effects (such as acetate), but also methane associated with flatulence. Lactulose is metabolized in the colon by bacterial flora into short-chain fatty acids, including lactic acid and acetic acid. These partially dissociate, acidifying the colonic contents (increasing the H concentration in the gut). This favors the formation of the nonabsorbable from NH, trapping NH in the colon and effectively reducing plasma NH concentrations. Lactulose is therefore effective in treating hepatic encephalopathy. Specifically, it is effective as secondary prevention of hepatic encephalopathy in people with cirrhosis. Moreover, research showed improved cognitive functions and health-related quality of life in people with cirrhosis with minimal hepatic encephalopathy treated with lactulose.
2
Carbohydrates
* Imaging: contrast agents in magnetic resonance imaging (MRI) * Magnetic separation: cell-, DNA-, protein- separation, RNA fishing * Treatments: targeted drug delivery, magnetic hyperthermia, magnetofection
3
Magnetic Ordering
Lentztrehaloses A, B, and C are trehalose analogues found in an actinomycete Lentzea sp. ML457-mF8. Lentztrehaloses A and B can be synthesized chemically. The non-reducing disaccharide trehalose is commonly used in foods and various products as stabilizer and humectant, respectively. Trehalose has been shown to have curative effects for treating various diseases in animal models including neurodegenerative diseases, hepatic diseases, and arteriosclerosis. Trehalose, however, is readily digested by hydrolytic enzyme trehalase that is widely expressed in many organisms from microbes to human. As a result, trehalose may cause decomposition of the containing products. And its medicinal effect may be reduced by the hydrolysis by trehalase. Lentztrehaloses are rarely hydrolyzed by microbial and mammalian trehalases and may be used in various areas as a biologically stable substitute of trehalose.
2
Carbohydrates
One example of the powerful biological attributes of lectins is the biochemical warfare agent ricin. The protein ricin is isolated from seeds of the castor oil plant and comprises two protein domains. Abrin from the jequirity pea is similar: * One domain is a lectin that binds cell surface galactosyl residues and enables the protein to enter cells. * The second domain is an N-glycosidase that cleaves nucleobases from ribosomal RNA, resulting in inhibition of protein synthesis and cell death.
2
Carbohydrates
Magnetic anisotropy arises due to a combination of crystal structure and spin-orbit interaction. It can be generally written as: where F, the anisotropy energy density, is a function of the orientation of the magnetization. Minimum-energy directions for F are called easy axes. Time-reversal symmetry ensures that F is an even function of m. The simplest such function is where K is called the anisotropy constant. In this approximation, called uniaxial anisotropy, the easy axis is the z direction. The anisotropy energy favors magnetic configurations where the magnetization is everywhere aligned along an easy axis.
3
Magnetic Ordering
The filtrate cakes that are thin and fragile are usually the end products of this discharge lie. The materials are capable of changing phases, from solid to liquid, due to instability and disturbance. Two rollers guide the strings back to drum surface and at the same time separation of the filtrate cake occurs as they pass the rollers. Application of the string discharge can be seen at the pharmaceutical and starch industries. String discharge is used if the high solid concentration slurry is used or if the slurry is easy to filter to produce cake formation or if the discharged solid is fibrous, stringy or pulpy or if a longer wear resistance is desired for the separation of the mentioned slurry.
1
Separation Processes
When sucrose is cooled slowly it results in crystal sugar (or rock candy), but when cooled rapidly it can form syrupy cotton candy (candyfloss). Vitrification can also occur in a liquid such as water, usually through very rapid cooling or the introduction of agents that suppress the formation of ice crystals. This is in contrast to ordinary freezing which results in ice crystal formation. Vitrification is used in cryo-electron microscopy to cool samples so quickly that they can be imaged with an electron microscope without damage. In 2017, the Nobel prize for chemistry was awarded for the development of this technology, which can be used to image objects such as proteins or virus particles. Ordinary soda-lime glass, used in windows and drinking containers, is created by the addition of sodium carbonate and lime (calcium oxide) to silicon dioxide. Without these additives, silicon dioxide would require very high temperature to obtain a melt, and subsequently (with slow cooling) a glass. Vitrification is used in disposal and long-term storage of nuclear waste or other hazardous wastes in a method called geomelting. Waste is mixed with glass-forming chemicals in a furnace to form molten glass that then solidifies in canisters, thereby immobilizing the waste. The final waste form resembles obsidian and is a non-leaching, durable material that effectively traps the waste inside. It is widely assumed that such waste can be stored for relatively long periods in this form without concern for air or groundwater contamination. Bulk vitrification uses electrodes to melt soil and wastes where they lie buried. The hardened waste may then be disinterred with less danger of widespread contamination. According to the Pacific Northwest National Labs, "Vitrification locks dangerous materials into a stable glass form that will last for thousands of years."
