Dataset Viewer
Auto-converted to Parquet
regulator_locus_tag
stringclasses
178 values
regulator_symbol
stringclasses
178 values
target_locus_tag
stringlengths
7
9
target_symbol
stringlengths
2
10
peak_score
float64
1
24.7
YBL005W
PDR3
YAR035W
YAT1
18.141636
YBL005W
PDR3
YAR064W
YAR064W
18.462788
YBL005W
PDR3
YBL004W
UTP20
17.754681
YBL005W
PDR3
YBL005W
PDR3
21.73229
YBL005W
PDR3
YBL006C
LDB7
21.73229
YBL005W
PDR3
YBL011W
SCT1
16.583474
YBL005W
PDR3
YBL101C
ECM21
16.547369
YBL005W
PDR3
YBL102W
SFT2
18.961537
YBL005W
PDR3
YBL103C
RTG3
18.961537
YBL005W
PDR3
YBR007C
DSF2
17.98293
YBL005W
PDR3
YBR021W
FUR4
16.268996
YBL005W
PDR3
YBR105C
VID24
16.010801
YBL005W
PDR3
YBR106W
SND3
16.010801
YBL005W
PDR3
YBR154C
RPB5
16.6179
YBL005W
PDR3
YBR159W
IFA38
16.112816
YBL005W
PDR3
YBR177C
EHT1
15.8678
YBL005W
PDR3
YBR187W
GDT1
15.888523
YBL005W
PDR3
YBR203W
COS111
15.705279
YBL005W
PDR3
YBR222C
PCS60
17.135786
YBL005W
PDR3
YBR240C
THI2
16.2208
YBL005W
PDR3
YBR296C-A
TYC1
16.153261
YBL005W
PDR3
YBR297W
MAL33
16.153261
YBL005W
PDR3
YCL005W
LDB16
15.794836
YBL005W
PDR3
YCL025C
AGP1
16.057806
YBL005W
PDR3
YCR010C
ADY2
17.990101
YBL005W
PDR3
YCR061W
TVS1
18.522302
YBL005W
PDR3
YDL020C
RPN4
18.854139
YBL005W
PDR3
YDL078C
MDH3
16.113637
YBL005W
PDR3
YDL173W
PAR32
17.028896
YBL005W
PDR3
YDL174C
DLD1
17.028896
YBL005W
PDR3
YDL182W
LYS20
16.061155
YBL005W
PDR3
YDR011W
SNQ2
19.514344
YBL005W
PDR3
YDR012W
RPL4B
16.550481
YBL005W
PDR3
YDR025W
RPS11A
18.299132
YBL005W
PDR3
YDR028C
REG1
16.496518
YBL005W
PDR3
YDR034C
LYS14
15.898456
YBL005W
PDR3
YDR036C
EHD3
17.832312
YBL005W
PDR3
YDR037W
KRS1
17.197102
YBL005W
PDR3
YDR054C
CDC34
19.606953
YBL005W
PDR3
YDR091C
RLI1
16.779998
YBL005W
PDR3
YDR093W
DNF2
16.894618
YBL005W
PDR3
YDR111C
ALT2
15.716988
YBL005W
PDR3
YDR113C
PDS1
16.086783
YBL005W
PDR3
YDR115W
MRX14
16.086783
YBL005W
PDR3
YDR173C
ARG82
16.133824
YBL005W
PDR3
YDR174W
HMO1
16.133824
YBL005W
PDR3
YDR186C
SND1
16.934186
YBL005W
PDR3
YDR207C
UME6
17.091284
YBL005W
PDR3
YDR208W
MSS4
17.091284
YBL005W
PDR3
YDR216W
ADR1
16.790278
YBL005W
PDR3
YDR222W
YDR222W
15.62264
YBL005W
PDR3
YDR231C
COX20
16.280348
YBL005W
PDR3
YDR232W
HEM1
16.280348
YBL005W
PDR3
YDR247W
VHS1
17.494662
YBL005W
PDR3
YDR297W
SUR2
18.443679
YBL005W
PDR3
YDR368W
YPR1
17.093371
YBL005W
PDR3
YDR379C-A
SDH6
16.302092
YBL005W
PDR3
YDR380W
ARO10
16.302092
YBL005W
PDR3
YDR397C
NCB2
17.589381
YBL005W
PDR3
YDR398W
UTP5
17.589381
YBL005W
PDR3
YDR406W
PDR15
20.181622
YBL005W
PDR3
YDR481C
PHO8
16.766037
YBL005W
PDR3
YDR505C
PSP1
15.996447
YBL005W
PDR3
YDR525W-A
SNA2
16.750679
YBL005W
PDR3
YDR527W
RBA50
17.160377
YBL005W
PDR3
YEL017C-A
PMP2
17.625293
YBL005W
PDR3
YEL017W
GTT3
17.625293
YBL005W
PDR3
YEL036C
ANP1
15.780635
YBL005W
PDR3
YEL044W
IES6
16.706847
YBL005W
PDR3
YER088C
DOT6
16.857514
YBL005W
PDR3
YER094C
PUP3
16.904811
YBL005W
PDR3
YER095W
RAD51
16.904811
YBL005W
PDR3
YER130C
COM2
17.862978
YBL005W
PDR3
YER137C
YER137C
16.960763
YBL005W
PDR3
YER152C
YER152C
16.486703
YBL005W
PDR3
YER184C
TOG1
16.296299
YBL005W
PDR3
YER185W
PUG1
16.296299
YBL005W
PDR3
YFL017W-A
SMX2
16.723193
YBL005W
PDR3
YFL018C
LPD1
18.830493
YBL005W
PDR3
YFL022C
FRS2
17.800048
YBL005W
PDR3
YFL023W
BUD27
18.292467
YBL005W
PDR3
YFL024C
EPL1
18.292467
YBL005W
PDR3
YFR022W
ROG3
16.840359
YBL005W
PDR3
YFR033C
QCR6
17.551626
YBL005W
PDR3
YGL157W
ARI1
17.30462
YBL005W
PDR3
YGL179C
TOS3
16.614783
YBL005W
PDR3
YGL209W
MIG2
17.098539
YBL005W
PDR3
YGL231C
EMC4
16.396526
YBL005W
PDR3
YGR017W
YGR017W
18.11306
YBL005W
PDR3
YGR031C-A
NAG1
16.127262
YBL005W
PDR3
YGR035C
YGR035C
18.695414
YBL005W
PDR3
YGR035W-A
YGR035W-A
16.553635
YBL005W
PDR3
YGR050C
YGR050C
17.629354
YBL005W
PDR3
YGR055W
MUP1
16.567574
YBL005W
PDR3
YGR146C
ECL1
18.479841
YBL005W
PDR3
YGR146C-A
YGR146C-A
18.479841
YBL005W
PDR3
YGR161W-C
YGR161W-C
15.100422
YBL005W
PDR3
YGR180C
RNR4
16.269499
YBL005W
PDR3
YGR189C
CRH1
16.192881
YBL005W
PDR3
YGR203W
YCH1
18.097274
End of preview. Expand in Data Studio

