You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

e-NatJus Technical Notes Dataset v2

Dataset Description

This dataset contains structured data extracted from technical notes produced by the e-NatJus system (Núcleo de Apoio Técnico do Judiciário), a Brazilian judicial support program that provides evidence-based technical advice on health technologies in litigation contexts.

The e-NatJus program assists judges in making informed decisions about healthcare-related lawsuits by providing technical assessments of medicines, procedures, and health products requested through the Brazilian judicial system.

Dataset Summary

  • Total Records: ~500,000 technical notes
  • File Size: ~539 MB (Parquet format)
  • Language: Portuguese (pt-BR)
  • Format: Apache Parquet
  • Encoding: UTF-8
  • Columns: 65 structured fields

Supported Tasks

  • Healthcare technology assessment analysis
  • Medical-legal text classification
  • Evidence-based medicine research
  • Healthcare policy analysis
  • Drug and procedure recommendation systems
  • Judicial decision support systems

Dataset Structure

Data Fields

The dataset contains 65 fields organized into the following categories:

1. Identification and Metadata

  • titulo (str): Technical note title
  • idNotaTecnica (str): Unique identifier
  • arquivo (str): Source HTML filename
  • status (str): Processing status

2. Patient Data

  • txtIdade (str): Patient age
  • selStaGenero (str): Gender (m/f)
  • txtCidade (str): City/municipality

3. Legal Representative

  • txtNomeAdvogado (str): Attorney name
  • txtNumeroOABAdvogado (str): Bar association number
  • selDefensoriaPublica (str): Public defender/prosecutor indicator

4. Procedural Data

  • selEsfera (str): Judicial sphere (state/federal)
  • txtServentia (str): Court/jurisdiction

5. Clinical Assessment

  • txtCid (str): ICD-10 diagnosis code
  • txtDescAvaliacaoDiagnosticoSemCID (str): Diagnosis description
  • txaMeioDiagRealizado (str): Diagnostic procedures performed

6. Technology Type

  • selTipoTecnologia (str): Technology type
    • "1": Medicine
    • "2": Procedure
    • "3": Product

7. Medicine-Specific Fields (when type = "1")

  • txtDcb (str): Active pharmaceutical ingredient
  • txtDcbComercial (str): Commercial name
  • txtViaAdministracao (str): Route of administration
  • txaPosologia (str): Dosage/posology

8. Procedure-Specific Fields (when type = "2")

  • txtProcedimento (str): Procedure description

9. Product-Specific Fields (when type = "3")

  • txtProduto (str): Health product description

10. Regulatory Status (medicines and products only)

  • selRegistroAnvisa (str): ANVISA registration (S/N)
  • selSituacaoAnvisa (str): Registration status (A=Valid, I=Expired)

11. SUS Availability

  • selDisponivelSus (str): Available in public health system (S/N/B/X)
  • selTabelaTecnologia (str): Incorporation table
    • "R": RENAME (National Essential Medicines)
    • "M": REMUME (Municipal Medicines)
    • "S": SIGTAP (Procedures Table)
    • "C": CIB Deliberation
    • "N": None

12. Cost Information (mainly for medicines)

  • txtLaboratorio (str): Manufacturer
  • txtMarcaComercial (str): Commercial brand
  • txtApresentacao (str): Packaging/presentation
  • txtPrecoFabrica (str): Factory price
  • txtPrecoMaximoGoverno (str): Maximum government price
  • txtPrecoMaximoConsumidor (str): Maximum consumer price

13. Evidence and Technical Foundation

  • txaEficaciaSeguranca (str): Efficacy and safety analysis
  • txaImpactoTecnologia (str): Technology impact assessment
  • selRecomendacaoConitec (str): CONITEC recommendation (F/D/V)
  • selEvidenciaCientifica (str): Scientific evidence indicator (S/N/B)
  • txaReferencia (str): Bibliographic references

14. Conclusion and Opinion

  • selConclusao (str): Final opinion (F=Favorable, N=Unfavorable)
  • txaConclusao (str): Full conclusion text
  • selAlegacaoUrgencia (str): Urgency allegation (S/N)

