ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
c4c7ef74-e75d-4082-85ad-b20b4f359d7d
cpp
google/quiche
cert_compressor
quiche/quic/core/crypto/cert_compressor.cc
quiche/quic/core/crypto/cert_compressor_test.cc
#include "quiche/quic/core/crypto/cert_compressor.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "zlib.h" namespace quic { namespace { static const unsigned char kCommonCertSubstrings[] = { 0x04, 0x02, 0x30, 0x00, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x25, 0x04, 0x16, 0x30, 0x14, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x03, 0x01, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x03, 0x02, 0x30, 0x5f, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x86, 0xf8, 0x42, 0x04, 0x01, 0x06, 0x06, 0x0b, 0x60, 0x86, 0x48, 0x01, 0x86, 0xfd, 0x6d, 0x01, 0x07, 0x17, 0x01, 0x30, 0x33, 0x20, 0x45, 0x78, 0x74, 0x65, 0x6e, 0x64, 0x65, 0x64, 0x20, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x53, 0x20, 0x4c, 0x69, 0x6d, 0x69, 0x74, 0x65, 0x64, 0x31, 0x34, 0x20, 0x53, 0x53, 0x4c, 0x20, 0x43, 0x41, 0x30, 0x1e, 0x17, 0x0d, 0x31, 0x32, 0x20, 0x53, 0x65, 0x63, 0x75, 0x72, 0x65, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72, 0x20, 0x43, 0x41, 0x30, 0x2d, 0x61, 0x69, 0x61, 0x2e, 0x76, 0x65, 0x72, 0x69, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x45, 0x2d, 0x63, 0x72, 0x6c, 0x2e, 0x76, 0x65, 0x72, 0x69, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x45, 0x2e, 0x63, 0x65, 0x72, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05, 0x05, 0x00, 0x03, 0x82, 0x01, 0x01, 0x00, 0x4a, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73, 0x2f, 0x63, 0x70, 0x73, 0x20, 0x28, 0x63, 0x29, 0x30, 0x30, 0x09, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x04, 0x02, 0x30, 0x00, 0x30, 0x1d, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05, 0x05, 0x00, 0x03, 0x82, 0x01, 0x01, 0x00, 0x7b, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00, 0x30, 0x82, 0x01, 0x0a, 0x02, 0x82, 0x01, 0x01, 0x00, 0xd2, 0x6f, 0x64, 0x6f, 0x63, 0x61, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x43, 0x2e, 0x63, 0x72, 0x6c, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x04, 0x16, 0x04, 0x14, 0xb4, 0x2e, 0x67, 0x6c, 0x6f, 0x62, 0x61, 0x6c, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x1d, 0x0f, 0x04, 0x04, 0x03, 0x02, 0x01, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05, 0x05, 0x00, 0x30, 0x81, 0xca, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x08, 0x13, 0x07, 0x41, 0x72, 0x69, 0x7a, 0x6f, 0x6e, 0x61, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x07, 0x13, 0x0a, 0x53, 0x63, 0x6f, 0x74, 0x74, 0x73, 0x64, 0x61, 0x6c, 0x65, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x11, 0x47, 0x6f, 0x44, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2c, 0x20, 0x49, 0x6e, 0x63, 0x2e, 0x31, 0x33, 0x30, 0x31, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x2a, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x63, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x67, 0x6f, 0x64, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x65, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x6f, 0x72, 0x79, 0x31, 0x30, 0x30, 0x2e, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x27, 0x47, 0x6f, 0x20, 0x44, 0x61, 0x64, 0x64, 0x79, 0x20, 0x53, 0x65, 0x63, 0x75, 0x72, 0x65, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x74, 0x79, 0x31, 0x11, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x05, 0x13, 0x08, 0x30, 0x37, 0x39, 0x36, 0x39, 0x32, 0x38, 0x37, 0x30, 0x1e, 0x17, 0x0d, 0x31, 0x31, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x1d, 0x0f, 0x01, 0x01, 0xff, 0x04, 0x04, 0x03, 0x02, 0x05, 0xa0, 0x30, 0x0c, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff, 0x04, 0x02, 0x30, 0x00, 0x30, 0x1d, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff, 0x04, 0x05, 0x30, 0x03, 0x01, 0x01, 0x00, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x25, 0x04, 0x16, 0x30, 0x14, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x03, 0x01, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x03, 0x02, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x1d, 0x0f, 0x01, 0x01, 0xff, 0x04, 0x04, 0x03, 0x02, 0x05, 0xa0, 0x30, 0x33, 0x06, 0x03, 0x55, 0x1d, 0x1f, 0x04, 0x2c, 0x30, 0x2a, 0x30, 0x28, 0xa0, 0x26, 0xa0, 0x24, 0x86, 0x22, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x63, 0x72, 0x6c, 0x2e, 0x67, 0x6f, 0x64, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x64, 0x73, 0x31, 0x2d, 0x32, 0x30, 0x2a, 0x30, 0x28, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x02, 0x01, 0x16, 0x1c, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x76, 0x65, 0x72, 0x69, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x63, 0x70, 0x73, 0x30, 0x34, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x5a, 0x17, 0x0d, 0x31, 0x33, 0x30, 0x35, 0x30, 0x39, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0x86, 0x2d, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x73, 0x30, 0x39, 0x30, 0x37, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x02, 0x30, 0x44, 0x06, 0x03, 0x55, 0x1d, 0x20, 0x04, 0x3d, 0x30, 0x3b, 0x30, 0x39, 0x06, 0x0b, 0x60, 0x86, 0x48, 0x01, 0x86, 0xf8, 0x45, 0x01, 0x07, 0x17, 0x06, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x47, 0x42, 0x31, 0x1b, 0x53, 0x31, 0x17, 0x30, 0x15, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x0e, 0x56, 0x65, 0x72, 0x69, 0x53, 0x69, 0x67, 0x6e, 0x2c, 0x20, 0x49, 0x6e, 0x63, 0x2e, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x16, 0x56, 0x65, 0x72, 0x69, 0x53, 0x69, 0x67, 0x6e, 0x20, 0x54, 0x72, 0x75, 0x73, 0x74, 0x20, 0x4e, 0x65, 0x74, 0x77, 0x6f, 0x72, 0x6b, 0x31, 0x3b, 0x30, 0x39, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x32, 0x54, 0x65, 0x72, 0x6d, 0x73, 0x20, 0x6f, 0x66, 0x20, 0x75, 0x73, 0x65, 0x20, 0x61, 0x74, 0x20, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x76, 0x65, 0x72, 0x69, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x70, 0x61, 0x20, 0x28, 0x63, 0x29, 0x30, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x07, 0x13, 0x07, 0x53, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x0a, 0x47, 0x31, 0x13, 0x30, 0x11, 0x06, 0x0b, 0x2b, 0x06, 0x01, 0x04, 0x01, 0x82, 0x37, 0x3c, 0x02, 0x01, 0x03, 0x13, 0x02, 0x55, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03, 0x55, 0x04, 0x03, 0x14, 0x31, 0x19, 0x30, 0x17, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x31, 0x1d, 0x30, 0x1b, 0x06, 0x03, 0x55, 0x04, 0x0f, 0x13, 0x14, 0x50, 0x72, 0x69, 0x76, 0x61, 0x74, 0x65, 0x20, 0x4f, 0x72, 0x67, 0x61, 0x6e, 0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x31, 0x12, 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x18, 0x44, 0x6f, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x20, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x65, 0x64, 0x31, 0x14, 0x31, 0x31, 0x30, 0x2f, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x28, 0x53, 0x65, 0x65, 0x20, 0x77, 0x77, 0x77, 0x2e, 0x72, 0x3a, 0x2f, 0x2f, 0x73, 0x65, 0x63, 0x75, 0x72, 0x65, 0x2e, 0x67, 0x47, 0x6c, 0x6f, 0x62, 0x61, 0x6c, 0x53, 0x69, 0x67, 0x6e, 0x31, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72, 0x43, 0x41, 0x2e, 0x63, 0x72, 0x6c, 0x56, 0x65, 0x72, 0x69, 0x53, 0x69, 0x67, 0x6e, 0x20, 0x43, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x33, 0x20, 0x45, 0x63, 0x72, 0x6c, 0x2e, 0x67, 0x65, 0x6f, 0x74, 0x72, 0x75, 0x73, 0x74, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x63, 0x72, 0x6c, 0x73, 0x2f, 0x73, 0x64, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x45, 0x56, 0x49, 0x6e, 0x74, 0x6c, 0x2d, 0x63, 0x63, 0x72, 0x74, 0x2e, 0x67, 0x77, 0x77, 0x77, 0x2e, 0x67, 0x69, 0x63, 0x65, 0x72, 0x74, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x31, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x76, 0x65, 0x72, 0x69, 0x73, 0x69, 0x67, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x39, 0x72, 0x61, 0x70, 0x69, 0x64, 0x73, 0x73, 0x6c, 0x2e, 0x63, 0x6f, 0x73, 0x2e, 0x67, 0x6f, 0x64, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x65, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x6f, 0x72, 0x79, 0x2f, 0x30, 0x81, 0x80, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x01, 0x01, 0x04, 0x74, 0x30, 0x72, 0x30, 0x24, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x18, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x67, 0x6f, 0x64, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x30, 0x4a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0x86, 0x3e, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x63, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x73, 0x2e, 0x67, 0x6f, 0x64, 0x61, 0x64, 0x64, 0x79, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x72, 0x65, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x6f, 0x72, 0x79, 0x2f, 0x67, 0x64, 0x5f, 0x69, 0x6e, 0x74, 0x65, 0x72, 0x6d, 0x65, 0x64, 0x69, 0x61, 0x74, 0x65, 0x2e, 0x63, 0x72, 0x74, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x1d, 0x23, 0x04, 0x18, 0x30, 0x16, 0x80, 0x14, 0xfd, 0xac, 0x61, 0x32, 0x93, 0x6c, 0x45, 0xd6, 0xe2, 0xee, 0x85, 0x5f, 0x9a, 0xba, 0xe7, 0x76, 0x99, 0x68, 0xcc, 0xe7, 0x30, 0x27, 0x86, 0x29, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x63, 0x86, 0x30, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x73, }; struct CertEntry { public: enum Type { COMPRESSED = 1, CACHED = 2, }; Type type; uint64_t hash; uint64_t set_hash; uint32_t index; }; std::vector<CertEntry> MatchCerts(const std::vector<std::string>& certs, absl::string_view client_cached_cert_hashes) { std::vector<CertEntry> entries; entries.reserve(certs.size()); const bool cached_valid = client_cached_cert_hashes.size() % sizeof(uint64_t) == 0 && !client_cached_cert_hashes.empty(); for (auto i = certs.begin(); i != certs.end(); ++i) { CertEntry entry; if (cached_valid) { bool cached = false; uint64_t hash = QuicUtils::FNV1a_64_Hash(*i); for (size_t j = 0; j < client_cached_cert_hashes.size(); j += sizeof(uint64_t)) { uint64_t cached_hash; memcpy(&cached_hash, client_cached_cert_hashes.data() + j, sizeof(uint64_t)); if (hash != cached_hash) { continue; } entry.type = CertEntry::CACHED; entry.hash = hash; entries.push_back(entry); cached = true; break; } if (cached) { continue; } } entry.type = CertEntry::COMPRESSED; entries.push_back(entry); } return entries; } size_t CertEntriesSize(const std::vector<CertEntry>& entries) { size_t entries_size = 0; for (auto i = entries.begin(); i != entries.end(); ++i) { entries_size++; switch (i->type) { case CertEntry::COMPRESSED: break; case CertEntry::CACHED: entries_size += sizeof(uint64_t); break; } } entries_size++; return entries_size; } void SerializeCertEntries(uint8_t* out, const std::vector<CertEntry>& entries) { for (auto i = entries.begin(); i != entries.end(); ++i) { *out++ = static_cast<uint8_t>(i->type); switch (i->type) { case CertEntry::COMPRESSED: break; case CertEntry::CACHED: memcpy(out, &i->hash, sizeof(i->hash)); out += sizeof(uint64_t); break; } } *out++ = 0; } std::string ZlibDictForEntries(const std::vector<CertEntry>& entries, const std::vector<std::string>& certs) { std::string zlib_dict; size_t zlib_dict_size = 0; for (size_t i = certs.size() - 1; i < certs.size(); i--) { if (entries[i].type != CertEntry::COMPRESSED) { zlib_dict_size += certs[i].size(); } } zlib_dict_size += sizeof(kCommonCertSubstrings); zlib_dict.reserve(zlib_dict_size); for (size_t i = certs.size() - 1; i < certs.size(); i--) { if (entries[i].type != CertEntry::COMPRESSED) { zlib_dict += certs[i]; } } zlib_dict += std::string(reinterpret_cast<const char*>(kCommonCertSubstrings), sizeof(kCommonCertSubstrings)); QUICHE_DCHECK_EQ(zlib_dict.size(), zlib_dict_size); return zlib_dict; } std::vector<uint64_t> HashCerts(const std::vector<std::string>& certs) { std::vector<uint64_t> ret; ret.reserve(certs.size()); for (auto i = certs.begin(); i != certs.end(); ++i) { ret.push_back(QuicUtils::FNV1a_64_Hash(*i)); } return ret; } bool ParseEntries(absl::string_view* in_out, const std::vector<std::string>& cached_certs, std::vector<CertEntry>* out_entries, std::vector<std::string>* out_certs) { absl::string_view in = *in_out; std::vector<uint64_t> cached_hashes; out_entries->clear(); out_certs->clear(); for (;;) { if (in.empty()) { return false; } CertEntry entry; const uint8_t type_byte = in[0]; in.remove_prefix(1); if (type_byte == 0) { break; } entry.type = static_cast<CertEntry::Type>(type_byte); switch (entry.type) { case CertEntry::COMPRESSED: out_certs->push_back(std::string()); break; case CertEntry::CACHED: { if (in.size() < sizeof(uint64_t)) { return false; } memcpy(&entry.hash, in.data(), sizeof(uint64_t)); in.remove_prefix(sizeof(uint64_t)); if (cached_hashes.size() != cached_certs.size()) { cached_hashes = HashCerts(cached_certs); } bool found = false; for (size_t i = 0; i < cached_hashes.size(); i++) { if (cached_hashes[i] == entry.hash) { out_certs->push_back(cached_certs[i]); found = true; break; } } if (!found) { return false; } break; } default: return false; } out_entries->push_back(entry); } *in_out = in; return true; } class ScopedZLib { public: enum Type { INFLATE, DEFLATE, }; explicit ScopedZLib(Type type) : z_(nullptr), type_(type) {} void reset(z_stream* z) { Clear(); z_ = z; } ~ScopedZLib() { Clear(); } private: void Clear() { if (!z_) { return; } if (type_ == DEFLATE) { deflateEnd(z_); } else { inflateEnd(z_); } z_ = nullptr; } z_stream* z_; const Type type_; }; } std::string CertCompressor::CompressChain( const std::vector<std::string>& certs, absl::string_view client_cached_cert_hashes) { const std::vector<CertEntry> entries = MatchCerts(certs, client_cached_cert_hashes); QUICHE_DCHECK_EQ(entries.size(), certs.size()); size_t uncompressed_size = 0; for (size_t i = 0; i < entries.size(); i++) { if (entries[i].type == CertEntry::COMPRESSED) { uncompressed_size += 4 + certs[i].size(); } } size_t compressed_size = 0; z_stream z; ScopedZLib scoped_z(ScopedZLib::DEFLATE); if (uncompressed_size > 0) { memset(&z, 0, sizeof(z)); int rv = deflateInit(&z, Z_DEFAULT_COMPRESSION); QUICHE_DCHECK_EQ(Z_OK, rv); if (rv != Z_OK) { return ""; } scoped_z.reset(&z); std::string zlib_dict = ZlibDictForEntries(entries, certs); rv = deflateSetDictionary( &z, reinterpret_cast<const uint8_t*>(&zlib_dict[0]), zlib_dict.size()); QUICHE_DCHECK_EQ(Z_OK, rv); if (rv != Z_OK) { return ""; } compressed_size = deflateBound(&z, uncompressed_size); } const size_t entries_size = CertEntriesSize(entries); std::string result; result.resize(entries_size + (uncompressed_size > 0 ? 4 : 0) + compressed_size); uint8_t* j = reinterpret_cast<uint8_t*>(&result[0]); SerializeCertEntries(j, entries); j += entries_size; if (uncompressed_size == 0) { return result; } uint32_t uncompressed_size_32 = uncompressed_size; memcpy(j, &uncompressed_size_32, sizeof(uint32_t)); j += sizeof(uint32_t); int rv; z.next_out = j; z.avail_out = compressed_size; for (size_t i = 0; i < certs.size(); i++) { if (entries[i].type != CertEntry::COMPRESSED) { continue; } uint32_t length32 = certs[i].size(); z.next_in = reinterpret_cast<uint8_t*>(&length32); z.avail_in = sizeof(length32); rv = deflate(&z, Z_NO_FLUSH); QUICHE_DCHECK_EQ(Z_OK, rv); QUICHE_DCHECK_EQ(0u, z.avail_in); if (rv != Z_OK || z.avail_in) { return ""; } z.next_in = const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(certs[i].data())); z.avail_in = certs[i].size(); rv = deflate(&z, Z_NO_FLUSH); QUICHE_DCHECK_EQ(Z_OK, rv); QUICHE_DCHECK_EQ(0u, z.avail_in); if (rv != Z_OK || z.avail_in) { return ""; } } z.avail_in = 0; rv = deflate(&z, Z_FINISH); QUICHE_DCHECK_EQ(Z_STREAM_END, rv); if (rv != Z_STREAM_END) { return ""; } result.resize(result.size() - z.avail_out); return result; } bool CertCompressor::DecompressChain( absl::string_view in, const std::vector<std::string>& cached_certs, std::vector<std::string>* out_certs) { std::vector<CertEntry> entries; if (!ParseEntries(&in, cached_certs, &entries, out_certs)) { return false; } QUICHE_DCHECK_EQ(entries.size(), out_certs->size()); std::unique_ptr<uint8_t[]> uncompressed_data; absl::string_view uncompressed; if (!in.empty()) { if (in.size() < sizeof(uint32_t)) { return false; } uint32_t uncompressed_size; memcpy(&uncompressed_size, in.data(), sizeof(uncompressed_size)); in.remove_prefix(sizeof(uint32_t)); if (uncompressed_size > 128 * 1024) { return false; } uncompressed_data = std::make_unique<uint8_t[]>(uncompressed_size); z_stream z; ScopedZLib scoped_z(ScopedZLib::INFLATE); memset(&z, 0, sizeof(z)); z.next_out = uncompressed_data.get(); z.avail_out = uncompressed_size; z.next_in = const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(in.data())); z.avail_in = in.size(); if (Z_OK != inflateInit(&z)) { return false; } scoped_z.reset(&z); int rv = inflate(&z, Z_FINISH); if (rv == Z_NEED_DICT) { std::string zlib_dict = ZlibDictForEntries(entries, *out_certs); const uint8_t* dict = reinterpret_cast<const uint8_t*>(zlib_dict.data()); if (Z_OK != inflateSetDictionary(&z, dict, zlib_dict.size())) { return false; } rv = inflate(&z, Z_FINISH); } if (Z_STREAM_END != rv || z.avail_out > 0 || z.avail_in > 0) { return false; } uncompressed = absl::string_view( reinterpret_cast<char*>(uncompressed_data.get()), uncompressed_size); } for (size_t i = 0; i < entries.size(); i++) { switch (entries[i].type) { case CertEntry::COMPRESSED: if (uncompressed.size() < sizeof(uint32_t)) { return false; } uint32_t cert_len; memcpy(&cert_len, uncompressed.data(), sizeof(cert_len)); uncompressed.remove_prefix(sizeof(uint32_t)); if (uncompressed.size() < cert_len) { return false; } (*out_certs)[i] = std::string(uncompressed.substr(0, cert_len)); uncompressed.remove_prefix(cert_len); break; case CertEntry::CACHED: break; } } if (!uncompressed.empty()) { return false; } return true; } }
#include "quiche/quic/core/crypto/cert_compressor.h" #include <memory> #include <string> #include <vector> #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" namespace quic { namespace test { class CertCompressorTest : public QuicTest {}; TEST_F(CertCompressorTest, EmptyChain) { std::vector<std::string> chain; const std::string compressed = CertCompressor::CompressChain(chain, absl::string_view()); EXPECT_EQ("00", absl::BytesToHexString(compressed)); std::vector<std::string> chain2, cached_certs; ASSERT_TRUE( CertCompressor::DecompressChain(compressed, cached_certs, &chain2)); EXPECT_EQ(chain.size(), chain2.size()); } TEST_F(CertCompressorTest, Compressed) { std::vector<std::string> chain; chain.push_back("testcert"); const std::string compressed = CertCompressor::CompressChain(chain, absl::string_view()); ASSERT_GE(compressed.size(), 2u); EXPECT_EQ("0100", absl::BytesToHexString(compressed.substr(0, 2))); std::vector<std::string> chain2, cached_certs; ASSERT_TRUE( CertCompressor::DecompressChain(compressed, cached_certs, &chain2)); EXPECT_EQ(chain.size(), chain2.size()); EXPECT_EQ(chain[0], chain2[0]); } TEST_F(CertCompressorTest, Common) { std::vector<std::string> chain; chain.push_back("testcert"); static const uint64_t set_hash = 42; const std::string compressed = CertCompressor::CompressChain( chain, absl::string_view(reinterpret_cast<const char*>(&set_hash), sizeof(set_hash))); ASSERT_GE(compressed.size(), 2u); EXPECT_EQ("0100", absl::BytesToHexString(compressed.substr(0, 2))); std::vector<std::string> chain2, cached_certs; ASSERT_TRUE( CertCompressor::DecompressChain(compressed, cached_certs, &chain2)); EXPECT_EQ(chain.size(), chain2.size()); EXPECT_EQ(chain[0], chain2[0]); } TEST_F(CertCompressorTest, Cached) { std::vector<std::string> chain; chain.push_back("testcert"); uint64_t hash = QuicUtils::FNV1a_64_Hash(chain[0]); absl::string_view hash_bytes(reinterpret_cast<char*>(&hash), sizeof(hash)); const std::string compressed = CertCompressor::CompressChain(chain, hash_bytes); EXPECT_EQ("02" + absl::BytesToHexString(hash_bytes) + "00" , absl::BytesToHexString(compressed)); std::vector<std::string> cached_certs, chain2; cached_certs.push_back(chain[0]); ASSERT_TRUE( CertCompressor::DecompressChain(compressed, cached_certs, &chain2)); EXPECT_EQ(chain.size(), chain2.size()); EXPECT_EQ(chain[0], chain2[0]); } TEST_F(CertCompressorTest, BadInputs) { std::vector<std::string> cached_certs, chain; EXPECT_FALSE(CertCompressor::DecompressChain( absl::BytesToHexString("04") , cached_certs, &chain)); EXPECT_FALSE(CertCompressor::DecompressChain( absl::BytesToHexString("01") , cached_certs, &chain)); EXPECT_FALSE(CertCompressor::DecompressChain( absl::BytesToHexString("0200") , cached_certs, &chain)); EXPECT_FALSE(CertCompressor::DecompressChain( absl::BytesToHexString("0300") , cached_certs, &chain)); EXPECT_FALSE( CertCompressor::DecompressChain(absl::BytesToHexString("03" "0000000000000000" "00000000"), cached_certs, &chain)); EXPECT_FALSE( CertCompressor::DecompressChain(absl::BytesToHexString("03" "a200000000000000" "00000000"), cached_certs, &chain)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/cert_compressor.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/cert_compressor_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
50095472-91e4-4cbb-baa3-ba1f4cebcf97
cpp
tensorflow/tensorflow
collective_param_resolver_local
tensorflow/core/common_runtime/collective_param_resolver_local.cc
tensorflow/core/common_runtime/collective_param_resolver_local_test.cc
#include "tensorflow/core/common_runtime/collective_param_resolver_local.h" #include <stddef.h> #include <algorithm> #include <tuple> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { CollectiveParamResolverLocal::CollectiveParamResolverLocal( const ConfigProto& config, const DeviceMgr* dev_mgr, DeviceResolverInterface* dev_resolver, NcclCommunicatorInterface* nccl_communicator, const string& task_name) : nccl_(config.experimental().collective_nccl()), dev_mgr_(dev_mgr), dev_resolver_(dev_resolver), nccl_communicator_(nccl_communicator), task_name_(task_name), gpu_ring_order_( config.gpu_options().experimental().collective_ring_order()) {} void CollectiveParamResolverLocal::CompleteGroupAsync( const DeviceAttributes& device, CollGroupParams* group_params, CancellationManager* cancel_mgr, const StatusCallback& done) { CompleteGroupLocal(device, group_params, cancel_mgr, done); } namespace { const char* GetCollectiveName(const CollectiveParams* cp, bool nccl) { switch (cp->instance.type) { case BROADCAST_COLLECTIVE: return nccl ? "NcclBroadcast" : "HierarchicalTreeBroadcast"; case REDUCTION_COLLECTIVE: return nccl ? "NcclReduce" : "RingReduce"; case GATHER_COLLECTIVE: return nccl ? "NcclGather" : "RingGather"; case PERMUTE_COLLECTIVE: return "Permute"; case ALL_TO_ALL_COLLECTIVE: return nccl ? "NcclAllToAll" : "AllToAll"; case REDUCE_SCATTER_COLLECTIVE: return nccl ? "NcclReduceScatter" : "undef"; default: return "undef"; } } string TaskNameFromDeviceName(const string& device_name) { DeviceNameUtils::ParsedName parsed_device; CHECK(DeviceNameUtils::ParseFullName(device_name, &parsed_device)); string task_name; CHECK(DeviceNameUtils::GetTaskName(parsed_device, &task_name)); return task_name; } struct RankFormatter { void operator()(std::string* out, CollGroupMember m) const { out->append(std::to_string(m.rank)); } }; Status CheckUserSpecifiedRanks(const std::vector<CollGroupMember> members) { absl::flat_hash_set<int> user_ranks = {}; bool at_least_one_member_with_no_rank = false; bool at_least_one_member_with_user_rank = false; for (const auto& m : members) { if (m.rank == -1) { at_least_one_member_with_no_rank = true; } else { at_least_one_member_with_user_rank = true; user_ranks.insert(m.rank); } } auto received_ranks = absl::StrJoin(members, ",", RankFormatter()); if (at_least_one_member_with_no_rank && at_least_one_member_with_user_rank) { return errors::InvalidArgument( "Only part of the group members have user given rank specified.", "Received ranks: ", received_ranks); } if (at_least_one_member_with_user_rank && user_ranks.size() < members.size()) { return errors::InvalidArgument( "Duplicate ranks specified for group members. Received ranks: ", received_ranks); } return absl::OkStatus(); } } void CollectiveParamResolverLocal::CompleteGroupLocal( const DeviceAttributes& device, CollGroupParams* group_params, CancellationManager* cancel_mgr, StatusCallback done) { VLOG(1) << "CompleteGroup device=" << device.name() << ": " << group_params->ToString(); std::vector<StatusCallback> to_be_called; GroupRec* gr = nullptr; Status status; { mutex_lock l(group_mu_); auto it = group_table_.find(group_params->group_key); if (it == group_table_.end()) { gr = new GroupRec; mutex_lock grl(gr->mu); gr->group.group_key = group_params->group_key; gr->group.group_size = group_params->group_size; gr->group.device_type = group_params->device_type; if (nccl_communicator_ != nullptr) { gr->group.runtime_details.communicator_key = nccl_communicator_->GenerateCommunicatorKey(); } group_table_[gr->group.group_key].reset(gr); VLOG(2) << "New group_key=" << gr->group.group_key << " group_size=" << gr->group.group_size << " runtime_details=" << gr->group.runtime_details.ToString(); } else { gr = it->second.get(); } } { mutex_lock l(status_mu_); status = status_; } if (!status.ok()) { done(status); return; } if (cancel_mgr != nullptr) { CancellationToken token = cancel_mgr->get_cancellation_token(); bool is_cancelled = !cancel_mgr->RegisterCallback( token, std::bind(&CollectiveParamResolverLocal::CancelGroup, this, group_params->group_key)); if (is_cancelled) { done(errors::Cancelled("CompleteGroup is cancelled before it starts")); return; } done = [cancel_mgr, token, original_done = std::move(done)](const Status& status) { cancel_mgr->TryDeregisterCallback(token); original_done(status); }; } { mutex_lock gr_lock(gr->mu); VLOG(2) << "gr device_type=" << gr->group.device_type << " cp device_type=" << group_params->device_type << " current device=" << device.name(); if (gr->status.ok()) { if (group_params->device_type != gr->group.device_type) { gr->status = errors::Internal( "Device ", device.name(), " is joining a group with incompatible device type", gr->group.device_type.type_string(), " (group_key=", gr->group.group_key, ")"); } else if (group_params->group_size != gr->group.group_size) { gr->status = errors::Internal( "Device ", device.name(), " is joining a group with size", group_params->group_size, ", but that group has size ", gr->group.group_size, " (group_key=", gr->group.group_key, ")"); } } bool new_device = false; if (gr->status.ok()) { auto it = gr->incarnations_by_device_name.find(device.name()); if (it == gr->incarnations_by_device_name.end()) { if (gr->group.members.size() == gr->group.group_size) { gr->status = errors::Internal("Device ", device.name(), " is joining a group that is already full", " (group_key=", gr->group.group_key, ")"); } else { gr->incarnations_by_device_name[device.name()] = device.incarnation(); CollGroupMember member; member.device = device; if (group_params->user_specified_rank == -1 || (group_params->user_specified_rank >= 0 && group_params->user_specified_rank < gr->group.group_size)) { member.rank = group_params->user_specified_rank; } else { gr->status = errors::InvalidArgument( "User Provided rank is invalid. It should be between [0, " "group_size)"); } gr->group.members.push_back(std::move(member)); new_device = true; if (VLOG_IS_ON(1)) { string dev_buf; for (const auto& m : gr->group.members) { strings::StrAppend(&dev_buf, ",", m.device.name()); } VLOG(1) << "CompleteGroupLocal group_key=" << gr->group.group_key << " group_size=" << gr->group.group_size << " (current" << " devices)=(" << dev_buf << ") (number of" << " devices pending)=" << (gr->group.group_size - gr->group.members.size()); } } } else { if (it->second != device.incarnation()) { gr->status = errors::FailedPrecondition( "Device ", device.name(), " current incarnation doesn't match with one in the group. This " "usually means this worker has restarted but the collective " "leader hasn't, or this worker connects to a wrong cluster."); } } } if (gr->status.ok()) { VLOG(2) << "group_size " << gr->group.group_size << " set size " << gr->group.members.size() << " gr " << gr; if (gr->group.members.size() < gr->group.group_size) { gr->pending_done.push_back(std::move(done)); gr->pending_params.push_back(group_params); return; } CHECK_EQ(gr->group.members.size(), gr->group.group_size); auto st = CheckUserSpecifiedRanks(gr->group.members); if (!st.ok()) { gr->status = st; } if (new_device) { FinishGroup(gr); } *group_params = gr->group; for (auto* params : gr->pending_params) { *params = gr->group; } } to_be_called.swap(gr->pending_done); gr->pending_params.clear(); status = gr->status; } done(status); for (int i = 0; i < to_be_called.size(); ++i) { to_be_called[i](status); } } namespace { struct DevRec { string task; string device; int original_rank; int local_rank; int global_rank; const DeviceLocality* locality; }; typedef std::unordered_map<string, DevRec> TaskDeviceMap; typedef std::unordered_map<string, TaskDeviceMap> GlobalDeviceMap; GlobalDeviceMap BuildDevRecs(const CollGroupParams& gp) { GlobalDeviceMap gdm; CHECK_EQ(gp.members.size(), gp.members.size()); for (int i = 0; i < gp.members.size(); ++i) { TaskDeviceMap& tdm = gdm[gp.members[i].task]; DevRec* dr = &tdm[gp.members[i].device.name()]; dr->task = gp.members[i].task; dr->device = gp.members[i].device.name(); dr->original_rank = i; dr->local_rank = 0; dr->global_rank = 0; dr->locality = &gp.members[i].device.locality(); } return gdm; } bool ParseRingOrder(const string& gpu_ring_order_str, TaskDeviceMap* tdm) { std::vector<string> split_gpu_ring_order_str = str_util::Split(gpu_ring_order_str, ','); if (split_gpu_ring_order_str.size() != tdm->size()) return false; gtl::FlatMap<int32, int32> gpu_ranks; for (int32_t rank = 0; rank < static_cast<int32>(split_gpu_ring_order_str.size()); ++rank) { int32_t tmp; if (strings::safe_strto32(split_gpu_ring_order_str[rank], &tmp)) { gpu_ranks[tmp] = rank; } else { return false; } } for (auto& tdm_it : *tdm) { DeviceNameUtils::ParsedName parsed_name; DevRec* dr = &tdm_it.second; if (!DeviceNameUtils::ParseFullName(dr->device, &parsed_name)) { return false; } auto rank_it = gpu_ranks.find(parsed_name.id); if (rank_it == gpu_ranks.end()) return false; dr->local_rank = rank_it->second; } VLOG(2) << "Assigned local ranks based on ring order " << gpu_ring_order_str; return true; } void OrderTaskDeviceMap(const string& gpu_ring_order, TaskDeviceMap* tdm) { CHECK_GT(tdm->size(), 0); if (ParseRingOrder(gpu_ring_order, tdm)) return; int least_rank = -1; string next_device; std::set<string> selected; for (const auto& it : *tdm) { if (least_rank < 0 || it.second.original_rank < least_rank) { least_rank = it.second.original_rank; next_device = it.second.device; } } CHECK_GE(least_rank, 0); DeviceNameUtils::ParsedName parsed_name; CHECK(DeviceNameUtils::ParseFullName(next_device, &parsed_name)); int next_rank = 0; while (true) { selected.insert(next_device); auto next_dev_it = tdm->find(next_device); CHECK(next_dev_it != tdm->end()); DevRec* dr = &next_dev_it->second; dr->local_rank = next_rank; ++next_rank; if (selected.size() == tdm->size()) { break; } const InterconnectLink* best_link = nullptr; if (parsed_name.type == "GPU") { for (const InterconnectLink& il : dr->locality->links().link()) { parsed_name.id = il.device_id(); string endpoint_device = DeviceNameUtils::ParsedNameToString(parsed_name); if (selected.find(endpoint_device) != selected.end()) { continue; } if (tdm->find(endpoint_device) == tdm->end()) { continue; } if (best_link == nullptr || il.strength() > best_link->strength()) { best_link = &il; } } } if (best_link != nullptr) { parsed_name.id = best_link->device_id(); next_device = DeviceNameUtils::ParsedNameToString(parsed_name); } else { least_rank = -1; for (const auto& it : *tdm) { if (selected.find(it.second.device) != selected.end()) { continue; } if (least_rank < 0 || it.second.original_rank < least_rank) { least_rank = it.second.original_rank; next_device = it.second.device; } } CHECK_GE(least_rank, 0); } } } GlobalDeviceMap EstablishGlobalRank(const CollGroupParams& gp, const string& gpu_ring_order) { VLOG(1) << "EstablishGlobalRank"; GlobalDeviceMap gdm = BuildDevRecs(gp); for (auto& iter : gdm) { TaskDeviceMap& tdm = iter.second; OrderTaskDeviceMap(gpu_ring_order, &tdm); } std::set<string> tasks; for (const CollGroupMember& member : gp.members) { tasks.insert(member.task); } int next_rank = 0; for (const string& task : tasks) { TaskDeviceMap* tdm = &gdm[task]; for (auto& it : *tdm) { it.second.global_rank = it.second.local_rank + next_rank; } next_rank += tdm->size(); } return gdm; } void SetDevPerTask(CollGroupParams* gp) { gp->num_devices_per_task.clear(); for (const CollGroupMember& member : gp->members) { gp->num_devices_per_task[member.task]++; } gp->same_num_devices_per_task = false; int dev_per_task = -1; for (const auto& task_dev : gp->num_devices_per_task) { if (dev_per_task == -1) { dev_per_task = task_dev.second; } else if (dev_per_task != task_dev.second) { return; } } gp->same_num_devices_per_task = true; } } void CollectiveParamResolverLocal::FinishGroup(GroupRec* gr) { for (CollGroupMember& member : gr->group.members) { member.task = TaskNameFromDeviceName(member.device.name()); member.is_local = member.task == task_name_; } CompleteDefaultRanking(&gr->group); SetDevPerTask(&gr->group); gr->group.num_tasks = static_cast<int32>(gr->group.num_devices_per_task.size()); } void CollectiveParamResolverLocal::CancelGroup(int32 group_key) { std::vector<StatusCallback> pending_done; GroupRec* gr = nullptr; { mutex_lock l(group_mu_); auto it = group_table_.find(group_key); if (it == group_table_.end()) { return; } gr = it->second.get(); } { mutex_lock l(gr->mu); if (gr->group.members.size() == gr->group.group_size) { return; } gr->status = errors::Cancelled("group is cancelled"); pending_done.swap(gr->pending_done); gr->pending_params.clear(); } for (const StatusCallback& done : pending_done) { done(errors::Cancelled("group is cancelled")); } } void CollectiveParamResolverLocal::SetDefaultRank(const string& device, CollectiveParams* cp) { CHECK_EQ(cp->group.group_size, cp->group.members.size()) << cp->ToString(); for (int i = 0; i < cp->group.group_size; ++i) { if (cp->group.members[i].device.name() == device) { cp->default_rank = i; } if (cp->group.members[i].rank == -1) { cp->group.members[i].rank = i; } } } void CollectiveParamResolverLocal::InitInstanceSharedParams( const CollectiveParams* cp, InstanceRec* ir) { ir->shared->instance = cp->instance; ir->shared->default_rank = -1; } void CollectiveParamResolverLocal::CompleteDefaultRanking(CollGroupParams* gp) { std::sort(gp->members.begin(), gp->members.end(), [](const CollGroupMember& lhs, const CollGroupMember& rhs) { return DeviceNameUtils::CompareFullNames(lhs.device.name(), rhs.device.name()); }); GlobalDeviceMap gdm = EstablishGlobalRank(*gp, gpu_ring_order_); std::vector<CollGroupMember> new_members(gp->group_size); for (const auto& git : gdm) { const TaskDeviceMap& tdm = git.second; for (const auto& tit : tdm) { const DevRec& dr = tit.second; new_members[dr.global_rank] = std::move(gp->members[dr.original_rank]); } } if (VLOG_IS_ON(2)) { string buf; for (const auto& m : new_members) strings::StrAppend(&buf, "\n", m.device.name()); VLOG(2) << "Optimized device order for group " << gp->group_key << ": " << buf; } gp->members = std::move(new_members); } CollectiveParamResolverLocal::InstanceRec* CollectiveParamResolverLocal::GetOrCreateInstanceRec(CollectiveParams* cp, bool* created) { *created = false; InstanceRec* irec = nullptr; { mutex_lock l(instance_mu_); std::tuple<int64_t, int32_t> key = {cp->instance.step_id, cp->instance.instance_key}; auto group_it = instance_table_.find(cp->group.group_key); if (group_it != instance_table_.end()) { auto instance_it = group_it->second.find(key); if (instance_it != group_it->second.end()) { irec = instance_it->second.get(); } } if (irec == nullptr) { irec = new InstanceRec; *created = true; { mutex_lock il(irec->mu); irec->known.resize(cp->group.group_size, false); } InitInstanceSharedParams(cp, irec); instance_table_[cp->group.group_key][key].reset(irec); } } Status status; { mutex_lock l(status_mu_); status = status_; } if (!status.ok()) { mutex_lock l(irec->mu); irec->status = status; } return irec; } Status CollectiveParamResolverLocal::LookupGroup(int32_t group_key, CollGroupParams* group) { mutex_lock l(group_mu_); auto group_rec = group_table_.find(group_key); if (group_rec == group_table_.end()) { return errors::InvalidArgument("Group ", group_key, " is not " "initialized. Please call group " "initialization op first before invoking " "collective op."); } mutex_lock lock(group_rec->second->mu); if (!group_rec->second->status.ok()) { return errors::FailedPrecondition( "Failed to run collective due to " "unsuccessful group initialization. " "Group initialization failed with error ", group_rec->second->status.ToString()); } *group = group_rec->second->group; return absl::OkStatus(); } void CollectiveParamResolverLocal::CompleteParamsAsync( const DeviceAttributes& device, CollectiveParams* cp, CancellationManager* cancel_mgr, const StatusCallback& done) { VLOG(1) << "CompleteParams local " << device.name() << " for " << cp << ": " << cp->ToString(); if (cp->run_group_initialization) { CompleteGroupLocal(device, &cp->group, cancel_mgr, [this, device, cp, done](const Status& s) { if (s.ok()) { CompleteInstanceLocal(device.name(), cp, done); } else { done(s); } }); } else { const auto s = LookupGroup(cp->group.group_key, &cp->group); if (s.ok()) { CompleteInstanceLocal(device.name(), cp, done); } else { done(s); } } } void CollectiveParamResolverLocal::CompleteInstanceAsync( const CompleteInstanceRequest* request, CompleteInstanceResponse* response, CancellationManager* cancel_mgr, const StatusCallback& done) { done( errors::Internal("CompleteInstance is not implemented by " "CollectiveParamResolverLocal which is " "intended only for non-distributed deployment.")); } void CollectiveParamResolverLocal::AssignCollectiveType(CollectiveParams* cp) { CollectiveImplementationInterface* col_impl; bool use_nccl = (nccl_ || cp->instance.impl_details.communication_hint == "nccl") && cp->group.device_type == DEVICE_GPU && CollectiveRegistry::LookupParamResolverInstance("NcclReduce", &col_impl) .ok(); cp->instance.impl_details.collective_name = GetCollectiveName(cp, use_nccl); VLOG(1) << "AssignCollectiveType " << cp->instance.impl_details.collective_name; } void CollectiveParamResolverLocal::CompleteInstanceLocal( const string& device, CollectiveParams* cp, const StatusCallback& done) { VLOG(1) << "CompleteInstanceLocal " << device << " instance_key: " << cp->instance.instance_key << " group_key " << cp->group.group_key; bool created_irec; InstanceRec* ir = GetOrCreateInstanceRec(cp, &created_irec); if (!created_irec) { if (ir->shared->instance.type != cp->instance.type || ir->shared->instance.data_type != cp->instance.data_type) { done(errors::Internal("Collective instance ", cp->instance.instance_key, " expected type ", ir->shared->instance.type, " and data_type ", ir->shared->instance.data_type, " but got type ", cp->instance.type, " and data_type ", cp->instance.data_type)); return; } } CompleteInstanceFromInitializedIRec(device, cp, ir, done); } void CollectiveParamResolverLocal::CompleteInstanceFromInitializedIRec( const string& device, CollectiveParams* cp, InstanceRec* ir, const StatusCallback& done) { auto expected_shape = cp->instance.shape; Status status; { mutex_lock l(ir->mu); status = ir->status; if (status.ok()) { cp->instance = ir->shared->instance; } } if (!status.ok()) { done(status); return; } if (expected_shape != cp->instance.shape) { done(errors::InvalidArgument( "Shape mismatch in the collective instance ", cp->instance.instance_key, ". Op at device ", device, " expected shape ", expected_shape.DebugString(), " but another member in the group ", "expected shape ", cp->instance.shape.DebugString(), ". This is likely", " due to different input shapes at different members of the collective", " op.")); return; } AssignCollectiveType(cp); SetDefaultRank(device, cp); CollectiveImplementationInterface* col_impl; status = CollectiveRegistry::LookupParamResolverInstance( cp->instance.impl_details.collective_name, &col_impl); if (!status.ok()) { done(status); return; } if (cp->instance.type == BROADCAST_COLLECTIVE) { WaitForGroup(ir, cp, [col_impl, ir, device, cp, done](InstanceRec* irec) { Status s; if (ir != irec) { s = errors::Internal("Expected ir ", ir, " and irec ", irec, " to be equal"); } else { mutex_lock l(irec->mu); s = irec->status; cp->source_rank = irec->source_rank; } if (s.ok()) { s = col_impl->InitializeCollectiveParams(cp); } done(s); }); } else { done(col_impl->InitializeCollectiveParams(cp)); } } void CollectiveParamResolverLocal::WaitForGroup(InstanceRec* ir, CollectiveParams* cp, const IRConsumer& f) { std::vector<IRConsumer> ready_waiters; do { mutex_lock l(ir->mu); if (!ir->status.ok()) { break; } CHECK_EQ(cp->group.group_size, ir->known.size()); CHECK_GE(cp->default_rank, 0); if (!ir->known[cp->default_rank]) { ir->known[cp->default_rank] = true; ++ir->known_count; if (cp->is_source) { if (ir->source_rank >= 0) { ir->status = errors::Internal("Instance ", cp->instance.instance_key, " already has source ", ir->source_rank, ", received second claim from ", cp->default_rank); } else { ir->source_rank = cp->default_rank; } } } if (ir->known_count < cp->group.group_size) { ir->known_waiters.push_back(f); return; } CHECK_EQ(ir->known_count, cp->group.group_size); if (ir->source_rank < 0) { ir->status = errors::Internal("Instance ", cp->instance.instance_key, " found no source for broadcast. This " "could mean that there were group_size=", ir->known_count, " BcastRecvs but no BcastSend."); } if (!ir->known_waiters.empty()) { ready_waiters = std::move(ir->known_waiters); } } while (false); f(ir); for (auto& f : ready_waiters) { f(ir); } } void CollectiveParamResolverLocal::StartAbort(const Status& s) { { mutex_lock l(status_mu_); if (!status_.ok()) { VLOG(2) << "CollectiveParamResolverLocal already aborted. Ignoring " "subsequent abortion with status: " << s; return; } status_ = s; } StartAbortLocal(s); } void CollectiveParamResolverLocal::StartAbortLocal(const Status& s) { std::vector<StatusCallback> pending_done; { mutex_lock l(group_mu_); for (const auto& item : group_table_) { GroupRec* gr = item.second.get(); { mutex_lock gl(gr->mu); gr->status = s; for (auto& done : gr->pending_done) { pending_done.push_back(std::move(done)); } gr->pending_done.clear(); gr->pending_params.clear(); } } } for (const StatusCallback& done : pending_done) { done(s); } std::vector<InstanceRec*> instances; { mutex_lock l(instance_mu_); for (const auto& group_entry : instance_table_) { for (const auto& item : group_entry.second) { instances.push_back(item.second.get()); } } } for (InstanceRec* ir : instances) { std::vector<IRConsumer> known_waiters; { mutex_lock il(ir->mu); ir->status = s; known_waiters.swap(ir->known_waiters); } for (const IRConsumer& done : known_waiters) { done(ir); } } } }
#include "tensorflow/core/common_runtime/collective_param_resolver_local.h" #include <atomic> #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/collective_executor_mgr.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_resolver_local.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { #define NUM_DEVS 3 class CollectiveParamResolverLocalTest : public ::testing::Test { protected: CollectiveParamResolverLocalTest() { ConfigProto cp; SessionOptions options; task_name_ = "/job:localhost/replica:0/task:0"; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", NUM_DEVS}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, task_name_, &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); drl_.reset(new DeviceResolverLocal(device_mgr_.get())); ResetParamResolver(ConfigProto()); } void ResetParamResolver(const ConfigProto& config) { prl_.reset(new CollectiveParamResolverLocal( config, device_mgr_.get(), drl_.get(), nullptr, task_name_)); } void RunCompleteDefaultRanking( CollGroupParams group, const std::vector<int32>& gpu_ring_order, const std::vector<string>& expected_device_order) { ConfigProto config; if (!gpu_ring_order.empty()) { config.mutable_gpu_options() ->mutable_experimental() ->set_collective_ring_order(absl::StrJoin(gpu_ring_order, ",")); } ResetParamResolver(config); prl_->CompleteDefaultRanking(&group); std::vector<string> actual_device_order; for (const CollGroupMember& member : group.members) { actual_device_order.push_back(member.device.name()); } EXPECT_EQ(actual_device_order, expected_device_order); } DeviceAttributes GetDeviceAttributes(const string& device_name) { Device* device = nullptr; TF_CHECK_OK(device_mgr_->LookupDevice(device_name, &device)); return device->attributes(); } string task_name_; std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<DeviceResolverLocal> drl_; std::unique_ptr<CollectiveParamResolverLocal> prl_; }; TEST_F(CollectiveParamResolverLocalTest, CompleteDefaultRanking) { constexpr int kNumGpus = 8; CollGroupParams group; group.device_type = DeviceType("GPU"); group.num_tasks = 1; group.group_size = kNumGpus; std::unordered_set<int> clique1 = {0, 1, 6, 7}; for (int gpu_idx = 0; gpu_idx < kNumGpus; ++gpu_idx) { CollGroupMember member; member.task = "/job:localhost/replica:0/task:0"; member.device.set_name(strings::StrCat( "/job:localhost/replica:0/task:0/device:GPU:", gpu_idx)); for (int link_idx = 0; link_idx < kNumGpus; ++link_idx) { if (gpu_idx == link_idx) continue; bool gpu_in_clique1 = clique1.find(gpu_idx) != clique1.end(); bool link_in_clique1 = clique1.find(link_idx) != clique1.end(); if ((gpu_in_clique1 && link_in_clique1) || (!gpu_in_clique1 && !link_in_clique1)) { LocalLinks* links = member.device.mutable_locality()->mutable_links(); InterconnectLink* ilink = links->add_link(); ilink->set_device_id(link_idx); ilink->set_strength(2); } else if ((gpu_idx == 3 && link_idx == 7) || (gpu_idx == 7 && link_idx == 3)) { LocalLinks* links = member.device.mutable_locality()->mutable_links(); InterconnectLink* ilink = links->add_link(); ilink->set_device_id(link_idx); ilink->set_strength(1); } } group.members.push_back(member); } RunCompleteDefaultRanking(group, {1, 3, 5, 7, 6, 4, 2, 0}, { "/job:localhost/replica:0/task:0/device:GPU:1", "/job:localhost/replica:0/task:0/device:GPU:3", "/job:localhost/replica:0/task:0/device:GPU:5", "/job:localhost/replica:0/task:0/device:GPU:7", "/job:localhost/replica:0/task:0/device:GPU:6", "/job:localhost/replica:0/task:0/device:GPU:4", "/job:localhost/replica:0/task:0/device:GPU:2", "/job:localhost/replica:0/task:0/device:GPU:0", }); RunCompleteDefaultRanking(group, {7, 6, 5, 4, 3, 2, 1, 0}, { "/job:localhost/replica:0/task:0/device:GPU:7", "/job:localhost/replica:0/task:0/device:GPU:6", "/job:localhost/replica:0/task:0/device:GPU:5", "/job:localhost/replica:0/task:0/device:GPU:4", "/job:localhost/replica:0/task:0/device:GPU:3", "/job:localhost/replica:0/task:0/device:GPU:2", "/job:localhost/replica:0/task:0/device:GPU:1", "/job:localhost/replica:0/task:0/device:GPU:0", }); RunCompleteDefaultRanking(group, {}, { "/job:localhost/replica:0/task:0/device:GPU:0", "/job:localhost/replica:0/task:0/device:GPU:1", "/job:localhost/replica:0/task:0/device:GPU:6", "/job:localhost/replica:0/task:0/device:GPU:7", "/job:localhost/replica:0/task:0/device:GPU:3", "/job:localhost/replica:0/task:0/device:GPU:2", "/job:localhost/replica:0/task:0/device:GPU:4", "/job:localhost/replica:0/task:0/device:GPU:5", }); } TEST_F(CollectiveParamResolverLocalTest, CompleteParamsReduction1Task) { CollectiveParams* cps[NUM_DEVS]; Status statuses[NUM_DEVS]; Notification note[NUM_DEVS]; for (int i = 0; i < NUM_DEVS; ++i) { cps[i] = new CollectiveParams(); CollectiveParams* cp = cps[i]; cp->group.group_key = 1; cp->group.group_size = 3; cp->group.device_type = DeviceType("CPU"); cp->group.num_tasks = 1; cp->instance.instance_key = 7; cp->instance.type = REDUCTION_COLLECTIVE; cp->instance.data_type = DataType(DT_FLOAT); cp->instance.shape = TensorShape({5}); cp->instance.impl_details.subdiv_offsets.push_back(0); cp->is_source = false; Env::Default()->SchedClosure([this, i, cp, &note, &statuses]() { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp, nullptr , [&statuses, &note, i](const Status& s) { statuses[i] = s; note[i].Notify(); }); }); } for (int i = 0; i < NUM_DEVS; ++i) { note[i].WaitForNotification(); } for (int i = 0; i < NUM_DEVS; ++i) { TF_ASSERT_OK(statuses[i]); ASSERT_EQ(cps[i]->group.members.size(), 3); for (int j = 0; j < NUM_DEVS; ++j) { EXPECT_EQ( strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", j), cps[i]->group.members[j].device.name()); EXPECT_TRUE(cps[i]->group.members[j].is_local); } EXPECT_EQ(cps[i]->instance.impl_details.subdiv_source_rank.size(), 0); EXPECT_FALSE(cps[i]->is_source); EXPECT_EQ(cps[i]->default_rank, i); EXPECT_TRUE(cps[i]->group.same_num_devices_per_task); cps[i]->Unref(); } } void InitializeCollectiveParamsForBroadcast(int instance_key, int device_idx, bool is_source, CollectiveParams* cp) { cp->group.group_key = 1; cp->group.group_size = 3; cp->group.device_type = DeviceType("CPU"); cp->group.num_tasks = 1; cp->instance.instance_key = instance_key; cp->instance.type = BROADCAST_COLLECTIVE; cp->instance.data_type = DataType(DT_FLOAT); cp->instance.shape = TensorShape({5}); cp->instance.impl_details.subdiv_offsets.push_back(0); cp->is_source = is_source; } TEST_F(CollectiveParamResolverLocalTest, CompleteParamsBroadcast1Task) { constexpr int kInstanceKey = 5; CollectiveParams* cps[NUM_DEVS]; Status statuses[NUM_DEVS]; Notification note[NUM_DEVS]; for (int i = 0; i < NUM_DEVS; ++i) { cps[i] = new CollectiveParams(); CollectiveParams* cp = cps[i]; InitializeCollectiveParamsForBroadcast(kInstanceKey, i, i == 1, cp); Env::Default()->SchedClosure([this, i, cp, &note, &statuses]() { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp, nullptr , [&statuses, &note, i](const Status& s) { statuses[i] = s; note[i].Notify(); }); }); } for (int i = 0; i < NUM_DEVS; ++i) { note[i].WaitForNotification(); } for (int i = 0; i < NUM_DEVS; ++i) { TF_ASSERT_OK(statuses[i]); ASSERT_EQ(cps[i]->group.members.size(), 3); for (int j = 0; j < NUM_DEVS; ++j) { EXPECT_EQ( strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", j), cps[i]->group.members[j].device.name()); EXPECT_TRUE(cps[i]->group.members[j].is_local); } EXPECT_EQ(cps[i]->is_source, (i == 1)); EXPECT_EQ(cps[i]->default_rank, i); EXPECT_TRUE(cps[i]->group.same_num_devices_per_task); cps[i]->Unref(); } } TEST_F(CollectiveParamResolverLocalTest, CompleteParamsBroadcastForgotSender) { constexpr int kInstanceKey = 8; CollectiveParams* cps[NUM_DEVS]; Status statuses[NUM_DEVS]; Notification note[NUM_DEVS]; for (int i = 0; i < NUM_DEVS; ++i) { cps[i] = new CollectiveParams(); CollectiveParams* cp = cps[i]; InitializeCollectiveParamsForBroadcast(kInstanceKey, i, false, cp); Env::Default()->SchedClosure([this, i, cp, &note, &statuses]() { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp, nullptr , [&statuses, &note, i](const Status& s) { statuses[i] = s; note[i].Notify(); }); }); } for (int i = 0; i < NUM_DEVS; ++i) { note[i].WaitForNotification(); } for (int i = 0; i < NUM_DEVS; ++i) { EXPECT_EQ(statuses[i].code(), error::INTERNAL); EXPECT_EQ(statuses[i].message(), strings::StrCat( "Instance ", kInstanceKey, " found no source for broadcast. This could mean that there" " were group_size=", NUM_DEVS, " BcastRecvs but no BcastSend.")); cps[i]->Unref(); } } CollectiveParams* MakeCollectiveParams(int group_key, int instance_key, bool is_source) { auto* cp = new CollectiveParams(); cp->group.group_key = group_key; cp->group.group_size = NUM_DEVS; cp->group.device_type = DeviceType("CPU"); cp->group.num_tasks = 1; cp->instance.instance_key = instance_key; cp->instance.type = BROADCAST_COLLECTIVE; cp->is_source = is_source; return cp; } TEST_F(CollectiveParamResolverLocalTest, AbortPendingGroup) { CancellationManager cancel_mgr; std::vector<CollectiveParams*> cp(NUM_DEVS - 1); BlockingCounter start(NUM_DEVS - 1); BlockingCounter done(NUM_DEVS - 1); for (int i = 0; i < NUM_DEVS - 1; ++i) { Env::Default()->SchedClosure([this, i, &cancel_mgr, &cp, &start, &done] { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); cp[i] = MakeCollectiveParams( 100, 100, i == 0); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp[i], &cancel_mgr, [&done, cp = cp[i]](const Status& s) { EXPECT_EQ(s.code(), absl::StatusCode::kAborted); EXPECT_EQ(s.message(), "__aborted__"); done.DecrementCount(); cp->Unref(); }); start.DecrementCount(); }); } start.Wait(); prl_->StartAbort(Status(absl::StatusCode::kAborted, "__aborted__")); done.Wait(); } TEST_F(CollectiveParamResolverLocalTest, AbortPendingInstance) { CancellationManager cancel_mgr; std::vector<CollectiveParams*> cp(NUM_DEVS); int group_key = 100; int instance_key = 100; { BlockingCounter done(NUM_DEVS); for (int i = 0; i < NUM_DEVS; ++i) { Env::Default()->SchedClosure([this, group_key, instance_key, i, &cancel_mgr, &cp, &done] { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); cp[i] = MakeCollectiveParams(group_key, instance_key, i == 0); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp[i], &cancel_mgr, [&done, cp = cp[i]](const Status& s) { EXPECT_EQ(s.code(), error::OK); done.DecrementCount(); cp->Unref(); }); }); } done.Wait(); } BlockingCounter start(NUM_DEVS - 1); BlockingCounter done(NUM_DEVS - 1); for (int i = 0; i < NUM_DEVS - 1; ++i) { Env::Default()->SchedClosure([this, group_key, instance_key, i, &cancel_mgr, &cp, &start, &done] { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); cp[i] = MakeCollectiveParams(group_key, instance_key + 1, i == 0); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp[i], &cancel_mgr, [&done, cp = cp[i]](const Status& s) { EXPECT_EQ(s.code(), absl::StatusCode::kAborted); EXPECT_EQ(s.message(), "__aborted__"); done.DecrementCount(); cp->Unref(); }); start.DecrementCount(); }); } start.Wait(); prl_->StartAbort(Status(absl::StatusCode::kAborted, "__aborted__")); done.Wait(); } TEST_F(CollectiveParamResolverLocalTest, CompleteParamsAfterAbortion) { CancellationManager cancel_mgr; int group_key = 100; int instance_key = 100; { std::vector<CollectiveParams*> cp(NUM_DEVS); BlockingCounter done(NUM_DEVS); for (int i = 0; i < NUM_DEVS; ++i) { Env::Default()->SchedClosure([this, group_key, instance_key, i, &cancel_mgr, &cp, &done] { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); cp[i] = MakeCollectiveParams(group_key, instance_key, i == 0); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp[i], &cancel_mgr, [&done, cp = cp[i]](const Status& s) { EXPECT_EQ(s.code(), error::OK); done.DecrementCount(); cp->Unref(); }); }); } done.Wait(); } prl_->StartAbort(Status(absl::StatusCode::kAborted, "__aborted__")); auto complete_params = [this, &cancel_mgr](int group_key, int instance_key) { string device = "/job:localhost/replica:0/task:0/device:CPU:0"; Notification done; auto* cp = MakeCollectiveParams(group_key, instance_key, true); core::ScopedUnref unref(cp); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp, &cancel_mgr, [&done](const Status& s) { EXPECT_EQ(s.code(), absl::StatusCode::kAborted); EXPECT_EQ(s.message(), "__aborted__"); done.Notify(); }); done.WaitForNotification(); }; complete_params(group_key, instance_key); complete_params(group_key, instance_key + 1); complete_params(group_key + 1, instance_key + 1); } TEST_F(CollectiveParamResolverLocalTest, AbortNormalCompleteParamsAsync) { CancellationManager cancel_mgr; std::atomic<int64_t> num_ok{0}; for (int cnt = 0; cnt < 100; ++cnt) { BlockingCounter done(NUM_DEVS); for (int i = 0; i < NUM_DEVS; ++i) { string device = strings::StrCat("/job:localhost/replica:0/task:0/device:CPU:", i); Env::Default()->SchedClosure( [this, i, device, &num_ok, &cancel_mgr, &done] { int key = 100; while (true) { Status status; Notification n; auto* cp = MakeCollectiveParams( key, key, i == 0); prl_->CompleteParamsAsync(GetDeviceAttributes(device), cp, &cancel_mgr, [&status, &n](const Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); cp->Unref(); if (!status.ok()) { EXPECT_EQ(status.code(), absl::StatusCode::kAborted); EXPECT_EQ(status.message(), "__aborted__"); done.DecrementCount(); return; } ++num_ok; ++key; } }); } int64_t delay_ms = random::New64() % 50000; Env::Default()->SleepForMicroseconds(delay_ms); prl_->StartAbort(Status(absl::StatusCode::kAborted, "__aborted__")); done.Wait(); ResetParamResolver(ConfigProto()); } EXPECT_GT(num_ok.load(), 50); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/collective_param_resolver_local.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/collective_param_resolver_local_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a89d6cb3-79a8-4858-8019-c96a1d6c109d
cpp
google/quiche
quic_libevent
quiche/quic/bindings/quic_libevent.cc
quiche/quic/bindings/quic_libevent_test.cc
#include "quiche/quic/bindings/quic_libevent.h" #include <memory> #include <utility> #include "absl/time/time.h" #include "event2/event.h" #include "event2/event_struct.h" #include "event2/thread.h" #include "quiche/quic/core/io/quic_event_loop.h" #include "quiche/quic/core/quic_alarm.h" #include "quiche/quic/core/quic_clock.h" #include "quiche/quic/core/quic_default_clock.h" #include "quiche/quic/core/quic_time.h" namespace quic { using LibeventEventMask = short; QuicSocketEventMask LibeventEventMaskToQuicEvents(int events) { return ((events & EV_READ) ? kSocketEventReadable : 0) | ((events & EV_WRITE) ? kSocketEventWritable : 0); } LibeventEventMask QuicEventsToLibeventEventMask(QuicSocketEventMask events) { return ((events & kSocketEventReadable) ? EV_READ : 0) | ((events & kSocketEventWritable) ? EV_WRITE : 0); } class LibeventAlarm : public QuicAlarm { public: LibeventAlarm(LibeventQuicEventLoop* loop, QuicArenaScopedPtr<QuicAlarm::Delegate> delegate) : QuicAlarm(std::move(delegate)), clock_(loop->clock()) { event_.reset(evtimer_new( loop->base(), [](evutil_socket_t, LibeventEventMask, void* arg) { LibeventAlarm* self = reinterpret_cast<LibeventAlarm*>(arg); self->Fire(); }, this)); } protected: void SetImpl() override { absl::Duration timeout = absl::Microseconds((deadline() - clock_->Now()).ToMicroseconds()); timeval unix_time = absl::ToTimeval(timeout); event_add(event_.get(), &unix_time); } void CancelImpl() override { event_del(event_.get()); } private: std::unique_ptr<event, LibeventEventDeleter> event_; QuicClock* clock_; }; LibeventQuicEventLoop::LibeventQuicEventLoop(event_base* base, QuicClock* clock) : base_(base), edge_triggered_(event_base_get_features(base) & EV_FEATURE_ET), clock_(clock), artifical_event_timer_(evtimer_new( base_, [](evutil_socket_t, LibeventEventMask, void* arg) { auto* self = reinterpret_cast<LibeventQuicEventLoop*>(arg); self->ActivateArtificialEvents(); }, this)) { QUICHE_CHECK_LE(sizeof(event), event_get_struct_event_size()) << "libevent ABI mismatch: sizeof(event) is bigger than the one QUICHE " "has been compiled with"; } LibeventQuicEventLoop::~LibeventQuicEventLoop() { event_del(artifical_event_timer_.get()); } bool LibeventQuicEventLoop::RegisterSocket(QuicUdpSocketFd fd, QuicSocketEventMask events, QuicSocketEventListener* listener) { auto [it, success] = registration_map_.try_emplace(fd, this, fd, events, listener); return success; } bool LibeventQuicEventLoop::UnregisterSocket(QuicUdpSocketFd fd) { fds_with_artifical_events_.erase(fd); return registration_map_.erase(fd); } bool LibeventQuicEventLoop::RearmSocket(QuicUdpSocketFd fd, QuicSocketEventMask events) { if (edge_triggered_) { QUICHE_BUG(LibeventQuicEventLoop_RearmSocket_called_on_ET) << "RearmSocket() called on an edge-triggered event loop"; return false; } auto it = registration_map_.find(fd); if (it == registration_map_.end()) { return false; } it->second.Rearm(events); return true; } bool LibeventQuicEventLoop::ArtificiallyNotifyEvent( QuicUdpSocketFd fd, QuicSocketEventMask events) { auto it = registration_map_.find(fd); if (it == registration_map_.end()) { return false; } it->second.RecordArtificalEvents(events); fds_with_artifical_events_.insert(fd); if (!evtimer_pending(artifical_event_timer_.get(), nullptr)) { struct timeval tv = {0, 0}; evtimer_add(artifical_event_timer_.get(), &tv); } return true; } void LibeventQuicEventLoop::ActivateArtificialEvents() { absl::flat_hash_set<QuicUdpSocketFd> fds_with_artifical_events; { using std::swap; swap(fds_with_artifical_events_, fds_with_artifical_events); } for (QuicUdpSocketFd fd : fds_with_artifical_events) { auto it = registration_map_.find(fd); if (it == registration_map_.end()) { continue; } it->second.MaybeNotifyArtificalEvents(); } } void LibeventQuicEventLoop::RunEventLoopOnce(QuicTime::Delta default_timeout) { timeval timeout = absl::ToTimeval(absl::Microseconds(default_timeout.ToMicroseconds())); event_base_loopexit(base_, &timeout); event_base_loop(base_, EVLOOP_ONCE); } void LibeventQuicEventLoop::WakeUp() { timeval timeout = absl::ToTimeval(absl::ZeroDuration()); event_base_loopexit(base_, &timeout); } LibeventQuicEventLoop::Registration::Registration( LibeventQuicEventLoop* loop, QuicUdpSocketFd fd, QuicSocketEventMask events, QuicSocketEventListener* listener) : loop_(loop), listener_(listener) { event_callback_fn callback = [](evutil_socket_t fd, LibeventEventMask events, void* arg) { auto* self = reinterpret_cast<LibeventQuicEventLoop::Registration*>(arg); self->listener_->OnSocketEvent(self->loop_, fd, LibeventEventMaskToQuicEvents(events)); }; if (loop_->SupportsEdgeTriggered()) { LibeventEventMask mask = QuicEventsToLibeventEventMask(events) | EV_PERSIST | EV_ET; event_assign(&both_events_, loop_->base(), fd, mask, callback, this); event_add(&both_events_, nullptr); } else { event_assign(&read_event_, loop_->base(), fd, EV_READ, callback, this); event_assign(&write_event_, loop_->base(), fd, EV_WRITE, callback, this); Rearm(events); } } LibeventQuicEventLoop::Registration::~Registration() { if (loop_->SupportsEdgeTriggered()) { event_del(&both_events_); } else { event_del(&read_event_); event_del(&write_event_); } } void LibeventQuicEventLoop::Registration::RecordArtificalEvents( QuicSocketEventMask events) { artificial_events_ |= events; } void LibeventQuicEventLoop::Registration::MaybeNotifyArtificalEvents() { if (artificial_events_ == 0) { return; } QuicSocketEventMask events = artificial_events_; artificial_events_ = 0; if (loop_->SupportsEdgeTriggered()) { event_active(&both_events_, QuicEventsToLibeventEventMask(events), 0); return; } if (events & kSocketEventReadable) { event_active(&read_event_, EV_READ, 0); } if (events & kSocketEventWritable) { event_active(&write_event_, EV_WRITE, 0); } } void LibeventQuicEventLoop::Registration::Rearm(QuicSocketEventMask events) { QUICHE_DCHECK(!loop_->SupportsEdgeTriggered()); if (events & kSocketEventReadable) { event_add(&read_event_, nullptr); } if (events & kSocketEventWritable) { event_add(&write_event_, nullptr); } } QuicAlarm* LibeventQuicEventLoop::AlarmFactory::CreateAlarm( QuicAlarm::Delegate* delegate) { return new LibeventAlarm(loop_, QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate)); } QuicArenaScopedPtr<QuicAlarm> LibeventQuicEventLoop::AlarmFactory::CreateAlarm( QuicArenaScopedPtr<QuicAlarm::Delegate> delegate, QuicConnectionArena* arena) { if (arena != nullptr) { return arena->New<LibeventAlarm>(loop_, std::move(delegate)); } return QuicArenaScopedPtr<QuicAlarm>( new LibeventAlarm(loop_, std::move(delegate))); } QuicLibeventEventLoopFactory::QuicLibeventEventLoopFactory( bool force_level_triggered) : force_level_triggered_(force_level_triggered) { std::unique_ptr<QuicEventLoop> event_loop = Create(QuicDefaultClock::Get()); name_ = absl::StrFormat( "libevent(%s)", event_base_get_method( static_cast<LibeventQuicEventLoopWithOwnership*>(event_loop.get()) ->base())); } struct LibeventConfigDeleter { void operator()(event_config* config) { event_config_free(config); } }; std::unique_ptr<LibeventQuicEventLoopWithOwnership> LibeventQuicEventLoopWithOwnership::Create(QuicClock* clock, bool force_level_triggered) { static int threads_initialized = []() { #ifdef _WIN32 return evthread_use_windows_threads(); #else return evthread_use_pthreads(); #endif }(); QUICHE_DCHECK_EQ(threads_initialized, 0); std::unique_ptr<event_config, LibeventConfigDeleter> config( event_config_new()); if (force_level_triggered) { event_config_avoid_method(config.get(), "epoll"); event_config_avoid_method(config.get(), "kqueue"); } return std::make_unique<LibeventQuicEventLoopWithOwnership>( event_base_new_with_config(config.get()), clock); } }
#include "quiche/quic/bindings/quic_libevent.h" #include <atomic> #include <memory> #include "absl/memory/memory.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "quiche/quic/core/quic_alarm.h" #include "quiche/quic/core/quic_default_clock.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_thread.h" namespace quic::test { namespace { class FailureAlarmDelegate : public QuicAlarm::Delegate { public: QuicConnectionContext* GetConnectionContext() override { return nullptr; } void OnAlarm() override { ADD_FAILURE() << "Test timed out"; } }; class LoopBreakThread : public QuicThread { public: LoopBreakThread(LibeventQuicEventLoop* loop) : QuicThread("LoopBreakThread"), loop_(loop) {} void Run() override { absl::SleepFor(absl::Milliseconds(250)); loop_broken_.store(true); loop_->WakeUp(); } std::atomic<int>& loop_broken() { return loop_broken_; } private: LibeventQuicEventLoop* loop_; std::atomic<int> loop_broken_ = 0; }; TEST(QuicLibeventTest, WakeUpFromAnotherThread) { QuicClock* clock = QuicDefaultClock::Get(); auto event_loop_owned = QuicLibeventEventLoopFactory::Get()->Create(clock); LibeventQuicEventLoop* event_loop = static_cast<LibeventQuicEventLoop*>(event_loop_owned.get()); std::unique_ptr<QuicAlarmFactory> alarm_factory = event_loop->CreateAlarmFactory(); std::unique_ptr<QuicAlarm> timeout_alarm = absl::WrapUnique(alarm_factory->CreateAlarm(new FailureAlarmDelegate())); const QuicTime kTimeoutAt = clock->Now() + QuicTime::Delta::FromSeconds(10); timeout_alarm->Set(kTimeoutAt); LoopBreakThread thread(event_loop); thread.Start(); event_loop->RunEventLoopOnce(QuicTime::Delta::FromSeconds(5 * 60)); EXPECT_TRUE(thread.loop_broken().load()); thread.Join(); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/bindings/quic_libevent.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/bindings/quic_libevent_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
884a1873-2492-4e33-affb-1854f596ef62
cpp
google/libphonenumber
phonenumbermatcher
cpp/src/phonenumbers/phonenumbermatcher.cc
cpp/test/phonenumbers/phonenumbermatcher_test.cc