Mahendrawada 2025

This data is taken from the Supplement of

Mahendrawada, L., Warfield, L., Donczew, R. et al. Low overlap of transcription factor DNA binding and regulatory targets. Nature 642, 796–804 (2025). https://doi.org/10.1038/s41586-025-08916-0

Please note that all column descriptions, except for those containing "locus_tag" and "symbol", are copy/pasted directly from the supplement or methods section of this paper.

Dataset Details

This repo provides three datasets:

  • genomic_features: These are the genomic features provided in Supplemental Table 2
  • chec_seq: binding location data provided in Supplemental Table 3. the peak_score is defined to be the ChEC signal around peak center' (sum of ChEC signal from -150 to +150 bp from peak summit) normalized to Drosophila spike-in control. How these scores are assigned to features isn't well described in either the supplement or Methods section, but it is reasonable to believe that it is done with HOMER.
  • rna_seq: Nascent RNA-seq differential expression data following transcription factor depletion using 4TU metabolic labeling filtered for significantly affected genes (DESeq2, padj <0.1, FC >= 1.3)

Data Structure

This dataset provides the following three parquet files

ChEC-seq

Field Description
regulator_locus_tag Systematic gene name (ORF identifier) of the transcription factor
regulator_symbol Standard gene symbol of the transcription factor
target_locus_tag Systematic gene name (ORF identifier) of the target gene
target_symbol Standard gene symbol of the target gene
peak_score ChEC signal around peak center (sum of ChEC signal from -150 to +150 bp from peak summit) normalized to Drosophila spike-in control