0
Cryobiology
Psoralens are materials that make the skin more sensitive to UV light. They are photosensitizing agents found in plants naturally and manufactured synthetically. Psoralens are taken as pills (systemically) or can be applied directly to the skin, by soaking the skin in a solution that contains the psoralens. They allow UVA energy to be effective at lower doses. When combined with exposure to the UVA in PUVA, psoralens are highly effective at clearing psoriasis and vitiligo. In the case of vitiligo, they work by increasing the sensitivity of melanocytes, the cells that manufacture skin color, to UVA light. Melanocytes have sensors that detect UV light and trigger the manufacture of brown skin color. This color protects the body from the harmful effects of UV light. It can also be connected to the skin's immune response. LED PUVA lamps give much more intense light compared to fluorescent type lamps. This reduces the treatment time, makes the treatment more effective, and enables the use of a weaker psoralen. The physician and physiotherapists can choose a starting dose of UV based on the patient's skin type. The UV dose will be increased in every treatment until the skin starts to respond, normally when it becomes a little bit pink. Normally the UVA dose is increased slowly, starting from 10 seconds and increased by 10 seconds a day, until the skin becomes a little bit pink. When the skin is little bit pink the time should be steady. To reduce the number of treatments, some clinics test the skin before the treatments, by exposing a small area of the patient's skin to UVA, after ingestion of psoralen. The dose of UVA that produces redness 12 hours later, called the minimum phototoxic dose (MPD), or minimal erythema dose (MED) becomes the starting dose for treatment.
4
Ultraviolet Radiation
Polyols are found naturally in mushrooms, some fruit (particularly stone fruits), including apples, apricots, avocados, blackberries, cherries, lychees, nectarines, peaches, pears, plums, prunes, watermelon, and in some vegetables, including cauliflower, snow peas, and mange-tout peas. Cabbage, chicory, and fennel contain moderate amounts, but may be eaten in a low-FODMAP diet if the advised portion size is observed. Polyols, specifically sugar alcohols, used as artificial sweeteners in commercially prepared food, beverages, and chewing gum, include isomalt, maltitol, mannitol, sorbitol, and xylitol.
2
Carbohydrates
In control systems, hysteresis can be used to filter signals so that the output reacts less rapidly than it otherwise would by taking recent system history into account. For example, a thermostat controlling a heater may switch the heater on when the temperature drops below A, but not turn it off until the temperature rises above B. (For instance, if one wishes to maintain a temperature of 20 °C then one might set the thermostat to turn the heater on when the temperature drops to below 18 °C and off when the temperature exceeds 22 °C). Similarly, a pressure switch can be designed to exhibit hysteresis, with pressure set-points substituted for temperature thresholds.
3
Magnetic Ordering
High power mercury vapor black light lamps are made in power ratings of 100 to 1,000 watts. These do not use phosphors, but rely on the intensified and slightly broadened 350–375 nm spectral line of mercury from high pressure discharge at between , depending upon the specific type. These lamps use envelopes of Woods glass or similar optical filter coatings to block out all the visible light and also the short wavelength (UVC) lines of mercury at 184.4 and 253.7 nm, which are harmful to the eyes and skin. A few other spectral lines, falling within the pass band of the Woods glass between 300 and 400 nm, contribute to the output. These lamps are used mainly for theatrical purposes and concert displays. They are more efficient UVA producers per unit of power consumption than fluorescent tubes.
4
Ultraviolet Radiation
, where is the enthalpy of the liquid and is the enthalpy of the vapour By substituting the mass balance equation in above equation we get the following expression:
1
Separation Processes
Cryo- is from the Ancient Greek κρύος (krúos, “ice, icy cold, chill, frost”). Uses of the prefix Cryo- include:
0
Cryobiology
Reverse osmosis is a more economical way to concentrate liquids (such as fruit juices) than conventional heat-treatment. Concentration of orange and tomato juice has advantages including a lower operating cost and the ability to avoid heat-treatment, which makes it suitable for heat-sensitive substances such as protein and enzymes. RO is used in the dairy industry to produce whey protein powders and concentrate milk. The whey (liquid remaining after cheese manufacture) is concentrated with RO from 6% solids to 10–20% solids before ultrafiltration processing. The retentate can then be used to make whey powders, including whey protein isolate. Additionally, the permeate, which contains lactose, is concentrated by RO from 5% solids to 18–total solids to reduce crystallization and drying costs. Although RO was once avoided in the wine industry, it is now widespread. An estimated 60 RO machines were in use in Bordeaux, France, in 2002. Known users include many of elite firms, such as Château Léoville-Las Cases.
1
Separation Processes
IVF is expensive in China and not generally accessible to unmarried women. In August 2022, China's National Health Authority announced that it will take steps to make assisted reproductive technology more accessible, including by guiding local governments to include such technology in its national medical system. Croatia No egg or sperm donations take place in Croatia, however using donated sperm or egg in ART and IUI is allowed. With donated eggs, sperm or embryo, a heterosexual couple and single women have legal access to IVF. Male or female couples do not have access to ART as a form of reproduction. The minimum age for males and females to access ART in Croatia is 18 there is no maximum age. Donor anonymity applies, but the born child can be given access to the donor's identity at a certain age
0
Cryobiology
Numerous studies have identified aberrant phosphorylation of tau as a hallmark of Alzheimers disease. O-GlcNAcylation of bovine tau was first characterized in 1996. A subsequent report in 2004 demonstrated that human brain tau is also modified by O-GlcNAc. O-GlcNAcylation of tau was demonstrated to regulate tau phosphorylation with hyperphosphorylation of tau observed in the brain of mice lacking OGT, which has been associated with the formation of neurofibrillary tangles. Analysis of brain samples showed that protein O-GlcNAcylation is compromised in Alzheimers disease and paired helical fragment-tau was not recognized by traditional O-GlcNAc detection methods, suggesting that pathological tau has impaired O-GlcNAcylation relative to tau isolated from control brain samples. Elevating tau O-GlcNAcylation was proposed as a therapeutic strategy for reducing tau phosphorylation. To test this therapeutic hypothesis, a selective and blood-brain barrier-permeable OGA inhibitor, thiamet-G, was developed. Thiamet-G treatment was able to increase tau O-GlcNAcylation and suppress tau phosphorylation in cell culture and in vivo in healthy Sprague-Dawley rats. A subsequent study showed that thiamet-G treatment also increased tau O-GlcNAcylation in a JNPL3 tau transgenic mouse model. In this model, tau phosphorylation was not significantly affected by thiamet-G treatment, though decreased numbers of neurofibrillary tangles and slower motor neuron loss were observed. Additionally, O-GlcNAcylation of tau was noted to slow tau aggregation in vitro. OGA inhibition with MK-8719 is being investigated in clinical trials as a potential treatment strategy for Alzheimer's disease and other tauopathies including progressive supranuclear palsy.