#include "phonenumbers/phonenumbermatcher.h" #ifndef I18N_PHONENUMBERS_USE_ICU_REGEXP #error phonenumbermatcher depends on ICU \ (i.e. I18N_PHONENUMBERS_USE_ICU_REGEXP must be set) #endif #include <ctype.h> #include <stddef.h> #include <limits> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include <unicode/uchar.h> #include "phonenumbers/alternate_format.h" #include "phonenumbers/base/logging.h" #include "phonenumbers/base/memory/scoped_ptr.h" #include "phonenumbers/base/memory/singleton.h" #include "phonenumbers/callback.h" #include "phonenumbers/default_logger.h" #include "phonenumbers/encoding_utils.h" #include "phonenumbers/normalize_utf8.h" #include "phonenumbers/phonemetadata.pb.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/phonenumbermatch.h" #include "phonenumbers/phonenumberutil.h" #include "phonenumbers/regexp_adapter.h" #include "phonenumbers/regexp_adapter_icu.h" #include "phonenumbers/regexp_cache.h" #include "phonenumbers/stringutil.h" #include "phonenumbers/utf/unicodetext.h" #ifdef I18N_PHONENUMBERS_USE_RE2 #include "phonenumbers/regexp_adapter_re2.h" #endif using std::map; using std::numeric_limits; using std::string; namespace i18n { namespace phonenumbers { namespace { string Limit(int lower, int upper) { DCHECK_GE(lower, 0); DCHECK_GT(upper, 0); DCHECK_LT(lower, upper); return StrCat("{", lower, ",", upper, "}"); } bool IsInvalidPunctuationSymbol(char32 character) { return character == '%' || u_charType(character) == U_CURRENCY_SYMBOL; } bool ContainsOnlyValidXChars(const PhoneNumber& number, const string& candidate, const PhoneNumberUtil& util) { size_t found; found = candidate.find_first_of("xX"); while (found != string::npos && found < candidate.length() - 1) { char next_char = candidate[found + 1]; if (next_char == 'x' || next_char == 'X') { ++found; if (util.IsNumberMatchWithOneString( number, candidate.substr(found, candidate.length() - found)) != PhoneNumberUtil::NSN_MATCH) { return false; } } else { string normalized_extension(candidate.substr(found, candidate.length() - found)); util.NormalizeDigitsOnly(&normalized_extension); if (normalized_extension != number.extension()) { return false; } } found = candidate.find_first_of("xX", found + 1); } return true; } bool AllNumberGroupsRemainGrouped( const PhoneNumberUtil& util, const PhoneNumber& number, const string& normalized_candidate, const std::vector<string>& formatted_number_groups) { size_t from_index = 0; if (number.country_code_source() != PhoneNumber::FROM_DEFAULT_COUNTRY) { string country_code = SimpleItoa(number.country_code()); from_index = normalized_candidate.find(country_code) + country_code.size(); } for (size_t i = 0; i < formatted_number_groups.size(); ++i) { from_index = normalized_candidate.find(formatted_number_groups.at(i), from_index); if (from_index == string::npos) { return false; } from_index += formatted_number_groups.at(i).length(); if (i == 0 && from_index < normalized_candidate.length()) { string region; util.GetRegionCodeForCountryCode(number.country_code(), &region); string ndd_prefix; util.GetNddPrefixForRegion(region, true, &ndd_prefix); if (!ndd_prefix.empty() && isdigit(normalized_candidate.at(from_index))) { string national_significant_number; util.GetNationalSignificantNumber(number, &national_significant_number); return HasPrefixString(normalized_candidate.substr( from_index - formatted_number_groups.at(i).length()), national_significant_number); } } } return normalized_candidate.substr(from_index) .find(number.extension()) != string::npos; } bool LoadAlternateFormats(PhoneMetadataCollection* alternate_formats) { #if defined(I18N_PHONENUMBERS_USE_ALTERNATE_FORMATS) if (!alternate_formats->ParseFromArray(alternate_format_get(), alternate_format_size())) { LOG(ERROR) << "Could not parse binary data."; return false; } return true; #else return false; #endif } } class PhoneNumberMatcherRegExps : public Singleton<PhoneNumberMatcherRegExps> { private: friend class Singleton<PhoneNumberMatcherRegExps>; string opening_parens_; string closing_parens_; string non_parens_; string bracket_pair_limit_; string leading_maybe_matched_bracket_; string bracket_pairs_; string lead_limit_; string punctuation_limit_; int digit_block_limit_; string block_limit_; string punctuation_; string digit_sequence_; string lead_class_chars_; string lead_class_; public: scoped_ptr<const AbstractRegExpFactory> regexp_factory_for_pattern_; scoped_ptr<const AbstractRegExpFactory> regexp_factory_; mutable RegExpCache regexp_cache_; scoped_ptr<const RegExp> pub_pages_; scoped_ptr<const RegExp> slash_separated_dates_; scoped_ptr<const RegExp> time_stamps_; scoped_ptr<const RegExp> time_stamps_suffix_; scoped_ptr<const RegExp> matching_brackets_; scoped_ptr<std::vector<const RegExp*> > inner_matches_; scoped_ptr<const RegExp> capture_up_to_second_number_start_pattern_; scoped_ptr<const RegExp> capturing_ascii_digits_pattern_; scoped_ptr<const RegExp> lead_class_pattern_; scoped_ptr<const RegExp> pattern_; PhoneNumberMatcherRegExps() : opening_parens_("(\\[\xEF\xBC\x88\xEF\xBC\xBB" ), closing_parens_(")\\]\xEF\xBC\x89\xEF\xBC\xBD" ), non_parens_(StrCat("[^", opening_parens_, closing_parens_, "]")), bracket_pair_limit_(Limit(0, 3)), leading_maybe_matched_bracket_(StrCat( "(?:[", opening_parens_, "])?", "(?:", non_parens_, "+[", closing_parens_, "])?")), bracket_pairs_(StrCat( "(?:[", opening_parens_, "]", non_parens_, "+", "[", closing_parens_, "])", bracket_pair_limit_)), lead_limit_(Limit(0, 2)), punctuation_limit_(Limit(0, 4)), digit_block_limit_(PhoneNumberUtil::kMaxLengthForNsn + PhoneNumberUtil::kMaxLengthCountryCode), block_limit_(Limit(0, digit_block_limit_)), punctuation_(StrCat("[", PhoneNumberUtil::kValidPunctuation, "]", punctuation_limit_)), digit_sequence_(StrCat("\\p{Nd}", Limit(1, digit_block_limit_))), lead_class_chars_(StrCat(opening_parens_, PhoneNumberUtil::kPlusChars)), lead_class_(StrCat("[", lead_class_chars_, "]")), regexp_factory_for_pattern_(new ICURegExpFactory()), #ifdef I18N_PHONENUMBERS_USE_RE2 regexp_factory_(new RE2RegExpFactory()), #else regexp_factory_(new ICURegExpFactory()), #endif regexp_cache_(*regexp_factory_, 32), pub_pages_(regexp_factory_->CreateRegExp( "\\d{1,5}-+\\d{1,5}\\s{0,4}\\(\\d{1,4}")), slash_separated_dates_(regexp_factory_->CreateRegExp( "(?:(?:[0-3]?\\d/[01]?\\d)|" "(?:[01]?\\d/[0-3]?\\d))/(?:[12]\\d)?\\d{2}")), time_stamps_(regexp_factory_->CreateRegExp( "[12]\\d{3}[-/]?[01]\\d[-/]?[0-3]\\d +[0-2]\\d$")), time_stamps_suffix_(regexp_factory_->CreateRegExp(":[0-5]\\d")), matching_brackets_(regexp_factory_->CreateRegExp( StrCat(leading_maybe_matched_bracket_, non_parens_, "+", bracket_pairs_, non_parens_, "*"))), inner_matches_(new std::vector<const RegExp*>()), capture_up_to_second_number_start_pattern_( regexp_factory_->CreateRegExp( PhoneNumberUtil::kCaptureUpToSecondNumberStart)), capturing_ascii_digits_pattern_( regexp_factory_->CreateRegExp("(\\d+)")), lead_class_pattern_(regexp_factory_->CreateRegExp(lead_class_)), pattern_(regexp_factory_for_pattern_->CreateRegExp(StrCat( "((?:", lead_class_, punctuation_, ")", lead_limit_, digit_sequence_, "(?:", punctuation_, digit_sequence_, ")", block_limit_, "(?i)(?:", PhoneNumberUtil::GetInstance()->GetExtnPatternsForMatching(), ")?)"))) { inner_matches_->push_back( regexp_factory_->CreateRegExp("/+(.*)")); inner_matches_->push_back( regexp_factory_->CreateRegExp("(\\([^(]*)")); inner_matches_->push_back( regexp_factory_->CreateRegExp("(?:\\p{Z}-|-\\p{Z})\\p{Z}*(.+)")); inner_matches_->push_back( regexp_factory_->CreateRegExp( "[\xE2\x80\x92-\xE2\x80\x95\xEF\xBC\x8D]" "\\p{Z}*(.+)")); inner_matches_->push_back( regexp_factory_->CreateRegExp("\\.+\\p{Z}*([^.]+)")); inner_matches_->push_back( regexp_factory_->CreateRegExp("\\p{Z}+(\\P{Z}+)")); } private: DISALLOW_COPY_AND_ASSIGN(PhoneNumberMatcherRegExps); }; class AlternateFormats : public Singleton<AlternateFormats> { public: PhoneMetadataCollection format_data_; map<int, const PhoneMetadata*> calling_code_to_alternate_formats_map_; AlternateFormats() : format_data_(), calling_code_to_alternate_formats_map_() { if (!LoadAlternateFormats(&format_data_)) { LOG(DFATAL) << "Could not parse compiled-in metadata."; return; } for (RepeatedPtrField<PhoneMetadata>::const_iterator it = format_data_.metadata().begin(); it != format_data_.metadata().end(); ++it) { calling_code_to_alternate_formats_map_.insert( std::make_pair(it->country_code(), &*it)); } } const PhoneMetadata* GetAlternateFormatsForCountry(int country_calling_code) const { map<int, const PhoneMetadata*>::const_iterator it = calling_code_to_alternate_formats_map_.find(country_calling_code); if (it != calling_code_to_alternate_formats_map_.end()) { return it->second; } return NULL; } private: DISALLOW_COPY_AND_ASSIGN(AlternateFormats); }; PhoneNumberMatcher::PhoneNumberMatcher(const PhoneNumberUtil& util, const string& text, const string& region_code, PhoneNumberMatcher::Leniency leniency, int max_tries) : reg_exps_(PhoneNumberMatcherRegExps::GetInstance()), alternate_formats_(AlternateFormats::GetInstance()), phone_util_(util), text_(text), preferred_region_(region_code), leniency_(leniency), max_tries_(max_tries), state_(NOT_READY), last_match_(NULL), search_index_(0), is_input_valid_utf8_(true) { is_input_valid_utf8_ = IsInputUtf8(); } PhoneNumberMatcher::PhoneNumberMatcher(const string& text, const string& region_code) : reg_exps_(PhoneNumberMatcherRegExps::GetInstance()), alternate_formats_(NULL), phone_util_(*PhoneNumberUtil::GetInstance()), text_(text), preferred_region_(region_code), leniency_(VALID), max_tries_(numeric_limits<int>::max()), state_(NOT_READY), last_match_(NULL), search_index_(0), is_input_valid_utf8_(true) { is_input_valid_utf8_ = IsInputUtf8(); } PhoneNumberMatcher::~PhoneNumberMatcher() { } bool PhoneNumberMatcher::IsInputUtf8() { UnicodeText number_as_unicode; number_as_unicode.PointToUTF8(text_.c_str(), text_.size()); return number_as_unicode.UTF8WasValid(); } bool PhoneNumberMatcher::IsLatinLetter(char32 letter) { if (!u_isalpha(letter) && (u_charType(letter) != U_NON_SPACING_MARK)) { return false; } UBlockCode block = ublock_getCode(letter); return ((block == UBLOCK_BASIC_LATIN) || (block == UBLOCK_LATIN_1_SUPPLEMENT) || (block == UBLOCK_LATIN_EXTENDED_A) || (block == UBLOCK_LATIN_EXTENDED_ADDITIONAL) || (block == UBLOCK_LATIN_EXTENDED_B) || (block == UBLOCK_COMBINING_DIACRITICAL_MARKS)); } bool PhoneNumberMatcher::ParseAndVerify(const string& candidate, int offset, PhoneNumberMatch* match) { DCHECK(match); if (!reg_exps_->matching_brackets_->FullMatch(candidate) || reg_exps_->pub_pages_->PartialMatch(candidate)) { return false; } if (leniency_ >= VALID) { scoped_ptr<RegExpInput> candidate_input( reg_exps_->regexp_factory_->CreateInput(candidate)); if (offset > 0 && !reg_exps_->lead_class_pattern_->Consume(candidate_input.get())) { char32 previous_char; const char* previous_char_ptr = EncodingUtils::BackUpOneUTF8Character(text_.c_str(), text_.c_str() + offset); EncodingUtils::DecodeUTF8Char(previous_char_ptr, &previous_char); if (IsInvalidPunctuationSymbol(previous_char) || IsLatinLetter(previous_char)) { return false; } } size_t lastCharIndex = offset + candidate.length(); if (lastCharIndex < text_.length()) { char32 next_char; const char* next_char_ptr = EncodingUtils::AdvanceOneUTF8Character( text_.c_str() + lastCharIndex - 1); EncodingUtils::DecodeUTF8Char(next_char_ptr, &next_char); if (IsInvalidPunctuationSymbol(next_char) || IsLatinLetter(next_char)) { return false; } } } PhoneNumber number; if (phone_util_.ParseAndKeepRawInput(candidate, preferred_region_, &number) != PhoneNumberUtil::NO_PARSING_ERROR) { return false; } if (VerifyAccordingToLeniency(leniency_, number, candidate)) { match->set_start(offset); match->set_raw_string(candidate); number.clear_country_code_source(); number.clear_preferred_domestic_carrier_code(); number.clear_raw_input(); match->set_number(number); return true; } return false; } bool PhoneNumberMatcher::VerifyAccordingToLeniency( Leniency leniency, const PhoneNumber& number, const string& candidate) const { switch (leniency) { case PhoneNumberMatcher::POSSIBLE: return phone_util_.IsPossibleNumber(number); case PhoneNumberMatcher::VALID: if (!phone_util_.IsValidNumber(number) || !ContainsOnlyValidXChars(number, candidate, phone_util_)) { return false; } return IsNationalPrefixPresentIfRequired(number); case PhoneNumberMatcher::STRICT_GROUPING: { if (!phone_util_.IsValidNumber(number) || !ContainsOnlyValidXChars(number, candidate, phone_util_) || ContainsMoreThanOneSlashInNationalNumber( number, candidate, phone_util_) || !IsNationalPrefixPresentIfRequired(number)) { return false; } ResultCallback4<bool, const PhoneNumberUtil&, const PhoneNumber&, const string&, const std::vector<string>&>* callback = NewPermanentCallback(&AllNumberGroupsRemainGrouped); bool is_valid = CheckNumberGroupingIsValid(number, candidate, callback); delete(callback); return is_valid; } case PhoneNumberMatcher::EXACT_GROUPING: { if (!phone_util_.IsValidNumber(number) || !ContainsOnlyValidXChars(number, candidate, phone_util_) || ContainsMoreThanOneSlashInNationalNumber( number, candidate, phone_util_) || !IsNationalPrefixPresentIfRequired(number)) { return false; } ResultCallback4<bool, const PhoneNumberUtil&, const PhoneNumber&, const string&, const std::vector<string>&>* callback = NewPermanentCallback( this, &PhoneNumberMatcher::AllNumberGroupsAreExactlyPresent); bool is_valid = CheckNumberGroupingIsValid(number, candidate, callback); delete(callback); return is_valid; } default: LOG(ERROR) << "No implementation defined for verification for leniency " << static_cast<int>(leniency); return false; } } bool PhoneNumberMatcher::ExtractInnerMatch(const string& candidate, int offset, PhoneNumberMatch* match) { DCHECK(match); for (std::vector<const RegExp*>::const_iterator regex = reg_exps_->inner_matches_->begin(); regex != reg_exps_->inner_matches_->end(); regex++) { scoped_ptr<RegExpInput> candidate_input( reg_exps_->regexp_factory_->CreateInput(candidate)); bool is_first_match = true; string group; while ((*regex)->FindAndConsume(candidate_input.get(), &group) && max_tries_ > 0) { int group_start_index = static_cast<int>(candidate.length() - candidate_input->ToString().length() - group.length()); if (is_first_match) { string first_group_only = candidate.substr(0, group_start_index); phone_util_.TrimUnwantedEndChars(&first_group_only); bool success = ParseAndVerify(first_group_only, offset, match); if (success) { return true; } --max_tries_; is_first_match = false; } phone_util_.TrimUnwantedEndChars(&group); bool success = ParseAndVerify(group, offset + group_start_index, match); if (success) { return true; } --max_tries_; } } return false; } bool PhoneNumberMatcher::ExtractMatch(const string& candidate, int offset, PhoneNumberMatch* match) { DCHECK(match); if (reg_exps_->slash_separated_dates_->PartialMatch(candidate)) { return false; } if (reg_exps_->time_stamps_->PartialMatch(candidate)) { scoped_ptr<RegExpInput> following_text( reg_exps_->regexp_factory_->CreateInput( text_.substr(offset + candidate.size()))); if (reg_exps_->time_stamps_suffix_->Consume(following_text.get())) { return false; } } if (ParseAndVerify(candidate, offset, match)) { return true; } return ExtractInnerMatch(candidate, offset, match); } bool PhoneNumberMatcher::HasNext() { if (!is_input_valid_utf8_) { state_ = DONE; return false; } if (state_ == NOT_READY) { PhoneNumberMatch temp_match; if (!Find(search_index_, &temp_match)) { state_ = DONE; } else { last_match_.reset(new PhoneNumberMatch(temp_match.start(), temp_match.raw_string(), temp_match.number())); search_index_ = last_match_->end(); state_ = READY; } } return state_ == READY; } bool PhoneNumberMatcher::Next(PhoneNumberMatch* match) { DCHECK(match); if (!HasNext()) { return false; } match->CopyFrom(*last_match_); state_ = NOT_READY; last_match_.reset(NULL); return true; } bool PhoneNumberMatcher::Find(int index, PhoneNumberMatch* match) { DCHECK(match); scoped_ptr<RegExpInput> text( reg_exps_->regexp_factory_for_pattern_->CreateInput(text_.substr(index))); string candidate; while ((max_tries_ > 0) && reg_exps_->pattern_->FindAndConsume(text.get(), &candidate)) { int start = static_cast<int>(text_.length() - text->ToString().length() - candidate.length()); reg_exps_->capture_up_to_second_number_start_pattern_-> PartialMatch(candidate, &candidate); if (ExtractMatch(candidate, start, match)) { return true; } index = static_cast<int>(start + candidate.length()); --max_tries_; } return false; } bool PhoneNumberMatcher::CheckNumberGroupingIsValid( const PhoneNumber& phone_number, const string& candidate, ResultCallback4<bool, const PhoneNumberUtil&, const PhoneNumber&, const string&, const std::vector<string>&>* checker) const { DCHECK(checker); string normalized_candidate = NormalizeUTF8::NormalizeDecimalDigits(candidate); std::vector<string> formatted_number_groups; GetNationalNumberGroups(phone_number, &formatted_number_groups); if (checker->Run(phone_util_, phone_number, normalized_candidate, formatted_number_groups)) { return true; } const PhoneMetadata* alternate_formats = alternate_formats_->GetAlternateFormatsForCountry( phone_number.country_code()); if (alternate_formats) { string national_significant_number; phone_util_.GetNationalSignificantNumber(phone_number, &national_significant_number); for (RepeatedPtrField<NumberFormat>::const_iterator it = alternate_formats->number_format().begin(); it != alternate_formats->number_format().end(); ++it) { if (it->leading_digits_pattern_size() > 0) { std::unique_ptr<RegExpInput> nsn_input( reg_exps_->regexp_factory_->CreateInput( national_significant_number)); if (!reg_exps_->regexp_cache_.GetRegExp( it->leading_digits_pattern(0)).Consume(nsn_input.get())) { continue; } } formatted_number_groups.clear(); GetNationalNumberGroupsForPattern(phone_number, &*it, &formatted_number_groups); if (checker->Run(phone_util_, phone_number, normalized_candidate, formatted_number_groups)) { return true; } } } return false; } void PhoneNumberMatcher::GetNationalNumberGroups( const PhoneNumber& number, std::vector<string>* digit_blocks) const { string rfc3966_format; phone_util_.Format(number, PhoneNumberUtil::RFC3966, &rfc3966_format); size_t end_index = rfc3966_format.find(';'); if (end_index == string::npos) { end_index = rfc3966_format.length(); } size_t start_index = rfc3966_format.find('-') + 1; SplitStringUsing(rfc3966_format.substr(start_index, end_index - start_index), '-', digit_blocks); } void PhoneNumberMatcher::GetNationalNumberGroupsForPattern( const PhoneNumber& number, const NumberFormat* formatting_pattern, std::vector<string>* digit_blocks) const { string rfc3966_format; string national_significant_number; phone_util_.GetNationalSignificantNumber(number, &national_significant_number); phone_util_.FormatNsnUsingPattern(national_significant_number, *formatting_pattern, PhoneNumberUtil::RFC3966, &rfc3966_format); SplitStringUsing(rfc3966_format, '-', digit_blocks); } bool PhoneNumberMatcher::IsNationalPrefixPresentIfRequired( const PhoneNumber& number) const { if (number.country_code_source() != PhoneNumber::FROM_DEFAULT_COUNTRY) { return true; } string phone_number_region; phone_util_.GetRegionCodeForCountryCode( number.country_code(), &phone_number_region); const PhoneMetadata* metadata = phone_util_.GetMetadataForRegion(phone_number_region); if (!metadata) { return true; } string national_number; phone_util_.GetNationalSignificantNumber(number, &national_number); const NumberFormat* format_rule = phone_util_.ChooseFormattingPatternForNumber(metadata->number_format(), national_number); if (format_rule && !format_rule->national_prefix_formatting_rule().empty()) { if (format_rule->national_prefix_optional_when_formatting()) { return true; } if (phone_util_.FormattingRuleHasFirstGroupOnly( format_rule->national_prefix_formatting_rule())) { return true; } string raw_input_copy(number.raw_input()); phone_util_.NormalizeDigitsOnly(&raw_input_copy); return phone_util_.MaybeStripNationalPrefixAndCarrierCode( *metadata, &raw_input_copy, NULL); } return true; } bool PhoneNumberMatcher::AllNumberGroupsAreExactlyPresent( const PhoneNumberUtil& util, const PhoneNumber& phone_number, const string& normalized_candidate, const std::vector<string>& formatted_number_groups) const { const scoped_ptr<RegExpInput> candidate_number( reg_exps_->regexp_factory_->CreateInput(normalized_candidate)); std::vector<string> candidate_groups; string digit_block; while (reg_exps_->capturing_ascii_digits_pattern_->FindAndConsume( candidate_number.get(), &digit_block)) { candidate_groups.push_back(digit_block); } int candidate_number_group_index = static_cast<int>( phone_number.has_extension() ? candidate_groups.size() - 2 : candidate_groups.size() - 1); string national_significant_number; util.GetNationalSignificantNumber(phone_number, &national_significant_number); if (candidate_groups.size() == 1 || candidate_groups.at(candidate_number_group_index).find( national_significant_number) != string::npos) { return true; } for (int formatted_number_group_index = static_cast<int>(formatted_number_groups.size() - 1); formatted_number_group_index > 0 && candidate_number_group_index >= 0; --formatted_number_group_index, --candidate_number_group_index) { if (candidate_groups.at(candidate_number_group_index) != formatted_number_groups.at(formatted_number_group_index)) { return false; } } return (candidate_number_group_index >= 0 && HasSuffixString(candidate_groups.at(candidate_number_group_index), formatted_number_groups.at(0))); } bool PhoneNumberMatcher::ContainsMoreThanOneSlashInNationalNumber( const PhoneNumber& number, const string& candidate, const PhoneNumberUtil& util) { size_t first_slash_in_body = candidate.find('/'); if (first_slash_in_body == string::npos) { return false; } size_t second_slash_in_body = candidate.find('/', first_slash_in_body + 1); if (second_slash_in_body == string::npos) { return false; } if (number.country_code_source() == PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN || number.country_code_source() == PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN) { string normalized_country_code = candidate.substr(0, first_slash_in_body); util.NormalizeDigitsOnly(&normalized_country_code); if (normalized_country_code == SimpleItoa(number.country_code())) { return candidate.find('/', second_slash_in_body + 1) != string::npos; } } return true; } } }
#include "phonenumbers/phonenumbermatcher.h" #include <string> #include <vector> #include <gtest/gtest.h> #include <unicode/unistr.h> #include "phonenumbers/base/basictypes.h" #include "phonenumbers/base/memory/scoped_ptr.h" #include "phonenumbers/base/memory/singleton.h" #include "phonenumbers/default_logger.h" #include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/phonenumbermatch.h" #include "phonenumbers/phonenumberutil.h" #include "phonenumbers/stringutil.h" #include "phonenumbers/test_util.h" namespace i18n { namespace phonenumbers { using std::string; using icu::UnicodeString; namespace { struct NumberContext { string leading_text_; string trailing_text_; NumberContext(const string& leading_text, const string& trailing_text) : leading_text_(leading_text), trailing_text_(trailing_text) { } }; struct NumberTest { string raw_string_; string region_; string ToString() const { return StrCat(raw_string_, " (", region_, ")"); } NumberTest(const string& raw_string, const string& region) : raw_string_(raw_string), region_(region) { } }; } class PhoneNumberMatcherTest : public testing::Test { protected: PhoneNumberMatcherTest() : phone_util_(*PhoneNumberUtil::GetInstance()), matcher_(phone_util_, "", RegionCode::US(), PhoneNumberMatcher::VALID, 5), offset_(0) { PhoneNumberUtil::GetInstance()->SetLogger(new StdoutLogger()); } bool IsLatinLetter(char32 letter) { return PhoneNumberMatcher::IsLatinLetter(letter); } bool ContainsMoreThanOneSlashInNationalNumber( const PhoneNumber& phone_number, const string& candidate) { return PhoneNumberMatcher::ContainsMoreThanOneSlashInNationalNumber( phone_number, candidate, phone_util_); } bool ExtractMatch(const string& text, PhoneNumberMatch* match) { return matcher_.ExtractMatch(text, offset_, match); } PhoneNumberMatcher* GetMatcherWithLeniency( const string& text, const string& region, PhoneNumberMatcher::Leniency leniency) const { return new PhoneNumberMatcher(phone_util_, text, region, leniency, 100 ); } void DoTestNumberMatchesForLeniency( const std::vector<NumberTest>& test_cases, PhoneNumberMatcher::Leniency leniency) const { scoped_ptr<PhoneNumberMatcher> matcher; for (std::vector<NumberTest>::const_iterator test = test_cases.begin(); test != test_cases.end(); ++test) { matcher.reset(GetMatcherWithLeniency( test->raw_string_, test->region_, leniency)); EXPECT_TRUE(matcher->HasNext()) << "No match found in " << test->ToString() << " for leniency: " << leniency; if (matcher->HasNext()) { PhoneNumberMatch match; matcher->Next(&match); EXPECT_EQ(test->raw_string_, match.raw_string()) << "Found wrong match in test " << test->ToString() << ". Found " << match.raw_string(); } } } void DoTestNumberNonMatchesForLeniency( const std::vector<NumberTest>& test_cases, PhoneNumberMatcher::Leniency leniency) const { scoped_ptr<PhoneNumberMatcher> matcher; for (std::vector<NumberTest>::const_iterator test = test_cases.begin(); test != test_cases.end(); ++test) { matcher.reset(GetMatcherWithLeniency( test->raw_string_, test->region_, leniency)); EXPECT_FALSE(matcher->HasNext()) << "Match found in " << test->ToString() << " for leniency: " << leniency; } } void AssertMatchProperties(const PhoneNumberMatch& match, const string& text, const string& number, const string& region_code) { PhoneNumber expected_result; phone_util_.Parse(number, region_code, &expected_result); EXPECT_EQ(expected_result, match.number()); EXPECT_EQ(number, match.raw_string()) << " Wrong number found in " << text; } void AssertEqualRange(const string& text, int index, int start, int end) { string sub = text.substr(index); PhoneNumberMatcher matcher(phone_util_, sub, RegionCode::NZ(), PhoneNumberMatcher::POSSIBLE, 1000000 ); PhoneNumberMatch match; ASSERT_TRUE(matcher.HasNext()); matcher.Next(&match); EXPECT_EQ(start - index, match.start()); EXPECT_EQ(end - index, match.end()); EXPECT_EQ(sub.substr(match.start(), match.length()), match.raw_string()); } void DoTestFindInContext(const string& number, const string& default_country) { FindPossibleInContext(number, default_country); PhoneNumber parsed; phone_util_.Parse(number, default_country, &parsed); if (phone_util_.IsValidNumber(parsed)) { FindValidInContext(number, default_country); } } void FindMatchesInContexts(const std::vector<NumberContext>& contexts, bool is_valid, bool is_possible, const string& region, const string& number) { if (is_valid) { DoTestInContext(number, region, contexts, PhoneNumberMatcher::VALID); } else { for (std::vector<NumberContext>::const_iterator it = contexts.begin(); it != contexts.end(); ++it) { string text = StrCat(it->leading_text_, number, it->trailing_text_); PhoneNumberMatcher matcher(text, region); EXPECT_FALSE(matcher.HasNext()); } } if (is_possible) { DoTestInContext(number, region, contexts, PhoneNumberMatcher::POSSIBLE); } else { for (std::vector<NumberContext>::const_iterator it = contexts.begin(); it != contexts.end(); ++it) { string text = StrCat(it->leading_text_, number, it->trailing_text_); PhoneNumberMatcher matcher(phone_util_, text, region, PhoneNumberMatcher::POSSIBLE, 10000); EXPECT_FALSE(matcher.HasNext()); } } } void FindMatchesInContexts(const std::vector<NumberContext>& contexts, bool is_valid, bool is_possible) { const string& region = RegionCode::US(); const string number("415-666-7777"); FindMatchesInContexts(contexts, is_valid, is_possible, region, number); } void FindPossibleInContext(const string& number, const string& default_country) { std::vector<NumberContext> context_pairs; context_pairs.push_back(NumberContext("", "")); context_pairs.push_back(NumberContext(" ", "\t")); context_pairs.push_back(NumberContext("Hello ", "")); context_pairs.push_back(NumberContext("", " to call me!")); context_pairs.push_back(NumberContext("Hi there, call ", " to reach me!")); context_pairs.push_back(NumberContext("Hi there, call ", ", or don't")); context_pairs.push_back(NumberContext("Hi call", "")); context_pairs.push_back(NumberContext("", "forme")); context_pairs.push_back(NumberContext("Hi call", "forme")); context_pairs.push_back(NumberContext("It's cheap! Call ", " before 6:30")); context_pairs.push_back(NumberContext("Call ", " or +1800-123-4567!")); context_pairs.push_back(NumberContext("Call me on June 2 at", "")); context_pairs.push_back(NumberContext( "As quoted by Alfonso 12-15 (2009), you may call me at ", "")); context_pairs.push_back(NumberContext( "As quoted by Alfonso et al. 12-15 (2009), you may call me at ", "")); context_pairs.push_back(NumberContext( "As I said on 03/10/2011, you may call me at ", "")); context_pairs.push_back(NumberContext("", ", 45 days a year")); context_pairs.push_back(NumberContext("", ";x 7246433")); context_pairs.push_back(NumberContext("Call ", "/x12 more")); DoTestInContext(number, default_country, context_pairs, PhoneNumberMatcher::POSSIBLE); } void FindValidInContext(const string& number, const string& default_country) { std::vector<NumberContext> context_pairs; context_pairs.push_back(NumberContext("It's only 9.99! Call ", " to buy")); context_pairs.push_back(NumberContext("Call me on 21.6.1984 at ", "")); context_pairs.push_back(NumberContext("Call me on 06/21 at ", "")); context_pairs.push_back(NumberContext("Call me on 21.6. at ", "")); context_pairs.push_back(NumberContext("Call me on 06/21/84 at ", "")); DoTestInContext(number, default_country, context_pairs, PhoneNumberMatcher::VALID); } void DoTestInContext(const string& number, const string& default_country, const std::vector<NumberContext>& context_pairs, PhoneNumberMatcher::Leniency leniency) { for (std::vector<NumberContext>::const_iterator it = context_pairs.begin(); it != context_pairs.end(); ++it) { string prefix = it->leading_text_; string text = StrCat(prefix, number, it->trailing_text_); int start = prefix.length(); int end = start + number.length(); PhoneNumberMatcher matcher(phone_util_, text, default_country, leniency, 1000000 ); PhoneNumberMatch match; ASSERT_TRUE(matcher.HasNext()) << "Did not find a number in '" << text << "'; expected '" << number << "'"; matcher.Next(&match); string extracted = text.substr(match.start(), match.length()); EXPECT_EQ(start, match.start()); EXPECT_EQ(end, match.end()); EXPECT_EQ(number, extracted); EXPECT_EQ(extracted, match.raw_string()) << "Unexpected phone region in '" << text << "'; extracted '" << extracted << "'"; EnsureTermination(text, default_country, leniency); } } void EnsureTermination(const string& text, const string& default_country, PhoneNumberMatcher::Leniency leniency) { for (size_t index = 0; index <= text.length(); ++index) { string sub = text.substr(index); PhoneNumberMatcher matcher(phone_util_, text, default_country, leniency, 1000000 ); string matches; PhoneNumberMatch match; int match_count = 0; while (matcher.HasNext()) { matcher.Next(&match); StrAppend(&matches, ",", match.ToString()); ++match_count; } ASSERT_LT(match_count, 10); } } const PhoneNumberUtil& phone_util_; private: PhoneNumberMatcher matcher_; int offset_; }; TEST_F(PhoneNumberMatcherTest, ContainsMoreThanOneSlashInNationalNumber) { PhoneNumber number; number.set_country_code(1); number.set_country_code_source(PhoneNumber::FROM_DEFAULT_COUNTRY); string candidate = "1/05/2013"; EXPECT_TRUE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); number.Clear(); number.set_country_code(274); number.set_country_code_source(PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN); candidate = "27/4/2013"; EXPECT_TRUE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); number.Clear(); number.set_country_code(49); number.set_country_code_source(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN); candidate = "49/69/2013"; EXPECT_FALSE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); number.Clear(); number.set_country_code(49); number.set_country_code_source(PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN); candidate = "+49/69/2013"; EXPECT_FALSE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); candidate = "+ 49/69/2013"; EXPECT_FALSE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); candidate = "+ 49/69/20/13"; EXPECT_TRUE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); number.Clear(); number.set_country_code(49); number.set_country_code_source(PhoneNumber::FROM_DEFAULT_COUNTRY); candidate = "49/69/2013"; EXPECT_TRUE(ContainsMoreThanOneSlashInNationalNumber(number, candidate)); } TEST_F(PhoneNumberMatcherTest, FindNationalNumber) { DoTestFindInContext("033316005", RegionCode::NZ()); DoTestFindInContext("03-331 6005", RegionCode::NZ()); DoTestFindInContext("03 331 6005", RegionCode::NZ()); DoTestFindInContext("0064 3 331 6005", RegionCode::NZ()); DoTestFindInContext("01164 3 331 6005", RegionCode::US()); DoTestFindInContext("+64 3 331 6005", RegionCode::US()); DoTestFindInContext("64(0)64123456", RegionCode::NZ()); DoTestFindInContext("0123/456789", RegionCode::PL()); DoTestFindInContext("123-456-7890", RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, FindWithInternationalPrefixes) { DoTestFindInContext("+1 (650) 333-6000", RegionCode::NZ()); DoTestFindInContext("1-650-333-6000", RegionCode::US()); DoTestFindInContext("0011-650-333-6000", RegionCode::SG()); DoTestFindInContext("0081-650-333-6000", RegionCode::SG()); DoTestFindInContext("0191-650-333-6000", RegionCode::SG()); DoTestFindInContext("0~01-650-333-6000", RegionCode::PL()); DoTestFindInContext("++1 (650) 333-6000", RegionCode::PL()); DoTestFindInContext( "\xEF\xBC\x8B""1 (650) 333-6000" , RegionCode::SG()); DoTestFindInContext( "\xEF\xBC\x8B\xEF\xBC\x91\xE3\x80\x80\xEF\xBC\x88\xEF\xBC\x96\xEF\xBC\x95" "\xEF\xBC\x90\xEF\xBC\x89\xE3\x80\x80\xEF\xBC\x93\xEF\xBC\x93\xEF\xBC\x93" "\xEF\xBC\x8D\xEF\xBC\x96\xEF\xBC\x90\xEF\xBC\x90\xEF\xBC\x90", RegionCode::SG()); } TEST_F(PhoneNumberMatcherTest, FindWithLeadingZero) { DoTestFindInContext("+39 02-36618 300", RegionCode::NZ()); DoTestFindInContext("02-36618 300", RegionCode::IT()); DoTestFindInContext("312 345 678", RegionCode::IT()); } TEST_F(PhoneNumberMatcherTest, FindNationalNumberArgentina) { DoTestFindInContext("+54 9 343 555 1212", RegionCode::AR()); DoTestFindInContext("0343 15 555 1212", RegionCode::AR()); DoTestFindInContext("+54 9 3715 65 4320", RegionCode::AR()); DoTestFindInContext("03715 15 65 4320", RegionCode::AR()); DoTestFindInContext("+54 11 3797 0000", RegionCode::AR()); DoTestFindInContext("011 3797 0000", RegionCode::AR()); DoTestFindInContext("+54 3715 65 4321", RegionCode::AR()); DoTestFindInContext("03715 65 4321", RegionCode::AR()); DoTestFindInContext("+54 23 1234 0000", RegionCode::AR()); DoTestFindInContext("023 1234 0000", RegionCode::AR()); } TEST_F(PhoneNumberMatcherTest, FindWithXInNumber) { DoTestFindInContext("(0xx) 123456789", RegionCode::AR()); DoTestFindInContext("(0xx) 123456789 x 1234", RegionCode::AR()); DoTestFindInContext("011xx5481429712", RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, FindNumbersMexico) { DoTestFindInContext("+52 (449)978-0001", RegionCode::MX()); DoTestFindInContext("01 (449)978-0001", RegionCode::MX()); DoTestFindInContext("(449)978-0001", RegionCode::MX()); DoTestFindInContext("+52 1 33 1234-5678", RegionCode::MX()); DoTestFindInContext("044 (33) 1234-5678", RegionCode::MX()); DoTestFindInContext("045 33 1234-5678", RegionCode::MX()); } TEST_F(PhoneNumberMatcherTest, FindNumbersWithPlusWithNoRegion) { DoTestFindInContext("+64 3 331 6005", RegionCode::ZZ()); } TEST_F(PhoneNumberMatcherTest, FindExtensions) { DoTestFindInContext("03 331 6005 ext 3456", RegionCode::NZ()); DoTestFindInContext("03-3316005x3456", RegionCode::NZ()); DoTestFindInContext("03-3316005 int.3456", RegionCode::NZ()); DoTestFindInContext("03 3316005 #3456", RegionCode::NZ()); DoTestFindInContext("0~0 1800 7493 524", RegionCode::PL()); DoTestFindInContext("(1800) 7493.524", RegionCode::US()); DoTestFindInContext("0~0 1800 7493 524 ~1234", RegionCode::PL()); DoTestFindInContext("+44 2034567890x456", RegionCode::NZ()); DoTestFindInContext("+44 2034567890x456", RegionCode::GB()); DoTestFindInContext("+44 2034567890 x456", RegionCode::GB()); DoTestFindInContext("+44 2034567890 X456", RegionCode::GB()); DoTestFindInContext("+44 2034567890 X 456", RegionCode::GB()); DoTestFindInContext("+44 2034567890 X 456", RegionCode::GB()); DoTestFindInContext("+44 2034567890 X 456", RegionCode::GB()); DoTestFindInContext("(800) 901-3355 x 7246433", RegionCode::US()); DoTestFindInContext("(800) 901-3355 , ext 7246433", RegionCode::US()); DoTestFindInContext("(800) 901-3355 ,extension 7246433", RegionCode::US()); DoTestFindInContext("(800) 901-3355 ,x 7246433", RegionCode::US()); DoTestFindInContext("(800) 901-3355 ext: 7246433", RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, FindInterspersedWithSpace) { DoTestFindInContext("0 3 3 3 1 6 0 0 5", RegionCode::NZ()); } TEST_F(PhoneNumberMatcherTest, IntermediateParsePositions) { string text = "Call 033316005 or 032316005!"; for (int i = 0; i <= 5; ++i) { AssertEqualRange(text, i, 5, 14); } AssertEqualRange(text, 6, 6, 14); AssertEqualRange(text, 7, 7, 14); for (int i = 8; i <= 19; ++i) { AssertEqualRange(text, i, 19, 28); } } TEST_F(PhoneNumberMatcherTest, FourMatchesInARow) { string number1 = "415-666-7777"; string number2 = "800-443-1223"; string number3 = "212-443-1223"; string number4 = "650-443-1223"; string text = StrCat(number1, " - ", number2, " - ", number3, " - ", number4); PhoneNumberMatcher matcher(text, RegionCode::US()); PhoneNumberMatch match; EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number1, RegionCode::US()); EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number2, RegionCode::US()); EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number3, RegionCode::US()); EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number4, RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, MatchesFoundWithMultipleSpaces) { string number1 = "415-666-7777"; string number2 = "800-443-1223"; string text = StrCat(number1, " ", number2); PhoneNumberMatcher matcher(text, RegionCode::US()); PhoneNumberMatch match; EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number1, RegionCode::US()); EXPECT_TRUE(matcher.HasNext()); EXPECT_TRUE(matcher.Next(&match)); AssertMatchProperties(match, text, number2, RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, MatchWithSurroundingZipcodes) { string number = "415-666-7777"; string zip_preceding = StrCat("My address is CA 34215 - ", number, " is my number."); PhoneNumber expected_result; phone_util_.Parse(number, RegionCode::US(), &expected_result); scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency(zip_preceding, RegionCode::US(), PhoneNumberMatcher::VALID)); PhoneNumberMatch match; EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->Next(&match)); AssertMatchProperties(match, zip_preceding, number, RegionCode::US()); number = "(415) 666 7777"; string zip_following = StrCat("My number is ", number, ". 