Bingsu's picture
Update README.md
d35ff18
|
raw
history blame
3.68 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - crowdsourced
language:
  - ko
license:
  - cc-by-4.0
multilinguality:
  - monolingual
pretty_name: laion2B-multi-korean-subset
size_categories:
  - 10M<n<100M
task_categories:
  - feature-extraction

laion2B-multi-korean-subset

Dataset Description

About dataset

Data organized by extracting only Korean data from laion/laion2B-multi

Lisence

CC-BY-4.0

Data Structure

Data Instance

>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset")
>>> dataset
DatasetDict({
    train: Dataset({
        features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'],
        num_rows: 11376263
    })
})
>>> dataset["train"].features
{'SAMPLE_ID': Value(dtype='int64', id=None),
 'URL': Value(dtype='string', id=None),
 'TEXT': Value(dtype='string', id=None),
 'HEIGHT': Value(dtype='int32', id=None),
 'WIDTH': Value(dtype='int32', id=None),
 'LICENSE': Value(dtype='string', id=None),
 'LANGUAGE': Value(dtype='string', id=None),
 'NSFW': Value(dtype='string', id=None),
 'similarity': Value(dtype='float32', id=None)}

Data Size

download: 1.56 GiB
generated: 2.37 GiB
total: 3.93 GiB

Data Field

  • 'SAMPLE_ID': int
  • 'URL': string
  • 'TEXT': string
  • 'HEIGHT': int
  • 'WIDTH': int
  • 'LICENSE': string
  • 'LANGUAGE': string
  • 'NSFW': string
  • 'similarity': float

Data Splits

train
# of texts 11376263

Note

Height, Width

μ΄λ―Έμ§€μ˜ κ°€λ‘œκ°€ HEIGHT둜, μ„Έλ‘œκ°€ WIDTH둜 λ˜μ–΄μžˆλŠ” 것 κ°™μŠ΅λ‹ˆλ‹€.

>>> dataset["train"][98]
{'SAMPLE_ID': 2937471001780,
 'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png',
 'TEXT': 'μΈμ²œμ‹œκ΅μœ‘μ²­, 인천 μ‹œκ΅°κ΅¬λ°œμ „ν˜‘μ˜νšŒ  μž„μ›μ§„κ³Όμ˜ κ°„λ‹΄νšŒ 개졜',
 'HEIGHT': 640,
 'WIDTH': 321,
 'LICENSE': '?',
 'LANGUAGE': 'ko',
 'NSFW': 'UNLIKELY',
 'similarity': 0.33347243070602417}

image

Code used to generate

import csv
import re

from datasets import load_dataset
from tqdm import tqdm


pattern = re.compile(r"[κ°€-힣]")


def quote(s: str) -> str:
    s = s.replace('"""', "")
    return s


def filter_func(example) -> bool:
    lang = example.get("LANGUAGE")
    text = example.get("TEXT")
    if not isinstance(lang, str) or not isinstance(text, str):
        return False
    return lang == "ko" or pattern.search(text) is not None


file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="")

ds = load_dataset("laion/laion2B-multi", split="train", streaming=True)
dsf = ds.filter(filter_func)
header = [
    "SAMPLE_ID",
    "URL",
    "TEXT",
    "HEIGHT",
    "WIDTH",
    "LICENSE",
    "LANGUAGE",
    "NSFW",
    "similarity",
]
writer = csv.DictWriter(file, fieldnames=header)
writer.writeheader()

try:
    for data in tqdm(dsf):
        data["TEXT"] = quote(data.get("TEXT", ""))
        if data["TEXT"]:
            writer.writerow(data)
finally:
    file.close()

print("Done!")

이후에 HEIGHTλ‚˜ WIDTHκ°€ None인 데이터λ₯Ό μ œκ±°ν•˜κ³  μ—…λ‘œλ“œν•˜μ˜€μŠ΅λ‹ˆλ‹€.

img2dataset

img2dataset을 μ‚¬μš©ν•˜μ—¬ URL둜된 이미지듀을 데이터셋 ν˜•νƒœλ‘œ λ§Œλ“€ 수 μžˆμŠ΅λ‹ˆλ‹€.