Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
image
imagewidth (px)
640
640
organ
imagewidth (px)
640
640
gonogo
imagewidth (px)
640
640
id
stringlengths
24
27
M2CCAI2016_video100_003.png
M2CCAI2016_video100_005.png
M2CCAI2016_video100_007.png
M2CCAI2016_video100_010.png
M2CCAI2016_video101_003.png
M2CCAI2016_video101_009.png
M2CCAI2016_video101_010.png
M2CCAI2016_video102_001.png
M2CCAI2016_video102_002.png
M2CCAI2016_video102_003.png
M2CCAI2016_video102_004.png
M2CCAI2016_video102_005.png
M2CCAI2016_video102_006.png
M2CCAI2016_video102_007.png
M2CCAI2016_video102_008.png
M2CCAI2016_video102_009.png
M2CCAI2016_video102_010.png
M2CCAI2016_video103_001.png
M2CCAI2016_video103_002.png
M2CCAI2016_video103_003.png
M2CCAI2016_video103_004.png
M2CCAI2016_video103_005.png
M2CCAI2016_video103_006.png
M2CCAI2016_video103_007.png
M2CCAI2016_video103_008.png
M2CCAI2016_video103_009.png
M2CCAI2016_video103_010.png
M2CCAI2016_video104_001.png
M2CCAI2016_video104_002.png
M2CCAI2016_video104_003.png
M2CCAI2016_video104_004.png
M2CCAI2016_video104_005.png
M2CCAI2016_video104_006.png
M2CCAI2016_video104_007.png
M2CCAI2016_video104_008.png
M2CCAI2016_video104_009.png
M2CCAI2016_video104_010.png
M2CCAI2016_video105_001.png
M2CCAI2016_video105_002.png
M2CCAI2016_video105_003.png
M2CCAI2016_video105_005.png
M2CCAI2016_video105_006.png
M2CCAI2016_video106_001.png
M2CCAI2016_video106_002.png
M2CCAI2016_video106_003.png
M2CCAI2016_video106_004.png
M2CCAI2016_video106_005.png
M2CCAI2016_video106_007.png
M2CCAI2016_video106_009.png
M2CCAI2016_video106_010.png
M2CCAI2016_video108_003.png
M2CCAI2016_video108_009.png
M2CCAI2016_video109_002.png
M2CCAI2016_video109_003.png
M2CCAI2016_video109_004.png
M2CCAI2016_video109_005.png
M2CCAI2016_video109_006.png
M2CCAI2016_video109_007.png
M2CCAI2016_video109_008.png
M2CCAI2016_video109_010.png
M2CCAI2016_video110_007.png
M2CCAI2016_video110_008.png
M2CCAI2016_video110_009.png
M2CCAI2016_video111_001.png
M2CCAI2016_video111_003.png
M2CCAI2016_video111_006.png
M2CCAI2016_video111_008.png
M2CCAI2016_video111_010.png
M2CCAI2016_video112_001.png
M2CCAI2016_video112_002.png
M2CCAI2016_video112_003.png
M2CCAI2016_video112_004.png
M2CCAI2016_video112_005.png
M2CCAI2016_video112_006.png
M2CCAI2016_video112_007.png
M2CCAI2016_video112_008.png
M2CCAI2016_video112_009.png
M2CCAI2016_video112_010.png
M2CCAI2016_video114_001.png
M2CCAI2016_video114_002.png
M2CCAI2016_video114_003.png
M2CCAI2016_video114_004.png
M2CCAI2016_video114_005.png
M2CCAI2016_video114_006.png
M2CCAI2016_video114_007.png
M2CCAI2016_video114_008.png
M2CCAI2016_video114_009.png
M2CCAI2016_video114_010.png
M2CCAI2016_video115_001.png
M2CCAI2016_video115_002.png
M2CCAI2016_video115_003.png
M2CCAI2016_video115_004.png
M2CCAI2016_video115_005.png
M2CCAI2016_video115_006.png
M2CCAI2016_video115_007.png
M2CCAI2016_video115_008.png
M2CCAI2016_video115_009.png
M2CCAI2016_video115_010.png
M2CCAI2016_video117_002.png
M2CCAI2016_video117_004.png

Dataset Structure

This dataset contains vision data from cholecystectomy surgery (gallbladder removal).

Data Fields

  • image: The PIL image of the surgery view.
  • gonogo: The (360,640) label of background (0), safe (1), and unsafe (2).
  • organs: The (360,640) label of background (0), liver (1), gallbladder (2), and hepatocystic triangle (3).

Data Splits

  • train: 785 samples (from 92 videos)
  • test: 230 samples (from 26 videos)
  • Total: 1015 samples (from 118 videos in total)

Usage

from datasets import load_dataset
train_dataset = load_dataset("BrachioLab/cholec", split="train")
test_dataset = load_dataset("BrachioLab/cholec", split="test")

Data split

To note that we randomly split the data 8:2 so that our train/test splits have the same distribution. This could have overlap with other datasets that use cholec80 and M2CAI2016. Please take the overlap into consideration when you use auxiliary data for training.