RNA-seq

Field Description
regulator_locus_tag Systematic gene name (ORF identifier) of the depleted transcription factor
regulator_symbol Standard gene symbol of the depleted transcription factor
target_locus_tag Systematic gene name (ORF identifier) of the differentially expressed target gene
target_symbol Standard gene symbol of the differentially expressed target gene
log2fc Log2 fold change (IAA/DMSO) for significantly affected genes (DESeq2, padj <0.1, FC >= 1.3)

Features

Field Description
gene_id Systematic gene name (ORF identifier) from SGD (https://yeastgenome.org/)
SGD_id Unique identifier for each gene from SGD (https://yeastgenome.org/)
gene_name Common name of each gene
chr Chromosome number corresponding to gene
strand Strandedness of the gene (+ or -)
start Start position of the ORF
end End position of the ORF
TSS Transcription start site based on Park et al., 2014 (doi:10.1093/nar/gkt1366)
TATA_category TATA box classification from Donczew et al., 2020 using consensus TATAWAW (doi:10.7554/eLife.50109)
expression Average signal normalized to gene length from Donczew et al., 2020 (doi:10.7554/eLife.50109)
+1 nucleosome Position of +1 nucleosome from Chereji et al., 2018 (doi:10.1186/S13059-018-1398-0)
-1 nucleosome Position of -1 nucleosome from Chereji et al., 2018 (doi:10.1186/S13059-018-1398-0)
NDR Center Center of nucleosome depleted region from Chereji et al., 2018 (doi:10.1186/S13059-018-1398-0)
NDR Width Width of nucleosome depletion region from Chereji et al., 2018 (doi:10.1186/S13059-018-1398-0)
tail-dependence Tail classification based on Mediator tail dependence from Warfield L, Donczew R et al., 2022 (doi:10.1016/j.molcel.2022.09.016)
coactivator Coactivator classification based on TFIID and/or SAGA dependence from Donczew et al., 2020 (doi:10.7554/eLife.50109)
LCID_center Genes near boundaries of chromosomal interacting domains from Swygert et al., 2020 (doi:10.1016/j.molcel.2018.11.020)
Rossi_classes Promoter classes from Rossi et al., 2021 (doi:10.1038/s41586-021-03314-8)
RP_category Ribosomal protein (RP) and ribosomal biogenesis (RiBi) gene classification from Zencir et al., 2020 (doi:10.1093/NAR/GKAA852)
binding_cluster Clusters from unsupervised K-means clustering using binary binding data of 178 transcription factors
list_of_TFS_bound List of transcription factors bound to gene promoter (-400 to +200 bp from TSS; Homer peak calling)
number_of_bound_tfs Number of transcription factors bound to each promoter
locus_tag Systematic gene identifier from yeast_genome_resources dataset
symbol Standard gene symbol from yeast_genome_resources dataset

Usage

There are three parquet files in this repo. This is a way of getting that information programmatically

from huggingface_hub import ModelCard
from pprint import pprint

card = ModelCard.load("BrentLab/hughes_2006", repo_type="dataset")

# cast to dict
card_dict = card.data.to_dict()

# Get partition information
dataset_paths_dict = {d.get("config_name"): d.get("data_files")[0].get("path") for d in card_dict.get("configs")}

pprint(dataset_paths_dict)

With the result

{'chec_seq': 'chec_mahendrawada_2025.parquet',
 'genomic_features': 'features_mahendrawada_2025.parquet',
 'rna_seq': 'rnaseq_mahendrawada_2025.parquet'}

I recommend using huggingface_hub.snapshot_download to pull the repository. After that, use your favorite method of interacting with parquet files (eg duckDB, but you could use dplyr in R or pandas, too).

from huggingface_hub import snapshot_download
import duckdb
import os

repo_id = "BrentLab/mahendrawada_2025"

# Download entire repo to local directory
repo_path = snapshot_download(
    repo_id=repo_id,
    repo_type="dataset"
)

print(f"Repository downloaded to: {repo_path}")

# Construct path to the checseq parquet file
parquet_path = os.path.join(repo_path, "chec_mahendrawada_2025.parquet")
print(f"Parquet file at: {parquet_path}")

# Connect to DuckDB and query the parquet file
conn = duckdb.connect()

query = """
SELECT * 
FROM read_parquet(?)
WHERE regulator_symbol = 'CST6'
"""

result = conn.execute(query, [parquet_path]).fetchall()
print(f"Found {len(result)} rows for CST6")
Downloads last month
84

Collection including BrentLab/mahendrawada_2025