Datasets:
e-NatJus Technical Notes Dataset v2
Dataset Description
This dataset contains structured data extracted from technical notes produced by the e-NatJus system (Núcleo de Apoio Técnico do Judiciário), a Brazilian judicial support program that provides evidence-based technical advice on health technologies in litigation contexts.
The e-NatJus program assists judges in making informed decisions about healthcare-related lawsuits by providing technical assessments of medicines, procedures, and health products requested through the Brazilian judicial system.
Dataset Summary
- Total Records: ~500,000 technical notes
- File Size: ~539 MB (Parquet format)
- Language: Portuguese (pt-BR)
- Format: Apache Parquet
- Encoding: UTF-8
- Columns: 65 structured fields
Supported Tasks
- Healthcare technology assessment analysis
- Medical-legal text classification
- Evidence-based medicine research
- Healthcare policy analysis
- Drug and procedure recommendation systems
- Judicial decision support systems
Dataset Structure
Data Fields
The dataset contains 65 fields organized into the following categories:
1. Identification and Metadata
titulo
(str): Technical note titleidNotaTecnica
(str): Unique identifierarquivo
(str): Source HTML filenamestatus
(str): Processing status
2. Patient Data
txtIdade
(str): Patient ageselStaGenero
(str): Gender (m/f)txtCidade
(str): City/municipality
3. Legal Representative
txtNomeAdvogado
(str): Attorney nametxtNumeroOABAdvogado
(str): Bar association numberselDefensoriaPublica
(str): Public defender/prosecutor indicator
4. Procedural Data
selEsfera
(str): Judicial sphere (state/federal)txtServentia
(str): Court/jurisdiction
5. Clinical Assessment
txtCid
(str): ICD-10 diagnosis codetxtDescAvaliacaoDiagnosticoSemCID
(str): Diagnosis descriptiontxaMeioDiagRealizado
(str): Diagnostic procedures performed
6. Technology Type
selTipoTecnologia
(str): Technology type- "1": Medicine
- "2": Procedure
- "3": Product
7. Medicine-Specific Fields (when type = "1")
txtDcb
(str): Active pharmaceutical ingredienttxtDcbComercial
(str): Commercial nametxtViaAdministracao
(str): Route of administrationtxaPosologia
(str): Dosage/posology
8. Procedure-Specific Fields (when type = "2")
txtProcedimento
(str): Procedure description
9. Product-Specific Fields (when type = "3")
txtProduto
(str): Health product description
10. Regulatory Status (medicines and products only)
selRegistroAnvisa
(str): ANVISA registration (S/N)selSituacaoAnvisa
(str): Registration status (A=Valid, I=Expired)
11. SUS Availability
selDisponivelSus
(str): Available in public health system (S/N/B/X)selTabelaTecnologia
(str): Incorporation table- "R": RENAME (National Essential Medicines)
- "M": REMUME (Municipal Medicines)
- "S": SIGTAP (Procedures Table)
- "C": CIB Deliberation
- "N": None
12. Cost Information (mainly for medicines)
txtLaboratorio
(str): ManufacturertxtMarcaComercial
(str): Commercial brandtxtApresentacao
(str): Packaging/presentationtxtPrecoFabrica
(str): Factory pricetxtPrecoMaximoGoverno
(str): Maximum government pricetxtPrecoMaximoConsumidor
(str): Maximum consumer price
13. Evidence and Technical Foundation
txaEficaciaSeguranca
(str): Efficacy and safety analysistxaImpactoTecnologia
(str): Technology impact assessmentselRecomendacaoConitec
(str): CONITEC recommendation (F/D/V)selEvidenciaCientifica
(str): Scientific evidence indicator (S/N/B)txaReferencia
(str): Bibliographic references
14. Conclusion and Opinion
selConclusao
(str): Final opinion (F=Favorable, N=Unfavorable)txaConclusao
(str): Full conclusion textselAlegacaoUrgencia
(str): Urgency allegation (S/N)
15. Responsible Parties
txtNatResponsavel
(str): Technical responsibletxtInstituicaoResponsavel
(str): Responsible institutionselApoioTutoria
(str): Tutoring support indicator (S/N)origem_natjus
(str): e-NatJus origin/nucleus
16. Status and Dates
data_emissao
(str): Emission date and time (DD/MM/YYYY HH:MM:SS)status_tecnologia
(str): Technology status
17. Attachments