34215 is my zip-code."); matcher.reset( GetMatcherWithLeniency(zip_following, RegionCode::US(), PhoneNumberMatcher::VALID)); PhoneNumberMatch match_with_spaces; EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->Next(&match_with_spaces)); AssertMatchProperties( match_with_spaces, zip_following, number, RegionCode::US()); } TEST_F(PhoneNumberMatcherTest, IsLatinLetter) { EXPECT_TRUE(IsLatinLetter('c')); EXPECT_TRUE(IsLatinLetter('C')); EXPECT_TRUE(IsLatinLetter(UnicodeString::fromUTF8("\xC3\x89" )[0])); EXPECT_TRUE(IsLatinLetter(UnicodeString::fromUTF8("\xCC\x81")[0])); EXPECT_FALSE(IsLatinLetter(':')); EXPECT_FALSE(IsLatinLetter('5')); EXPECT_FALSE(IsLatinLetter('-')); EXPECT_FALSE(IsLatinLetter('.')); EXPECT_FALSE(IsLatinLetter(' ')); EXPECT_FALSE( IsLatinLetter(UnicodeString::fromUTF8("\xE6\x88\x91" )[0])); EXPECT_FALSE(IsLatinLetter(UnicodeString::fromUTF8("\xE3\x81\xAE")[0])); EXPECT_FALSE(IsLatinLetter(UnicodeString::fromUTF8("\xE3\x81\xAE")[2])); } TEST_F(PhoneNumberMatcherTest, MatchesWithSurroundingLatinChars) { std::vector<NumberContext> possible_only_contexts; possible_only_contexts.push_back(NumberContext("abc", "def")); possible_only_contexts.push_back(NumberContext("abc", "")); possible_only_contexts.push_back(NumberContext("", "def")); possible_only_contexts.push_back(NumberContext("\xC3\x89" , "")); possible_only_contexts.push_back( NumberContext("\x20\x22\xCC\x81""e\xCC\x81" , "")); FindMatchesInContexts(possible_only_contexts, false, true); } TEST_F(PhoneNumberMatcherTest, MoneyNotSeenAsPhoneNumber) { std::vector<NumberContext> possible_only_contexts; possible_only_contexts.push_back(NumberContext("$", "")); possible_only_contexts.push_back(NumberContext("", "$")); possible_only_contexts.push_back(NumberContext("\xC2\xA3" , "")); possible_only_contexts.push_back(NumberContext("\xC2\xA5" , "")); FindMatchesInContexts(possible_only_contexts, false, true); } TEST_F(PhoneNumberMatcherTest, PercentageNotSeenAsPhoneNumber) { std::vector<NumberContext> possible_only_contexts; possible_only_contexts.push_back(NumberContext("", "%")); FindMatchesInContexts(possible_only_contexts, false, true); } TEST_F(PhoneNumberMatcherTest, PhoneNumberWithLeadingOrTrailingMoneyMatches) { std::vector<NumberContext> contexts; contexts.push_back(NumberContext("$20 ", "")); contexts.push_back(NumberContext("", " 100$")); FindMatchesInContexts(contexts, true, true); } TEST_F(PhoneNumberMatcherTest, MatchesWithSurroundingLatinCharsAndLeadingPunctuation) { std::vector<NumberContext> possible_only_contexts; possible_only_contexts.push_back(NumberContext("abc", "def")); possible_only_contexts.push_back(NumberContext("", "def")); possible_only_contexts.push_back(NumberContext("", "\xC3\x89" )); string number_with_plus = "+14156667777"; string number_with_brackets = "(415)6667777"; FindMatchesInContexts(possible_only_contexts, false, true, RegionCode::US(), number_with_plus); FindMatchesInContexts(possible_only_contexts, false, true, RegionCode::US(), number_with_brackets); std::vector<NumberContext> valid_contexts; valid_contexts.push_back(NumberContext("abc", "")); valid_contexts.push_back(NumberContext("\xC3\x89" , "")); valid_contexts.push_back( NumberContext("\xC3\x89" , ".")); valid_contexts.push_back(NumberContext("\xC3\x89" , " def")); FindMatchesInContexts(valid_contexts, true, true, RegionCode::US(), number_with_plus); FindMatchesInContexts(valid_contexts, true, true, RegionCode::US(), number_with_brackets); } TEST_F(PhoneNumberMatcherTest, MatchesWithSurroundingChineseChars) { std::vector<NumberContext> valid_contexts; valid_contexts.push_back(NumberContext( "\xE6\x88\x91\xE7\x9A\x84\xE7\x94\xB5\xE8\xAF\x9D\xE5\x8F\xB7\xE7\xA0\x81" "\xE6\x98\xAF", "")); valid_contexts.push_back(NumberContext( "", "\xE6\x98\xAF\xE6\x88\x91\xE7\x9A\x84\xE7\x94\xB5\xE8\xAF\x9D\xE5\x8F\xB7" "\xE7\xA0\x81")); valid_contexts.push_back(NumberContext( "\xE8\xAF\xB7\xE6\x8B\xA8\xE6\x89\x93" , "\xE6\x88\x91\xE5\x9C\xA8\xE6\x98\x8E\xE5\xA4\xA9" )); FindMatchesInContexts(valid_contexts, true, true); } TEST_F(PhoneNumberMatcherTest, MatchesWithSurroundingPunctuation) { std::vector<NumberContext> valid_contexts; valid_contexts.push_back(NumberContext("My number-", "")); valid_contexts.push_back(NumberContext("", ".Nice day.")); valid_contexts.push_back(NumberContext("Tel:", ".")); valid_contexts.push_back(NumberContext("Tel: ", " on Saturdays.")); FindMatchesInContexts(valid_contexts, true, true); } TEST_F(PhoneNumberMatcherTest, MatchesMultiplePhoneNumbersSeparatedByPhoneNumberPunctuation) { const string text = "Call 650-253-4561 -- 455-234-3451"; const string& region = RegionCode::US(); PhoneNumber number1; number1.set_country_code(phone_util_.GetCountryCodeForRegion(region)); number1.set_national_number(6502534561ULL); PhoneNumberMatch match1(5, "650-253-4561", number1); PhoneNumber number2; number2.set_country_code(phone_util_.GetCountryCodeForRegion(region)); number2.set_national_number(4552343451ULL); PhoneNumberMatch match2(21, "455-234-3451", number2); PhoneNumberMatcher matcher( phone_util_, text, region, PhoneNumberMatcher::VALID, 100); PhoneNumberMatch actual_match1; PhoneNumberMatch actual_match2; matcher.Next(&actual_match1); matcher.Next(&actual_match2); EXPECT_TRUE(match1.Equals(actual_match1)) << "Got: " << actual_match1.ToString(); EXPECT_TRUE(match2.Equals(actual_match2)) << "Got: " << actual_match2.ToString(); } TEST_F(PhoneNumberMatcherTest, DoesNotMatchMultiplePhoneNumbersSeparatedWithNoWhiteSpace) { const string text = "Call 650-253-4561--455-234-3451"; const string& region = RegionCode::US(); PhoneNumberMatcher matcher( phone_util_, text, region, PhoneNumberMatcher::VALID, 100); EXPECT_FALSE(matcher.HasNext()); } static const NumberTest kImpossibleCases[] = { NumberTest("12345", RegionCode::US()), NumberTest("23456789", RegionCode::US()), NumberTest("234567890112", RegionCode::US()), NumberTest("650+253+1234", RegionCode::US()), NumberTest("3/10/1984", RegionCode::CA()), NumberTest("03/27/2011", RegionCode::US()), NumberTest("31/8/2011", RegionCode::US()), NumberTest("1/12/2011", RegionCode::US()), NumberTest("10/12/82", RegionCode::DE()), NumberTest("650x2531234", RegionCode::US()), NumberTest("2012-01-02 08:00", RegionCode::US()), NumberTest("2012/01/02 08:00", RegionCode::US()), NumberTest("20120102 08:00", RegionCode::US()), NumberTest("2014-04-12 04:04 PM", RegionCode::US()), NumberTest("2014-04-12 &nbsp;04:04 PM", RegionCode::US()), NumberTest("2014-04-12 &nbsp;04:04 PM", RegionCode::US()), NumberTest("2014-04-12 04:04 PM", RegionCode::US()), }; static const NumberTest kPossibleOnlyCases[] = { NumberTest("7121115678", RegionCode::US()), NumberTest("1650 x 253 - 1234", RegionCode::US()), NumberTest("650 x 253 - 1234", RegionCode::US()), NumberTest("6502531x234", RegionCode::US()), NumberTest("(20) 3346 1234", RegionCode::GB()), }; static const NumberTest kValidCases[] = { NumberTest("65 02 53 00 00", RegionCode::US()), NumberTest("6502 538365", RegionCode::US()), NumberTest("650 NumberTest("650/253/1234", RegionCode::US()), NumberTest("9002309. 158", RegionCode::US()), NumberTest("12 7/8 - 14 12/34 - 5", RegionCode::US()), NumberTest("12.1 - 23.71 - 23.45", RegionCode::US()), NumberTest("800 234 1 111x1111", RegionCode::US()), NumberTest("1979-2011 100", RegionCode::US()), NumberTest("+494949-4-94", RegionCode::DE()), NumberTest( "\xEF\xBC\x94\xEF\xBC\x91\xEF\xBC\x95\xEF\xBC\x96\xEF\xBC\x96\xEF\xBC\x96" "\x2D\xEF\xBC\x97\xEF\xBC\x97\xEF\xBC\x97\xEF\xBC\x97", RegionCode::US()), NumberTest("2012-0102 08", RegionCode::US()), NumberTest("2012-01-02 08", RegionCode::US()), NumberTest("1800-1-0-10 22", RegionCode::AU()), NumberTest("030-3-2 23 12 34", RegionCode::DE()), NumberTest("03 0 -3 2 23 12 34", RegionCode::DE()), NumberTest("(0)3 0 -3 2 23 12 34", RegionCode::DE()), NumberTest("0 3 0 -3 2 23 12 34", RegionCode::DE()), #ifdef I18N_PHONENUMBERS_USE_ALTERNATE_FORMATS NumberTest("+52 332 123 23 23", RegionCode::MX()), #endif }; static const NumberTest kStrictGroupingCases[] = { NumberTest("(415) 6667777", RegionCode::US()), NumberTest("415-6667777", RegionCode::US()), NumberTest("0800-2491234", RegionCode::DE()), #ifdef I18N_PHONENUMBERS_USE_ALTERNATE_FORMATS NumberTest("0900-1 123123", RegionCode::DE()), NumberTest("(0)900-1 123123", RegionCode::DE()), NumberTest("0 900-1 123123", RegionCode::DE()), #endif NumberTest("+33 3 34 2312", RegionCode::FR()), }; static const NumberTest kExactGroupingCases[] = { NumberTest( "\xEF\xBC\x94\xEF\xBC\x91\xEF\xBC\x95\xEF\xBC\x96\xEF\xBC\x96\xEF\xBC\x96" "\xEF\xBC\x97\xEF\xBC\x97\xEF\xBC\x97\xEF\xBC\x97", RegionCode::US()), NumberTest( "\xEF\xBC\x94\xEF\xBC\x91\xEF\xBC\x95\xEF\xBC\x8D\xEF\xBC\x96\xEF\xBC\x96" "\xEF\xBC\x96\xEF\xBC\x8D\xEF\xBC\x97\xEF\xBC\x97\xEF\xBC\x97" "\xEF\xBC\x97", RegionCode::US()), NumberTest("4156667777", RegionCode::US()), NumberTest("4156667777 x 123", RegionCode::US()), NumberTest("415-666-7777", RegionCode::US()), NumberTest("415/666-7777", RegionCode::US()), NumberTest("415-666-7777 ext. 503", RegionCode::US()), NumberTest("1 415 666 7777 x 123", RegionCode::US()), NumberTest("+1 415-666-7777", RegionCode::US()), NumberTest("+494949 49", RegionCode::DE()), NumberTest("+49-49-34", RegionCode::DE()), NumberTest("+49-4931-49", RegionCode::DE()), NumberTest("04931-49", RegionCode::DE()), NumberTest("+49-494949", RegionCode::DE()), NumberTest("+49-494949 ext. 49", RegionCode::DE()), NumberTest("+49494949 ext. 49", RegionCode::DE()), NumberTest("0494949", RegionCode::DE()), NumberTest("0494949 ext. 49", RegionCode::DE()), NumberTest("01 (33) 3461 2234", RegionCode::MX()), NumberTest("(33) 3461 2234", RegionCode::MX()), #ifdef I18N_PHONENUMBERS_USE_ALTERNATE_FORMATS NumberTest("1800-10-10 22", RegionCode::AU()), NumberTest("0900-1 123 123", RegionCode::DE()), NumberTest("(0)900-1 123 123", RegionCode::DE()), NumberTest("0 900-1 123 123", RegionCode::DE()), #endif NumberTest("+33 3 34 23 12", RegionCode::FR()), }; TEST_F(PhoneNumberMatcherTest, MatchesWithPossibleLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kPossibleOnlyCases, kPossibleOnlyCases + arraysize(kPossibleOnlyCases)); test_cases.insert(test_cases.begin(), kValidCases, kValidCases + arraysize(kValidCases)); test_cases.insert( test_cases.begin(), kStrictGroupingCases, kStrictGroupingCases + arraysize(kStrictGroupingCases)); test_cases.insert(test_cases.begin(), kExactGroupingCases, kExactGroupingCases + arraysize(kExactGroupingCases)); DoTestNumberMatchesForLeniency(test_cases, PhoneNumberMatcher::POSSIBLE); } TEST_F(PhoneNumberMatcherTest, NonMatchesWithPossibleLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kImpossibleCases, kImpossibleCases + arraysize(kImpossibleCases)); DoTestNumberNonMatchesForLeniency(test_cases, PhoneNumberMatcher::POSSIBLE); } TEST_F(PhoneNumberMatcherTest, MatchesWithValidLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kValidCases, kValidCases + arraysize(kValidCases)); test_cases.insert( test_cases.begin(), kStrictGroupingCases, kStrictGroupingCases + arraysize(kStrictGroupingCases)); test_cases.insert(test_cases.begin(), kExactGroupingCases, kExactGroupingCases + arraysize(kExactGroupingCases)); DoTestNumberMatchesForLeniency(test_cases, PhoneNumberMatcher::VALID); } TEST_F(PhoneNumberMatcherTest, NonMatchesWithValidLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kImpossibleCases, kImpossibleCases + arraysize(kImpossibleCases)); test_cases.insert(test_cases.begin(), kPossibleOnlyCases, kPossibleOnlyCases + arraysize(kPossibleOnlyCases)); DoTestNumberNonMatchesForLeniency(test_cases, PhoneNumberMatcher::VALID); } TEST_F(PhoneNumberMatcherTest, MatchesWithStrictGroupingLeniency) { std::vector<NumberTest> test_cases; test_cases.insert( test_cases.begin(), kStrictGroupingCases, kStrictGroupingCases + arraysize(kStrictGroupingCases)); test_cases.insert(test_cases.begin(), kExactGroupingCases, kExactGroupingCases + arraysize(kExactGroupingCases)); DoTestNumberMatchesForLeniency(test_cases, PhoneNumberMatcher::STRICT_GROUPING); } TEST_F(PhoneNumberMatcherTest, NonMatchesWithStrictGroupingLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kImpossibleCases, kImpossibleCases + arraysize(kImpossibleCases)); test_cases.insert(test_cases.begin(), kPossibleOnlyCases, kPossibleOnlyCases + arraysize(kPossibleOnlyCases)); test_cases.insert(test_cases.begin(), kValidCases, kValidCases + arraysize(kValidCases)); DoTestNumberNonMatchesForLeniency(test_cases, PhoneNumberMatcher::STRICT_GROUPING); } TEST_F(PhoneNumberMatcherTest, MatchesWithExactGroupingLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kExactGroupingCases, kExactGroupingCases + arraysize(kExactGroupingCases)); DoTestNumberMatchesForLeniency(test_cases, PhoneNumberMatcher::EXACT_GROUPING); } TEST_F(PhoneNumberMatcherTest, NonMatchesWithExactGroupingLeniency) { std::vector<NumberTest> test_cases; test_cases.insert(test_cases.begin(), kImpossibleCases, kImpossibleCases + arraysize(kImpossibleCases)); test_cases.insert(test_cases.begin(), kPossibleOnlyCases, kPossibleOnlyCases + arraysize(kPossibleOnlyCases)); test_cases.insert(test_cases.begin(), kValidCases, kValidCases + arraysize(kValidCases)); test_cases.insert( test_cases.begin(), kStrictGroupingCases, kStrictGroupingCases + arraysize(kStrictGroupingCases)); DoTestNumberNonMatchesForLeniency(test_cases, PhoneNumberMatcher::EXACT_GROUPING); } TEST_F(PhoneNumberMatcherTest, ExtractMatchIgnoresAmericanDates) { PhoneNumberMatch match; string text = "As I said on 03/10/2011, you may call me at "; EXPECT_FALSE(ExtractMatch(text, &match)); text = "As I said on 03/27/2011, you may call me at "; EXPECT_FALSE(ExtractMatch(text, &match)); text = "As I said on 31/8/2011, you may call me at "; EXPECT_FALSE(ExtractMatch(text, &match)); text = "As I said on 1/12/2011, you may call me at "; EXPECT_FALSE(ExtractMatch(text, &match)); text = "I was born on 10/12/82. Please call me at "; EXPECT_FALSE(ExtractMatch(text, &match)); } TEST_F(PhoneNumberMatcherTest, NonMatchingBracketsAreInvalid) { scoped_ptr<PhoneNumberMatcher> matcher(GetMatcherWithLeniency( "80.585 [79.964, 81.191]", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); matcher.reset(GetMatcherWithLeniency( "80.585 [79.964]", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); matcher.reset(GetMatcherWithLeniency( "80.585 ((79.964)", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); matcher.reset(GetMatcherWithLeniency( "(80).(585) (79).(9)64", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, NoMatchIfRegionIsUnknown) { scoped_ptr<PhoneNumberMatcher> matcher(GetMatcherWithLeniency( "Random text body - number is 0331 6005, see you there", RegionCode::ZZ(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, NoMatchInEmptyString) { scoped_ptr<PhoneNumberMatcher> matcher(GetMatcherWithLeniency( "", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); matcher.reset(GetMatcherWithLeniency(" ", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, NoMatchIfNoNumber) { scoped_ptr<PhoneNumberMatcher> matcher(GetMatcherWithLeniency( "Random text body - number is foobar, see you there", RegionCode::US(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, NoErrorWithSpecialCharacters) { string stringWithSpecialCharacters = "Myfuzzvar1152: \"My info:%415-666-7777 123 fake street\"\nfuzzvar1155: " "47\nfuzzvar1158: %415-666-1234 " "i18n_phonenumbers_Pho\356eNumberMatcher_Leniency_VALID_1" "\nfuzzvar1159: 20316 info:%415-666-7777 123 fake str79ee\nt"; string Numbers; for (int i = 0; i < 100; ++i) Numbers.append(stringWithSpecialCharacters); scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency(Numbers, RegionCode::US(), PhoneNumberMatcher::POSSIBLE)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, Sequences) { const string text = "Call 033316005 or 032316005!"; const string& region = RegionCode::NZ(); PhoneNumber number1; number1.set_country_code(phone_util_.GetCountryCodeForRegion(region)); number1.set_national_number(33316005ULL); PhoneNumberMatch match1(5, "033316005", number1); PhoneNumber number2; number2.set_country_code(phone_util_.GetCountryCodeForRegion(region)); number2.set_national_number(32316005ULL); PhoneNumberMatch match2(19, "032316005", number2); PhoneNumberMatcher matcher( phone_util_, text, region, PhoneNumberMatcher::POSSIBLE, 100); PhoneNumberMatch actual_match1; PhoneNumberMatch actual_match2; matcher.Next(&actual_match1); matcher.Next(&actual_match2); EXPECT_TRUE(match1.Equals(actual_match1)); EXPECT_TRUE(match2.Equals(actual_match2)); } TEST_F(PhoneNumberMatcherTest, MaxMatches) { string numbers; for (int i = 0; i < 100; ++i) { numbers.append("My info: 415-666-7777,"); } PhoneNumber number; phone_util_.Parse("+14156667777", RegionCode::US(), &number); std::vector<PhoneNumber> expected(100, number); PhoneNumberMatcher matcher( phone_util_, numbers, RegionCode::US(), PhoneNumberMatcher::VALID, 10); std::vector<PhoneNumber> actual; PhoneNumberMatch match; while (matcher.HasNext()) { matcher.Next(&match); actual.push_back(match.number()); } EXPECT_EQ(expected, actual); } TEST_F(PhoneNumberMatcherTest, MaxMatchesInvalid) { string numbers; for (int i = 0; i < 10; ++i) { numbers.append("My address 949-8945-0"); } for (int i = 0; i < 100; ++i) { numbers.append("My info: 415-666-7777,"); } PhoneNumberMatcher matcher( phone_util_, numbers, RegionCode::US(), PhoneNumberMatcher::VALID, 10); EXPECT_FALSE(matcher.HasNext()); } TEST_F(PhoneNumberMatcherTest, MaxMatchesMixed) { string numbers; for (int i = 0; i < 100; ++i) { numbers.append("My info: 415-666-7777 123 fake street"); } PhoneNumber number; phone_util_.Parse("+14156667777", RegionCode::ZZ(), &number); std::vector<PhoneNumber> expected(10, number); PhoneNumberMatcher matcher( phone_util_, numbers, RegionCode::US(), PhoneNumberMatcher::VALID, 10); std::vector<PhoneNumber> actual; PhoneNumberMatch match; while (matcher.HasNext()) { matcher.Next(&match); actual.push_back(match.number()); } EXPECT_EQ(expected, actual); } TEST_F(PhoneNumberMatcherTest, NonPlusPrefixedNumbersNotFoundForInvalidRegion) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("1 456 764 156", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); EXPECT_FALSE(matcher->Next(&match)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, EmptyIteration) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_FALSE(matcher->HasNext()); EXPECT_FALSE(matcher->HasNext()); EXPECT_FALSE(matcher->Next(&match)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, SingleIteration) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("+14156667777", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->Next(&match)); EXPECT_FALSE(matcher->HasNext()); EXPECT_FALSE(matcher->Next(&match)); } TEST_F(PhoneNumberMatcherTest, SingleIteration_WithNextOnly) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("+14156667777", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_TRUE(matcher->Next(&match)); EXPECT_FALSE(matcher->Next(&match)); } TEST_F(PhoneNumberMatcherTest, DoubleIteration) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("+14156667777 foobar +14156667777 ", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->Next(&match)); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->HasNext()); EXPECT_TRUE(matcher->Next(&match)); EXPECT_FALSE(matcher->HasNext()); EXPECT_FALSE(matcher->Next(&match)); EXPECT_FALSE(matcher->HasNext()); } TEST_F(PhoneNumberMatcherTest, DoubleIteration_WithNextOnly) { PhoneNumberMatch match; scoped_ptr<PhoneNumberMatcher> matcher( GetMatcherWithLeniency("+14156667777 foobar +14156667777 ", RegionCode::GetUnknown(), PhoneNumberMatcher::VALID)); EXPECT_TRUE(matcher->Next(&match)); EXPECT_TRUE(matcher->Next(&match)); EXPECT_FALSE(matcher->Next(&match)); } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/phonenumbermatcher.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/phonenumbermatcher_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
7d0598b4-bb58-4832-ae50-e5f28c105d5d
cpp
tensorflow/tensorflow
acceleration_test_util_internal
tensorflow/lite/kernels/acceleration_test_util_internal.cc
tensorflow/lite/kernels/acceleration_test_util_internal_test.cc
#include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <ctype.h> #include <algorithm> #include <functional> #include <iterator> #include <sstream> #include <string> namespace tflite { void ReadAccelerationConfig( const char* config, const std::function<void(std::string, std::string, bool)>& consumer) { if (config) { std::istringstream istream{config}; std::string curr_config_line; while (std::getline(istream, curr_config_line)) { curr_config_line.erase( curr_config_line.begin(), std::find_if_not(curr_config_line.begin(), curr_config_line.end(), [](int ch) { return std::isspace(ch); })); if (curr_config_line.empty() || curr_config_line.at(0) == '#') { continue; } auto first_sep_pos = std::find(curr_config_line.begin(), curr_config_line.end(), ','); bool is_denylist = false; std::string key = curr_config_line; std::string value{}; if (first_sep_pos != curr_config_line.end()) { key = std::string(curr_config_line.begin(), first_sep_pos); value = std::string(first_sep_pos + 1, curr_config_line.end()); } if (key[0] == '-') { key = key.substr(1); is_denylist = true; } consumer(key, value, is_denylist); } } } }
#include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <functional> #include <optional> #include <string> #include <unordered_map> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { using ::testing::Eq; using ::testing::Not; using ::testing::Test; struct SimpleConfig { public: static constexpr char kAccelerationTestConfig[] = R"( #test-id,some-other-data test-1,data-1 test-2, test-3,data-3 test-4.*,data-4 -test-5 test-6 test-7,data-7 )"; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static SimpleConfig ParseConfigurationLine(const std::string& conf_line) { return {conf_line}; } std::string value; }; class ReadAccelerationConfigTest : public ::testing::Test { public: std::unordered_map<std::string, SimpleConfig> allowlist_; std::unordered_map<std::string, SimpleConfig> denylist_; std::function<void(std::string, std::string, bool)> consumer_ = [this](std::string key, std::string value, bool is_denylist) { if (is_denylist) { denylist_[key] = {value}; } else { allowlist_[key] = {value}; } }; }; TEST_F(ReadAccelerationConfigTest, ReadsAKeyOnlyLine) { ReadAccelerationConfig("key", consumer_); EXPECT_THAT(allowlist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenylistKeyOnlyLine) { ReadAccelerationConfig("-key", consumer_); EXPECT_THAT(denylist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsAKeyValueLine) { ReadAccelerationConfig("key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenyListKeyValueLine) { ReadAccelerationConfig("-key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, KeysAreLeftTrimmed) { ReadAccelerationConfig(" key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, BlKeysAreLeftTrimmed) { ReadAccelerationConfig(" -key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, IgnoresCommentedLines) { ReadAccelerationConfig("#key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentCanHaveTrailingBlanks) { ReadAccelerationConfig(" #key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentsAreOnlyForTheFullLine) { ReadAccelerationConfig("key,value #comment", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value #comment")); } TEST_F(ReadAccelerationConfigTest, IgnoresEmptyLines) { ReadAccelerationConfig("", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLines) { ReadAccelerationConfig("key1,value1\nkey2,value2\n-key3,value3", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(denylist_["key3"].value, Eq("value3")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithCommentsAndSpaces) { ReadAccelerationConfig("key1,value1\n#comment\n\nkey2,value2", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithMissingConfigValues) { ReadAccelerationConfig("key1\nkey2,value2\nkey3\nkey4,value4", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(allowlist_["key3"].value, Eq("")); EXPECT_THAT(allowlist_["key4"].value, Eq("value4")); } TEST(GetAccelerationTestParam, LoadsTestConfig) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-3"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-3")); } TEST(GetAccelerationTestParam, LoadsTestConfigWithEmptyValue) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-2"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("")); } TEST(GetAccelerationTestParam, SupportsWildcards) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-41"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-4")); } TEST(GetAccelerationTestParam, SupportDenylist) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-5"); ASSERT_FALSE(config_value_maybe.has_value()); } struct UnmatchedSimpleConfig { public: static constexpr const char* kAccelerationTestConfig = nullptr; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static UnmatchedSimpleConfig ParseConfigurationLine( const std::string& conf_line) { return {conf_line}; } std::string value; }; TEST(GetAccelerationTestParam, ReturnEmptyOptionalForNullConfig) { ASSERT_FALSE( GetAccelerationTestParam<UnmatchedSimpleConfig>("test-3").has_value()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/acceleration_test_util_internal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/acceleration_test_util_internal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3560fe2e-68b3-49ac-ba97-3b1490679161
cpp
abseil/abseil-cpp
explicit_seed_seq
absl/random/internal/explicit_seed_seq.h
absl/random/internal/explicit_seed_seq_test.cc
#ifndef ABSL_RANDOM_INTERNAL_EXPLICIT_SEED_SEQ_H_ #define ABSL_RANDOM_INTERNAL_EXPLICIT_SEED_SEQ_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <initializer_list> #include <iterator> #include <vector> #include "absl/base/config.h" #include "absl/base/internal/endian.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { class ExplicitSeedSeq { public: using result_type = uint32_t; ExplicitSeedSeq() : state_() {} ExplicitSeedSeq(const ExplicitSeedSeq& other) = default; ExplicitSeedSeq& operator=(const ExplicitSeedSeq& other) = default; ExplicitSeedSeq(ExplicitSeedSeq&& other) = default; ExplicitSeedSeq& operator=(ExplicitSeedSeq&& other) = default; template <typename Iterator> ExplicitSeedSeq(Iterator begin, Iterator end) { for (auto it = begin; it != end; it++) { state_.push_back(*it & 0xffffffff); } } template <typename T> ExplicitSeedSeq(std::initializer_list<T> il) : ExplicitSeedSeq(il.begin(), il.end()) {} size_t size() const { return state_.size(); } template <typename OutIterator> void param(OutIterator out) const { std::copy(std::begin(state_), std::end(state_), out); } template <typename OutIterator> void generate(OutIterator begin, OutIterator end) { for (size_t index = 0; begin != end; begin++) { *begin = state_.empty() ? 0 : state_[index++]; if (index >= state_.size()) { index = 0; } } } protected: std::vector<uint32_t> state_; }; } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/explicit_seed_seq.h" #include <iterator> #include <random> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/seed_sequences.h" namespace { using ::absl::random_internal::ExplicitSeedSeq; template <typename Sseq> bool ConformsToInterface() { { Sseq default_constructed_seq; } { uint32_t init_array[] = {1, 3, 5, 7, 9}; Sseq iterator_constructed_seq(init_array, &init_array[5]); } { Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13}; } { uint32_t init_array[] = {1, 2, 3, 4, 5}; Sseq seq(init_array, &init_array[ABSL_ARRAYSIZE(init_array)]); EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array)); uint32_t state_array[ABSL_ARRAYSIZE(init_array)]; seq.param(state_array); for (int i = 0; i < ABSL_ARRAYSIZE(state_array); i++) { EXPECT_EQ(state_array[i], i + 1); } } { Sseq seq; uint32_t seeds[5]; seq.generate(seeds, &seeds[ABSL_ARRAYSIZE(seeds)]); } return true; } } TEST(SeedSequences, CheckInterfaces) { EXPECT_TRUE(ConformsToInterface<std::seed_seq>()); EXPECT_TRUE(ConformsToInterface<ExplicitSeedSeq>()); } TEST(ExplicitSeedSeq, DefaultConstructorGeneratesZeros) { const size_t kNumBlocks = 128; uint32_t outputs[kNumBlocks]; ExplicitSeedSeq seq; seq.generate(outputs, &outputs[kNumBlocks]); for (uint32_t& seed : outputs) { EXPECT_EQ(seed, 0); } } TEST(ExplicitSeeqSeq, SeedMaterialIsForwardedIdentically) { const size_t kNumBlocks = 128; uint32_t seed_material[kNumBlocks]; std::random_device urandom{"/dev/urandom"}; for (uint32_t& seed : seed_material) { seed = urandom(); } ExplicitSeedSeq seq(seed_material, &seed_material[kNumBlocks]); { const size_t kNumGenerated = kNumBlocks / 2; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i]); } } { const size_t kNumGenerated = kNumBlocks; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i]); } } { const size_t kNumGenerated = kNumBlocks * 2; uint32_t outputs[kNumGenerated]; seq.generate(outputs, &outputs[kNumGenerated]); for (size_t i = 0; i < kNumGenerated; i++) { EXPECT_EQ(outputs[i], seed_material[i % kNumBlocks]); } } } TEST(ExplicitSeedSeq, CopyAndMoveConstructors) { using testing::Each; using testing::Eq; using testing::Not; using testing::Pointwise; uint32_t entropy[4]; std::random_device urandom("/dev/urandom"); for (uint32_t& entry : entropy) { entry = urandom(); } ExplicitSeedSeq seq_from_entropy(std::begin(entropy), std::end(entropy)); { ExplicitSeedSeq seq_copy(seq_from_entropy); EXPECT_EQ(seq_copy.size(), seq_from_entropy.size()); std::vector<uint32_t> seeds_1(1000, 0); std::vector<uint32_t> seeds_2(1000, 1); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); seq_copy.generate(seeds_2.begin(), seeds_2.end()); EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); } { for (uint32_t& entry : entropy) { entry = urandom(); } ExplicitSeedSeq another_seq(std::begin(entropy), std::end(entropy)); std::vector<uint32_t> seeds_1(1000, 0); std::vector<uint32_t> seeds_2(1000, 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); another_seq.generate(seeds_2.begin(), seeds_2.end()); EXPECT_THAT(seeds_1, Not(Pointwise(Eq(), seeds_2))); #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstringop-overflow" #endif another_seq = seq_from_entropy; #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0) #pragma GCC diagnostic pop #endif seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); another_seq.generate(seeds_2.begin(), seeds_2.end()); EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); } { std::vector<uint32_t> seeds_1(1000, 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); absl::random_internal::ExplicitSeedSeq moved_seq( std::move(seq_from_entropy)); std::vector<uint32_t> seeds_2(1000, 1); moved_seq.generate(seeds_2.begin(), seeds_2.end()); EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2)); EXPECT_EQ(seq_from_entropy.size(), 0); seq_from_entropy.generate(seeds_1.begin(), seeds_1.end()); EXPECT_THAT(seeds_1, Each(Eq(0))); } } TEST(ExplicitSeedSeq, StdURBGGoldenTests) { { ExplicitSeedSeq seed_sequence{12, 34, 56}; std::minstd_rand rng(seed_sequence); std::minstd_rand::result_type values[4] = {rng(), rng(), rng(), rng()}; EXPECT_THAT(values, testing::ElementsAre(579252, 43785881, 464353103, 1501811174)); } { ExplicitSeedSeq seed_sequence{12, 34, 56}; std::mt19937 rng(seed_sequence); std::mt19937::result_type values[4] = {rng(), rng(), rng(), rng()}; EXPECT_THAT(values, testing::ElementsAre(138416803, 151130212, 33817739, 138416803)); } { ExplicitSeedSeq seed_sequence{12, 34, 56}; std::mt19937_64 rng(seed_sequence); std::mt19937_64::result_type values[4] = {rng(), rng(), rng(), rng()}; EXPECT_THAT(values, testing::ElementsAre(19738651785169348, 1464811352364190456, 18054685302720800, 19738651785169348)); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/explicit_seed_seq.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/explicit_seed_seq_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
b7ffdda7-6fd5-418d-bc6a-e72a47e2948e
cpp
google/cel-cpp
basic_struct_type
common/types/basic_struct_type.cc
common/types/basic_struct_type_test.cc
#include <array> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "common/type.h" namespace cel { bool IsWellKnownMessageType(absl::string_view name) { static constexpr absl::string_view kPrefix = "google.protobuf."; static constexpr std::array<absl::string_view, 15> kNames = { "Any", "BoolValue", "BytesValue", "DoubleValue", "Duration", "FloatValue", "Int32Value", "Int64Value", "ListValue", "StringValue", "Struct", "Timestamp", "UInt32Value", "UInt64Value", "Value", }; if (!absl::ConsumePrefix(&name, kPrefix)) { return false; } return absl::c_binary_search(kNames, name); } }
#include "common/type.h" #include "common/type_kind.h" #include "internal/testing.h" namespace cel::common_internal { namespace { using ::testing::Eq; using ::testing::IsEmpty; TEST(BasicStructType, Kind) { EXPECT_EQ(BasicStructType::kind(), TypeKind::kStruct); } TEST(BasicStructType, Default) { BasicStructType type; EXPECT_FALSE(type); EXPECT_THAT(type.DebugString(), Eq("")); EXPECT_EQ(type, BasicStructType()); } TEST(BasicStructType, Name) { BasicStructType type = MakeBasicStructType("test.Struct"); EXPECT_TRUE(type); EXPECT_THAT(type.name(), Eq("test.Struct")); EXPECT_THAT(type.DebugString(), Eq("test.Struct")); EXPECT_THAT(type.GetParameters(), IsEmpty()); EXPECT_NE(type, BasicStructType()); EXPECT_NE(BasicStructType(), type); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/basic_struct_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/basic_struct_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