2
Carbohydrates
When hysteresis occurs with extensive and intensive variables, the work done on the system is the area under the hysteresis graph.
3
Magnetic Ordering
When clearing gases, an often used and mostly working method for clearing large particles is to blow it into a large chamber where the gas's velocity decreases and the solid particles start sinking to the bottom. This method is used mostly because of its cheap cost.
1
Separation Processes
Microscopy with UV Surface Excitation (MUSE) is a novel microscopy method that utilizes the shallow penetration of UV photons (230–300 nm) excitation. Compared to conventional microscopes, which usually require sectioning to exclude blurred signals from outside of the focal plane, MUSE's low penetration depth limits the excitation volume to a thin layer, and removes the tissue sectioning requirement. The entire signal collected is the desired light, and all photons collected contribute to the image formation.
4
Ultraviolet Radiation
The relationship between matric water potential and water content is the basis of the water retention curve. Matric potential measurements (Ψ) are converted to volumetric water content (θ) measurements based on a site or soil specific calibration curve. Hysteresis is a source of water content measurement error. Matric potential hysteresis arises from differences in wetting behaviour causing dry medium to re-wet; that is, it depends on the saturation history of the porous medium. Hysteretic behaviour means that, for example, at a matric potential (Ψ) of , the volumetric water content (θ) of a fine sandy soil matrix could be anything between 8% and 25%. Tensiometers are directly influenced by this type of hysteresis. Two other types of sensors used to measure soil water matric potential are also influenced by hysteresis effects within the sensor itself. Resistance blocks, both nylon and gypsum based, measure matric potential as a function of electrical resistance. The relation between the sensor's electrical resistance and sensor matric potential is hysteretic. Thermocouples measure matric potential as a function of heat dissipation. Hysteresis occurs because measured heat dissipation depends on sensor water content, and the sensor water content–matric potential relationship is hysteretic. , only desorption curves are usually measured during calibration of soil moisture sensors. Despite the fact that it can be a source of significant error, the sensor specific effect of hysteresis is generally ignored.
3
Magnetic Ordering
Embryo transfer refers to a step in the process of assisted reproduction in which embryos are placed into the uterus of a female with the intent to establish a pregnancy. This technique - which is often used in connection with in vitro fertilization (IVF) - may be used in humans or in other animals, in which situations and goals may vary. Embryo transfer can be done at day two or day three, or later in the blastocyst stage, which was first performed in 1984. Factors that can affect the success of embryo transfer include the endometrial receptivity, embryo quality, and embryo transfer technique.
0
Cryobiology
Black light incandescent lamps are also made from an incandescent light bulb with a filter coating which absorbs most visible light. Halogen lamps with fused quartz envelopes are used as inexpensive UV light sources in the near UV range, from 400 to 300 nm, in some scientific instruments. Due to its black-body spectrum a filament light bulb is a very inefficient ultraviolet source, emitting only a fraction of a percent of its energy as UV.
4
Ultraviolet Radiation
During the more than 80 years of technical development of sensor-based ore sorting equipment, various types of machines have been developed. This includes the channel-type, bucket-wheel type and cone type sorters. The main machine types being installed in the mining industry today are belt-type and chute-type machines. Harbeck made a good comparison of both disadvantages and advantages of the systems for different sorting applications. The selection of a machine-type for an application depends various case-dependent factors, including the detection system applied, particle size, moisture, yield amongst others.
1
Separation Processes
The history of the discovery regarding carbohydrates dates back around 10,000 years ago in Papua New Guinea during the cultivation of Sugarcane during the Neolithic agricultural revolution . The term "carbohydrate" was first proposed by German chemist Carl Schmidt (chemist) in 1844. In 1856, glycogen, a form of carbohydrate storage in animal livers, was discovered by French physiologist Claude Bernard.
2
Carbohydrates
Symptoms of mild hypothermia may be vague, with sympathetic nervous system excitation (shivering, high blood pressure, fast heart rate, fast respiratory rate, and contraction of blood vessels). These are all physiological responses to preserve heat. Increased urine production due to cold, mental confusion, and liver dysfunction may also be present. Hyperglycemia may be present, as glucose consumption by cells and insulin secretion both decrease, and tissue sensitivity to insulin may be blunted. Sympathetic activation also releases glucose from the liver. In many cases, however, especially in people with alcoholic intoxication, hypoglycemia appears to be a more common cause. Hypoglycemia is also found in many people with hypothermia, as hypothermia may be a result of hypoglycemia.
