Dataset Viewer
regulator_locus_tag
stringlengths 7
9
⌀ | regulator_symbol
stringlengths 4
9
⌀ | run_accession
stringlengths 11
11
| yeastepigenome_id
float64 8.58k
28.4k
|
---|---|---|---|
YHR047C
|
AAP1
|
SRR11466106
| 14,449 |
YHR047C
|
AAP1
|
SRR11466107
| 17,031 |
YBR236C
|
ABD1
|
SRR11466108
| 14,859 |
YKL112W
|
ABF1
|
SRR11466109
| 15,254 |
YKL112W
|
ABF1
|
SRR11466110
| 19,442 |
YKL112W
|
ABF1
|
SRR11466719
| 19,997 |
YLR131C
|
ACE2
|
SRR11466111
| 16,021 |
YLR131C
|
ACE2
|
SRR11466112
| 17,958 |
YLR304C
|
ACO1
|
SRR11466505
| 11,920 |
YAL054C
|
ACS1
|
SRR11466506
| 14,640 |
YLR153C
|
ACS2
|
SRR11466507
| 11,926 |
YLR153C
|
ACS2
|
SRR11466508
| 17,945 |
YDR448W
|
ADA2
|
SRR11466510
| 12,860 |
YDR448W
|
ADA2
|
SRR11466511
| 17,019 |
YDR448W
|
ADA2
|
SRR11466512
| 19,994 |
YNL220W
|
ADE12
|
SRR11466513
| 14,183 |
YDR226W
|
ADK1
|
SRR11466514
| 14,778 |
YJR105W
|
ADO1
|
SRR11466515
| 14,405 |
YDR216W
|
ADR1
|
SRR11466516
| 17,768 |
YPL202C
|
AFT2
|
SRR11466517
| 11,942 |
YPL202C
|
AFT2
|
SRR11466518
| 15,627 |
YOR023C
|
AHC1
|
SRR11466519
| 17,594 |
YCR082W
|
AHC2
|
SRR11466520
| 14,822 |
YOR249C
|
APC5
|
SRR11466523
| 12,021 |
YLR102C
|
APC9
|
SRR11466524
| 12,040 |
YML022W
|
APT1
|
SRR11466525
| 14,478 |
YMR042W
|
ARG80
|
SRR11466526
| 14,851 |
YML099C
|
ARG81
|
SRR11466527
| 14,850 |
YDR173C
|
ARG82
|
SRR11466528
| 12,032 |
YDR035W
|
ARO3
|
SRR11466529
| 13,467 |
YBR249C
|
ARO4
|
SRR11466530
| 13,439 |
YDR421W
|
ARO80
|
SRR11466531
| 14,469 |
YDR421W
|
ARO80
|
SRR11466532
| 14,970 |
YHR137W
|
ARO9
|
SRR11466533
| 12,865 |
YJL081C
|
ARP4
|
SRR11466534
| 14,377 |
YNL059C
|
ARP5
|
SRR11466535
| 17,950 |
YLR085C
|
ARP6
|
SRR11466536
| 17,158 |
YLR085C
|
ARP6
|
SRR11466537
| 17,582 |
YPR034W
|
ARP7
|
SRR11466538
| 12,434 |
YPR034W
|
ARP7
|
SRR11466539
| 17,800 |
YOR141C
|
ARP8
|
SRR11466540
| 12,090 |
YMR033W
|
ARP9
|
SRR11466541
| 14,374 |
YPR199C
|
ARR1
|
SRR11466542
| 14,860 |
YDR101C
|
ARX1
|
SRR11466543
| 12,845 |
YJL115W
|
ASF1
|
SRR11466544
| 17,557 |
YDL197C
|
ASF2
|
SRR11466545
| 17,802 |
YDL197C
|
ASF2
|
SRR11466546
| 20,419 |
YIL130W
|
ASG1
|
SRR11466547
| 12,453 |
YIL130W
|
ASG1
|
SRR11466548
| 28,363 |
YKL185W
|
ASH1
|
SRR11466549
| 12,024 |
YGR097W
|
ASK10
|
SRR11466550
| 12,111 |
YOR113W
|
AZF1
|
SRR11466551
| 17,773 |
YOR113W
|
AZF1
|
SRR11466552
| 19,305 |
YKR099W
|
BAS1
|
SRR11466553
| 12,018 |
YKR099W
|
BAS1
|
SRR11466554
| 15,649 |
YJR148W
|
BAT2
|
SRR11466555
| 13,440 |
YIL033C
|
BCY1
|
SRR11466556
| 17,139 |
YIL033C
|
BCY1
|
SRR11466557
| 18,464 |
YLR399C
|
BDF1
|
SRR11466558
| 12,139 |
YLR399C
|
BDF1
|
SRR11466559
| 15,630 |
YDL070W
|
BDF2
|
SRR11466560
| 12,116 |
YDL070W
|
BDF2
|
SRR11467174
| 17,013 |
YNL039W
|
BDP1
|
SRR11467175
| 12,113 |
YNL039W
|
BDP1
|
SRR11467176
| 14,278 |
YPL161C
|
BEM4
|
SRR11467177
| 12,854 |
YER016W
|
BIM1
|
SRR11467178
| 14,765 |
YER177W
|
BMH1
|
SRR11467179
| 14,769 |
YDR099W
|
BMH2
|
SRR11467180
| 13,446 |
YDL074C
|
BRE1
|
SRR11467181
| 11,752 |
YDL074C
|
BRE1
|
SRR11467182
| 13,789 |
YLR015W
|
BRE2
|
SRR11467183
| 14,798 |
YLR015W
|
BRE2
|
SRR11467184
| 17,951 |
YGR246C
|
BRF1
|
SRR11467185
| 13,145 |
YGR246C
|
BRF1
|
SRR11467186
| 15,488 |
YBL097W
|
BRN1
|
SRR11467187
| 12,943 |
YBL097W
|
BRN1
|
SRR11467188
| 17,986 |
YNR027W
|
BUD17
|
SRR11467189
| 12,870 |
YLR074C
|
BUD20
|