f8e58a8a-64b4-41fc-96b5-e19ca6c2683f
cpp
google/tsl
retrying_utils
tsl/platform/retrying_utils.cc
tsl/platform/retrying_utils_test.cc
#include "tsl/platform/retrying_utils.h" #include <algorithm> #include <cmath> #include <cstdint> #include <limits> #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/logging.h" #include "tsl/platform/random.h" namespace tsl { namespace { bool IsRetriable(absl::StatusCode code) { switch (code) { case absl::StatusCode::kUnavailable: case absl::StatusCode::kDeadlineExceeded: case absl::StatusCode::kUnknown: return true; default: return false; } } double GenerateUniformRandomNumber() { return random::New64() * (1.0 / std::numeric_limits<uint64_t>::max()); } double GenerateUniformRandomNumberBetween(double a, double b) { if (a == b) return a; DCHECK_LT(a, b); return a + GenerateUniformRandomNumber() * (b - a); } } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const RetryConfig& config) { return CallWithRetries( f, [](int64_t micros) { return Env::Default()->SleepForMicroseconds(micros); }, config); } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const std::function<void(int64_t)>& sleep_usec, const RetryConfig& config) { int retries = 0; while (true) { auto status = f(); if (!IsRetriable(status.code())) { return status; } if (retries >= config.max_retries) { return absl::Status( absl::StatusCode::kAborted, strings::StrCat( "All ", config.max_retries, " retry attempts failed. The last failure: ", status.message())); } int64_t delay_micros = 0; if (config.init_delay_time_us > 0) { const int64_t random_micros = random::New64() % 1000000; delay_micros = std::min(config.init_delay_time_us << retries, config.max_delay_time_us) + random_micros; } VLOG(1) << "The operation failed and will be automatically retried in " << (delay_micros / 1000000.0) << " seconds (attempt " << (retries + 1) << " out of " << config.max_retries << "), caused by: " << status.ToString(); sleep_usec(delay_micros); retries++; } } absl::Status RetryingUtils::DeleteWithRetries( const std::function<absl::Status()>& delete_func, const RetryConfig& config) { bool is_retried = false; return RetryingUtils::CallWithRetries( [delete_func, &is_retried]() { const absl::Status status = delete_func(); if (is_retried && status.code() == error::NOT_FOUND) { return absl::OkStatus(); } is_retried = true; return status; }, config); } absl::Duration ComputeRetryBackoff(int current_retry_attempt, absl::Duration min_delay, absl::Duration max_delay) { DCHECK_GE(current_retry_attempt, 0); constexpr double kBackoffBase = 1.3; constexpr double kBackoffRandMult = 0.4; const absl::Duration first_term = min_delay * kBackoffRandMult; absl::Duration uncapped_second_term = min_delay * std::pow(kBackoffBase, current_retry_attempt); absl::Duration second_term = std::min(uncapped_second_term, max_delay - first_term); second_term *= GenerateUniformRandomNumberBetween(1.0 - kBackoffRandMult, 1.0); return std::max(first_term + second_term, min_delay); } }
#include "tsl/platform/retrying_utils.h" #include <cmath> #include <fstream> #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(RetryingUtilsTest, CallWithRetries_RetryDelays) { std::vector<double> requested_delays; std::function<void(int64_t)> sleep = [&requested_delays](int64_t delay) { requested_delays.emplace_back(delay / 1000000.0); }; std::function<absl::Status()> f = []() { return errors::Unavailable("Failed."); }; const auto& status = RetryingUtils::CallWithRetries( f, sleep, RetryConfig(500000 )); EXPECT_TRUE(errors::IsAborted(status)); EXPECT_TRUE(absl::StrContains( status.message(), "All 10 retry attempts failed. The last failure: Failed.")) << status; EXPECT_EQ(10, requested_delays.size()); EXPECT_NEAR(0.5, requested_delays[0], 1.0); EXPECT_NEAR(1.0, requested_delays[1], 1.0); EXPECT_NEAR(2.0, requested_delays[2], 1.0); EXPECT_NEAR(4.0, requested_delays[3], 1.0); EXPECT_NEAR(8.0, requested_delays[4], 1.0); EXPECT_NEAR(16.0, requested_delays[5], 1.0); EXPECT_NEAR(32.0, requested_delays[6], 1.0); EXPECT_NEAR(32.0, requested_delays[7], 1.0); EXPECT_NEAR(32.0, requested_delays[8], 1.0); EXPECT_NEAR(32.0, requested_delays[9], 1.0); } TEST(RetryingUtilsTest, CallWithRetries_NotFoundIsNotRetried) { std::vector<absl::Status> results( {errors::Unavailable("Failed."), errors::NotFound("Not found.")}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; EXPECT_TRUE(errors::IsNotFound(RetryingUtils::CallWithRetries( f, RetryConfig(0 )))); } TEST(RetryingUtilsTest, CallWithRetries_ImmediateSuccess) { std::vector<absl::Status> results({absl::OkStatus()}); std::function<void(int64_t)> sleep = [](int64_t delay) { ADD_FAILURE() << "Unexpected call to sleep."; }; std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, sleep, RetryConfig(1L ))); } TEST(RetryingUtilsTest, CallWithRetries_EventualSuccess) { std::vector<absl::Status> results({errors::Unavailable("Failed."), errors::Unavailable("Failed again."), absl::OkStatus()}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_ImmediateSuccess) { std::vector<absl::Status> delete_results({absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_EventualSuccess) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_PermissionDeniedNotRetried) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::PermissionDenied("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_TRUE(errors::IsPermissionDenied(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )))); } TEST(RetryingUtilsTest, DeleteWithRetries_SuccessThroughFileNotFound) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_FirstNotFoundReturnedAsIs) { std::vector<absl::Status> delete_results({errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_EQ(error::NOT_FOUND, RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )) .code()); } TEST(RetryingUtilsTest, ComputeRetryBackoff) { for (int i = 0; i < 30; ++i) { EXPECT_LE(0.4 * absl::Milliseconds(1) + 0.6 * absl::Milliseconds(1) * std::pow(1.3, i), ComputeRetryBackoff(i)); EXPECT_LE( ComputeRetryBackoff(i), 0.4 * absl::Milliseconds(1) + absl::Milliseconds(1) * std::pow(1.3, i)); } } TEST(RetryingUtilsTest, ComputeRetryBackoff_MinMaxDelays) { for (int i = 0; i < 30; ++i) { EXPECT_EQ(ComputeRetryBackoff(i, absl::Seconds(10)), absl::Seconds(10)); EXPECT_EQ(ComputeRetryBackoff(i, absl::Microseconds(1), absl::Microseconds(1)), absl::Microseconds(1)); } } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/retrying_utils.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/retrying_utils_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
1c8ca7d3-f69b-4413-a156-dc617e13bd25
cpp
tensorflow/tensorflow
mfcc_dct
tensorflow/lite/kernels/internal/mfcc_dct.cc
tensorflow/core/kernels/mfcc_dct_test.cc
#include "tensorflow/lite/kernels/internal/mfcc_dct.h" #include <math.h> namespace tflite { namespace internal { MfccDct::MfccDct() : initialized_(false) {} bool MfccDct::Initialize(int input_length, int coefficient_count) { coefficient_count_ = coefficient_count; input_length_ = input_length; if (coefficient_count_ < 1) { return false; } if (input_length < 1) { return false; } if (coefficient_count_ > input_length_) { return false; } cosines_.resize(coefficient_count_); double fnorm = sqrt(2.0 / input_length_); const double pi = atan(1.0) * 4.0; double arg = pi / input_length_; for (int i = 0; i < coefficient_count_; ++i) { cosines_[i].resize(input_length_); for (int j = 0; j < input_length_; ++j) { cosines_[i][j] = fnorm * cos(i * arg * (j + 0.5)); } } initialized_ = true; return true; } void MfccDct::Compute(const std::vector<double> &input, std::vector<double> *output) const { if (!initialized_) { return; } output->resize(coefficient_count_); int length = input.size(); if (length > input_length_) { length = input_length_; } for (int i = 0; i < coefficient_count_; ++i) { double sum = 0.0; for (int j = 0; j < length; ++j) { sum += cosines_[i][j] * input[j]; } (*output)[i] = sum; } } } }
#include "tensorflow/core/kernels/mfcc_dct.h" #include <vector> #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { TEST(MfccDctTest, AgreesWithMatlab) { MfccDct dct; std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; const int kCoefficientCount = 6; ASSERT_TRUE(dct.Initialize(input.size(), kCoefficientCount)); std::vector<double> output; dct.Compute(input, &output); std::vector<double> expected = {12.1243556530, -4.1625617959, 0.0, -0.4082482905, 0.0, -0.0800788912}; ASSERT_EQ(output.size(), kCoefficientCount); for (int i = 0; i < kCoefficientCount; ++i) { EXPECT_NEAR(output[i], expected[i], 1e-10); } } TEST(MfccDctTest, InitializeFailsOnInvalidInput) { MfccDct dct1; EXPECT_FALSE(dct1.Initialize(-50, 1)); EXPECT_FALSE(dct1.Initialize(10, -4)); EXPECT_FALSE(dct1.Initialize(-1, -1)); EXPECT_FALSE(dct1.Initialize(20, 21)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/mfcc_dct.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mfcc_dct_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8ae863ea-b859-4a67-abeb-3bdd5ff08373
cpp
google/quiche
chacha20_poly1305_encrypter
quiche/quic/core/crypto/chacha20_poly1305_encrypter.cc
quiche/quic/core/crypto/chacha20_poly1305_encrypter_test.cc
#include "quiche/quic/core/crypto/chacha20_poly1305_encrypter.h" #include <limits> #include "openssl/evp.h" namespace quic { namespace { const size_t kKeySize = 32; const size_t kNonceSize = 12; } ChaCha20Poly1305Encrypter::ChaCha20Poly1305Encrypter() : ChaChaBaseEncrypter(EVP_aead_chacha20_poly1305, kKeySize, kAuthTagSize, kNonceSize, false) { static_assert(kKeySize <= kMaxKeySize, "key size too big"); static_assert(kNonceSize <= kMaxNonceSize, "nonce size too big"); } ChaCha20Poly1305Encrypter::~ChaCha20Poly1305Encrypter() {} QuicPacketCount ChaCha20Poly1305Encrypter::GetConfidentialityLimit() const { return std::numeric_limits<QuicPacketCount>::max(); } }
#include "quiche/quic/core/crypto/chacha20_poly1305_encrypter.h" #include <memory> #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/chacha20_poly1305_decrypter.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace { struct TestVector { const char* key; const char* pt; const char* iv; const char* fixed; const char* aad; const char* ct; }; const TestVector test_vectors[] = { { "808182838485868788898a8b8c8d8e8f" "909192939495969798999a9b9c9d9e9f", "4c616469657320616e642047656e746c" "656d656e206f662074686520636c6173" "73206f66202739393a20496620492063" "6f756c64206f6666657220796f75206f" "6e6c79206f6e652074697020666f7220" "746865206675747572652c2073756e73" "637265656e20776f756c642062652069" "742e", "4041424344454647", "07000000", "50515253c0c1c2c3c4c5c6c7", "d31a8d34648e60db7b86afbc53ef7ec2" "a4aded51296e08fea9e2b5a736ee62d6" "3dbea45e8ca9671282fafb69da92728b" "1a71de0a9e060b2905d6a5b67ecd3b36" "92ddbd7f2d778b8c9803aee328091b58" "fab324e4fad675945585808b4831d7bc" "3ff4def08e4b7a9de576d26586cec64b" "6116" "1ae10b594f09e26a7e902ecb", }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; } namespace quic { namespace test { QuicData* EncryptWithNonce(ChaCha20Poly1305Encrypter* encrypter, absl::string_view nonce, absl::string_view associated_data, absl::string_view plaintext) { size_t ciphertext_size = encrypter->GetCiphertextSize(plaintext.length()); std::unique_ptr<char[]> ciphertext(new char[ciphertext_size]); if (!encrypter->Encrypt(nonce, associated_data, plaintext, reinterpret_cast<unsigned char*>(ciphertext.get()))) { return nullptr; } return new QuicData(ciphertext.release(), ciphertext_size, true); } class ChaCha20Poly1305EncrypterTest : public QuicTest {}; TEST_F(ChaCha20Poly1305EncrypterTest, EncryptThenDecrypt) { ChaCha20Poly1305Encrypter encrypter; ChaCha20Poly1305Decrypter decrypter; std::string key; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[0].key, &key)); ASSERT_TRUE(encrypter.SetKey(key)); ASSERT_TRUE(decrypter.SetKey(key)); ASSERT_TRUE(encrypter.SetNoncePrefix("abcd")); ASSERT_TRUE(decrypter.SetNoncePrefix("abcd")); uint64_t packet_number = UINT64_C(0x123456789ABC); std::string associated_data = "associated_data"; std::string plaintext = "plaintext"; char encrypted[1024]; size_t len; ASSERT_TRUE(encrypter.EncryptPacket(packet_number, associated_data, plaintext, encrypted, &len, ABSL_ARRAYSIZE(encrypted))); absl::string_view ciphertext(encrypted, len); char decrypted[1024]; ASSERT_TRUE(decrypter.DecryptPacket(packet_number, associated_data, ciphertext, decrypted, &len, ABSL_ARRAYSIZE(decrypted))); } TEST_F(ChaCha20Poly1305EncrypterTest, Encrypt) { for (size_t i = 0; test_vectors[i].key != nullptr; i++) { std::string key; std::string pt; std::string iv; std::string fixed; std::string aad; std::string ct; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].key, &key)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].pt, &pt)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].iv, &iv)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].fixed, &fixed)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].aad, &aad)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].ct, &ct)); ChaCha20Poly1305Encrypter encrypter; ASSERT_TRUE(encrypter.SetKey(key)); std::unique_ptr<QuicData> encrypted(EncryptWithNonce( &encrypter, fixed + iv, absl::string_view(aad.length() ? aad.data() : nullptr, aad.length()), pt)); ASSERT_TRUE(encrypted.get()); EXPECT_EQ(12u, ct.size() - pt.size()); EXPECT_EQ(12u, encrypted->length() - pt.size()); quiche::test::CompareCharArraysWithHexError("ciphertext", encrypted->data(), encrypted->length(), ct.data(), ct.length()); } } TEST_F(ChaCha20Poly1305EncrypterTest, GetMaxPlaintextSize) { ChaCha20Poly1305Encrypter encrypter; EXPECT_EQ(1000u, encrypter.GetMaxPlaintextSize(1012)); EXPECT_EQ(100u, encrypter.GetMaxPlaintextSize(112)); EXPECT_EQ(10u, encrypter.GetMaxPlaintextSize(22)); } TEST_F(ChaCha20Poly1305EncrypterTest, GetCiphertextSize) { ChaCha20Poly1305Encrypter encrypter; EXPECT_EQ(1012u, encrypter.GetCiphertextSize(1000)); EXPECT_EQ(112u, encrypter.GetCiphertextSize(100)); EXPECT_EQ(22u, encrypter.GetCiphertextSize(10)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/chacha20_poly1305_encrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/chacha20_poly1305_encrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
a843f051-effe-47f8-874c-478a730b6a98
cpp
google/quiche
quiche_mem_slice_storage
quiche/common/quiche_mem_slice_storage.cc
quiche/common/quiche_mem_slice_storage_test.cc
#include "quiche/common/quiche_mem_slice_storage.h" #include <algorithm> #include <utility> #include "quiche/quic/core/quic_utils.h" namespace quiche { QuicheMemSliceStorage::QuicheMemSliceStorage( const struct iovec* iov, int iov_count, QuicheBufferAllocator* allocator, const quic::QuicByteCount max_slice_len) { if (iov == nullptr) { return; } quic::QuicByteCount write_len = 0; for (int i = 0; i < iov_count; ++i) { write_len += iov[i].iov_len; } QUICHE_DCHECK_LT(0u, write_len); size_t io_offset = 0; while (write_len > 0) { size_t slice_len = std::min(write_len, max_slice_len); QuicheBuffer buffer = QuicheBuffer::CopyFromIovec(allocator, iov, iov_count, io_offset, slice_len); storage_.push_back(QuicheMemSlice(std::move(buffer))); write_len -= slice_len; io_offset += slice_len; } } }
#include "quiche/common/quiche_mem_slice_storage.h" #include <string> #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/simple_buffer_allocator.h" namespace quiche { namespace test { namespace { class QuicheMemSliceStorageImplTest : public QuicheTest { public: QuicheMemSliceStorageImplTest() = default; }; TEST_F(QuicheMemSliceStorageImplTest, EmptyIov) { QuicheMemSliceStorage storage(nullptr, 0, nullptr, 1024); EXPECT_TRUE(storage.ToSpan().empty()); } TEST_F(QuicheMemSliceStorageImplTest, SingleIov) { SimpleBufferAllocator allocator; std::string body(3, 'c'); struct iovec iov = {const_cast<char*>(body.data()), body.length()}; QuicheMemSliceStorage storage(&iov, 1, &allocator, 1024); auto span = storage.ToSpan(); EXPECT_EQ("ccc", span[0].AsStringView()); EXPECT_NE(static_cast<const void*>(span[0].data()), body.data()); } TEST_F(QuicheMemSliceStorageImplTest, MultipleIovInSingleSlice) { SimpleBufferAllocator allocator; std::string body1(3, 'a'); std::string body2(4, 'b'); struct iovec iov[] = {{const_cast<char*>(body1.data()), body1.length()}, {const_cast<char*>(body2.data()), body2.length()}}; QuicheMemSliceStorage storage(iov, 2, &allocator, 1024); auto span = storage.ToSpan(); EXPECT_EQ("aaabbbb", span[0].AsStringView()); } TEST_F(QuicheMemSliceStorageImplTest, MultipleIovInMultipleSlice) { SimpleBufferAllocator allocator; std::string body1(4, 'a'); std::string body2(4, 'b'); struct iovec iov[] = {{const_cast<char*>(body1.data()), body1.length()}, {const_cast<char*>(body2.data()), body2.length()}}; QuicheMemSliceStorage storage(iov, 2, &allocator, 4); auto span = storage.ToSpan(); EXPECT_EQ("aaaa", span[0].AsStringView()); EXPECT_EQ("bbbb", span[1].AsStringView()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_mem_slice_storage.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_mem_slice_storage_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
a7970c6c-3eda-4e9f-9136-c7919de2cdd1
cpp
google/tensorstore
ec2_credential_provider
tensorstore/kvstore/s3/credentials/ec2_credential_provider.cc
tensorstore/kvstore/s3/credentials/ec2_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/flags/flag.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/s3_metadata.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/std_optional.h" ABSL_FLAG(std::optional<std::string>, tensorstore_aws_ec2_metadata_service_endpoint, std::nullopt, "Endpoint to used for http access AWS metadata service. " "Overrides AWS_EC2_METADATA_SERVICE_ENDPOINT."); using ::tensorstore::Result; using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal::ParseJson; using ::tensorstore::internal_http::HttpRequestBuilder; namespace jb = tensorstore::internal_json_binding; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kMetadataTokenHeader[] = "x-aws-ec2-metadata-token:"; static constexpr char kIamCredentialsPath[] = "/latest/meta-data/iam/security-credentials/"; static constexpr absl::Duration kConnectTimeout = absl::Milliseconds(200); static constexpr absl::Duration kDefaultTimeout = absl::Minutes(5); static constexpr char kSuccess[] = "Success"; std::string GetEC2MetadataServiceEndpoint() { return GetFlagOrEnvValue(FLAGS_tensorstore_aws_ec2_metadata_service_endpoint, "AWS_EC2_METADATA_SERVICE_ENDPOINT") .value_or("http: } struct EC2CredentialsResponse { std::string code; std::optional<absl::Time> last_updated; std::optional<std::string> type; std::optional<std::string> access_key_id; std::optional<std::string> secret_access_key; std::optional<std::string> token; std::optional<absl::Time> expiration; }; inline constexpr auto EC2CredentialsResponseBinder = jb::Object( jb::Member("Code", jb::Projection(&EC2CredentialsResponse::code)), jb::OptionalMember("LastUpdated", jb::Projection(&EC2CredentialsResponse::last_updated)), jb::OptionalMember("Type", jb::Projection(&EC2CredentialsResponse::type)), jb::OptionalMember("AccessKeyId", jb::Projection(&EC2CredentialsResponse::access_key_id)), jb::OptionalMember( "SecretAccessKey", jb::Projection(&EC2CredentialsResponse::secret_access_key)), jb::OptionalMember("Token", jb::Projection(&EC2CredentialsResponse::token)), jb::OptionalMember("Expiration", jb::Projection(&EC2CredentialsResponse::expiration))); Result<absl::Cord> GetEC2ApiToken(std::string_view endpoint, internal_http::HttpTransport& transport) { const std::string token_url = tensorstore::StrCat(endpoint, "/latest/api/token"); const std::string request_header = "x-aws-ec2-metadata-token-ttl-seconds: 21600"; const auto request_options = internal_http::IssueRequestOptions() .SetRequestTimeout(absl::InfiniteDuration()) .SetConnectTimeout(kConnectTimeout); for (auto method : {std::string_view("POST"), std::string_view("PUT")}) { auto token_request = HttpRequestBuilder(method, token_url) .AddHeader(request_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto token_response, transport.IssueRequest(token_request, request_options).result()); if (method == "POST" && (token_response.status_code == 405 || token_response.status_code == 401)) { continue; } bool is_retryable = false; TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(token_response, is_retryable)); return std::move(token_response.payload); } return absl::NotFoundError( "Failed to obtain EC2 API token from either IMDSv1 or IMDSv2"); } } Result<AwsCredentials> EC2MetadataCredentialProvider::GetCredentials() { if (endpoint_.empty()) { endpoint_ = GetEC2MetadataServiceEndpoint(); } TENSORSTORE_ASSIGN_OR_RETURN(auto api_token, GetEC2ApiToken(endpoint_, *transport_)); auto token_header = tensorstore::StrCat(kMetadataTokenHeader, api_token); auto iam_role_request = HttpRequestBuilder("GET", tensorstore::StrCat(endpoint_, kIamCredentialsPath)) .AddHeader(token_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_role_response, transport_->IssueRequest(iam_role_request, {}).result()); auto iam_role_plain_text = iam_role_response.payload.Flatten(); bool is_retryable = false; TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(iam_role_response, is_retryable)); std::vector<std::string_view> iam_roles = absl::StrSplit(iam_role_plain_text, '\n', absl::SkipWhitespace()); if (iam_roles.empty()) { return absl::NotFoundError("Empty EC2 Role list"); } auto iam_credentials_request_url = tensorstore::StrCat(endpoint_, kIamCredentialsPath, iam_roles[0]); auto iam_credentials_request = HttpRequestBuilder("GET", iam_credentials_request_url) .AddHeader(token_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_credentials_response, transport_->IssueRequest(iam_credentials_request, {}).result()); auto iam_credentials_plain_text = iam_credentials_response.payload.Flatten(); TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(iam_credentials_response, is_retryable)); auto json_credentials = ParseJson(iam_credentials_plain_text); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_credentials, jb::FromJson<EC2CredentialsResponse>(json_credentials, EC2CredentialsResponseBinder)); if (iam_credentials.code != kSuccess) { return absl::NotFoundError( absl::StrCat("EC2Metadata request to [", iam_credentials_request_url, "] failed with code ", iam_credentials.code)); } auto default_timeout = absl::Now() + kDefaultTimeout; auto expires_at = iam_credentials.expiration.value_or(default_timeout) - absl::Seconds(60); return AwsCredentials{iam_credentials.access_key_id.value_or(""), iam_credentials.secret_access_key.value_or(""), iam_credentials.token.value_or(""), expires_at}; } } }
#include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/kvstore/s3/credentials/test_utils.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::DefaultEC2MetadataFlow; using ::tensorstore::internal_kvstore_s3::EC2MetadataCredentialProvider; static constexpr char kDefaultEndpoint[] = "http: static constexpr char kCustomEndpoint[] = "http: static constexpr char kApiToken[] = "1234567890"; static constexpr char kAccessKey[] = "ASIA1234567890"; static constexpr char kSecretKey[] = "1234567890abcdef"; static constexpr char kSessionToken[] = "abcdef123456790"; class EC2MetadataCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_EC2_METADATA_SERVICE_ENDPOINT"); } }; TEST_F(EC2MetadataCredentialProviderTest, CredentialRetrievalFlow) { auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kDefaultEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kDefaultEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, EnvironmentVariableMetadataServer) { SetEnv("AWS_EC2_METADATA_SERVICE_ENDPOINT", kCustomEndpoint); auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kCustomEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kCustomEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, InjectedMetadataServer) { auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kCustomEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>( kCustomEndpoint, mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kCustomEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, NoIamRolesInSecurityCredentials) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{200, absl::Cord{kApiToken}}}, {"GET http: HttpResponse{ 200, absl::Cord{""}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); ASSERT_FALSE(provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kDefaultEndpoint); EXPECT_THAT(provider->GetCredentials().status().ToString(), ::testing::HasSubstr("Empty EC2 Role list")); } TEST_F(EC2MetadataCredentialProviderTest, UnsuccessfulJsonResponse) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{200, absl::Cord{kApiToken}}}, {"GET http: HttpResponse{ 200, absl::Cord{"info"}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, {"GET http: HttpResponse{200, absl::Cord{"mock-iam-role"}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, {"GET " "http: "mock-iam-role", HttpResponse{200, absl::Cord(R"({"Code": "EntirelyUnsuccessful"})"), {{"x-aws-ec2-metadata-token", kApiToken}}}}}; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); auto credentials = provider->GetCredentials(); EXPECT_THAT(credentials.status(), MatchesStatus(absl::StatusCode::kNotFound)); EXPECT_THAT(credentials.status().ToString(), ::testing::AllOf(::testing::HasSubstr("EC2Metadata request"), ::testing::HasSubstr("EntirelyUnsuccessful"))); } TEST_F(EC2MetadataCredentialProviderTest, IMDSv2AfterFailure) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{405, absl::Cord()}}, {"PUT http: HttpResponse{401, absl::Cord{}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); auto credentials = provider->GetCredentials(); EXPECT_THAT(credentials.status(), MatchesStatus(absl::StatusCode::kPermissionDenied)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/ec2_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/ec2_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a702c183-894e-41e6-b224-457072d64d80
cpp
tensorflow/tensorflow
canonicalize_value
tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.cc
tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value_test.cc
#include "tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.h" #include <iterator> #include <string> #include "absl/algorithm/container.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "re2/re2.h" #include "tensorflow/lite/experimental/acceleration/compatibility/variables.h" namespace tflite::acceleration { namespace { inline char ascii_normalise(const unsigned char c) { if (c == ' ' || c == '-') { return '_'; } return absl::ascii_tolower(c); } } std::string CanonicalizeValue(absl::string_view value) { std::string output; absl::c_transform(value, std::back_inserter(output), tflite::acceleration::ascii_normalise); return output; } std::string CanonicalizeValueWithKey(absl::string_view key, absl::string_view value) { std::string output = CanonicalizeValue(value); std::string gpu_output; return key == kGPUModel && RE2::FullMatch( output, R"((angle_\(samsung_xclipse_[0-9]*\)_on_vulkan).*$)", &gpu_output) ? gpu_output : output; } }
#include "tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/acceleration/compatibility/variables.h" namespace tflite::acceleration { namespace { TEST(CanonicalizeValue, CharactersAreLowercased) { EXPECT_EQ(CanonicalizeValue("hElLo"), "hello"); } TEST(CanonicalizeValue, HyphensAreReplaced) { EXPECT_EQ(CanonicalizeValue("-"), "_"); } TEST(CanonicalizeValue, SpacesAreReplaced) { EXPECT_EQ(CanonicalizeValue(" "), "_"); } TEST(CanonicalizeValue, OtherSpecialCharactersAreUnaffected) { for (unsigned char c = 0; c < 65; ++c) { if (c == ' ' || c == '-') continue; std::string s = {1, static_cast<char>(c)}; EXPECT_EQ(CanonicalizeValue(s), s); } } TEST(CanonicalizeValue, SamsungXclipseGpuNormalized) { EXPECT_EQ(CanonicalizeValueWithKey( kGPUModel, "ANGLE (Samsung Xclipse 920) on Vulkan 1.1.179"), "angle_(samsung_xclipse_920)_on_vulkan"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
553bcb62-c346-40ab-86a4-569637b54c24
cpp
google/tensorstore
heterogeneous_container
tensorstore/internal/container/heterogeneous_container.h
tensorstore/internal/container/heterogeneous_container_test.cc
#ifndef TENSORSTORE_INTERNAL_CONTAINER_HETEROGENEOUS_CONTAINER_H_ #define TENSORSTORE_INTERNAL_CONTAINER_HETEROGENEOUS_CONTAINER_H_ #include <functional> #include "absl/container/flat_hash_set.h" namespace tensorstore { namespace internal { template <typename T> struct SupportsHeterogeneous : public T { using is_transparent = void; }; template <typename EntryPointer, typename T, auto Getter> struct KeyAdapter { template <typename U, typename = std::enable_if_t<std::is_convertible_v<U, T>>> KeyAdapter(U&& key) : value(std::forward<U>(key)) {} KeyAdapter(const EntryPointer& e) : value(std::invoke(Getter, *e)) {} template <typename H> friend H AbslHashValue(H h, const KeyAdapter& key) { return H::combine(std::move(h), key.value); } friend bool operator==(const KeyAdapter& a, const KeyAdapter& b) { return a.value == b.value; } T value; }; template <typename EntryPointer, typename T, auto Getter> using HeterogeneousHashSet = absl::flat_hash_set< EntryPointer, SupportsHeterogeneous<absl::Hash<KeyAdapter<EntryPointer, T, Getter>>>, SupportsHeterogeneous<std::equal_to<KeyAdapter<EntryPointer, T, Getter>>>>; } } #endif
#include "tensorstore/internal/container/heterogeneous_container.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::internal::HeterogeneousHashSet; struct Entry { std::string id; }; using Set = HeterogeneousHashSet<std::shared_ptr<Entry>, std::string_view, &Entry::id>; TEST(HeterogeneousHashSetTest, Basic) { Set set; auto a = std::make_shared<Entry>(Entry{"a"}); auto b = std::make_shared<Entry>(Entry{"b"}); EXPECT_TRUE(set.insert(a).second); EXPECT_TRUE(set.insert(b).second); { auto it = set.find("a"); ASSERT_NE(set.end(), it); EXPECT_EQ(a, *it); } { auto it = set.find(a); ASSERT_NE(set.end(), it); EXPECT_EQ(a, *it); } { auto it = set.find("b"); ASSERT_NE(set.end(), it); EXPECT_EQ(b, *it); } { auto it = set.find(b); ASSERT_NE(set.end(), it); EXPECT_EQ(b, *it); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/heterogeneous_container.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/heterogeneous_container_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4c512995-bf4a-4627-b748-73069394ca01
cpp
tensorflow/tensorflow
elementwise_unary
tensorflow/lite/experimental/shlo/legacy/src/elementwise_unary.cc
tensorflow/lite/experimental/shlo/legacy/test/elementwise_unary_test.cc