0
Cryobiology
* Another important object is entanglement entropy. One way to describe it is to subdivide the unique ground state into a block (several sequential spins) and the environment (the rest of the ground state). The entropy of the block can be considered as entanglement entropy. At zero temperature in the critical region (thermodynamic limit) it scales logarithmically with the size of the block. As the temperature increases the logarithmic dependence changes into a linear function. For large temperatures linear dependence follows from the second law of thermodynamics. * The Heisenberg model provides an important and tractable theoretical example for applying density matrix renormalisation. * The six-vertex model can be solved using the algebraic Bethe ansatz for the Heisenberg spin chain . * The half-filled Hubbard model in the limit of strong repulsive interactions can be mapped onto a Heisenberg model with representing the strength of the superexchange interaction. * Limits of the model as the lattice spacing is sent to zero (and various limits are taken for variables appearing in the theory) describes integrable field theories, both non-relativistic such as the nonlinear Schrödinger equation, and relativistic, such as the sigma model, the sigma model (which is also a principal chiral model) and the sine-Gordon model. * Calculating certain correlation functions in the planar or large limit of N = 4 supersymmetric Yang–Mills theory
3
Magnetic Ordering
* Intracytoplasmic sperm injection (ICSI) is where a single sperm is injected directly into an egg. Its main usage as an expansion of IVF is to overcome male infertility problems, although it may also be used where eggs cannot easily be penetrated by sperm, and occasionally in conjunction with sperm donation. It can be used in teratozoospermia, since once the egg is fertilised abnormal sperm morphology does not appear to influence blastocyst development or blastocyst morphology. * Additional methods of embryo profiling. For example, methods are emerging in making comprehensive analyses of up to entire genomes, transcriptomes, proteomes and metabolomes which may be used to score embryos by comparing the patterns with ones that have previously been found among embryos in successful versus unsuccessful pregnancies. * Assisted zona hatching (AZH) can be performed shortly before the embryo is transferred to the uterus. A small opening is made in the outer layer surrounding the egg in order to help the embryo hatch out and aid in the implantation process of the growing embryo. * In egg donation and embryo donation, the resultant embryo after fertilisation is inserted in another person than the one providing the eggs. These are resources for those with no eggs due to surgery, chemotherapy, or genetic causes; or with poor egg quality, previously unsuccessful IVF cycles or advanced maternal age. In the egg donor process, eggs are retrieved from a donors ovaries, fertilised in the laboratory with sperm, and the resulting healthy embryos are returned to the recipients uterus. * In oocyte selection, the oocytes with optimal chances of live birth can be chosen. It can also be used as a means of preimplantation genetic screening. * Embryo splitting can be used for twinning to increase the number of available embryos. *Cytoplasmic transfer is where the cytoplasm from a donor egg is injected into an egg with compromised mitochondria. The resulting egg is then fertilised with sperm and introduced into a uterus, usually that of the person who provided the recipient egg and nuclear DNA. Cytoplasmic transfer was created to aid those who experience infertility due to deficient or damaged mitochondria, contained within an egg's cytoplasm.
0
Cryobiology
The premise behind these skimmers is that a high pressure pump combined with a venturi, can be used to introduce the bubbles into the water stream. The tank water is pumped through the venturi, in which fine bubbles are introduced via pressure differential, then enters the skimmer body. This method was popular due to its compact size and high efficiency for the time but venturi designs are now outdated and surpassed by more efficient needle-wheel designs.
1
Separation Processes
In a horizontal sedimentation tank, some particles may not follow the diagonal line in Fig. 1, while settling faster as they grow. So this says that particles can grow and develop a higher settling velocity if a greater depth with longer retention time. However, the collision chance would be even greater if the same retention time were spread over a longer, shallower tank. In fact, in order to avoid hydraulic short-circuiting, tanks usually are made 3–6 m deep with retention times of a few hours.
1
Separation Processes
Degradation can be detected before serious cracks are seen in a product by using infrared spectroscopy, which is able to detect chemical species formed by photo-oxidation. In particular, peroxy-species and carbonyl groups have distinct absorption bands. In the example shown at left, carbonyl groups were easily detected by IR spectroscopy from a cast thin film. The product was a road cone made by rotational moulding in LDPE, which had cracked prematurely in service. Many similar cones also failed because an anti-UV additive had not been used during processing. Other plastic products which failed included polypropylene mancabs used at roadworks which cracked after service of only a few months. The effects of degradation can also be characterized through scanning electron microscopy (SEM). For example, through SEM, defects like cracks and pits can be directly visualized, as shown at right. These samples were exposed to 840 hours of exposure to UV light and moisture using a test chamber. Crack formation is often associated with degradation, such that materials that do not display significant cracking behavior, such as HDPE in the right example, are more likely to be stable against photooxidation compared to other materials like LDPE and PP. However, some plastics that have undergone photooxidation may also appear smoother in an SEM image, with some defects like grooves having disappeared afterwards. This is seen in polystyrene in the right example.
4
Ultraviolet Radiation
Biodegradable additives may be added to polymers to accelerate their degradation. In the case of photo-oxidation OXO-biodegradation additives are used. These are transition metal salts such as iron (Fe), manganese (Mn), and cobalt (Co). Fe complexes increase the rate of photooxidation by promoting the homolysis of hydroperoxides via Fenton reactions. The use of such additives has been controversial due to concerns that treated plastics do not fully biodegrade and instead result in the accelerated formation of microplastics. Oxo-plastics would be difficult to distinguish from untreated plastic but their inclusion during plastic recycling can create a destabilised product with fewer potential uses, potentially jeopardising the business case for recycling any plastic. OXO-biodegradation additives were banned in the EU in 2019
4
Ultraviolet Radiation
Single particle testing is an extensive but powerful laboratory procedure developed by Tomra. Outo of a sample set of multiple hundreds of fragments in the size range 30-60mm are measured individually on each of the available detection technologies. After recording of the raw data, all the fragments are comminute and assayed individually which then allows plotting of the liberation function of the sample set and in addition, the detection efficiency of each detection technology in combination with the calibration method applied. This makes the evaluation of detection and calibration and subsequently the selection of the most powerful combination possible. This analysis is possible to be applied on quarters or half sections of drill core.
