Dataset Viewer
Auto-converted to Parquet
regulator_locus_tag
stringlengths
7
9
regulator_symbol
stringlengths
4
9
run_accession
stringlengths
11
11
yeastepigenome_id
float64
8.58k
28.4k
YHR047C
AAP1
SRR11466106
14,449
YHR047C
AAP1
SRR11466107
17,031
YBR236C
ABD1
SRR11466108
14,859
YKL112W
ABF1
SRR11466109
15,254
YKL112W
ABF1
SRR11466110
19,442
YKL112W
ABF1
SRR11466719
19,997
YLR131C
ACE2
SRR11466111
16,021
YLR131C
ACE2
SRR11466112
17,958
YLR304C
ACO1
SRR11466505
11,920
YAL054C
ACS1
SRR11466506
14,640
YLR153C
ACS2
SRR11466507
11,926
YLR153C
ACS2
SRR11466508
17,945
YDR448W
ADA2
SRR11466510
12,860
YDR448W
ADA2
SRR11466511
17,019
YDR448W
ADA2
SRR11466512
19,994
YNL220W
ADE12
SRR11466513
14,183
YDR226W
ADK1
SRR11466514
14,778
YJR105W
ADO1
SRR11466515
14,405
YDR216W
ADR1
SRR11466516
17,768
YPL202C
AFT2
SRR11466517
11,942
YPL202C
AFT2
SRR11466518
15,627
YOR023C
AHC1
SRR11466519
17,594
YCR082W
AHC2
SRR11466520
14,822
YOR249C
APC5
SRR11466523
12,021
YLR102C
APC9
SRR11466524
12,040
YML022W
APT1
SRR11466525
14,478
YMR042W
ARG80
SRR11466526
14,851
YML099C
ARG81
SRR11466527
14,850
YDR173C
ARG82
SRR11466528
12,032
YDR035W
ARO3
SRR11466529
13,467
YBR249C
ARO4
SRR11466530
13,439
YDR421W
ARO80
SRR11466531
14,469
YDR421W
ARO80
SRR11466532
14,970
YHR137W
ARO9
SRR11466533
12,865
YJL081C
ARP4
SRR11466534
14,377
YNL059C
ARP5
SRR11466535
17,950
YLR085C
ARP6
SRR11466536
17,158
YLR085C
ARP6
SRR11466537
17,582
YPR034W
ARP7
SRR11466538
12,434
YPR034W
ARP7
SRR11466539
17,800
YOR141C
ARP8
SRR11466540
12,090
YMR033W
ARP9
SRR11466541
14,374
YPR199C
ARR1
SRR11466542
14,860
YDR101C
ARX1
SRR11466543
12,845
YJL115W
ASF1
SRR11466544
17,557
YDL197C
ASF2
SRR11466545
17,802
YDL197C
ASF2
SRR11466546
20,419
YIL130W
ASG1
SRR11466547
12,453
YIL130W
ASG1
SRR11466548
28,363
YKL185W
ASH1
SRR11466549
12,024
YGR097W
ASK10
SRR11466550
12,111
YOR113W
AZF1
SRR11466551
17,773
YOR113W
AZF1
SRR11466552
19,305
YKR099W
BAS1
SRR11466553
12,018
YKR099W
BAS1
SRR11466554
15,649
YJR148W
BAT2
SRR11466555
13,440
YIL033C
BCY1
SRR11466556
17,139
YIL033C
BCY1
SRR11466557
18,464
YLR399C
BDF1
SRR11466558
12,139
YLR399C
BDF1
SRR11466559
15,630
YDL070W
BDF2
SRR11466560
12,116
YDL070W
BDF2
SRR11467174
17,013
YNL039W
BDP1
SRR11467175
12,113
YNL039W
BDP1
SRR11467176
14,278
YPL161C
BEM4
SRR11467177
12,854
YER016W
BIM1
SRR11467178
14,765
YER177W
BMH1
SRR11467179
14,769
YDR099W
BMH2
SRR11467180
13,446
YDL074C
BRE1
SRR11467181
11,752
YDL074C
BRE1
SRR11467182
13,789
YLR015W
BRE2
SRR11467183
14,798
YLR015W
BRE2
SRR11467184
17,951
YGR246C
BRF1
SRR11467185
13,145
YGR246C
BRF1
SRR11467186
15,488
YBL097W
BRN1
SRR11467187
12,943
YBL097W
BRN1
SRR11467188
17,986
YNR027W
BUD17
SRR11467189
12,870
YLR074C
BUD20
SRR11467190
13,462
YMR014W
BUD22
SRR11467191
17,145
YGR262C
BUD32
SRR11467192
14,493
YLR319C
BUD6
SRR11467193
11,903
YLR226W
BUR2
SRR11467194
12,877
YLR226W
BUR2
SRR11467195
14,631
YER159C
BUR6
SRR11467196
17,876
YER159C
BUR6
SRR11467197
19,995
YER159C
BUR6
SRR11467198
20,420
YKL005C
BYE1
SRR11467199
13,149
YKL005C
BYE1
SRR11467200
17,799
YML102W
CAC2
SRR11467201
16,029
YDR423C
CAD1
SRR11467202
14,777
YDR423C
CAD1
SRR11467203
20,421
YGR134W
CAF130
SRR11467205
12,457
YFL028C
CAF16
SRR11467206
16,544
YKR036C
CAF4
SRR11467207
17,030
YNL288W
CAF40
SRR11467208
13,158
YPL048W
CAM1
SRR11467209
11,922
YPL111W
CAR1
SRR11467210
14,757
YLR438W
CAR2
SRR11467211
12,844
YPL178W
CBC2
SRR11467212
14,357
YPL178W
CBC2
SRR11467213
14,988
End of preview. Expand in Data Studio