Videos in the training set: 'M2CCAI2016_video103', 'cholec80_video44', 'M2CCAI2016_video92', 'cholec80_video47', 'cholec80_video59', 'cholec80_video74', 'M2CCAI2016_video98', 'cholec80_video65', 'M2CCAI2016_video81', 'cholec80_video05', 'M2CCAI2016_video90', 'cholec80_video13', 'M2CCAI2016_video83', 'M2CCAI2016_video115', 'cholec80_video22', 'cholec80_video19', 'M2CCAI2016_video114', 'cholec80_video23', 'M2CCAI2016_video86', 'cholec80_video53', 'cholec80_video39', 'M2CCAI2016_video121', 'cholec80_video51', 'M2CCAI2016_video87', 'cholec80_video08', 'cholec80_video07', 'cholec80_video27', 'cholec80_video12', 'M2CCAI2016_video84', 'M2CCAI2016_video106', 'cholec80_video15', 'cholec80_video61', 'cholec80_video43', 'M2CCAI2016_video117', 'M2CCAI2016_video109', 'cholec80_video46', 'cholec80_video35', 'cholec80_video18', 'cholec80_video37', 'M2CCAI2016_video112', 'M2CCAI2016_video99', 'cholec80_video67', 'cholec80_video71', 'M2CCAI2016_video104', 'cholec80_video50', 'M2CCAI2016_video110', 'M2CCAI2016_video100', 'M2CCAI2016_video102', 'M2CCAI2016_video94', 'cholec80_video80', 'cholec80_video20', 'cholec80_video34', 'M2CCAI2016_video96', 'cholec80_video69', 'cholec80_video25', 'cholec80_video60', 'cholec80_video64', 'cholec80_video48', 'M2CCAI2016_video118', 'M2CCAI2016_video108', 'cholec80_video73', 'M2CCAI2016_video101', 'cholec80_video77', 'cholec80_video79', 'M2CCAI2016_video105', 'cholec80_video54', 'cholec80_video30', 'cholec80_video49', 'cholec80_video14', 'cholec80_video62', 'M2CCAI2016_video120', 'M2CCAI2016_video88', 'cholec80_video42', 'cholec80_video09', 'cholec80_video76', 'M2CCAI2016_video93', 'M2CCAI2016_video91', 'cholec80_video45', 'cholec80_video68', 'M2CCAI2016_video111', 'cholec80_video32', 'cholec80_video70', 'M2CCAI2016_video119', 'cholec80_video41', 'cholec80_video75', 'cholec80_video38', 'M2CCAI2016_video89', 'cholec80_video16', 'cholec80_video26', 'cholec80_video72', 'cholec80_video29', 'cholec80_video21'

Videos in the test set: 'cholec80_video66', 'cholec80_video56', 'cholec80_video17', 'cholec80_video55', 'M2CCAI2016_video113', 'cholec80_video06', 'cholec80_video02', 'cholec80_video78', 'cholec80_video01', 'cholec80_video40', 'cholec80_video04', 'cholec80_video11', 'M2CCAI2016_video116', 'M2CCAI2016_video95', 'cholec80_video33', 'cholec80_video57', 'cholec80_video03', 'cholec80_video28', 'cholec80_video31', 'cholec80_video52', 'cholec80_video24', 'M2CCAI2016_video107', 'cholec80_video63', 'M2CCAI2016_video97', 'cholec80_video36', 'cholec80_video58'

Ciations

For the combined gonogo and organs labels, please cite FIX:

@misc{jin2024fix,
    title={The FIX Benchmark: Extracting Features Interpretable to eXperts},
    author={Helen Jin and Shreya Havaldar and Chaehyeon Kim and Anton Xue and Weiqiu You and Helen Qu and Marco Gatti and Daniel A Hashimoto and Bhuvnesh Jain and Amin Madani and Masao Sako and Lyle Ungar and Eric Wong},
    year={2024},
    eprint={2409.13684},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Please also cite the original datasets:

Cholec80

@misc{twinanda2016endonetdeeparchitecturerecognition,
      title={EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos}, 
      author={Andru P. Twinanda and Sherif Shehata and Didier Mutter and Jacques Marescaux and Michel de Mathelin and Nicolas Padoy},
      year={2016},
      eprint={1602.03012},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1602.03012}, 
}

M2CAI2016

@misc{twinanda2016endonetdeeparchitecturerecognition,
      title={EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos}, 
      author={Andru P. Twinanda and Sherif Shehata and Didier Mutter and Jacques Marescaux and Michel de Mathelin and Nicolas Padoy},
      year={2016},
      eprint={1602.03012},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1602.03012}, 
}
@misc{stauder2017tumlapcholedatasetm2cai,
      title={The TUM LapChole dataset for the M2CAI 2016 workflow challenge}, 
      author={Ralf Stauder and Daniel Ostler and Michael Kranzfelder and Sebastian Koller and Hubertus Feußner and Nassir Navab},
      year={2017},
      eprint={1610.09278},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1610.09278}, 
}
Downloads last month
35
Edit dataset card