1
Separation Processes
The Catskill-Delaware Water Ultraviolet Disinfection Facility is a ultraviolet (UV) water disinfection plant built in Westchester County, New York to disinfect water for the New York City water supply system. The compound is the largest ultraviolet germicidal irradiation plant in the world. The UV facility treats water delivered by two of the citys aqueduct systems, the Catskill Aqueduct and the Delaware Aqueduct, via the Kensico Reservoir. (The citys third supply system, the New Croton Aqueduct, has a separate treatment plant.) The plant has 56 energy-efficient UV reactors, and cost the city $1.6 billion. Mayor Michael Bloomberg created research groups between 2004-2006 to decide the best and most cost-effective ways to modernize the citys water filtration process, as a secondary stage following the existing chlorination and fluoridation facilities. The UV technology effectively controls microorganisms such as giardia and cryptosporidium' which are resistant to chlorine treatment. The city staff determined that the cheapest alternatives to a UV system would cost over $3 billion. In response to this finding, Bloomberg decided to set up a public competitive contract auction. Ontario based Trojan Technologies won the contract. The facility treats of water per day. The new facility was originally set to be in operation by the end of 2012. The facility opened on October 8, 2013.
4
Ultraviolet Radiation
Perhaps surprisingly, the effect of temperature is often greater than the effect of UV exposure. This can be seen in terms of the Arrhenius equation, which shows that reaction rates have an exponential dependence on temperature. By comparison the dependence of degradation rate on UV exposure and the availability of oxygen is broadly linear. As the oceans are cooler than land plastic pollution in the marine environment degrades more slowly. Materials buried in landfill do not degrade by photo-oxidation at all, though they may gradually decay by other processes. Mechanical stress can effect the rate of photo-oxidation and may also accelerate the physical breakup of plastic objects. Stress can be caused by mechanical load (tensile and shear stresses) or even by temperature cycling, particularly in composite systems consisting of materials with differing temperature coefficients of expansion. Similarly, sudden rainfall can cause thermal stress.
4
Ultraviolet Radiation
The following reporting guidelines were developed and published: * MIRAGE MS guidelines for reporting mass spectrometry-based glycan analysis. These guidelines are based on the MIAPE guideline template, i.e. MIAPE-MS version 2.24. * MIRAGE Sample preparation guidelines which are considered a common basis for any further MIRAGE reporting guidelines in order to keep the requirements for data analysis short and consistent. * MIRAGE Glycan microarray guidelines for the comprehensive description of Glycan array experiments the reporting guidelines for glycan microarray analysis have been developed. In order to assist the authors to reporting in compliance with these guidelines, exemplar publications and a template with a data example is provided. * MIRAGE Liquid chromatography guidelines for reporting of liquid chromatography (LC) glycan data.
2
Carbohydrates
The K factor or characterization factor is defined from Rankine boiling temperature °R=1.8Tb[k] and relative to water density ρ at 60°F: K(UOP) = The K factor is a systematic way of classifying a crude oil according to its paraffinic, naphthenic, intermediate or aromatic nature. 12.5 or higher indicate a crude oil of predominantly paraffinic constituents, while 10 or lower indicate a crude of more aromatic nature. The K(UOP) is also referred to as the UOP K factor or just UOPK.
1
Separation Processes
The first sperm banks began as early as 1964 in Iowa, USA and Tokyo, Japan and were established for a medical therapeutic approach to support individuals who were infertile. As a result, over 1 million babies were born within 40 years. Sperm banks provide the opportunity for individuals to have a child who otherwise would not be able to conceive naturally. This includes, but is not limited to, single women, same-sexed couples, and couples where one partner is infertile. Where a sperm bank provides fertility services directly to a recipient woman, it may employ different methods of fertilization using donor sperm in order to optimize the chances of a pregnancy. Sperm banks do not provide a cure for infertility in individuals who produce non-viable sperm. Nevertheless, the increasing range of services available through sperm banks enables people to have choices over challenges with reproduction. Individuals may choose an anonymous donor who will not be a part of family life, or they may choose known donors who may be contacted later in life by the donor children. People may choose to use a surrogate to bear their children, using eggs provided by the person and sperm from a donor. Sperm banks often provide services which enable an individual to have subsequent pregnancies by the same donor, but equally, people may choose to have children by a number of different donors. Sperm banks sometimes enable an individual to choose the sex of their child, enabling even greater control over the way families are planned. Sperm banks increasingly adopt a less formal approach to the provision of their services thereby enabling people to take a relaxed approach to their own individual requirements. Men who donate semen through a sperm bank provide an opportunity for others who cannot have children on their own. Sperm donors may or may not have legal obligations or responsibilities to the child conceived through this route. Whether a donor is anonymous or not, this factor is important in allowing sperm banks to recruit sperm donors and to use their sperm to produce whatever number of pregnancies from each donor as are permitted where they operate, or alternatively, whatever number they decide. In many parts of the world sperm banks are not allowed to be established or to operate. Where sperm banks are allowed to operate they are often controlled by local legislation which is primarily intended to protect the unborn child, but which may also provide a compromise between the conflicting views which surround their operation. A particular example of this is the control which is often placed on the number of children which a single donor may father and which may be designed to protect against consanguinity. However, such legislation usually cannot prevent a sperm bank from supplying donor sperm outside the jurisdiction in which it operates, and neither can it prevent sperm donors from donating elsewhere during their lives. There is an acute shortage of sperm donors in many parts of the world and there is obvious pressure from many quarters for donor sperm from those willing and able to provide it to be made available as safely and as freely as possible.