anexos_count
(int): Number of attachments (0-4)anexos_info
(str): JSON with attachment detailsanexo_filename
,anexo2_filename
,anexo3_filename
,anexo4_filename
(str): Individual filenamesanexo_hash
,anexo2_hash
,anexo3_hash
,anexo4_hash
(str): Download hashesanexo_download_url
,anexo2_download_url
,anexo3_download_url
,anexo4_download_url
(str): Download URLs
Data Conventions
The dataset uses the following conventions for missing or non-applicable values:
- String value: Field filled with actual content
- "NÃO_PREENCHIDO": Field exists but is empty/blank
- "NÃO_APLICÁVEL": Field does not apply to the specific technology type
- None: Parsing error or HTML element not found
Conditional Fields
Some fields are only applicable under certain conditions:
- selSituacaoAnvisa: Only when
selRegistroAnvisa = "S"
(has registration) - selTabelaTecnologia: Only when
selDisponivelSus = "S"
(available in SUS) - Medicine-specific fields: Only when
selTipoTecnologia = "1"
- Procedure-specific fields: Only when
selTipoTecnologia = "2"
- Product-specific fields: Only when
selTipoTecnologia = "3"
Data Loading
Using Polars (Recommended)
import polars as pl
# Lazy loading (memory efficient)
df = pl.scan_parquet("base_enatjus.parquet")
# Filter medicines only
medicamentos = df.filter(pl.col("selTipoTecnologia") == "1").collect()
# Count by technology type
tipo_counts = df.group_by("selTipoTecnologia").agg(
pl.count().alias("count")
).collect()
Using Pandas
import pandas as pd
# Load full dataset
df = pd.read_parquet("base_enatjus.parquet")
# Load with column selection (memory efficient)
df = pd.read_parquet(
"base_enatjus.parquet",
columns=["idNotaTecnica", "txtDcb", "selConclusao"]
)
Using DuckDB
import duckdb
# Query without loading into memory
result = duckdb.query("""
SELECT selTipoTecnologia, COUNT(*) as total
FROM 'base_enatjus.parquet'
GROUP BY selTipoTecnologia
""").to_df()
Data Quality
- Filtered content: Files with error messages were excluded:
- "Permissão negada" (Permission denied)
- "Nota Técnica não encontrada" (Technical note not found)
- "É necessário estar logado" (Login required)
- Minimum size: Files under 1000 characters were excluded
- Encoding: All files processed with UTF-8 encoding
- Parser: BeautifulSoup with 'html.parser'
Use Cases
- Healthcare Technology Assessment: Analyze patterns in clinical evidence and recommendations
- Pharmaceutical Research: Study medicine prescriptions, dosages, and availability
- Legal Analytics: Understand judicial health litigation patterns
- Evidence-Based Medicine: Research correlation between scientific evidence and recommendations
- Health Economics: Analyze pricing data and cost-effectiveness
- Public Health Policy: Assess SUS availability and incorporation of technologies
- NLP Applications: Train models for medical-legal text understanding
Limitations
- Data represents Brazilian healthcare and legal context
- Some fields may be incomplete due to original data entry practices
- Monetary values are stored as strings and may require parsing
- Attachment files are not included (only metadata)
- Temporal coverage varies (check
data_emissao
field)
Citation
If you use this dataset in your research, please cite:
@dataset{enatjus_v2_2025,
title={e-NatJus Technical Notes Dataset v2},
author={Brazilian Judicial Technical Support Program},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/BrunoDCDO/enatjus_v2}
}
License
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
You are free to:
- Share — copy and redistribute the material
- Adapt — remix, transform, and build upon the material
Under the following terms:
- Attribution — You must give appropriate credit
Contact
For questions or issues regarding this dataset, please open an issue on the Hugging Face dataset page.
Additional Resources
- Full Codebook - Detailed documentation of all fields
- Validation Report - Data quality validation
- e-NatJus Official Website: https://www.cnj.jus.br/programas-e-acoes/e-natjus/
- Downloads last month
- 12