SRR11467190
| 13,462 |
YMR014W
|
BUD22
|
SRR11467191
| 17,145 |
YGR262C
|
BUD32
|
SRR11467192
| 14,493 |
YLR319C
|
BUD6
|
SRR11467193
| 11,903 |
YLR226W
|
BUR2
|
SRR11467194
| 12,877 |
YLR226W
|
BUR2
|
SRR11467195
| 14,631 |
YER159C
|
BUR6
|
SRR11467196
| 17,876 |
YER159C
|
BUR6
|
SRR11467197
| 19,995 |
YER159C
|
BUR6
|
SRR11467198
| 20,420 |
YKL005C
|
BYE1
|
SRR11467199
| 13,149 |
YKL005C
|
BYE1
|
SRR11467200
| 17,799 |
YML102W
|
CAC2
|
SRR11467201
| 16,029 |
YDR423C
|
CAD1
|
SRR11467202
| 14,777 |
YDR423C
|
CAD1
|
SRR11467203
| 20,421 |
YGR134W
|
CAF130
|
SRR11467205
| 12,457 |
YFL028C
|
CAF16
|
SRR11467206
| 16,544 |
YKR036C
|
CAF4
|
SRR11467207
| 17,030 |
YNL288W
|
CAF40
|
SRR11467208
| 13,158 |
YPL048W
|
CAM1
|
SRR11467209
| 11,922 |
YPL111W
|
CAR1
|
SRR11467210
| 14,757 |
YLR438W
|
CAR2
|
SRR11467211
| 12,844 |
YPL178W
|
CBC2
|
SRR11467212
| 14,357 |
YPL178W
|
CBC2
|
SRR11467213
| 14,988 |
End of preview. Expand
in Data Studio
Rossi 2021
This data is gathered from yeastepigenome.org. This work was published in
Dataset details
genome_map
is fully reprocessed data from the sequence files. I used the nf-core/chipseq pipeline, details for which can be found in scripts/
. With
those bams, I filtered the reads using samtools
and the same settings specified in Rossi et al 2021, and then counted 5' ends using bedtools. See
scripts/count_tags.sh
.
Data Structure
Metadata
Field | Description |
---|---|
regulator_locus_tag |
Systematic gene name (ORF identifier) of the transcription factor |
regulator_symbol |
Standard gene symbol of the transcription factor |
run_accession |
GEO run accession identifier for the sample |
yeastepigenome_id |
Sample identifier used by yeastepigenome.org |
Genome Map
Field | Description |
---|---|
chr |
Chromosome name, ucsc (e.g., chrI, chrII, etc.) |
pos |
Genomic position of the 5' tag |
pileup |
Depth of coverage (number of 5' tags) at this genomic position |
Usage
The entire repository is large. It may be preferable to only retrieve specific files or partitions. You can use the metadata files to choose which files to pull.
from huggingface_hub import snapshot_download
import duckdb
import os
# Download only the metadata first
repo_path = snapshot_download(
repo_id="BrentLab/rossi_2021",
repo_type="dataset",
allow_patterns="rossi_2021_metadata.parquet"
)
dataset_path = os.path.join(repo_path, "rossi_2021_metadata.parquet")
conn = duckdb.connect()
meta_res = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", [dataset_path]).df()
print(meta_res)
We might choose to take a look at the file with accession SRR11466106:
# Download only a specific sample's genome coverage data
repo_path = snapshot_download(
repo_id="BrentLab/rossi_2021",
repo_type="dataset",
allow_patterns="genome_map/accession=SRR11466106/*.parquet"
)
# Query the specific partition
dataset_path = os.path.join(repo_path, "genome_map")
result = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10",
[f"{dataset_path}/**/*.parquet"]).df()
print(result)
- Downloads last month
- 151
Size of downloaded dataset files:
8.27 GB
Size of the auto-converted Parquet files:
8.27 GB
Number of rows:
1,663,001,285
Collection including BrentLab/rossi_2021
Collection
Data collected and harmonized for the Brent lab at Washington University
•
10 items
•
Updated
•
1