0
Cryobiology
Galactogen is synthesized by secretory cells in the albumen gland of adult female snails and later transferred to the egg. This process is under neurohormonal control, notably by the brain galactogenin. The biochemical pathways for glycogen and galactogen synthesis are closely related. Both use glucose as a common precursor and its conversion to activated galactose is catalyzed by UDP-glucose 4-epimerase and galactose-1-P uridyl-transferase. This enables glucose to be the common precursor for both glycogenesis and galactogenesis. In fact, both polysaccharides are found in the same secretory cells of the albumen gland and are subject to independent seasonal variations. Glycogen accumulates in autumn as a general energy storage for hibernation, whereas galactogen is synthesized during spring in preparation of egg-laying. It is commonly accepted that galactogen production is restricted to embryo nutrition and therefore is mainly transferred to eggs. Little is known about the galactogen-synthesizing enzymes. A D-galactosyltransferase was described in the albumen gland of Helix pomatia. This enzyme catalyzes the transfer of D-galactose to a (1→6) linkage and is dependent upon the presence of acceptor galactogen. Similarly, a β-(1→3)-galactosyltransferase activity has been detected in albumen gland extracts from Limnaea stagnalis. In embryos and fasting newly hatched snails, galactogen is most likely an important donor (via galactose) of metabolic intermediates. In feeding snails, the primary diet is glucose-containing starch and cellulose. These polymers are digested and contribute glucose to the pathways of intermediary metabolism. Galactogen consumption begins at the gastrula stage and continues throughout development. Up to 46-78 % of egg galactogen disappears during embryo development. The remainder is used up within the first days after hatching. Only snail embryos and hatchlings are able to degrade galactogen, whereas other animals and even adult snails do not. β-galactosidase may be important in the release of galactose from galactogen; however, most of the catabolic pathway of this polysaccharide is still unknown.
2
Carbohydrates
Lectins are widespread in nature, and many foods contain the proteins. Some lectins can be harmful if poorly cooked or consumed in great quantities. They are most potent when raw as boiling, stewing or soaking in water for several hours can render most lectins inactive. Cooking raw beans at low heat, though, such as in a slow cooker, will not remove all the lectins. Some studies have found that lectins may interfere with absorption of some minerals, such as calcium, iron, phosphorus, and zinc. The binding of lectins to cells in the digestive tract may disrupt the breakdown and absorption of some nutrients, and as they bind to cells for long periods of time, some theories hold that they may play a role in certain inflammatory conditions such as rheumatoid arthritis and type 1 diabetes, but research supporting claims of long-term health effects in humans is limited and most existing studies have focused on developing countries where malnutrition may be a factor, or dietary choices are otherwise limited.
2
Carbohydrates
Magnetoelastic effect can be used in development of force sensors. This effect was used for sensors: * in civil engineering. * for monitoring of large diesel engines in locomotives. * for monitoring of ball valves. * for biomedical monitoring. Inverse magnetoelastic effects have to be also considered as a side effect of accidental or intentional application of mechanical stresses to the magnetic core of inductive component, e.g. fluxgates or generator/motor stators when installed with interference fits.
3
Magnetic Ordering
Solar-blind technology is a set of technologies to produce images without interference from the Sun. This is done by using wavelengths of ultraviolet light that are totally absorbed by the ozone layer, yet are transmitted in the Earth's atmosphere. Wavelengths from 240 to 280 nm are completely absorbed by the ozone layer. Elements of this technology are ultraviolet light sources, ultraviolet image detectors, and filters that only transmit the range of wavelengths that are blocked by ozone. A system will also have a signal processing system, and a way to display the results (image).
4
Ultraviolet Radiation
It is uncertain whether the use of mechanical closure of the cervical canal following embryo transfer has any effect. There is considerable evidence that prolonges bed rest (more than 20 minutes) after embryo transfer is associated with reduced chances of clinical pregnancy. Using hyaluronic acid as an adherence medium for the embryo may increase live birth rates. There may be little or no benefit in having a full bladder, removal of cervical mucus, or flushing of the endometrial or endocervical cavity at the time of embryo transfer. Adjunctive antibiotics in the form of amoxicillin plus clavulanic acid probably does not increase the clinical pregnancy rate compared with no antibiotics. The use of Atosiban, G-CSF and hCG around the time of embryo transfer showed a trend towards increased clinical pregnancy rate. For frozen-thawed embryo transfer or transfer of embryo from egg donation, no previous ovarian hyperstimulation is required for the recipient before transfer, which can be performed in spontaneous ovulatory cycles. Still, various protocols exist for frozen-thawed embryo transfers as well, such as protocols with ovarian hyperstimulation, protocols in which the endometrium is artificially prepared by estrogen and/or progesterone. There is some evidence that in cycles where the endometrium is artificially prepared by estrogen or progesterone, it may be beneficial to administer an additional drug that suppresses hormone production by the ovaries such as continuous administration of a gonadotropin releasing hormone agonist (GnRHa). For egg donation, there is evidence of a lower pregnancy rate and a higher cycle cancellation rate when the progesterone supplementation in the recipient is commenced prior to oocyte retrieval from the donor, as compared to commenced day of oocyte retrieval or the day after. Seminal fluid contains several proteins that interact with epithelial cells of the cervix and uterus, inducing active gestational immune tolerance. There are significantly improved outcomes when women are exposed to seminal plasma around the time of embryo transfer, with statistical significance for clinical pregnancy, but not for ongoing pregnancy or live birth rates with the limited data available.