Rossi 2021

This data is gathered from yeastepigenome.org. This work was published in

Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. A high-resolution protein architecture of the budding yeast genome. Nature. 2021 Apr;592(7853):309-314. doi: 10.1038/s41586-021-03314-8. Epub 2021 Mar 10. PMID: 33692541; PMCID: PMC8035251.

Dataset details

genome_map is fully reprocessed data from the sequence files. I used the nf-core/chipseq pipeline, details for which can be found in scripts/. With those bams, I filtered the reads using samtools and the same settings specified in Rossi et al 2021, and then counted 5' ends using bedtools. See scripts/count_tags.sh.

Data Structure

Metadata

Field Description
regulator_locus_tag Systematic gene name (ORF identifier) of the transcription factor
regulator_symbol Standard gene symbol of the transcription factor
run_accession GEO run accession identifier for the sample
yeastepigenome_id Sample identifier used by yeastepigenome.org

Genome Map

Field Description
chr Chromosome name, ucsc (e.g., chrI, chrII, etc.)
pos Genomic position of the 5' tag
pileup Depth of coverage (number of 5' tags) at this genomic position

Usage

The entire repository is large. It may be preferable to only retrieve specific files or partitions. You can use the metadata files to choose which files to pull.

from huggingface_hub import snapshot_download
import duckdb
import os

# Download only the metadata first
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="rossi_2021_metadata.parquet"
)

dataset_path = os.path.join(repo_path, "rossi_2021_metadata.parquet")
conn = duckdb.connect()
meta_res = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", [dataset_path]).df()
print(meta_res)

We might choose to take a look at the file with accession SRR11466106:

# Download only a specific sample's genome coverage data
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="genome_map/accession=SRR11466106/*.parquet"
)

# Query the specific partition
dataset_path = os.path.join(repo_path, "genome_map")
result = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", 
                     [f"{dataset_path}/**/*.parquet"]).df()
print(result)
Downloads last month
151

Collection including BrentLab/rossi_2021