#include <bit> #include <cmath> #include <cstddef> #include <cstdint> #include <type_traits> #include <version> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/bf16.h" #include "tensorflow/lite/experimental/shlo/legacy/src/f16.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { template <typename Value> absl::Status CheckParameters(const Value& operand, Value& result) { if (operand.baseline_type() != result.baseline_type()) { return absl::InvalidArgumentError( "Constraint violation: baseline_type(operand) = baseline_type(result)"); } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (!(operand.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError("Expected per-tensor quantization"); } } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value, typename Op> absl::Status ElementwiseUnaryOp(const Value& operand, Value& result, Op&& op) { if (auto check = CheckParameters(operand, result); !check.ok()) { return check; } using S = Storage<storage_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); size_t n = operand.num_elements(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != operand.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } for (size_t i = 0; i < n; ++i) { auto x = S::Get(operand_buffer, i); auto y = op(x); S::Set(result_buffer, i, y); } } else { static_assert(std::is_same_v<Value, QuantizedTensor>); if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); using ET = typename Storage<expressed_type>::Type; ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); for (size_t i = 0; i < n; ++i) { auto operand_storage = S::Get(operand_buffer, i); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( operand_storage, operand_quant_param, result_scale_inv, result_quant_param.zero_point, op); S::Set(result_buffer, i, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } #define DEFINE_ELEMENTWISE_UNARY_OP(name, element_type, expression) \ absl::Status name(const Tensor& operand, Tensor& result) { \ return ElementwiseUnaryOp<element_type, element_type>( \ operand, result, [](auto x) { return expression; }); \ } #define DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name, storage_type, \ expressed_type, expression) \ absl::Status name(const QuantizedTensor& operand, QuantizedTensor& result) { \ return ElementwiseUnaryOp<storage_type, expressed_type>( \ operand, result, [](auto x) { return expression; }); \ } #define DEFINE_ELEMENTWISE_UNARY_OP_BOOL(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_i1, ElementType::kI1, expression); #define DEFINE_ELEMENTWISE_UNARY_OP_INT(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si8, ElementType::kSI8, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si16, ElementType::kSI16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_si32, ElementType::kSI32, expression); #define DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(name, expression) \ DEFINE_ELEMENTWISE_UNARY_OP(name##_bf16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_f16, ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_OP(name##_f32, ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_bf16, ElementType::kSI8, \ ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_f16, ElementType::kSI8, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si8_f32, ElementType::kSI8, \ ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP( \ name##_q_si16_bf16, ElementType::kSI16, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si16_f16, ElementType::kSI16, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si16_f32, ElementType::kSI16, \ ElementType::kF32, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP( \ name##_q_si32_bf16, ElementType::kSI32, ElementType::kBF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si32_f16, ElementType::kSI32, \ ElementType::kF16, expression); \ DEFINE_ELEMENTWISE_UNARY_QUANTIZED_OP(name##_q_si32_f32, ElementType::kSI32, \ ElementType::kF32, expression); #define CALL_UNARY_OP_BOOL_HELPER(name, operand, result) \ case ElementType::kI1: \ return name##_i1(operand, result); #define CALL_UNARY_OP_INT_HELPER(name, operand, result) \ case ElementType::kSI8: \ return name##_si8(operand, result); \ case ElementType::kSI16: \ return name##_si16(operand, result); \ case ElementType::kSI32: \ return name##_si32(operand, result); #define CALL_UNARY_OP_FLOAT_HELPER(name, operand, result) \ case ElementType::kBF16: \ return name##_bf16(operand, result); \ case ElementType::kF16: \ return name##_f16(operand, result); \ case ElementType::kF32: \ return name##_f32(operand, result); #define CALL_UNARY_OP_BOOL_INT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_BOOL_HELPER(name, operand, result); \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_INT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_INT_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_OP_BOOL_INT_FLOAT(name, operand, result) \ { \ auto element_type = operand.element_type(); \ switch (element_type) { \ CALL_UNARY_OP_BOOL_HELPER(name, operand, result); \ CALL_UNARY_OP_INT_HELPER(name, operand, result); \ CALL_UNARY_OP_FLOAT_HELPER(name, operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected tensor element type"); \ } \ } #define CALL_UNARY_QUANTIZED_OP(name, operand, result) \ { \ auto storage_type = operand.storage_type(); \ auto expressed_type = operand.expressed_type(); \ switch (storage_type) { \ case ElementType::kSI8: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si8_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si8_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si8_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI16: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si16_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si16_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si16_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ case ElementType::kSI32: \ switch (expressed_type) { \ case ElementType::kBF16: \ return name##_q_si32_bf16(operand, result); \ case ElementType::kF16: \ return name##_q_si32_f16(operand, result); \ case ElementType::kF32: \ return name##_q_si32_f32(operand, result); \ default: \ return absl::InvalidArgumentError("Unexpected expressed type"); \ } \ default: \ return absl::InvalidArgumentError("Unexpected storage type"); \ } \ } } namespace { DEFINE_ELEMENTWISE_UNARY_OP_INT(Abs, ((x > 0) ? x : -x)); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Abs, ((x > 0) ? x : -x)); } absl::Status Abs(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Abs, operand, result); } absl::Status Abs(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Abs, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Cbrt, std::cbrt(static_cast<float>(x))); } absl::Status Cbrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Cbrt, operand, result); } absl::Status Cbrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Cbrt, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Ceil, std::ceil(static_cast<float>(x))); } absl::Status Ceil(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Ceil, operand, result); } absl::Status Ceil(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Ceil, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Cosine, std::cos(static_cast<float>(x))); } absl::Status Cosine(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Cosine, operand, result); } absl::Status Cosine(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Cosine, operand, result); } namespace { template <typename Int> inline Int CountLeadingZeros(Int x) { using UInt = typename std::make_unsigned<Int>::type; #if __cpp_lib_bitops >= 201907L return std::countl_zero(static_cast<UInt>(x)); #else if (!x) { return 8 * sizeof(x); } Int result = 0; auto mask = UInt(1) << (8 * (sizeof(x) - 1) + 7); for (auto t = static_cast<UInt>(x); t > 0; t <<= 1) { if (t & mask) break; result++; } return result; #endif } DEFINE_ELEMENTWISE_UNARY_OP_INT(CountLeadingZeros, CountLeadingZeros(x)); } absl::Status CountLeadingZeros(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT(CountLeadingZeros, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Exponential, std::exp(static_cast<float>(x))); } absl::Status Exponential(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Exponential, operand, result); } absl::Status Exponential(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Exponential, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(ExponentialMinusOne, std::expm1(static_cast<float>(x))); } absl::Status ExponentialMinusOne(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(ExponentialMinusOne, operand, result); } absl::Status ExponentialMinusOne(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(ExponentialMinusOne, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Floor, std::floor(static_cast<float>(x))); } absl::Status Floor(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Floor, operand, result); } absl::Status Floor(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Floor, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Log, std::log(static_cast<float>(x))); } absl::Status Log(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Log, operand, result); } absl::Status Log(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Log, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(LogPlusOne, std::log1p(static_cast<float>(x))); } absl::Status LogPlusOne(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(LogPlusOne, operand, result); } absl::Status LogPlusOne(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(LogPlusOne, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Logistic, 1.0f / (1.0f + std::exp(static_cast<float>(-x)))); } absl::Status Logistic(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Logistic, operand, result); } absl::Status Logistic(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Logistic, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_INT(Negate, -x); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Negate, -x); } absl::Status Negate(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Negate, operand, result); } absl::Status Negate(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Negate, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_BOOL(Not, !x); DEFINE_ELEMENTWISE_UNARY_OP_INT(Not, ~x); } absl::Status Not(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_BOOL_INT(Not, operand, result); } namespace { template <typename Int> Int Popcount(Int x) { #if __cpp_lib_bitops >= 201907L return std::popcount(static_cast<uint32_t>(x)); #else using UInt = typename std::make_unsigned<Int>::type; Int result = 0; UInt mask = 0x1; for (auto t = static_cast<UInt>(x); t > 0; t >>= 1) { result += (t & mask); } return result; #endif } DEFINE_ELEMENTWISE_UNARY_OP_INT(Popcnt, Popcount(x)); } absl::Status Popcnt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT(Popcnt, operand, result); } namespace { template <typename Float> inline Float RoundNearestAfz(Float x) { return std::round(static_cast<float>(x)); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(RoundNearestAfz, RoundNearestAfz(x)); } absl::Status RoundNearestAfz(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(RoundNearestAfz, operand, result); } absl::Status RoundNearestAfz(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(RoundNearestAfz, operand, result); } namespace { template <typename Float> inline Float RoundNearestEven(Float x) { return x - static_cast<Float>(std::remainder(static_cast<float>(x), 1.0f)); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(RoundNearestEven, RoundNearestEven(x)); } absl::Status RoundNearestEven(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(RoundNearestEven, operand, result); } absl::Status RoundNearestEven(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(RoundNearestEven, operand, result); } namespace { template <typename Float> inline Float Rsqrt(Float x) { return Float{1} / static_cast<Float>(std::sqrt(static_cast<float>(x))); } DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Rsqrt, Rsqrt(x)); } absl::Status Rsqrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Rsqrt, operand, result); } absl::Status Rsqrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Rsqrt, operand, result); } namespace { template <typename Number> inline Number Sign(Number x) { if constexpr (std::is_integral<Number>::value) { return x < 0 ? -1 : (x > 0 ? 1 : 0); } else { static_assert(std::is_floating_point<Number>::value || std::is_same_v<Number, BF16> || std::is_same_v<Number, F16>); if (std::isnan(x)) { return NAN; } return (x < 0 ? -1 : (x > 0 ? 1 : 0)); } } DEFINE_ELEMENTWISE_UNARY_OP_INT(Sign, Sign(x)); DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sign, Sign(x)); } absl::Status Sign(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_INT_FLOAT(Sign, operand, result); } absl::Status Sign(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sign, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sine, std::sin(static_cast<float>(x))); } absl::Status Sine(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Sine, operand, result); } absl::Status Sine(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sine, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Sqrt, std::sqrt(static_cast<float>(x))); } absl::Status Sqrt(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Sqrt, operand, result); } absl::Status Sqrt(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Sqrt, operand, result); } namespace { DEFINE_ELEMENTWISE_UNARY_OP_FLOAT(Tanh, std::tanh(static_cast<float>(x))); } absl::Status Tanh(const Tensor& operand, Tensor& result) { CALL_UNARY_OP_FLOAT(Tanh, operand, result); } absl::Status Tanh(const QuantizedTensor& operand, QuantizedTensor& result) { CALL_UNARY_QUANTIZED_OP(Tanh, operand, result); } }
#include <cmath> #include <cstdint> #include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/matchers.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(absl::Status (*op)(const Tensor&, Tensor&), std::initializer_list<DimensionSize>&& shape, std::vector<typename Storage<element_type>::Type>&& input_values, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor input(TensorType(Shape(shape), element_type), std::data(input_values)); Tensor expected(TensorType(Shape(shape), element_type), std::data(expected_values)); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(shape), element_type), result_values.data()); ASSERT_OK(op(input, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input: " << input; } template <ElementType storage_type, ElementType expressed_type> void test( absl::Status (*op)(const QuantizedTensor&, QuantizedTensor&), std::initializer_list<DimensionSize>&& shape, QuantizedParameter&& quantized_parameter, std::vector<typename Storage<expressed_type>::Type>&& input_values, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto input_quant_values = QuantizeVector<storage_type, expressed_type>( input_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor input( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), input_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); ASSERT_OK(op(input, result)); EXPECT_THAT(result, IsAlmostSame(expected)) << "input: " << input; } TEST(ElementwiseUnary, Abs) { test<ElementType::kSI8>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI32>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kBF16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kF16>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kF32>(Abs, {5}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); } TEST(ElementwiseBinary, AbsQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Abs, {5}, {.scale = 1, .zero_point = 0}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF16>( Abs, {5}, {.scale = 1e-1, .zero_point = 1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI8, ElementType::kF32>( Abs, {5}, {.scale = 1e-1, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); test<ElementType::kSI16, ElementType::kF32>( Abs, {5}, {.scale = 1e-3, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, 1, 2, 3, 4}); } TEST(ElementwiseUnary, Cbrt) { test<ElementType::kBF16>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kF16>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kF32>( Cbrt, {4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); } TEST(ElementwiseUnary, CbrtQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI8, ElementType::kF16>( Cbrt, {4}, {.scale = 1e-1, .zero_point = -2}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI8, ElementType::kF32>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); test<ElementType::kSI16, ElementType::kF32>( Cbrt, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1, -2, 3}, {0, 1, -1.25992104989487316476f, 1.44224957030740838232f}); } TEST(ElementwiseUnary, Ceil) { test<ElementType::kBF16>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kF16>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kF32>(Ceil, {4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); } TEST(ElementwiseUnary, CeilQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Ceil, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI8, ElementType::kF16>( Ceil, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI8, ElementType::kF32>( Ceil, {4}, {.scale = 1e-1, .zero_point = -4}, {0, 1.1, -2.7, 3.5}, {0, 2, -2, 4}); test<ElementType::kSI16, ElementType::kF32>( Ceil, {4}, {.scale = 1e-2, .zero_point = -4}, {0, 1.11, -2.77, 3.55}, {0, 2, -2, 4}); } TEST(ElementwiseUnary, Cosine) { test<ElementType::kBF16>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kF16>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kF32>(Cosine, {4}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); } TEST(ElementwiseUnary, CosineQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI8, ElementType::kF16>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI8, ElementType::kF32>( Cosine, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); test<ElementType::kSI16, ElementType::kF32>( Cosine, {4}, {.scale = 1e-4, .zero_point = 0}, {0, 1.1, -1.1, 2.3}, {1, 0.45359612142557738777f, 0.45359612142557738777f, -0.66627602127982419331f}); } TEST(ElementwiseUnary, CountLeadingZeros) { test<ElementType::kSI8>(CountLeadingZeros, {4}, {0, 1, 127, -1}, {8, 7, 1, 0}); test<ElementType::kSI16>(CountLeadingZeros, {4}, {0, 1, 32767, -1}, {16, 15, 1, 0}); test<ElementType::kSI32>(CountLeadingZeros, {4}, {0, 1, 2147483647, -1}, {32, 31, 1, 0}); } TEST(ElementwiseUnary, Exponential) { test<ElementType::kBF16>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kF16>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kF32>(Exponential, {4}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF16>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF32>( Exponential, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); test<ElementType::kSI16, ElementType::kF32>( Exponential, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 0.5, 1, 1.5}, {1, 1.64872127070012814684f, 2.71828182845904523536f, 4.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialMinusOne) { test<ElementType::kBF16>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kF16>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kF32>(ExponentialMinusOne, {4}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); } TEST(ElementwiseUnary, ExponentialMinusOneQuantized) { test<ElementType::kSI8, ElementType::kBF16>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF16>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI8, ElementType::kF32>( ExponentialMinusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); test<ElementType::kSI16, ElementType::kF32>( ExponentialMinusOne, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 0.5, 1, 1.5}, {0, 0.64872127070012814684f, 1.71828182845904523536f, 3.48168907033806482260f}); } TEST(ElementwiseUnary, Floor) { test<ElementType::kBF16>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kF16>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kF32>(Floor, {4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); } TEST(ElementwiseUnary, FloorQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Floor, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI8, ElementType::kF16>( Floor, {4}, {.scale = 1e-1, .zero_point = 4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI8, ElementType::kF32>( Floor, {4}, {.scale = 1e-1, .zero_point = -4}, {0, 1.1, -2.7, 3.5}, {0, 1, -3, 3}); test<ElementType::kSI16, ElementType::kF32>( Floor, {4}, {.scale = 1e-2, .zero_point = -4}, {0, 1.11, -2.77, 3.55}, {0, 1, -3, 3}); } TEST(ElementwiseUnary, Log) { test<ElementType::kBF16>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF16>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF32>(Log, {4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF16>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF32>( Log, {4}, {.scale = 1e-1, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI16, ElementType::kF32>( Log, {4}, {.scale = 1e-3, .zero_point = -4}, {0.1, 0.5, 1, 1.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogPlusOne) { test<ElementType::kBF16>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF16>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kF32>(LogPlusOne, {4}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, LogPlusOneQuantized) { test<ElementType::kSI8, ElementType::kBF16>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF16>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI8, ElementType::kF32>( LogPlusOne, {4}, {.scale = 1e-1, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); test<ElementType::kSI16, ElementType::kF32>( LogPlusOne, {4}, {.scale = 1e-4, .zero_point = 0}, {-0.9, -0.5, 0, 0.5}, {-2.30258509299404568401f, -0.69314718055994530941f, 0, 0.40546510810816438197f}); } TEST(ElementwiseUnary, Logistic) { test<ElementType::kBF16>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kF16>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kF32>(Logistic, {4}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); } TEST(ElementwiseUnary, LogisticQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI8, ElementType::kF16>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI8, ElementType::kF32>( Logistic, {4}, {.scale = 1e-1, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); test<ElementType::kSI16, ElementType::kF32>( Logistic, {4}, {.scale = 1e-3, .zero_point = 0}, {-1, -0.5, 0, 0.5}, {0.26894142136999512074f, 0.37754066879814543536f, 0.5, 0.62245933120185456464f}); } TEST(ElementwiseUnary, Negate) { test<ElementType::kSI8>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI32>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kBF16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kF16>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kF32>(Negate, {5}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); } TEST(ElementwiseBinary, NegateQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Negate, {5}, {.scale = 1, .zero_point = 0}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI8, ElementType::kF16>( Negate, {5}, {.scale = 1e-1, .zero_point = 1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI8, ElementType::kF32>( Negate, {5}, {.scale = 1e-1, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); test<ElementType::kSI16, ElementType::kF32>( Negate, {5}, {.scale = 1e-3, .zero_point = -1}, {0, 1, -2, 3, -4}, {0, -1, 2, -3, 4}); } TEST(ElementwiseUnary, Not) { test<ElementType::kI1>(Not, {2}, {0, 1}, {1, 0}); test<ElementType::kSI8>(Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int8_t(0xFF), int8_t(0xFE), int8_t(0xFD)}); test<ElementType::kSI16>( Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int16_t(0xFFFF), int16_t(0xFFFE), int16_t(0xFFFD)}); test<ElementType::kSI32>( Not, {5}, {-2, -1, 0, 1, 2}, {1, 0, int32_t(0xFFFFFFFFU), int32_t(0xFFFFFFFEU), int32_t(0xFFFFFFFDU)}); } TEST(ElementwiseUnary, Popcnt) { test<ElementType::kSI8>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); test<ElementType::kSI16>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); test<ElementType::kSI32>(Popcnt, {4}, {0, 1, 2, 127}, {0, 1, 1, 7}); } TEST(ElementwiseUnary, RoundNearestAfz) { test<ElementType::kBF16>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kF16>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kF32>(RoundNearestAfz, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); } TEST(ElementwiseBinary, RoundNearestAfzQuantized) { test<ElementType::kSI8, ElementType::kBF16>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI8, ElementType::kF16>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI8, ElementType::kF32>( RoundNearestAfz, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); test<ElementType::kSI16, ElementType::kF32>( RoundNearestAfz, {5}, {.scale = 1e-2, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-3.0, 0.0, 1.0, 1.0, 3.0}); } TEST(ElementwiseUnary, RoundNearestEven) { test<ElementType::kBF16>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kF16>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kF32>(RoundNearestEven, {5}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); } TEST(ElementwiseBinary, RoundNearestEvenQuantized) { test<ElementType::kSI8, ElementType::kBF16>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI8, ElementType::kF16>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI8, ElementType::kF32>( RoundNearestEven, {5}, {.scale = 1e-1, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); test<ElementType::kSI16, ElementType::kF32>( RoundNearestEven, {5}, {.scale = 1e-2, .zero_point = 0}, {-2.5, 0.4, 0.5, 0.6, 2.5}, {-2.0, 0.0, 0.0, 1.0, 2.0}); } TEST(ElementwiseUnary, Rsqrt) { test<ElementType::kBF16>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); test<ElementType::kF16>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); test<ElementType::kF32>(Rsqrt, {4}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); } TEST(ElementwiseUnary, RsqrtQuantized) { test<ElementType::kSI16, ElementType::kF32>( Rsqrt, {4}, {.scale = 1e-3, .zero_point = 0}, {1.0, 4.0, 9.0, 25.0}, {1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 5.0}); } TEST(ElementwiseUnary, Sign) { test<ElementType::kSI8>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kSI16>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kSI32>(Sign, {3}, {-2, 0, 2}, {-1, 0, 1}); test<ElementType::kBF16>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); test<ElementType::kF16>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); test<ElementType::kF32>( Sign, {8}, {+NAN, -NAN, +INFINITY, -INFINITY, -2.0, -0.0, +0.0, 2.0}, {NAN, NAN, 1, -1, -1, 0, 0, 1}); } TEST(ElementwiseUnary, SignQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI8, ElementType::kF16>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI8, ElementType::kF32>( Sign, {4}, {.scale = 1e-1, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); test<ElementType::kSI16, ElementType::kF32>( Sign, {4}, {.scale = 1e-2, .zero_point = 0}, {-2.0, -0.0, +0.0, 2.0}, {-1, 0, 0, 1}); } TEST(ElementwiseUnary, Sine) { test<ElementType::kBF16>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kF16>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kF32>(Sine, {5}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); } TEST(ElementwiseUnary, SineQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI8, ElementType::kF16>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI8, ElementType::kF32>( Sine, {5}, {.scale = 1e-1, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); test<ElementType::kSI16, ElementType::kF32>( Sine, {5}, {.scale = 1e-2, .zero_point = 0}, {0, M_PI_2, M_PI, 3 * M_PI_2, 2 * M_PI}, {0, 1, 0, -1, 0}); } TEST(ElementwiseUnary, Sqrt) { test<ElementType::kBF16>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kF16>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kF32>(Sqrt, {4}, {0, 1, 4, 9}, {0, 1, 2, 3}); } TEST(ElementwiseUnary, SqrtQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI8, ElementType::kF16>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI8, ElementType::kF32>( Sqrt, {4}, {.scale = 1e-1, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); test<ElementType::kSI16, ElementType::kF32>( Sqrt, {4}, {.scale = 1e-2, .zero_point = 0}, {0, 1, 4, 9}, {0, 1, 2, 3}); } TEST(ElementwiseUnary, Tanh) { test<ElementType::kBF16>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kF16>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kF32>(Tanh, {3}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); } TEST(ElementwiseUnary, TanhQuantized) { test<ElementType::kSI8, ElementType::kBF16>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI8, ElementType::kF16>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI8, ElementType::kF32>( Tanh, {3}, {.scale = 1e-1, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); test<ElementType::kSI16, ElementType::kF32>( Tanh, {3}, {.scale = 1e-2, .zero_point = 0}, {-1, 0, 1}, {-0.76159416, 0.0, 0.76159416}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/elementwise_unary.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/elementwise_unary_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b72f667a-24cd-4daf-9d39-213b23b9b095
cpp
abseil/abseil-cpp
pool_urbg
absl/random/internal/pool_urbg.cc
absl/random/internal/pool_urbg_test.cc
#include "absl/random/internal/pool_urbg.h" #include <algorithm> #include <atomic> #include <cstdint> #include <cstring> #include <iterator> #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/sysinfo.h" #include "absl/base/internal/unaligned_access.h" #include "absl/base/optimization.h" #include "absl/random/internal/randen.h" #include "absl/random/internal/seed_material.h" #include "absl/random/seed_gen_exception.h" using absl::base_internal::SpinLock; using absl::base_internal::SpinLockHolder; namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { namespace { class RandenPoolEntry { public: static constexpr size_t kState = RandenTraits::kStateBytes / sizeof(uint32_t); static constexpr size_t kCapacity = RandenTraits::kCapacityBytes / sizeof(uint32_t); void Init(absl::Span<const uint32_t> data) { SpinLockHolder l(&mu_); std::copy(data.begin(), data.end(), std::begin(state_)); next_ = kState; } void Fill(uint8_t* out, size_t bytes) ABSL_LOCKS_EXCLUDED(mu_); template <typename T> inline T Generate() ABSL_LOCKS_EXCLUDED(mu_); inline void MaybeRefill() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (next_ >= kState) { next_ = kCapacity; impl_.Generate(state_); } } private: uint32_t state_[kState] ABSL_GUARDED_BY(mu_); SpinLock mu_; const Randen impl_; size_t next_ ABSL_GUARDED_BY(mu_); }; template <> inline uint8_t RandenPoolEntry::Generate<uint8_t>() { SpinLockHolder l(&mu_); MaybeRefill(); return static_cast<uint8_t>(state_[next_++]); } template <> inline uint16_t RandenPoolEntry::Generate<uint16_t>() { SpinLockHolder l(&mu_); MaybeRefill(); return static_cast<uint16_t>(state_[next_++]); } template <> inline uint32_t RandenPoolEntry::Generate<uint32_t>() { SpinLockHolder l(&mu_); MaybeRefill(); return state_[next_++]; } template <> inline uint64_t RandenPoolEntry::Generate<uint64_t>() { SpinLockHolder l(&mu_); if (next_ >= kState - 1) { next_ = kCapacity; impl_.Generate(state_); } auto p = state_ + next_; next_ += 2; uint64_t result; std::memcpy(&result, p, sizeof(result)); return result; } void RandenPoolEntry::Fill(uint8_t* out, size_t bytes) { SpinLockHolder l(&mu_); while (bytes > 0) { MaybeRefill(); size_t remaining = (kState - next_) * sizeof(state_[0]); size_t to_copy = std::min(bytes, remaining); std::memcpy(out, &state_[next_], to_copy); out += to_copy; bytes -= to_copy; next_ += (to_copy + sizeof(state_[0]) - 1) / sizeof(state_[0]); } } static constexpr size_t kPoolSize = 8; static absl::once_flag pool_once; ABSL_CACHELINE_ALIGNED static RandenPoolEntry* shared_pools[kPoolSize]; size_t GetPoolID() { static_assert(kPoolSize >= 1, "At least one urbg instance is required for PoolURBG"); ABSL_CONST_INIT static std::atomic<uint64_t> sequence{0}; #ifdef ABSL_HAVE_THREAD_LOCAL static thread_local size_t my_pool_id = kPoolSize; if (ABSL_PREDICT_FALSE(my_pool_id == kPoolSize)) { my_pool_id = (sequence++ % kPoolSize); } return my_pool_id; #else static pthread_key_t tid_key = [] { pthread_key_t tmp_key; int err = pthread_key_create(&tmp_key, nullptr); if (err) { ABSL_RAW_LOG(FATAL, "pthread_key_create failed with %d", err); } return tmp_key; }(); uintptr_t my_pool_id = reinterpret_cast<uintptr_t>(pthread_getspecific(tid_key)); if (ABSL_PREDICT_FALSE(my_pool_id == 0)) { my_pool_id = (sequence++ % kPoolSize) + 1; int err = pthread_setspecific(tid_key, reinterpret_cast<void*>(my_pool_id)); if (err) { ABSL_RAW_LOG(FATAL, "pthread_setspecific failed with %d", err); } } return my_pool_id - 1; #endif } RandenPoolEntry* PoolAlignedAlloc() { constexpr size_t kAlignment = ABSL_CACHELINE_SIZE > 32 ? ABSL_CACHELINE_SIZE : 32; uintptr_t x = reinterpret_cast<uintptr_t>( new char[sizeof(RandenPoolEntry) + kAlignment]); auto y = x % kAlignment; void* aligned = reinterpret_cast<void*>(y == 0 ? x : (x + kAlignment - y)); return new (aligned) RandenPoolEntry(); } void InitPoolURBG() { static constexpr size_t kSeedSize = RandenTraits::kStateBytes / sizeof(uint32_t); uint32_t seed_material[kPoolSize * kSeedSize]; if (!random_internal::ReadSeedMaterialFromOSEntropy( absl::MakeSpan(seed_material))) { random_internal::ThrowSeedGenException(); } for (size_t i = 0; i < kPoolSize; i++) { shared_pools[i] = PoolAlignedAlloc(); shared_pools[i]->Init( absl::MakeSpan(&seed_material[i * kSeedSize], kSeedSize)); } } RandenPoolEntry* GetPoolForCurrentThread() { absl::call_once(pool_once, InitPoolURBG); return shared_pools[GetPoolID()]; } } template <typename T> typename RandenPool<T>::result_type RandenPool<T>::Generate() { auto* pool = GetPoolForCurrentThread(); return pool->Generate<T>(); } template <typename T> void RandenPool<T>::Fill(absl::Span<result_type> data) { auto* pool = GetPoolForCurrentThread(); pool->Fill(reinterpret_cast<uint8_t*>(data.data()), data.size() * sizeof(result_type)); } template class RandenPool<uint8_t>; template class RandenPool<uint16_t>; template class RandenPool<uint32_t>; template class RandenPool<uint64_t>; } ABSL_NAMESPACE_END }
#include "absl/random/internal/pool_urbg.h" #include <algorithm> #include <bitset> #include <cmath> #include <cstdint> #include <iterator> #include "gtest/gtest.h" #include "absl/meta/type_traits.h" #include "absl/types/span.h" using absl::random_internal::PoolURBG; using absl::random_internal::RandenPool; namespace { template <typename T> using is_randen_pool = typename absl::disjunction< std::is_same<T, RandenPool<uint8_t>>, std::is_same<T, RandenPool<uint16_t>>, std::is_same<T, RandenPool<uint32_t>>, std::is_same<T, RandenPool<uint64_t>>>; template <typename T, typename V> typename absl::enable_if_t<absl::negation<is_randen_pool<T>>::value, void> MyFill(T& rng, absl::Span<V> data) { std::generate(std::begin(data), std::end(data), rng); } template <typename T, typename V> typename absl::enable_if_t<is_randen_pool<T>::value, void> MyFill(T& rng, absl::Span<V> data) { rng.Fill(data); } template <typename EngineType> class PoolURBGTypedTest : public ::testing::Test {}; using EngineTypes = ::testing::Types< RandenPool<uint8_t>, RandenPool<uint16_t>, RandenPool<uint32_t>, RandenPool<uint64_t>, PoolURBG<uint8_t, 2>, PoolURBG<uint16_t, 2>, PoolURBG<uint32_t, 2>, PoolURBG<uint64_t, 2>, PoolURBG<unsigned int, 8>, PoolURBG<unsigned long, 8>, PoolURBG<unsigned long int, 4>, PoolURBG<unsigned long long, 4>>; TYPED_TEST_SUITE(PoolURBGTypedTest, EngineTypes); TYPED_TEST(PoolURBGTypedTest, URBGInterface) { using E = TypeParam; using T = typename E::result_type; static_assert(std::is_copy_constructible<E>::value, "engine must be copy constructible"); static_assert(absl::is_copy_assignable<E>::value, "engine must be copy assignable"); E e; const E x; e(); static_assert(std::is_same<decltype(e()), T>::value, "return type of operator() must be result_type"); E u0(x); u0(); E u1 = e; u1(); } TYPED_TEST(PoolURBGTypedTest, VerifySequences) { using E = TypeParam; using result_type = typename E::result_type; E rng; (void)rng(); constexpr int kNumOutputs = 64; result_type a[kNumOutputs]; result_type b[kNumOutputs]; std::fill(std::begin(b), std::end(b), 0); { E x = rng; MyFill(x, absl::MakeSpan(a)); } { E x = rng; std::generate(std::begin(b), std::end(b), x); } size_t changed_bits = 0; size_t unchanged_bits = 0; size_t total_set = 0; size_t total_bits = 0; size_t equal_count = 0; for (size_t i = 0; i < kNumOutputs; ++i) { equal_count += (a[i] == b[i]) ? 1 : 0; std::bitset<sizeof(result_type) * 8> bitset(a[i] ^ b[i]); changed_bits += bitset.count(); unchanged_bits += bitset.size() - bitset.count(); std::bitset<sizeof(result_type) * 8> a_set(a[i]); std::bitset<sizeof(result_type) * 8> b_set(b[i]); total_set += a_set.count() + b_set.count(); total_bits += 2 * 8 * sizeof(result_type); } EXPECT_LE(changed_bits, 0.60 * (changed_bits + unchanged_bits)); EXPECT_GE(changed_bits, 0.40 * (changed_bits + unchanged_bits)); EXPECT_NEAR(total_set, total_bits * 0.5, 4 * std::sqrt(total_bits)) << "@" << total_set / static_cast<double>(total_bits); const double kExpected = kNumOutputs / (1.0 * sizeof(result_type) * 8); EXPECT_LE(equal_count, 1.0 + kExpected); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/pool_urbg.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/pool_urbg_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
8a36c167-4407-4e5f-84ef-a0ee90099328
cpp
tensorflow/tensorflow
pjrt_c_api_client
third_party/xla/xla/pjrt/pjrt_c_api_client.cc
third_party/xla/xla/pjrt/pjrt_c_api_client_test.cc