0
Cryobiology
One recent, successful business endeavor has been the introduction of AFPs into ice cream and yogurt products. This ingredient, labelled ice-structuring protein, has been approved by the Food and Drug Administration. The proteins are isolated from fish and replicated, on a larger scale, in genetically modified yeast. There is concern from organizations opposed to genetically modified organisms (GMOs) who believe that antifreeze proteins may cause inflammation. Intake of AFPs in diet is likely substantial in most northerly and temperate regions already. Given the known historic consumption of AFPs, it is safe to conclude their functional properties do not impart any toxicologic or allergenic effects in humans. As well, the transgenic process of ice structuring proteins production is widely used in society. Insulin and rennet are produced using this technology. The process does not impact the product; it merely makes production more efficient and prevents the death of fish that would otherwise be killed to extract the protein. Currently, Unilever incorporates AFPs into some of its American products, including some Popsicle ice pops and a new line of Breyers Light Double Churned ice cream bars. In ice cream, AFPs allow the production of very creamy, dense, reduced fat ice cream with fewer additives. They control ice crystal growth brought on by thawing on the loading dock or kitchen table, which reduces texture quality. In November 2009, the Proceedings of the National Academy of Sciences published the discovery of a molecule in an Alaskan beetle that behaves like AFPs, but is composed of saccharides and fatty acids. A 2010 study demonstrated the stability of superheated water ice crystals in an AFP solution, showing that while the proteins can inhibit freezing, they can also inhibit melting. In 2021, EPFL and Warwick scientists have found an artificial imitation of antifreeze proteins.
0
Cryobiology
Mutations in the GYS1 gene are associated with glycogen storage disease type 0. In humans, defects in the tight control of glucose uptake and utilization are also associated with diabetes and hyperglycemia. Patients with type 2 diabetes normally exhibit low glycogen storage levels because of impairments in insulin-stimulated glycogen synthesis and suppression of glycogenolysis. Insulin stimulates glycogen synthase by inhibiting glycogen synthase kinases or/and activating protein phosphatase 1 (PP1) among other mechanisms.
2
Carbohydrates
One, two or three IVF treatments are government subsidised for people who are younger than 40 and have no children. The rules for how many treatments are subsidised, and the upper age limit for the people, vary between different county councils. Single people are treated, and embryo adoption is allowed. There are also private clinics that offer the treatment for a fee.
0
Cryobiology
Brian G. Wowk is a Canadian medical physicist and cryobiologist known for the discovery and development of synthetic molecules that mimic the activity of natural antifreeze proteins in cryopreservation applications, sometimes called "ice blockers". As a senior scientist at 21st Century Medicine, Inc., he was a co-developer with Greg Fahy of key technologies enabling cryopreservation of large and complex tissues, including the first successful vitrification and transplantation of a mammalian organ (kidney). Wowk is also known for early theoretical work on future applications of molecular nanotechnology, especially cryonics, nanomedicine, and optics. In the early 1990s he wrote that nanotechnology would revolutionize optics, making possible virtual reality display systems optically indistinguishable from real scenery as in the fictitious Holodeck of Star Trek. These systems were described by Wowk in the chapter "Phased Array Optics" in the 1996 anthology Nanotechnology: Molecular Speculations on Global Abundance , and highlighted in the September 1998 Technology Watch section of Popular Mechanics magazine.
0
Cryobiology
The total molar hold up in the nth tray Mn is considered constant. The imbalances in the input and output flows are taken into account for in the component and the heat balance equations.
1
Separation Processes
In the recent past the problem of removing the deleterious iron particles from a process stream had a few alternatives. Magnetic separation was typically limited and moderately effective. Magnetic separators that used permanent magnets could generate fields of low intensity only. These worked well in removing ferrous tramp but not fine paramagnetic particles. Thus high-intensity magnetic separators that were effective in collecting paramagnetic particles came into existence. These focus on the separation of very fine particles that are paramagnetic. The current is passed through the coil, which creates a magnetic field, which magnetizes the expanded steel matrix ring. The paramagnetic matrix material behaves like a magnet in the magnetic field and thereby attracts the fines. The ring is rinsed when it is in the magnetic field and all the non-magnetic particles are carried with the rinse water. Next as the ring leaves the magnetic zone the ring is flushed and a vacuum of about – 0.3 bars is applied to remove the magnetic particles attached to the matrix ring.
1
Separation Processes
In chemical separation processes, a mass separating agent (MSA) is a chemical species that is added to ensure that the intended separation process takes place. It is analogous to an energy separating agent, which aids separations processes via addition of energy. An MSA may be partially immiscible with one or more mixture components and frequently is the constituent of highest concentration in the added phase. Alternatively, the MSA may be miscible with a liquid feed mixture, but may selectively alter partitioning of species between liquid and vapor phases. Disadvantages of using an MSA are a need for an additional separator to recover the MSA for recycle, a need for MSA makeup, possible MSA product contamination, and more difficult design procedures. Processes like absorption and stripping generally utilize various MSAs.
