File size: 4,319 Bytes
8a1569e
 
 
 
 
 
 
735edda
 
 
 
a52d134
81a992c
 
 
 
 
735edda
5ee44a9
48ca4e6
5ee44a9
735edda
5ee44a9
754b1c1
 
48ca4e6
5ee44a9
754b1c1
 
48ca4e6
5ee44a9
48ca4e6
5ee44a9
ef2a92c
5ee44a9
48ca4e6
5ee44a9
735edda
5ee44a9
754b1c1
 
 
 
 
 
 
 
735edda
 
a38f190
 
 
 
 
 
754b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
a38f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735edda
a38f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754b1c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: mit
tags:
- binding-affinity
- biology
- chemistry
pretty_name: Binding Affinity
configs:
- config_name: default
  data_files:
  - split: train
    path: "train.parquet"
  - split: "combined"
    path: 
      - "train.parquet"
      - "test.parquet"
      - "val.parquet"
  - split: davis
    path: "davis.parquet"
  - split: davis_filtered
    path: "davis-filtered.parquet"
  - split: kiba
    path: "kiba.parquet"
  - split: pdbbind_2020_general
    path: "pdbbind-2020-general.parquet"
  - split: pdbbind_2020_refined
    path: "pdbbind-2020-refined.parquet"
  - split: pdbbind_2013_core
    path: "pdbbind-2013-core.parquet"
  - split: bindingdb_ic50
    path: "bindingdb-ic50.parquet"
  - split: bindingdb_ki
    path: "bindingdb-ki.parquet"
  - split: bindingdb_kd_filtered
    path: "bindingdb-kd-filtered.parquet"
  - split: bindingdb_kd
    path: "bindingdb-kd.parquet"
  - split: glaser
    path: "glaser.parquet"
  - split: drug_screen_test
    path: "test_1000_drugs.parquet"
  - split: test_25_targets_40_percent_similarity
    path: "test_25_targets_40_percent_similarity.parquet"
  - split: test_25_targets_60_percent_similarity
    path: "test_25_targets_60_percent_similarity.parquet"
  - split: test_25_targets_80_percent_similarity
    path: "test_25_targets_80_percent_similarity.parquet"
---

# Binding Affinity Dataset

## Overview

This dataset is a comprehensive collection of protein-ligand binding affinity data, compiled from multiple sources. The dataset is structured with multiple splits, each corresponding to a specific source:

- train split
- test split
- validation split
- combined split
- davis split
- davis filtered split
- kiba split
- pdbbind 2020 combined split
- pdbbind 2020 refined split
- bindingdb ic50 split
- bindingdb kd split
- bindingdb kd filtered split
- bindingdb ki split
- glaser split

In addition to these source-specific splits, a main training split is provided that combines and aggregates data from all these sources.

## Training Dataset Composition

The training split is a comprehensive aggregation of multiple molecular binding datasets:

- Davis-filtered dataset
- PDBBind 2020 Combined dataset
- BindingDB IC50 dataset
- BindingDB Ki dataset
- BindingDB Kd Filtered dataset
- Glaser dataset

## Preprocessing Steps

1. **Dataset Merging**: All specified datasets were combined into a single dataset.
2. **Duplicate Removal**: Duplicate entries were dropped to ensure data uniqueness.
3. **Binding Affinity Normalization**: 
   - Entries with a binding affinity of 5 were reduced
   - For duplicate protein-ligand pairs, the mean binding affinity was calculated

## Data Sources

| Dataset | Source | Notes |
|---------|--------|-------|
| bindingdb_ic50.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons |
| bindingdb_kd.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons |
| bindingdb_kd_filtered.parquet | Manually Filtered | See `standardize_data.ipynb` |
| bindingdb_ki.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons |
| davis.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons |
| davis_filtered.parquet | [Kaggle Dataset](https://www.kaggle.com/datasets/christang0002/davis-and-kiba) | Filtered Davis dataset |
| kiba.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons |
| pdbbind_2020_combined.parquet | [PDBBind](https://www.pdbbind.org.cn/) | Combined PDBBind 2020 dataset |
| pdbbind_2020_refined.parquet | [PDBBind](https://www.pdbbind.org.cn/) | Refined PDBBind 2020 dataset |
| glaser.parquet | [HuggingFace Dataset](https://huggingface.co/datasets/jglaser/binding_affinity) | Glaser binding affinity dataset |

## Dataset Columns

| Column | Description |
|--------|-------------|
| `seq` | Protein sequence |
| `smiles_can` | Canonical SMILES representation of the ligand |
| `affinity_uM` | Binding affinity in micromolar (µM) concentration |
| `neg_log10_affinityM` | Negative logarithm (base 10) of the affinity in molar concentration |
| `affinity_norm` | Normalized binding affinity |
| `affinity_mean` | Mean binding affinity for duplicate protein-ligand pairs |
| `affinity_std` | Standard deviation of binding affinity for duplicate protein-ligand pairs |œ