#include "xla/pjrt/pjrt_c_api_client.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/ErrorHandling.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_layouts_extension.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/c/pjrt_c_api_stream_extension.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/framework/allocator.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { #define RETURN_FUTURE_IF_ERROR(expr, c_api) \ do { \ PJRT_Error* error = (expr); \ std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> _error( \ error, pjrt::MakeErrorDeleter(c_api)); \ absl::Status _status = pjrt::PjrtErrorToStatus(_error.get(), c_api); \ if (!_status.ok()) { \ return PjRtFuture<>(_status); \ } \ } while (false) static absl::StatusOr<const PjRtCApiTopologyDescription> InitClientTopoDesc( const PJRT_Api* c_api, PJRT_Client* c_client) { absl::StatusOr<PJRT_TopologyDescription*> c_topo = pjrt::GetTopologyDescription(c_client, c_api); TF_RETURN_IF_ERROR(c_topo.status()); return PjRtCApiTopologyDescription(c_api, *c_topo, false); } PjRtCApiClient::PjRtCApiClient( const PJRT_Api* c_api, PJRT_Client* c_client, std::unique_ptr<pjrt::PJRT_KeyValueCallbackData> kv_callback_data) : c_api_(c_api), c_client_(std::unique_ptr<PJRT_Client, ::pjrt::PJRT_ClientDeleter>( c_client, ::pjrt::MakeClientDeleter(c_api))), kv_callback_data_(std::move(kv_callback_data)), topo_desc_(InitClientTopoDesc(c_api, c_client)), platform_version_(absl::StrCat( "PJRT C API\n", ::pjrt::GetPlatformVersion(c_client, c_api))), platform_name_(::pjrt::GetPlatformName(c_client, c_api)), platform_id_(tsl::Fingerprint64(platform_name_)) { InitDevicesAndMemorySpaces(); InitAttributes(); LOG(INFO) << "PjRtCApiClient created."; } void PjRtCApiClient::InitDevicesAndMemorySpaces() { PJRT_Client_Devices_Args devices_args; devices_args.struct_size = PJRT_Client_Devices_Args_STRUCT_SIZE; devices_args.extension_start = nullptr; devices_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError(c_api_->PJRT_Client_Devices(&devices_args), c_api_); const size_t num_devices = devices_args.num_devices; c_to_cpp_device_map_.reserve(num_devices); owned_devices_.reserve(num_devices); devices_.reserve(num_devices); for (int i = 0; i < num_devices; ++i) { PJRT_Device* device = devices_args.devices[i]; std::unique_ptr<PjRtCApiDevice>& cpp_device = owned_devices_.emplace_back( std::make_unique<PjRtCApiDevice>(device, this)); devices_.push_back(cpp_device.get()); c_to_cpp_device_map_[device] = cpp_device.get(); } PJRT_Client_AddressableDevices_Args address_args; address_args.struct_size = PJRT_Client_AddressableDevices_Args_STRUCT_SIZE; address_args.extension_start = nullptr; address_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError( c_api_->PJRT_Client_AddressableDevices(&address_args), c_api_); const size_t num_addressable_devices = address_args.num_addressable_devices; addressable_devices_.reserve(num_addressable_devices); for (int i = 0; i < num_addressable_devices; ++i) { PJRT_Device* c_device = address_args.addressable_devices[i]; addressable_devices_.push_back(GetCppDevice(c_device)); } PJRT_Client_AddressableMemories_Args memory_args; memory_args.struct_size = PJRT_Client_AddressableMemories_Args_STRUCT_SIZE; memory_args.extension_start = nullptr; memory_args.client = c_client_.get(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> client_error( c_api_->PJRT_Client_AddressableMemories(&memory_args), pjrt::MakeErrorDeleter(c_api_)); if (client_error == nullptr) { const size_t num_memories = memory_args.num_addressable_memories; c_to_cpp_memory_map_.reserve(num_memories); owned_memory_spaces_.reserve(num_memories); addressable_memory_spaces_.reserve(num_memories); for (int i = 0; i < num_memories; ++i) { PJRT_Memory* memory = memory_args.addressable_memories[i]; std::unique_ptr<PjRtCApiMemorySpace>& cpp_memory = owned_memory_spaces_.emplace_back( std::make_unique<PjRtCApiMemorySpace>(memory, this)); addressable_memory_spaces_.push_back(cpp_memory.get()); c_to_cpp_memory_map_[memory] = cpp_memory.get(); } } else if (pjrt::GetErrorCode(client_error.get(), c_api_) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(client_error.get(), c_api_); } for (const auto& device : addressable_devices_) { PjRtCApiDevice* cpp_device = tensorflow::down_cast<PjRtCApiDevice*>(device); PJRT_Device* c_device = cpp_device->c_device(); PJRT_Device_AddressableMemories_Args args; args.struct_size = PJRT_Device_AddressableMemories_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = c_device; std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> device_error( c_api_->PJRT_Device_AddressableMemories(&args), pjrt::MakeErrorDeleter(c_api_)); if (device_error != nullptr) { if (pjrt::GetErrorCode(device_error.get(), c_api_) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(device_error.get(), c_api_); } break; } const size_t num_memories = args.num_memories; cpp_device->memory_spaces_.reserve(num_memories); for (int i = 0; i < num_memories; ++i) { cpp_device->memory_spaces_.push_back(GetCppMemory(args.memories[i])); } } for (const auto& memory : addressable_memory_spaces_) { PjRtCApiMemorySpace* cpp_memory = tensorflow::down_cast<PjRtCApiMemorySpace*>(memory); PJRT_Memory* c_memory = cpp_memory->c_memory(); PJRT_Memory_AddressableByDevices_Args args; args.struct_size = PJRT_Memory_AddressableByDevices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory; pjrt::LogFatalIfPjrtError(c_api_->PJRT_Memory_AddressableByDevices(&args), c_api_); const size_t num_attached_devices = args.num_devices; cpp_memory->devices_.reserve(num_attached_devices); for (int i = 0; i < num_attached_devices; ++i) { cpp_memory->devices_.push_back(GetCppDevice(args.devices[i])); } } } void PjRtCApiClient::InitAttributes() { PJRT_Plugin_Attributes_Args args; args.struct_size = PJRT_Plugin_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api_->PJRT_Plugin_Attributes(&args), c_api_); attributes_ = pjrt::ConvertFromPjRtNamedValueList(args.attributes, args.num_attributes); } int PjRtCApiClient::device_count() const { return devices_.size(); } int PjRtCApiClient::addressable_device_count() const { return addressable_devices_.size(); } absl::Span<PjRtDevice* const> PjRtCApiClient::devices() const { return devices_; } absl::Span<PjRtDevice* const> PjRtCApiClient::addressable_devices() const { return addressable_devices_; } int PjRtCApiClient::process_index() const { PJRT_Client_ProcessIndex_Args process_index_args; process_index_args.struct_size = PJRT_Client_ProcessIndex_Args_STRUCT_SIZE; process_index_args.extension_start = nullptr; process_index_args.client = c_client_.get(); pjrt::LogFatalIfPjrtError( c_api_->PJRT_Client_ProcessIndex(&process_index_args), c_api_); return process_index_args.process_index; } absl::string_view PjRtCApiClient::platform_version() const { return platform_version_; } std::optional<PjRtPluginAttributes> PjRtCApiClient::plugin_attributes() const { return PjRtPluginAttributes{c_api_->pjrt_api_version.major_version, c_api_->pjrt_api_version.minor_version, attributes_}; } static DeviceAssignment CalculateDefaultAssignment( int num_replicas, int num_partitions, absl::Span<const int> device_assignment) { DeviceAssignment cpp_device_assignment(num_replicas, num_partitions); const int* iterator = device_assignment.begin(); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { cpp_device_assignment(replica, partition) = *(iterator++); } } return cpp_device_assignment; } absl::StatusOr<DeviceAssignment> PjRtCApiClient::GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const { PJRT_Client_DefaultDeviceAssignment_Args args; args.struct_size = PJRT_Client_DefaultDeviceAssignment_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.num_replicas = num_replicas; args.num_partitions = num_partitions; std::vector<int> assignment_buffer(num_replicas * num_partitions); args.default_assignment_size = assignment_buffer.size(); args.default_assignment = assignment_buffer.data(); RETURN_STATUS_IF_PJRT_ERROR( c_api_->PJRT_Client_DefaultDeviceAssignment(&args), c_api_); absl::Span<const int> param{args.default_assignment, args.default_assignment_size}; return CalculateDefaultAssignment(args.num_replicas, args.num_partitions, param); } absl::StatusOr<PjRtDevice*> PjRtCApiClient::LookupDevice( PjRtGlobalDeviceId global_device_id) const { PJRT_Client_LookupDevice_Args args; args.struct_size = PJRT_Client_LookupDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.id = global_device_id.value(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Client_LookupDevice(&args), c_api_); return GetCppDevice(args.device); } absl::StatusOr<PjRtDevice*> PjRtCApiClient::LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const { PJRT_Client_LookupAddressableDevice_Args args; args.struct_size = PJRT_Client_LookupAddressableDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.local_hardware_id = local_device_id.value(); RETURN_STATUS_IF_PJRT_ERROR( c_api_->PJRT_Client_LookupAddressableDevice(&args), c_api_); return GetCppDevice(args.addressable_device); } absl::Span<PjRtMemorySpace* const> PjRtCApiClient::memory_spaces() const { return addressable_memory_spaces_; } static absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> InitializeArgsAndCompile(PjRtCApiClient* api_client, const PJRT_Api* c_api, PJRT_Client* client, const CompileOptions& options, const std::string& code, const std::string& format) { PJRT_Client_Compile_Args args; args.struct_size = PJRT_Client_Compile_Args_STRUCT_SIZE; PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension("PJRT_Client_Compile linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); args.client = client; TF_ASSIGN_OR_RETURN(const CompileOptionsProto options_proto, options.ToProto()); std::string options_str = options_proto.SerializeAsString(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = const_cast<char*>(code.c_str()); program.code_size = code.size(); program.format = format.c_str(); program.format_size = format.size(); args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Client_Compile(&args), c_api); std::unique_ptr<PjRtLoadedExecutable> ret = std::make_unique<PjRtCApiLoadedExecutable>(api_client, args.executable); return ret; } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::Compile( const XlaComputation& computation, CompileOptions options) { std::string module_str = computation.proto().SerializeAsString(); std::string format(pjrt::kHloFormat); return InitializeArgsAndCompile(this, c_api_, c_client_.get(), options, module_str, format); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::Compile( mlir::ModuleOp module, CompileOptions options) { if (!pjrt_c_api()) llvm::report_fatal_error("pjrt_c_api is null"); TF_ASSIGN_OR_RETURN( std::string serialized, xla::Serialize(module, xla::GetDefaultStablehloVersion( plugin_attributes()->pjrt_c_api_minor_version))); std::string format(pjrt::kMlirFormat); return InitializeArgsAndCompile(this, c_api_, c_client_.get(), options, serialized, format); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> PjRtCApiClient::DeserializeExecutable(absl::string_view serialized, std::optional<CompileOptions> options) { PJRT_Executable_DeserializeAndLoad_Args des_args; des_args.struct_size = PJRT_Executable_DeserializeAndLoad_Args_STRUCT_SIZE; des_args.extension_start = nullptr; des_args.client = c_client_.get(); des_args.serialized_executable = serialized.data(); des_args.serialized_executable_size = serialized.length(); const PJRT_Api* api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR( api->PJRT_Executable_DeserializeAndLoad(&des_args), api); PJRT_LoadedExecutable* c_exec = des_args.loaded_executable; CHECK(c_exec != nullptr); return std::unique_ptr<PjRtLoadedExecutable>( std::make_unique<PjRtCApiLoadedExecutable>(this, c_exec)); } absl::StatusOr<const PjRtTopologyDescription*> PjRtCApiClient::GetTopologyDescription() const { if (!topo_desc_.ok()) { return topo_desc_.status(); } return &(*topo_desc_); } absl::StatusOr<std::uintptr_t> PjRtCApiClient::UnsafeBufferPointer( PjRtBuffer* buffer) { if (buffer->client() != this) { return InvalidArgument( "buffer passed to PjRtCApiClient::UnsafeBufferPointer() is from a " "different client than that of the function call. Buffer's client " "platform: '%s', function call's client platform: '%s'.", buffer->client()->platform_name(), this->platform_name()); } PJRT_Buffer_UnsafePointer_Args args; args.struct_size = PJRT_Buffer_UnsafePointer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = tensorflow::down_cast<const PjRtCApiBuffer*>(buffer)->c_buffer(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Buffer_UnsafePointer(&args), c_api_); return args.buffer_pointer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBufferInternalImpl( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, std::variant<PjRtDevice*, PjRtMemorySpace*> device_or_memory, const Layout* device_layout) { if (host_buffer_semantics != HostBufferSemantics::kImmutableOnlyDuringCall && host_buffer_semantics != HostBufferSemantics::kImmutableZeroCopy && host_buffer_semantics != HostBufferSemantics::kImmutableUntilTransferCompletes) { return Unimplemented( "PJRT C API does not support HostBufferSemantics other than " "HostBufferSemantics::kImmutableOnlyDuringCall, " "HostBufferSemantics::kImmutableZeroCopy and " "HostBufferSemantics::kImmutableUntilTransferCompletes."); } PJRT_Client_BufferFromHostBuffer_Args args; args.struct_size = PJRT_Client_BufferFromHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.data = data; args.type = ::pjrt::ConvertToPjRtBufferType(type); args.dims = dims.data(); args.num_dims = dims.size(); if (byte_strides.has_value()) { args.byte_strides = byte_strides.value().data(); args.num_byte_strides = byte_strides.value().size(); } else { args.byte_strides = nullptr; args.num_byte_strides = 0; } pjrt::BufferMemoryLayoutData c_layout_data; if (device_layout != nullptr) { TF_ASSIGN_OR_RETURN(c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(*device_layout)); args.device_layout = &c_layout_data.c_layout; } else { args.device_layout = nullptr; } args.host_buffer_semantics = ::pjrt::ConvertToPjRtHostBufferSemantics(host_buffer_semantics); if (std::holds_alternative<PjRtDevice*>(device_or_memory)) { args.device = tensorflow::down_cast<PjRtCApiDevice*>( std::get<PjRtDevice*>(device_or_memory)) ->c_device(); args.memory = nullptr; } else { CHECK(std::holds_alternative<PjRtMemorySpace*>(device_or_memory)); args.device = nullptr; args.memory = tensorflow::down_cast<PjRtCApiMemorySpace*>( std::get<PjRtMemorySpace*>(device_or_memory)) ->c_memory(); } RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Client_BufferFromHostBuffer(&args), c_api_); auto buffer = std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(this, args.buffer)); std::unique_ptr<PJRT_Event, ::pjrt::PJRT_EventDeleter> event( args.done_with_host_buffer, ::pjrt::MakeEventDeleter(c_api_)); if (on_done_with_host_buffer) { PJRT_Event_OnReady_Args event_args; event_args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; event_args.extension_start = nullptr; event_args.event = event.get(); event_args.user_arg = new absl::AnyInvocable<void(PJRT_Error*)>( [on_done_with_host_buffer = std::move(on_done_with_host_buffer), c_api = c_api_](PJRT_Error* error) mutable { if (error) { ::pjrt::MakeErrorDeleter(c_api)(error); } std::move(on_done_with_host_buffer)(); }); event_args.callback = [](PJRT_Error* error, void* args) { auto* on_done_with_host_buffer = reinterpret_cast<absl::AnyInvocable<void(PJRT_Error*)>*>(args); (*on_done_with_host_buffer)(error); delete on_done_with_host_buffer; }; RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Event_OnReady(&event_args), c_api_); } return buffer; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), memory_space, device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) { return BufferFromHostBufferInternalImpl( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device, nullptr); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiClient::CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) { PJRT_Client_CreateViewOfDeviceBuffer_Args args; args.struct_size = PJRT_Client_CreateViewOfDeviceBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.device_buffer_ptr = device_ptr; args.dims = shape.dimensions().data(); args.num_dims = shape.dimensions().size(); args.element_type = pjrt::ConvertToPjRtBufferType(shape.element_type()); pjrt::BufferMemoryLayoutData c_layout_data; if (shape.has_layout()) { TF_ASSIGN_OR_RETURN(c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(shape.layout())); args.layout = &(c_layout_data.c_layout); } else { args.layout = nullptr; } if (on_delete_callback != nullptr) { args.on_delete_callback_arg = new std::function(std::move(on_delete_callback)); args.on_delete_callback = [](void* device_buffer_ptr, void* user_arg) { auto* c_func = reinterpret_cast<std::function<void()>*>(user_arg); (*c_func)(); delete c_func; }; } else { args.on_delete_callback = nullptr; args.on_delete_callback_arg = nullptr; } args.device = tensorflow::down_cast<PjRtCApiDevice*>(device)->c_device(); if (stream.has_value()) { args.stream = *stream; } else { args.stream = reinterpret_cast<intptr_t>(nullptr); } const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR( c_api->PJRT_Client_CreateViewOfDeviceBuffer(&args), c_api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(this, args.buffer)); } absl::StatusOr<Layout> PjRtCApiClient::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) { const PJRT_Api* c_api = pjrt_c_api(); PJRT_Layouts_Extension* extension = pjrt::FindExtension<PJRT_Layouts_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Layouts); if (extension == nullptr) { return LayoutUtil::MakeDescendingLayout(dims.size()); } PJRT_Layouts_PJRT_Client_GetDefaultLayout_Args args; args.struct_size = PJRT_Layouts_PJRT_Client_GetDefaultLayout_Args_STRUCT_SIZE; args.extension_start = nullptr; args.client = c_client_.get(); args.type = pjrt::ConvertToPjRtBufferType(element_type); args.dims = dims.data(); args.num_dims = dims.size(); RETURN_STATUS_IF_PJRT_ERROR( extension->PJRT_Layouts_PJRT_Client_GetDefaultLayout(&args), c_api); std::unique_ptr<PJRT_Layouts_MemoryLayout, pjrt::PJRT_Layouts_MemoryLayoutDeleter> layout_destroyer(args.layout, pjrt::MakeMemoryLayoutDeleter(c_api)); PJRT_Layouts_MemoryLayout_Serialize_Args serialize_args; serialize_args.struct_size = PJRT_Layouts_MemoryLayout_Serialize_Args_STRUCT_SIZE; serialize_args.extension_start = nullptr; serialize_args.layout = args.layout; RETURN_STATUS_IF_PJRT_ERROR( extension->PJRT_Layouts_MemoryLayout_Serialize(&serialize_args), c_api); absl::Cleanup cleanup = [&serialize_args] { serialize_args.serialized_layout_deleter(serialize_args.serialized_layout); }; std::string serialized_layout(serialize_args.serialized_bytes, serialize_args.serialized_bytes_size); TF_ASSIGN_OR_RETURN(PjRtXlaLayout pjrt_xla_layout, PjRtXlaLayout::Deserialize(serialized_layout)); return pjrt_xla_layout.xla_layout(); } const PJRT_Api* PjRtCApiClient::pjrt_c_api() const { return c_api_; } PjRtCApiDeviceDescription::PjRtCApiDeviceDescription( const PJRT_Api* c_api, PJRT_DeviceDescription* device_description) : c_api_(c_api), device_description_(device_description) { InitAttributes(); } int PjRtCApiDeviceDescription::id() const { PJRT_DeviceDescription_Id_Args args; args.struct_size = PJRT_DeviceDescription_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Id(&args), c_api_); return args.id; } int PjRtCApiDeviceDescription::process_index() const { PJRT_DeviceDescription_ProcessIndex_Args args; args.struct_size = PJRT_DeviceDescription_ProcessIndex_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_ProcessIndex(&args), c_api_); return args.process_index; } void PjRtCApiDeviceDescription::InitAttributes() { attributes_ = {}; PJRT_DeviceDescription_Attributes_Args args; args.struct_size = PJRT_DeviceDescription_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Attributes(&args), c_api_); for (int i = 0; i < args.num_attributes; ++i) { const auto& attribute = args.attributes[i]; std::string attribute_name(attribute.name, attribute.name_size); switch (attribute.type) { case PJRT_NamedValue_Type::PJRT_NamedValue_kString: { std::string string_value(attribute.string_value, attribute.value_size); attributes_[attribute_name] = PjRtDeviceAttribute(string_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64: { attributes_[attribute_name] = PjRtDeviceAttribute(attribute.int64_value); break; } case PJRT_NamedValue_Type::PJRT_NamedValue_kInt64List: { const int64_t* array_ptr(attribute.int64_array_value); std::vector<int64_t> int64_array(array_ptr, array_ptr + attribute.value_size); attributes_[attribute_name] = PjRtDeviceAttribute(int64_array); break; } default: { LOG(FATAL) << "PJRT_DeviceDescription_Attributes() returned attribute '" << attribute_name << "' with unsupported type " << attribute.type << " to PjRtCApiDeviceDescription::InitAttributes()"; break; } } } } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& PjRtCApiDeviceDescription::Attributes() const { return attributes_; } absl::string_view PjRtCApiDeviceDescription::device_kind() const { PJRT_DeviceDescription_Kind_Args args; args.struct_size = PJRT_DeviceDescription_Kind_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_Kind(&args), c_api_); absl::string_view device_kind(args.device_kind, args.device_kind_size); return device_kind; } absl::string_view PjRtCApiDeviceDescription::DebugString() const { PJRT_DeviceDescription_DebugString_Args args; args.struct_size = PJRT_DeviceDescription_DebugString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_DebugString(&args), c_api_); absl::string_view debug_string(args.debug_string, args.debug_string_size); return debug_string; } absl::string_view PjRtCApiDeviceDescription::ToString() const { PJRT_DeviceDescription_ToString_Args args; args.struct_size = PJRT_DeviceDescription_ToString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device_description = device_description_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_DeviceDescription_ToString(&args), c_api_); absl::string_view to_string(args.to_string, args.to_string_size); return to_string; } PjRtCApiDevice::PjRtCApiDevice(PJRT_Device* device, PjRtCApiClient* client) : client_(client), device_(device), description_(client->pjrt_c_api(), pjrt::GetDeviceDescription(client->pjrt_c_api(), device)) {} PjRtClient* PjRtCApiDevice::client() const { return client_; } bool PjRtCApiDevice::IsAddressable() const { PJRT_Device_IsAddressable_Args args; args.struct_size = PJRT_Device_IsAddressable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Device_IsAddressable(&args), api); return args.is_addressable; } PjRtLocalHardwareId PjRtCApiDevice::local_hardware_id() const { PJRT_Device_LocalHardwareId_Args args; args.struct_size = PJRT_Device_LocalHardwareId_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Device_LocalHardwareId(&args), api); return PjRtLocalHardwareId(args.local_hardware_id); } absl::StatusOr<PjRtMemorySpace*> PjRtCApiDevice::default_memory_space() const { PJRT_Device_DefaultMemory_Args args; args.struct_size = PJRT_Device_DefaultMemory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Device_DefaultMemory(&args), api); return client_->GetCppMemory(args.memory); } absl::StatusOr<tsl::AllocatorStats> PjRtCApiDevice::GetAllocatorStats() const { PJRT_Device_MemoryStats_Args args; args.struct_size = PJRT_Device_MemoryStats_Args_STRUCT_SIZE; args.extension_start = nullptr; args.device = device_; const PJRT_Api* api = client_->pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Device_MemoryStats(&args), api); tsl::AllocatorStats result; result.bytes_in_use = args.bytes_in_use; if (args.peak_bytes_in_use_is_set) { result.peak_bytes_in_use = args.peak_bytes_in_use; } else { result.peak_bytes_in_use = -1; } if (args.num_allocs_is_set) { result.num_allocs = args.num_allocs; } else { result.num_allocs = -1; } if (args.largest_alloc_size_is_set) { result.largest_alloc_size = args.largest_alloc_size; } else { result.largest_alloc_size = -1; } if (args.bytes_limit_is_set) { result.bytes_limit = args.bytes_limit; } if (args.bytes_reserved_is_set) { result.bytes_reserved = args.bytes_reserved; } else { result.bytes_reserved = -1; } if (args.peak_bytes_reserved_is_set) { result.peak_bytes_reserved = args.peak_bytes_reserved; } else { result.peak_bytes_reserved = -1; } if (args.bytes_reservable_limit_is_set) { result.bytes_reservable_limit = args.bytes_reservable_limit; } if (args.largest_free_block_bytes_is_set) { result.largest_free_block_bytes = args.largest_free_block_bytes; } else { result.largest_free_block_bytes = -1; } if (args.pool_bytes_is_set) { result.pool_bytes = args.pool_bytes; } if (args.peak_pool_bytes_is_set) { result.peak_pool_bytes = args.peak_pool_bytes; } return result; } absl::StatusOr<std::intptr_t> PjRtCApiDevice::GetStreamForExternalReadyEvents() const { const PJRT_Api* c_api = client_->pjrt_c_api(); PJRT_Stream_Extension* extension = pjrt::FindExtension<PJRT_Stream_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Stream); if (extension == nullptr) { return absl::UnimplementedError( "Stream extension not implemented in this PJRT plugin."); } PJRT_Get_Stream_For_External_Ready_Events_Args args; args.struct_size = PJRT_Get_Stream_For_External_Ready_Events_Args_STRUCT_SIZE; args.device = device_; RETURN_STATUS_IF_PJRT_ERROR(extension->get_stream(&args), c_api); return args.stream; } const PJRT_Api* PjRtCApiMemorySpace::pjrt_c_api() const { return client_->pjrt_c_api(); } PjRtClient* PjRtCApiMemorySpace::client() const { return client_; } int PjRtCApiMemorySpace::id() const { PJRT_Memory_Id_Args args; args.struct_size = PJRT_Memory_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Id(&args), pjrt_c_api()); return args.id; } absl::string_view PjRtCApiMemorySpace::kind() const { PJRT_Memory_Kind_Args args; args.struct_size = PJRT_Memory_Kind_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Kind(&args), pjrt_c_api()); return absl::string_view(args.kind, args.kind_size); } int PjRtCApiMemorySpace::kind_id() const { PJRT_Memory_Kind_Id_Args args; args.struct_size = PJRT_Memory_Kind_Id_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; if (pjrt_c_api()->pjrt_api_version.major_version > 0 || pjrt_c_api()->pjrt_api_version.minor_version >= 48) { pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_Kind_Id(&args), pjrt_c_api()); return args.kind_id; } return tsl::Fingerprint32(kind()); } absl::string_view PjRtCApiMemorySpace::DebugString() const { PJRT_Memory_DebugString_Args args; args.struct_size = PJRT_Memory_DebugString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_DebugString(&args), pjrt_c_api()); return absl::string_view(args.debug_string, args.debug_string_size); } absl::string_view PjRtCApiMemorySpace::ToString() const { PJRT_Memory_ToString_Args args; args.struct_size = PJRT_Memory_ToString_Args_STRUCT_SIZE; args.extension_start = nullptr; args.memory = c_memory_; pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Memory_ToString(&args), pjrt_c_api()); return absl::string_view(args.to_string, args.to_string_size); } PjRtCApiExecutable::PjRtCApiExecutable(const PJRT_Api* c_api, PJRT_Executable* executable) : c_api_(c_api), executable_(executable, ::pjrt::MakeExecutableDeleter(c_api)) {} absl::string_view PjRtCApiExecutable::name() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_Name_Args args; args.executable = executable; args.struct_size = PJRT_Executable_Name_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_Name(&args), c_api); return absl::string_view(args.executable_name, args.executable_name_size); } int PjRtCApiExecutable::num_replicas() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_NumReplicas_Args args; args.executable = executable; args.struct_size = PJRT_Executable_NumReplicas_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_NumReplicas(&args), c_api); return args.num_replicas; } int PjRtCApiExecutable::num_partitions() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_NumPartitions_Args args; args.executable = executable; args.struct_size = PJRT_Executable_NumPartitions_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError(c_api->PJRT_Executable_NumPartitions(&args), c_api); return args.num_partitions; } int64_t PjRtCApiExecutable::SizeOfGeneratedCodeInBytes() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_SizeOfGeneratedCodeInBytes_Args args; args.struct_size = PJRT_Executable_SizeOfGeneratedCodeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; pjrt::LogFatalIfPjrtError( c_api->PJRT_Executable_SizeOfGeneratedCodeInBytes(&args), c_api); return args.size_in_bytes; } absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> PjRtCApiExecutable::GetCostAnalysis() const { PJRT_Executable_GetCostAnalysis_Args args; args.struct_size = PJRT_Executable_GetCostAnalysis_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_GetCostAnalysis(&args), c_api); return pjrt::ConvertFromPjRtNamedValueList(args.properties, args.num_properties); } absl::StatusOr<std::vector<std::vector<PrimitiveType>>> PjRtCApiExecutable::GetOutputElementTypes() const { PJRT_Executable_OutputElementTypes_Args args; args.struct_size = PJRT_Executable_OutputElementTypes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputElementTypes(&args), c_api); std::vector<PrimitiveType> out; out.reserve(args.num_output_types); for (int i = 0; i < args.num_output_types; ++i) { out.push_back(pjrt::ConvertFromPjRtBufferType(args.output_types[i])); } return std::vector<std::vector<PrimitiveType>>{std::move(out)}; } absl::StatusOr<std::vector<std::vector<DimensionVector>>> PjRtCApiExecutable::GetOutputDimensions() const { PJRT_Executable_OutputDimensions_Args args; args.struct_size = PJRT_Executable_OutputDimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputDimensions(&args), c_api); std::vector<DimensionVector> out; out.reserve(args.num_outputs); int index = 0; for (int i = 0; i < args.num_outputs; ++i) { DimensionVector dimensions; dimensions.reserve(args.dim_sizes[i]); for (int j = 0; j < args.dim_sizes[i]; ++j) { dimensions.push_back(args.dims[index++]); } out.push_back(std::move(dimensions)); } return std::vector<std::vector<DimensionVector>>{std::move(out)}; } absl::StatusOr<std::vector<std::vector<absl::string_view>>> PjRtCApiExecutable::GetOutputMemoryKinds() const { PJRT_Executable_OutputMemoryKinds_Args args; args.struct_size = PJRT_Executable_OutputMemoryKinds_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); const PJRT_Api* c_api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OutputMemoryKinds(&args), c_api); std::vector<absl::string_view> out; out.reserve(args.num_outputs); for (int i = 0; i < args.num_outputs; ++i) { out.push_back( absl::string_view(args.memory_kinds[i], args.memory_kind_sizes[i])); } return std::vector<std::vector<absl::string_view>>{std::move(out)}; } absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> PjRtCApiExecutable::GetHloModules() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_OptimizedProgram_Args args; args.struct_size = PJRT_Executable_OptimizedProgram_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = executable; PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = nullptr; args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OptimizedProgram(&args), c_api); constexpr size_t TWO_GIBIBYTES = 2ull * 1024 * 1024 * 1024; const size_t code_size = args.program->code_size; CHECK(code_size < TWO_GIBIBYTES); std::string code(code_size, ' '); args.program->code = code.data(); RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_OptimizedProgram(&args), c_api); absl::string_view program_format(program.format, program.format_size); if (program_format != ::pjrt::kHloWithConfigFormat && program_format != ::pjrt::kMlirFormat) { return xla::Internal( "expected program format `hlo_with_config` or `mlir` but got %s", program_format); } if (program_format == ::pjrt::kMlirFormat) { mlir::MLIRContext ctx; TF_ASSIGN_OR_RETURN( mlir::OwningOpRef<mlir::ModuleOp> module, ParseMlirModuleString(code, ctx)); mlir::PassManager pm(&ctx); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); if (mlir::failed(pm.run(module.get()))) return xla::Internal("failed to convert to MHLO"); mlir::MlirToHloConversionOptions options; options.return_tuple = false; TF_ASSIGN_OR_RETURN(std::unique_ptr<xla::HloModule> hlo_module, mlir::ConvertMlirHloToHloModule(module.get(), options)); std::vector<std::shared_ptr<HloModule>> out; out.push_back(std::move(hlo_module)); return out; } HloModuleProtoWithConfig proto; proto.ParseFromString(code); std::vector<std::shared_ptr<HloModule>> out; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, HloModule::CreateFromProtoWithConfig(proto)); out.push_back(std::move(module)); return out; } absl::StatusOr<std::string> PjRtCApiExecutable::SerializeExecutable() const { auto* c_api = pjrt_c_api(); auto* executable = c_executable(); PJRT_Executable_Serialize_Args ser_args; ser_args.struct_size = PJRT_Executable_Serialize_Args_STRUCT_SIZE; ser_args.extension_start = nullptr; ser_args.executable = executable; ser_args.serialized_executable = nullptr; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Executable_Serialize(&ser_args), c_api); absl::Cleanup cleanup = [&ser_args] { ser_args.serialized_executable_deleter(ser_args.serialized_executable); }; return std::string(ser_args.serialized_bytes, ser_args.serialized_bytes_size); } absl::StatusOr<std::string> PjRtCApiExecutable::FingerprintExecutable() const { const PJRT_Api* c_api_ = pjrt_c_api(); PJRT_Executable_Fingerprint_Args args; args.struct_size = PJRT_Executable_Fingerprint_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_executable(); RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_Executable_Fingerprint(&args), c_api_); return std::string(args.executable_fingerprint, args.executable_fingerprint_size); } PjRtCApiLoadedExecutable::PjRtCApiLoadedExecutable( PjRtCApiClient* client, PJRT_LoadedExecutable* executable) : client_(client), loaded_executable_(executable, ::pjrt::MakeLoadedExecutableDeleter( client->pjrt_c_api())) { PJRT_LoadedExecutable_GetExecutable_Args args; args.struct_size = PJRT_LoadedExecutable_GetExecutable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.loaded_executable = c_loaded_executable(); args.executable = nullptr; pjrt::LogFatalIfPjrtError( pjrt_c_api()->PJRT_LoadedExecutable_GetExecutable(&args), pjrt_c_api()); executable_ = std::make_unique<PjRtCApiExecutable>(pjrt_c_api(), args.executable); InitDevices(); } void PjRtCApiLoadedExecutable::InitDevices() { PJRT_LoadedExecutable_AddressableDevices_Args args; args.struct_size = PJRT_LoadedExecutable_AddressableDevices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); args.addressable_devices = nullptr; args.num_addressable_devices = 0; const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError( api->PJRT_LoadedExecutable_AddressableDevices(&args), api); const size_t num_addressable_devices = args.num_addressable_devices; addressable_devices_.reserve(num_addressable_devices); for (size_t i = 0; i < num_addressable_devices; ++i) { PJRT_Device* device = args.addressable_devices[i]; PjRtCApiDevice* c_api_device = client_->GetCppDevice(device); addressable_devices_.push_back(c_api_device); } } static std::vector<std::vector<PJRT_Buffer*>> Convert2DCppBuffersToCBuffers( absl::Span<const std::vector<PjRtBuffer*>> cpp_lists) { std::vector<std::vector<PJRT_Buffer*>> c_lists; c_lists.reserve(cpp_lists.size()); for (const auto& cpp_list : cpp_lists) { auto& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (PjRtBuffer* buffer : cpp_list) { auto* c_api_argument = tensorflow::down_cast<PjRtCApiBuffer*>(buffer); c_list.push_back(c_api_argument->c_buffer()); } } return c_lists; } static std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> Convert2DCBuffersToCppBuffers(PJRT_Buffer** const* c_lists, size_t outer_size, int inner_size, xla::PjRtCApiClient* client) { std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> ret; for (size_t i = 0; i < outer_size; ++i) { auto& output_list = ret.emplace_back(); output_list.reserve(inner_size); for (size_t j = 0; j < inner_size; ++j) { output_list.push_back( std::make_unique<PjRtCApiBuffer>(client, c_lists[i][j])); } } return