1
Separation Processes
Economic systems can exhibit hysteresis. For example, export performance is subject to strong hysteresis effects: because of the fixed transportation costs it may take a big push to start a country's exports, but once the transition is made, not much may be required to keep them going. When some negative shock reduces employment in a company or industry, fewer employed workers then remain. As usually the employed workers have the power to set wages, their reduced number incentivizes them to bargain for even higher wages when the economy again gets better instead of letting the wage be at the equilibrium wage level, where the supply and demand of workers would match. This causes hysteresis: the unemployment becomes permanently higher after negative shocks.
3
Magnetic Ordering
Apoptosis, a form of controlled cell death, has been suggested to be regulated by O-GlcNAc. In various cancers, elevated O-GlcNAc levels have been reported to suppress apoptosis. Caspase-3, caspase-8, and caspase-9 have been reported to be modified by O-GlcNAc. Caspase-8 is modified near its cleavage/activation sites; O-GlcNAc modification may block caspase-8 cleavage and activation by steric hindrance. Pharmacological lowering of O-GlcNAc with 5S-GlcNAc accelerated caspase activation while pharmacological raising of O-GlcNAc with thiamet-G inhibited caspase activation.
2
Carbohydrates
Photosensitizers are dye compounds that absorb the photons from incoming light and eject electrons, producing an electric current that can be used to power a device or a storage unit. According to a new study performed by Michael Grätzel and fellow scientist Anders Hagfeldt, advances in photosensitizers have resulted in a substantial improvement in performance of DSSC’s under solar and ambient light conditions. Another key factor to achieve power-conversion records is cosensitization, due to its ability combine dyes that can absorb light across a wider range of the light spectrum. Cosensitization is a chemical manufacturing method that produces DSSC electrodes containing two or more different dyes with complementary optical absorption capabilities, enabling the use of all available sunlight. The researchers from Switzerland’s École polytechnique fédérale de Lausanne (EPFL) found that the efficiency to cosensitized solar cells can be raised by the pre-adsorption of a monolayer of hydroxamic acid derivative on a surface of nanocrystalline mesoporous titanium dioxide, which functions as the electron transport mechanism of the electrode. The two photosensitizer molecules used in the study were the organic dye SL9, which served as the primary long wavelength-light harvester, and the dye SL10, which provided an additional absorption peak that compensates the SL9’s inefficient blue light harvesting. It was found that adding this hydroxamic acid layer improved the dye layer’s molecular packing and ordering. This slowed down the adsorption of the sensitizers and augmented their fluorescence quantum yield, improving the power conversion efficiency of the cell. The DSSC developed by the team showed a record-breaking power conversion efficiency of 15.2% under standard global simulated sunlight and long-term operational stability over 500 hours. In addition, devices with a larger active area exhibited efficiencies of around 30% while maintaining high stability, offering new possibilities for the DSSC field.
4
Ultraviolet Radiation
A cryoprotectant is a substance used to protect biological tissue from freezing damage (i.e. that due to ice formation). Arctic and Antarctic insects, fish and amphibians create cryoprotectants (antifreeze compounds and antifreeze proteins) in their bodies to minimize freezing damage during cold winter periods. Cryoprotectants are also used to preserve living materials in the study of biology and to preserve food products. For years, glycerol has been used in cryobiology as a cryoprotectant for blood cells and bull sperm, allowing storage in liquid nitrogen at temperatures around −196 °C. However, glycerol cannot be used to protect whole organs from damage. Instead, many biotechnology companies are researching the development of other cryoprotectants more suitable for such uses. A successful discovery may eventually make possible the bulk cryogenic storage (or "banking") of transplantable human and xenobiotic organs. A substantial step in that direction has already occurred. Twenty-First Century Medicine has vitrified a rabbit kidney to -135 °C with their proprietary vitrification cocktail. Upon rewarming, the kidney was successfully transplanted into a rabbit, with complete functionality and viability, able to sustain the rabbit indefinitely as the sole functioning kidney.
0
Cryobiology
Some cryoprotectants function by lowering the glass transition temperature of a solution or of a material. In this way, the cryoprotectant prevents actual freezing, and the solution maintains some flexibility in a glassy phase. Many cryoprotectants also function by forming hydrogen bonds with biological molecules as water molecules are displaced. Hydrogen bonding in aqueous solutions is important for proper protein and DNA function. Thus, as the cryoprotectant replaces the water molecules, the biological material retains its native physiological structure and function, although they are no longer immersed in an aqueous environment. This preservation strategy is most often utilized in anhydrobiosis.
0
Cryobiology
Israel has the highest rate of IVF in the world, with 1,657 procedures performed per million people per year. Couples without children can receive funding for IVF for up to two children. The same funding is available for people without children who will raise up to two children in a single parent home. IVF is available for people aged 18 to 45. The Israeli Health Ministry says it spends roughly $3450 per procedure.
0
Cryobiology
*1. The (ordinary) Hall effect changes sign upon magnetic field reversal and it is an orbital effect (unrelated to spin) due to the Lorentz force. Transversal AMR (planar Hall effect) does not change sign and it is caused by spin-orbit interaction.
3
Magnetic Ordering
One study demonstrated the direct oxidation of glucose to arabinose by the same sodium hypochlorite, skipping the aldonic acid and aldoamide steps. For example, the general degradation of D-gluconamide into D-arabinose: On top of that, the Weerman test could be used to show whether a hydroxylic group is beside the amido group. This reaction is only important in a historical sense because it is slow yielding and thus rarely used.
2
Carbohydrates