15. Responsible Parties

  • txtNatResponsavel (str): Technical responsible
  • txtInstituicaoResponsavel (str): Responsible institution
  • selApoioTutoria (str): Tutoring support indicator (S/N)
  • origem_natjus (str): e-NatJus origin/nucleus

16. Status and Dates

  • data_emissao (str): Emission date and time (DD/MM/YYYY HH:MM:SS)
  • status_tecnologia (str): Technology status

17. Attachments

  • anexos_count (int): Number of attachments (0-4)
  • anexos_info (str): JSON with attachment details
  • anexo_filename, anexo2_filename, anexo3_filename, anexo4_filename (str): Individual filenames
  • anexo_hash, anexo2_hash, anexo3_hash, anexo4_hash (str): Download hashes
  • anexo_download_url, anexo2_download_url, anexo3_download_url, anexo4_download_url (str): Download URLs

Data Conventions

The dataset uses the following conventions for missing or non-applicable values:

  • String value: Field filled with actual content
  • "NÃO_PREENCHIDO": Field exists but is empty/blank
  • "NÃO_APLICÁVEL": Field does not apply to the specific technology type
  • None: Parsing error or HTML element not found

Conditional Fields

Some fields are only applicable under certain conditions:

  • selSituacaoAnvisa: Only when selRegistroAnvisa = "S" (has registration)
  • selTabelaTecnologia: Only when selDisponivelSus = "S" (available in SUS)
  • Medicine-specific fields: Only when selTipoTecnologia = "1"
  • Procedure-specific fields: Only when selTipoTecnologia = "2"
  • Product-specific fields: Only when selTipoTecnologia = "3"

Data Loading

Using Polars (Recommended)

import polars as pl

# Lazy loading (memory efficient)
df = pl.scan_parquet("base_enatjus.parquet")

# Filter medicines only
medicamentos = df.filter(pl.col("selTipoTecnologia") == "1").collect()

# Count by technology type
tipo_counts = df.group_by("selTipoTecnologia").agg(
    pl.count().alias("count")
).collect()

Using Pandas

import pandas as pd

# Load full dataset
df = pd.read_parquet("base_enatjus.parquet")

# Load with column selection (memory efficient)
df = pd.read_parquet(
    "base_enatjus.parquet",
    columns=["idNotaTecnica", "txtDcb", "selConclusao"]
)

Using DuckDB

import duckdb

# Query without loading into memory
result = duckdb.query("""
    SELECT selTipoTecnologia, COUNT(*) as total
    FROM 'base_enatjus.parquet'
    GROUP BY selTipoTecnologia
""").to_df()

Data Quality

  • Filtered content: Files with error messages were excluded:
    • "Permissão negada" (Permission denied)
    • "Nota Técnica não encontrada" (Technical note not found)
    • "É necessário estar logado" (Login required)
  • Minimum size: Files under 1000 characters were excluded
  • Encoding: All files processed with UTF-8 encoding
  • Parser: BeautifulSoup with 'html.parser'

Use Cases

  1. Healthcare Technology Assessment: Analyze patterns in clinical evidence and recommendations
  2. Pharmaceutical Research: Study medicine prescriptions, dosages, and availability
  3. Legal Analytics: Understand judicial health litigation patterns
  4. Evidence-Based Medicine: Research correlation between scientific evidence and recommendations
  5. Health Economics: Analyze pricing data and cost-effectiveness
  6. Public Health Policy: Assess SUS availability and incorporation of technologies
  7. NLP Applications: Train models for medical-legal text understanding

Limitations

  • Data represents Brazilian healthcare and legal context
  • Some fields may be incomplete due to original data entry practices
  • Monetary values are stored as strings and may require parsing
  • Attachment files are not included (only metadata)
  • Temporal coverage varies (check data_emissao field)

Citation

If you use this dataset in your research, please cite:

@dataset{enatjus_v2_2025,
  title={e-NatJus Technical Notes Dataset v2},
  author={Brazilian Judicial Technical Support Program},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/BrunoDCDO/enatjus_v2}
}

License

This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

You are free to:

  • Share — copy and redistribute the material
  • Adapt — remix, transform, and build upon the material

Under the following terms:

  • Attribution — You must give appropriate credit

Contact

For questions or issues regarding this dataset, please open an issue on the Hugging Face dataset page.

Additional Resources

Downloads last month
12