ret; } PJRT_SendCallbackInfo CppSendCallbackToC( const xla::SendCallback& cpp_send_callback, PjRtCApiLoadedExecutable::SendCallbackFunction* send_callback_function) { *send_callback_function = [&send_callback = cpp_send_callback.callback]( PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done) -> PJRT_Error* { xla::Shape dummy_shape; absl::Status status = send_callback(xla::PjRtTransferMetadata{dummy_shape}, ::pjrt::ConvertToCppChunk(*chunk), total_size_in_bytes, done); if (!status.ok()) { absl::string_view message = status.message(); return (*callback_error)(pjrt::StatusCodeToPjrtErrorCode(status.code()), message.data(), message.size()); } return nullptr; }; return PJRT_SendCallbackInfo{ cpp_send_callback.channel_id, send_callback_function, [](PJRT_Chunk* chunk, PJRT_CallbackError* callback_error, size_t total_size_in_bytes, bool done, void* user_arg) -> PJRT_Error* { PjRtCApiLoadedExecutable::SendCallbackFunction* send_callback = reinterpret_cast<PjRtCApiLoadedExecutable::SendCallbackFunction*>( user_arg); return (*send_callback)(chunk, callback_error, total_size_in_bytes, done); }}; } CApiCopyToDeviceStream::CApiCopyToDeviceStream( PJRT_CopyToDeviceStream* c_stream, const PJRT_Api* c_api) : CopyToDeviceStream(0, 0), c_stream_(c_stream), c_api_(c_api) { PJRT_CopyToDeviceStream_TotalBytes_Args total_bytes_args; total_bytes_args.struct_size = PJRT_CopyToDeviceStream_TotalBytes_Args_STRUCT_SIZE; total_bytes_args.extension_start = nullptr; total_bytes_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_TotalBytes(&total_bytes_args), c_api_); total_bytes_ = total_bytes_args.total_bytes; PJRT_CopyToDeviceStream_GranuleSize_Args granule_size_args; granule_size_args.struct_size = PJRT_CopyToDeviceStream_GranuleSize_Args_STRUCT_SIZE; granule_size_args.extension_start = nullptr; granule_size_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_GranuleSize(&granule_size_args), c_api_); granule_bytes_ = granule_size_args.granule_size_in_bytes; } CApiCopyToDeviceStream::~CApiCopyToDeviceStream() { PJRT_CopyToDeviceStream_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_CopyToDeviceStream_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.stream = c_stream_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_CopyToDeviceStream_Destroy(&destroy_args), c_api_); } PjRtFuture<> CApiCopyToDeviceStream::AddChunk(PjRtChunk chunk) { PJRT_Chunk c_chunk = ::pjrt::ConvertFromCppChunk(std::move(chunk)); PJRT_CopyToDeviceStream_AddChunk_Args add_chunk_args; add_chunk_args.struct_size = PJRT_CopyToDeviceStream_AddChunk_Args_STRUCT_SIZE; add_chunk_args.extension_start = nullptr; add_chunk_args.stream = c_stream_; add_chunk_args.chunk = &c_chunk; PJRT_CopyToDeviceStream_CurrentBytes_Args current_bytes_args; current_bytes_args.struct_size = PJRT_CopyToDeviceStream_CurrentBytes_Args_STRUCT_SIZE; current_bytes_args.extension_start = nullptr; current_bytes_args.stream = c_stream_; { absl::MutexLock lock(&mu_); RETURN_FUTURE_IF_ERROR( c_api_->PJRT_CopyToDeviceStream_AddChunk(&add_chunk_args), c_api_); RETURN_FUTURE_IF_ERROR( c_api_->PJRT_CopyToDeviceStream_CurrentBytes(&current_bytes_args), c_api_); current_bytes_ = current_bytes_args.current_bytes; } CHECK(add_chunk_args.transfer_complete != nullptr); return ::pjrt::ConvertCEventToCppFuture(add_chunk_args.transfer_complete, c_api_); } PJRT_RecvCallbackInfo CppRecvCallbackToC( const xla::RecvCallback& cpp_recv_callback, const PJRT_Api* c_api, PjRtCApiLoadedExecutable::RecvCallbackFunction* recv_callback_function) { *recv_callback_function = [&recv_callback = cpp_recv_callback.callback, c_api](PJRT_CopyToDeviceStream* stream) { xla::Shape dummy_shape; recv_callback(xla::PjRtTransferMetadata{dummy_shape}, std::make_unique<CApiCopyToDeviceStream>(stream, c_api)); }; return PJRT_RecvCallbackInfo{ cpp_recv_callback.channel_id, recv_callback_function, [](PJRT_CopyToDeviceStream* stream, void* user_arg) { PjRtCApiLoadedExecutable::RecvCallbackFunction* recv_callback = reinterpret_cast<PjRtCApiLoadedExecutable::RecvCallbackFunction*>( user_arg); (*recv_callback)(stream); }}; } static void CppSendCallbackListsToC( absl::Span<const std::vector<xla::SendCallback>> cpp_lists, std::vector<PjRtCApiLoadedExecutable::SendCallbackFunction>& send_callback_functions, std::vector<std::vector<PJRT_SendCallbackInfo>>& c_lists) { if (cpp_lists.empty()) return; send_callback_functions.resize(cpp_lists.size() * cpp_lists[0].size()); c_lists.reserve(cpp_lists.size()); int func_count = 0; for (const std::vector<xla::SendCallback>& cpp_list : cpp_lists) { std::vector<PJRT_SendCallbackInfo>& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (const xla::SendCallback& cpp_callback : cpp_list) { c_list.emplace_back(CppSendCallbackToC( cpp_callback, &send_callback_functions[func_count++])); } } } static void CppRecvCallbackListsToC( absl::Span<const std::vector<xla::RecvCallback>> cpp_lists, const PJRT_Api* c_api, std::vector<PjRtCApiLoadedExecutable::RecvCallbackFunction>& recv_callback_functions, std::vector<std::vector<PJRT_RecvCallbackInfo>>& c_lists) { if (cpp_lists.empty()) return; recv_callback_functions.resize(cpp_lists.size() * cpp_lists[0].size()); c_lists.reserve(cpp_lists.size()); int func_count = 0; for (const auto& cpp_list : cpp_lists) { std::vector<PJRT_RecvCallbackInfo>& c_list = c_lists.emplace_back(); c_list.reserve(cpp_list.size()); for (const auto& cpp_callback : cpp_list) { c_list.emplace_back(CppRecvCallbackToC( cpp_callback, c_api, &recv_callback_functions[func_count++])); } } } absl::StatusOr<PJRT_LoadedExecutable_Execute_Args> PjRtCApiLoadedExecutable::GetCommonExecuteArgs( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, PJRT_ExecuteOptions& c_options, std::vector<std::vector<PJRT_Buffer*>>& c_argument_lists_storage, std::vector<PJRT_Buffer**>& c_arguments, std::vector<std::vector<PJRT_Buffer*>>& c_output_lists_storage, std::vector<PJRT_Buffer**>& c_output_lists, std::optional<std::vector<PJRT_Event*>>& device_complete_events, SendRecvCallbackData& callback_data, std::vector<int64_t>& non_donatable_input_indices_storage) { bool using_host_callbacks = !options.send_callbacks.empty() || !options.recv_callbacks.empty(); if (using_host_callbacks && !options.use_major_to_minor_data_layout_for_callbacks) { return Unimplemented( "PJRT C API doesn't support " "ExecuteOptions::use_major_to_minor_data_layout_for_callbacks = false"); } PJRT_LoadedExecutable_Execute_Args args; args.struct_size = PJRT_LoadedExecutable_Execute_Args_STRUCT_SIZE; args.executable = c_loaded_executable(); args.options = &c_options; args.options->struct_size = PJRT_ExecuteOptions_STRUCT_SIZE; args.options->launch_id = options.launch_id; for (auto i : options.non_donatable_input_indices) { non_donatable_input_indices_storage.push_back(i); } args.options->num_non_donatable_input_indices = options.non_donatable_input_indices.size(); args.options->non_donatable_input_indices = non_donatable_input_indices_storage.data(); args.num_devices = argument_handles.size(); CHECK_GT(args.num_devices, 0); args.num_args = argument_handles[0].size(); if (device_complete_events.has_value() || using_host_callbacks) { device_complete_events->resize(args.num_devices); args.device_complete_events = device_complete_events->data(); } else { args.device_complete_events = nullptr; } c_argument_lists_storage = Convert2DCppBuffersToCBuffers(argument_handles); c_arguments.reserve(c_argument_lists_storage.size()); for (auto& argument_list : c_argument_lists_storage) { c_arguments.push_back(argument_list.data()); } args.argument_lists = c_arguments.data(); PJRT_Executable_NumOutputs_Args numoutputs_args; numoutputs_args.struct_size = PJRT_Executable_NumOutputs_Args_STRUCT_SIZE; numoutputs_args.extension_start = nullptr; numoutputs_args.executable = c_executable(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Executable_NumOutputs(&numoutputs_args), pjrt_c_api()); size_t outer_size = args.num_devices; size_t inner_size = numoutputs_args.num_outputs; c_output_lists_storage.resize(outer_size); c_output_lists.resize(outer_size); for (int i = 0; i < outer_size; ++i) { c_output_lists_storage[i].resize(inner_size); c_output_lists[i] = c_output_lists_storage[i].data(); } args.output_lists = c_output_lists.data(); if (!options.send_callbacks.empty()) { CppSendCallbackListsToC(options.send_callbacks, callback_data.send_callback_functions, callback_data.c_send_callbacks); for (auto& c_send_callback_list : callback_data.c_send_callbacks) { callback_data.c_send_callback_lists.push_back( c_send_callback_list.data()); } args.options->send_callbacks = callback_data.c_send_callback_lists.data(); args.options->num_send_ops = options.send_callbacks[0].size(); } if (!options.recv_callbacks.empty()) { CppRecvCallbackListsToC(options.recv_callbacks, pjrt_c_api(), callback_data.recv_callback_functions, callback_data.c_recv_callbacks); for (auto& c_recv_callback_list : callback_data.c_recv_callbacks) { callback_data.c_recv_callback_lists.push_back( c_recv_callback_list.data()); } args.options->recv_callbacks = callback_data.c_recv_callback_lists.data(); args.options->num_recv_ops = options.recv_callbacks[0].size(); } return args; } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> PjRtCApiLoadedExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { std::vector<std::vector<PJRT_Buffer*>> c_argument_lists_storage; std::vector<std::vector<PJRT_Buffer*>> c_output_lists_storage; std::vector<PJRT_Buffer**> c_output_lists; std::vector<int64_t> non_donatable_input_indices_storage; PJRT_ExecuteOptions c_options; c_options.num_send_ops = 0; c_options.num_recv_ops = 0; std::vector<PJRT_Buffer**> c_arguments; std::optional<std::vector<PJRT_Event*>> device_complete_events; if (returned_futures.has_value()) { device_complete_events.emplace(); } auto callback_data = std::make_shared<SendRecvCallbackData>(); TF_ASSIGN_OR_RETURN( PJRT_LoadedExecutable_Execute_Args args, GetCommonExecuteArgs(argument_handles, options, c_options, c_argument_lists_storage, c_arguments, c_output_lists_storage, c_output_lists, device_complete_events, *callback_data, non_donatable_input_indices_storage)); args.execute_device = nullptr; PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension( "PJRT_LoadedExecutable_Execute linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_LoadedExecutable_Execute(&args), pjrt_c_api()); if (device_complete_events.has_value()) { std::vector<PjRtFuture<>> device_complete_futures; device_complete_futures.reserve(args.num_devices); for (int i = 0; i < args.num_devices; ++i) { device_complete_futures.push_back(pjrt::ConvertCEventToCppFuture( args.device_complete_events[i], pjrt_c_api())); if (!callback_data->c_send_callbacks.empty() || !callback_data->c_recv_callbacks.empty()) { device_complete_futures.back().OnReady( [callback_data](absl::Status status) { }); } } if (returned_futures.has_value()) { *returned_futures = std::move(device_complete_futures); } } return Convert2DCBuffersToCppBuffers(args.output_lists, args.num_devices, c_output_lists_storage[0].size(), client_); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecuteWithSingleDevice( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { if (!options.send_callbacks.empty() || !options.recv_callbacks.empty()) { return absl::Status(absl::StatusCode::kUnimplemented, "Send/recv callbacks not implemented for " "PjRtCApiLoadedExecutable::ExecuteWithSingleDevice."); } std::vector<std::vector<PjRtBuffer*>> argument_handles_vec = { {argument_handles.begin(), argument_handles.end()}}; std::vector<std::vector<PJRT_Buffer*>> c_argument_lists_storage; std::vector<std::vector<PJRT_Buffer*>> c_output_lists_storage; std::vector<PJRT_Buffer**> c_output_lists; std::vector<int64_t> non_donatable_input_indices_storage; PJRT_ExecuteOptions c_options; c_options.num_send_ops = 0; c_options.num_recv_ops = 0; std::vector<PJRT_Buffer**> c_arguments; std::optional<std::vector<PJRT_Event*>> device_complete_events; if (fill_future) { device_complete_events.emplace(); } auto callback_data = std::make_shared<SendRecvCallbackData>(); TF_ASSIGN_OR_RETURN( PJRT_LoadedExecutable_Execute_Args args, GetCommonExecuteArgs(argument_handles_vec, options, c_options, c_argument_lists_storage, c_arguments, c_output_lists_storage, c_output_lists, device_complete_events, *callback_data, non_donatable_input_indices_storage)); args.execute_device = tensorflow::down_cast<PjRtCApiDevice*>(device)->c_device(); PJRT_Profiler_Extension profiler_extension = pjrt::CreatePjrtProfilerExtension( "PJRT_LoadedExecutable_Execute linkage"); args.extension_start = reinterpret_cast<PJRT_Extension_Base*>(&profiler_extension); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_LoadedExecutable_Execute(&args), pjrt_c_api()); if (fill_future) { returned_future = pjrt::ConvertCEventToCppFuture( args.device_complete_events[0], pjrt_c_api()); } return std::move(Convert2DCBuffersToCppBuffers( args.output_lists, args.num_devices, c_output_lists_storage[0].size(), client_)[0]); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { return ExecuteWithSingleDevice(argument_handles, device, options, returned_future, fill_future); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> PjRtCApiLoadedExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { return ExecuteWithSingleDevice(argument_handles, device, options, returned_future, fill_future); } void PjRtCApiLoadedExecutable::Delete() { PJRT_LoadedExecutable_Delete_Args args; args.struct_size = PJRT_LoadedExecutable_Delete_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(c_api->PJRT_LoadedExecutable_Delete(&args), c_api); } bool PjRtCApiLoadedExecutable::IsDeleted() { PJRT_LoadedExecutable_IsDeleted_Args args; args.struct_size = PJRT_LoadedExecutable_IsDeleted_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(c_api->PJRT_LoadedExecutable_IsDeleted(&args), c_api); return args.is_deleted; } absl::StatusOr<std::string> PjRtCApiLoadedExecutable::FingerprintExecutable() const { absl::StatusOr<std::string> fingerprint = executable_->FingerprintExecutable(); if (fingerprint.ok()) { return *fingerprint; } if (fingerprint.status().code() != absl::StatusCode::kUnimplemented) { return fingerprint.status(); } PJRT_LoadedExecutable_Fingerprint_Args args; args.struct_size = PJRT_LoadedExecutable_Fingerprint_Args_STRUCT_SIZE; args.extension_start = nullptr; args.executable = c_loaded_executable(); const PJRT_Api* c_api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( c_api->PJRT_LoadedExecutable_Fingerprint(&args), pjrt::MakeErrorDeleter(c_api)); if (error) { return ::pjrt::PjrtErrorToStatus(error.get(), c_api); } return std::string(args.executable_fingerprint, args.executable_fingerprint_size); } PjRtCApiBuffer::PjRtCApiBuffer(PjRtCApiClient* client, PJRT_Buffer* buffer) : client_(client), buffer_(buffer, ::pjrt::MakeBufferDeleter(client->pjrt_c_api())), readiness_event_(nullptr, ::pjrt::MakeEventDeleter(client->pjrt_c_api())) {} PrimitiveType PjRtCApiBuffer::element_type() const { PJRT_Buffer_ElementType_Args args; args.struct_size = PJRT_Buffer_ElementType_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Buffer_ElementType(&args), pjrt_c_api()); return pjrt::ConvertFromPjRtBufferType(args.type); } absl::Span<const int64_t> PjRtCApiBuffer::dimensions() const { PJRT_Buffer_Dimensions_Args args; args.struct_size = PJRT_Buffer_Dimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(pjrt_c_api()->PJRT_Buffer_Dimensions(&args), pjrt_c_api()); return absl::Span<const int64_t>(args.dims, args.num_dims); } std::unique_ptr<PjRtLayout> PjRtCApiBuffer::layout() const { { absl::MutexLock lock(&mu_); if (!layout_.has_value()) { const PJRT_Api* c_api = pjrt_c_api(); PJRT_Layouts_Extension* extension = pjrt::FindExtension<PJRT_Layouts_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Layouts); if (extension == nullptr) { layout_.emplace(LayoutUtil::MakeDescendingLayout(dimensions().size())); } else { std::unique_ptr<PJRT_Layouts_MemoryLayout, pjrt::PJRT_Layouts_MemoryLayoutDeleter> layout = pjrt::GetMemoryLayout(c_api, buffer_.get()); PJRT_Layouts_MemoryLayout_Serialize_Args serialize_args; serialize_args.struct_size = PJRT_Layouts_MemoryLayout_Serialize_Args_STRUCT_SIZE; serialize_args.extension_start = nullptr; serialize_args.layout = layout.get(); pjrt::LogFatalIfPjrtError( extension->PJRT_Layouts_MemoryLayout_Serialize(&serialize_args), c_api); absl::Cleanup cleanup = [&serialize_args] { serialize_args.serialized_layout_deleter( serialize_args.serialized_layout); }; std::string serialized_layout(serialize_args.serialized_bytes, serialize_args.serialized_bytes_size); absl::StatusOr<PjRtXlaLayout> pjrt_xla_layout = PjRtXlaLayout::Deserialize(serialized_layout); TF_CHECK_OK(pjrt_xla_layout.status()); layout_.emplace(*pjrt_xla_layout); } } } return std::make_unique<PjRtXlaLayout>(*layout_); } bool PjRtCApiBuffer::has_dynamic_dimensions() const { PJRT_Buffer_DynamicDimensionIndices_Args args; args.struct_size = PJRT_Buffer_DynamicDimensionIndices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_DynamicDimensionIndices(&args), pjrt::MakeErrorDeleter(api)); if (error && pjrt::GetErrorCode(error.get(), api) == PJRT_Error_Code_UNIMPLEMENTED) { return false; } return args.num_dynamic_dims > 0; } absl::Span<const bool> PjRtCApiBuffer::is_dynamic_dimension() const { { absl::MutexLock lock(&mu_); if (!is_dynamic_dimension_.has_value()) { absl::InlinedVector<bool, InlineRank()>& is_dynamic_dimension_value = is_dynamic_dimension_.emplace(); is_dynamic_dimension_value.assign(dimensions().size(), false); PJRT_Buffer_DynamicDimensionIndices_Args args; args.struct_size = PJRT_Buffer_DynamicDimensionIndices_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_DynamicDimensionIndices(&args), pjrt::MakeErrorDeleter(api)); if (error && pjrt::GetErrorCode(error.get(), api) == PJRT_Error_Code_UNIMPLEMENTED) { return *is_dynamic_dimension_; } for (int i = 0; i < args.num_dynamic_dims; ++i) { is_dynamic_dimension_value[args.dynamic_dim_indices[i]] = true; } } } return *is_dynamic_dimension_; } absl::StatusOr<std::vector<int64_t>> PjRtCApiBuffer::logical_dimensions() { PJRT_Buffer_UnpaddedDimensions_Args args; args.struct_size = PJRT_Buffer_UnpaddedDimensions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_UnpaddedDimensions(&args), pjrt_c_api()); return std::vector<int64_t>(args.unpadded_dims, args.unpadded_dims + args.num_dims); } PjRtFuture<> PjRtCApiBuffer::LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) { auto buffer = std::move(generator)(); if (!buffer.ok()) { return PjRtFuture<>(buffer.status()); } return ToLiteral(buffer.value()); } PjRtFuture<> PjRtCApiBuffer::ToLiteral(MutableLiteralBase* literal) { PJRT_Buffer_ToHostBuffer_Args args; args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; args.extension_start = nullptr; args.src = buffer_.get(); const xla::Shape& shape = literal->shape(); if (!shape.IsArray()) { return PjRtFuture<>( Unimplemented("PjRtCApiBuffer::ToLiteral: Shapes other than array are" "not supported.")); } args.dst_size = ShapeUtil::ByteSizeOfElements(shape); args.dst = literal->untyped_data(); absl::StatusOr<pjrt::BufferMemoryLayoutData> c_layout_data; if (literal->shape().has_layout()) { c_layout_data = pjrt::ConvertToBufferMemoryLayoutData(literal->shape().layout()); if (!c_layout_data.ok()) { return PjRtFuture<>(c_layout_data.status()); } args.host_layout = &(c_layout_data->c_layout); } else { args.host_layout = nullptr; } const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, ::pjrt::PJRT_ErrorDeleter> error{ pjrt_c_api()->PJRT_Buffer_ToHostBuffer(&args), ::pjrt::MakeErrorDeleter(api)}; if (error != nullptr) { return PjRtFuture<>(::pjrt::PjrtErrorToStatus(error.get(), api)); } return pjrt::ConvertCEventToCppFuture(args.event, api); } absl::StatusOr<size_t> PjRtCApiBuffer::GetOnDeviceSizeInBytes() const { PJRT_Buffer_OnDeviceSizeInBytes_Args args; args.struct_size = PJRT_Buffer_OnDeviceSizeInBytes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); RETURN_STATUS_IF_PJRT_ERROR( client_->pjrt_c_api()->PJRT_Buffer_OnDeviceSizeInBytes(&args), client_->pjrt_c_api()); return args.on_device_size_in_bytes; } PjRtMemorySpace* PjRtCApiBuffer::memory_space() const { PJRT_Buffer_Memory_Args args; args.struct_size = PJRT_Buffer_Memory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); std::unique_ptr<PJRT_Error, pjrt::PJRT_ErrorDeleter> error( api->PJRT_Buffer_Memory(&args), pjrt::MakeErrorDeleter(api)); if (error == nullptr && args.memory != nullptr) { return client_->GetCppMemory(args.memory); } else if (error != nullptr && pjrt::GetErrorCode(error.get(), api) != PJRT_Error_Code_UNIMPLEMENTED) { pjrt::LogFatalIfPjrtError(error.get(), api); } return nullptr; } PjRtDevice* PjRtCApiBuffer::device() const { PJRT_Buffer_Device_Args args; args.struct_size = PJRT_Buffer_Device_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Device(&args), api); return client_->GetCppDevice(args.device); } void PjRtCApiBuffer::Delete() { PJRT_Buffer_Delete_Args args; args.struct_size = PJRT_Buffer_Delete_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_Delete(&args), api); } bool PjRtCApiBuffer::IsDeleted() { PJRT_Buffer_IsDeleted_Args args; args.struct_size = PJRT_Buffer_IsDeleted_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_IsDeleted(&args), api); return args.is_deleted; } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiBuffer::CopyToDevice( PjRtDevice* dst_device) { if (dst_device->client() == client_) { PJRT_Buffer_CopyToDevice_Args args; args.struct_size = PJRT_Buffer_CopyToDevice_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); args.dst_device = tensorflow::down_cast<PjRtCApiDevice*>(dst_device)->c_device(); const PJRT_Api* api = pjrt_c_api(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Buffer_CopyToDevice(&args), api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(client_, args.dst_buffer)); } else { TF_ASSIGN_OR_RETURN(std::shared_ptr<Literal> literal, ToLiteralSync()); absl::InlinedVector<int64_t, 4> byte_strides( literal->shape().dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(literal->shape(), absl::MakeSpan(byte_strides))); Literal* literal_pointer = literal.get(); return dst_device->client()->BufferFromHostBuffer( literal_pointer->untyped_data(), literal_pointer->shape().element_type(), literal_pointer->shape().dimensions(), byte_strides, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [literal{std::move(literal)}]() { }, dst_device); } } absl::StatusOr<std::unique_ptr<PjRtBuffer>> PjRtCApiBuffer::CopyToMemorySpace( PjRtMemorySpace* dst_memory) { const PJRT_Api* api = pjrt_c_api(); if (dst_memory->client() == client_) { PJRT_Buffer_CopyToMemory_Args args; args.struct_size = PJRT_Buffer_CopyToMemory_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); args.dst_memory = tensorflow::down_cast<PjRtCApiMemorySpace*>(dst_memory)->c_memory(); RETURN_STATUS_IF_PJRT_ERROR(api->PJRT_Buffer_CopyToMemory(&args), api); return std::unique_ptr<PjRtBuffer>( std::make_unique<PjRtCApiBuffer>(client_, args.dst_buffer)); } else { TF_ASSIGN_OR_RETURN(std::shared_ptr<Literal> literal, ToLiteralSync()); absl::InlinedVector<int64_t, 4> byte_strides( literal->shape().dimensions_size()); TF_RETURN_IF_ERROR( ShapeUtil::ByteStrides(literal->shape(), absl::MakeSpan(byte_strides))); Literal* literal_pointer = literal.get(); return dst_memory->client()->BufferFromHostBuffer( literal_pointer->untyped_data(), literal_pointer->shape().element_type(), literal_pointer->shape().dimensions(), byte_strides, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [literal{std::move(literal)}]() { }, dst_memory, nullptr); } } bool PjRtCApiBuffer::IsOnCpu() const { PJRT_Buffer_IsOnCpu_Args args; args.struct_size = PJRT_Buffer_IsOnCpu_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); const PJRT_Api* api = pjrt_c_api(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_IsOnCpu(&args), api); return args.is_on_cpu; } PJRT_Event* PjRtCApiBuffer::GetReadyEvent() { if (readiness_event_ == nullptr) { const PJRT_Api* api = pjrt_c_api(); PJRT_Buffer_ReadyEvent_Args args; args.struct_size = PJRT_Buffer_ReadyEvent_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_.get(); pjrt::LogFatalIfPjrtError(api->PJRT_Buffer_ReadyEvent(&args), api); readiness_event_.reset(args.event); } return readiness_event_.get(); } void PjRtCApiBuffer::MakePromiseTrackEvent() { CHECK(readiness_promise_ != nullptr); const PJRT_Api* api = pjrt_c_api(); PJRT_Event_OnReady_Args args; args.struct_size = PJRT_Event_OnReady_Args_STRUCT_SIZE; args.extension_start = nullptr; args.event = GetReadyEvent(); args.user_arg = new std::function<void(PJRT_Error*)>( [promise = readiness_promise_, api](PJRT_Error* error) -> void { promise->Set(::pjrt::PjrtErrorToStatus(error, api)); ::pjrt::MakeErrorDeleter(api)(error); }); args.callback = [](PJRT_Error* error, void* callback_ptr) { auto callback = static_cast<std::function<void(PJRT_Error*)>*>(callback_ptr); CHECK(callback != nullptr); (*callback)(error); delete callback; }; std::unique_ptr<PJRT_Error, ::pjrt::PJRT_ErrorDeleter> error{ api->PJRT_Event_OnReady(&args), ::pjrt::MakeErrorDeleter(api)}; if (error != nullptr) { readiness_promise_->Set(::pjrt::PjrtErrorToStatus(error.get(), api)); } } PjRtFuture<> PjRtCApiBuffer::GetReadyFuture() { if (readiness_promise_ == nullptr) { readiness_promise_ = std::make_shared<PjRtFuture<>::Promise>(PjRtFuture<>::CreatePromise()); MakePromiseTrackEvent(); } return PjRtFuture<>{*readiness_promise_}; } absl::StatusOr<std::unique_ptr<PjRtBuffer::ExternalReference>> PjRtCApiBuffer::AcquireExternalReference() { PJRT_Buffer_IncreaseExternalReferenceCount_Args increase_reference_count_args; increase_reference_count_args.buffer = c_buffer(); increase_reference_count_args.struct_size = PJRT_Buffer_IncreaseExternalReferenceCount_Args_STRUCT_SIZE; increase_reference_count_args.extension_start = nullptr; RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_IncreaseExternalReferenceCount( &increase_reference_count_args), pjrt_c_api()); PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args opaque_device_memory_data_pointer_args; opaque_device_memory_data_pointer_args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; opaque_device_memory_data_pointer_args.extension_start = nullptr; opaque_device_memory_data_pointer_args.buffer = c_buffer(); RETURN_STATUS_IF_PJRT_ERROR( pjrt_c_api()->PJRT_Buffer_OpaqueDeviceMemoryDataPointer( &opaque_device_memory_data_pointer_args), pjrt_c_api()); void* device_memory_ptr = opaque_device_memory_data_pointer_args.device_memory_ptr; return std::make_unique<PjRtCApiExternalReference>(client_, this, device_memory_ptr); } PjRtCApiExternalReference::~PjRtCApiExternalReference() { PJRT_Buffer_DecreaseExternalReferenceCount_Args args; args.struct_size = PJRT_Buffer_DecreaseExternalReferenceCount_Args_STRUCT_SIZE; args.extension_start = nullptr; args.buffer = buffer_->c_buffer(); pjrt::LogFatalIfPjrtError( client_->pjrt_c_api()->PJRT_Buffer_DecreaseExternalReferenceCount(&args), client_->pjrt_c_api()); } absl::Status PjRtCApiExternalReference::WaitUntilBufferReadyOnStream( std::intptr_t stream) { const PJRT_Api* c_api = buffer_->pjrt_c_api(); PJRT_Stream_Extension* extension = pjrt::FindExtension<PJRT_Stream_Extension>( c_api, PJRT_Extension_Type::PJRT_Extension_Type_Stream); if (extension == nullptr) { return absl::UnimplementedError( "Stream extension not implemented in this PJRT plugin."); } PJRT_Wait_Until_Buffer_Ready_On_Stream_Args args; args.struct_size = PJRT_Wait_Until_Buffer_Ready_On_Stream_Args_STRUCT_SIZE; args.stream = stream; args.buffer = buffer_->c_buffer(); RETURN_STATUS_IF_PJRT_ERROR(extension->wait_stream(&args), c_api); return absl::OkStatus(); } PjRtCApiTopologyDescription::PjRtCApiTopologyDescription( const PJRT_Api* c_api, PJRT_TopologyDescription* c_topology, bool owned) : compiler_(std::make_unique<PjRtCApiCompiler>(c_api)), c_api_(c_api), c_topology_(c_topology) { if (owned) { owned_c_topology_ = std::unique_ptr<PJRT_TopologyDescription, pjrt::PJRT_TopologyDescriptionDeleter>( c_topology, pjrt::MakeTopologyDescriptionDeleter(c_api)); } InitAttributes(); } absl::string_view PjRtCApiTopologyDescription::platform_name() const { PJRT_TopologyDescription_PlatformName_Args args; args.topology = c_topology_; args.struct_size = PJRT_TopologyDescription_PlatformName_Args_STRUCT_SIZE; args.extension_start = nullptr; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_PlatformName(&args), c_api_); return absl::string_view(args.platform_name, args.platform_name_size); } absl::string_view PjRtCApiTopologyDescription::platform_version() const { PJRT_TopologyDescription_PlatformVersion_Args args; args.struct_size = PJRT_TopologyDescription_PlatformVersion_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_PlatformVersion(&args), c_api_); return absl::string_view(args.platform_version, args.platform_version_size); } std::vector<std::unique_ptr<const PjRtDeviceDescription>> PjRtCApiTopologyDescription::DeviceDescriptions() const { PJRT_TopologyDescription_GetDeviceDescriptions_Args args; args.struct_size = PJRT_TopologyDescription_GetDeviceDescriptions_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError( c_api_->PJRT_TopologyDescription_GetDeviceDescriptions(&args), c_api_); std::vector<std::unique_ptr<const PjRtDeviceDescription>> out; out.reserve(args.num_descriptions); for (PJRT_DeviceDescription* device_desc : absl::Span<PJRT_DeviceDescription* const>(args.descriptions, args.num_descriptions)) { out.push_back( std::make_unique<PjRtCApiDeviceDescription>(c_api_, device_desc)); } return out; } absl::StatusOr<std::string> PjRtCApiTopologyDescription::Serialize() const { PJRT_TopologyDescription_Serialize_Args args; args.struct_size = PJRT_TopologyDescription_Serialize_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; RETURN_STATUS_IF_PJRT_ERROR(c_api_->PJRT_TopologyDescription_Serialize(&args), c_api_); auto out = std::string(args.serialized_bytes, args.serialized_bytes_size); args.serialized_topology_deleter(args.serialized_topology); return out; } void PjRtCApiTopologyDescription::InitAttributes() { PJRT_TopologyDescription_Attributes_Args args; args.struct_size = PJRT_TopologyDescription_Attributes_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = c_topology_; pjrt::LogFatalIfPjrtError(c_api_->PJRT_TopologyDescription_Attributes(&args), c_api_); attributes_ = pjrt::ConvertFromPjRtNamedValueList(args.attributes, args.num_attributes); } static absl::StatusOr<std::unique_ptr<PjRtExecutable>> InitializeArgsAndCompileAot(const PJRT_Api* c_api, PjRtClient* client, const CompileOptions& options, const PjRtTopologyDescription& topology, const std::string& code, const std::string& format) { PJRT_Compile_Args args; args.struct_size = PJRT_Compile_Args_STRUCT_SIZE; args.extension_start = nullptr; if (client == nullptr) { args.client = nullptr; } else { args.client = tensorflow::down_cast<PjRtCApiClient*>(client)->pjrt_c_client(); } args.topology = tensorflow::down_cast<const PjRtCApiTopologyDescription*>(&topology) ->c_topology(); TF_ASSIGN_OR_RETURN(const CompileOptionsProto options_proto, options.ToProto()); std::string options_str = options_proto.SerializeAsString(); args.compile_options = options_str.c_str(); args.compile_options_size = options_str.size(); PJRT_Program program; program.struct_size = PJRT_Program_STRUCT_SIZE; program.extension_start = nullptr; program.code = const_cast<char*>(code.c_str()); program.code_size = code.size(); program.format = format.c_str(); program.format_size = format.size(); args.program = &program; RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Compile(&args), c_api); std::unique_ptr<PjRtExecutable> ret = std::make_unique<PjRtCApiExecutable>(c_api, args.executable); return ret; } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCApiCompiler::Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) { std::string module_str = computation.proto().SerializeAsString(); std::string format(pjrt::kHloFormat); return InitializeArgsAndCompileAot(c_api_, client, options, topology, module_str, format); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCApiCompiler::Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) { std::optional<int64_t> plugin_version; if (client) { plugin_version = client->plugin_attributes()->pjrt_c_api_minor_version; } TF_ASSIGN_OR_RETURN( std::string serialized, xla::Serialize(module, xla::GetDefaultStablehloVersion(plugin_version))); std::string format(pjrt::kMlirFormat); return InitializeArgsAndCompileAot(c_api_, client, options, topology, serialized, format); } absl::StatusOr<std::unique_ptr<PjRtClient>> GetCApiClient( absl::string_view device_type, const absl::flat_hash_map<std::string, PjRtValueType>& create_options, std::shared_ptr<KeyValueStoreInterface> kv_store) { TF_ASSIGN_OR_RETURN(const PJRT_Api* c_api, pjrt::PjrtApi(device_type)); if (c_api == nullptr) { return Internal("PJRT C API is nullptr for %s", device_type); } PJRT_Client_Create_Args init_args; init_args.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; init_args.extension_start = nullptr; TF_ASSIGN_OR_RETURN(std::vector<PJRT_NamedValue> c_options, pjrt::ConvertToPjRtNamedValueList(create_options)); init_args.create_options = c_options.data(); init_args.num_options = c_options.size(); std::unique_ptr<pjrt::PJRT_KeyValueCallbackData> kv_callback_data; if (kv_store) { kv_callback_data = pjrt::ConvertToCKeyValueCallbacks(kv_store); init_args.kv_get_callback = kv_callback_data->c_kv_get; init_args.kv_get_user_arg = &kv_callback_data->kv_get_c_func; init_args.kv_put_callback = kv_callback_data->c_kv_put; init_args.kv_put_user_arg = &kv_callback_data->kv_put_c_func; } RETURN_STATUS_IF_PJRT_ERROR(c_api->PJRT_Client_Create(&init_args), c_api); PJRT_Client* c_client = init_args.client; return std::unique_ptr<PjRtClient>(std::make_unique<PjRtCApiClient>( c_api, c_client, std::move(kv_callback_data))); } absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( absl::string_view device_type, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options) { TF_ASSIGN_OR_RETURN(const PJRT_Api* c_api, pjrt::PjrtApi(device_type)); if (c_api == nullptr) { return Internal("PJRT C API is nullptr for %s", device_type); } return GetCApiTopology(c_api, topology_name, create_options); } absl::StatusOr<std::unique_ptr<PjRtTopologyDescription>> GetCApiTopology( const PJRT_Api* c_api, absl::string_view topology_name, const absl::flat_hash_map<std::string, PjRtValueType>& create_options) { PJRT_TopologyDescription_Create_Args init_args; init_args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; init_args.extension_start = nullptr; TF_ASSIGN_OR_RETURN(std::vector<PJRT_NamedValue> c_options, pjrt::ConvertToPjRtNamedValueList(create_options)); init_args.create_options = c_options.data(); init_args.num_options = c_options.size(); init_args.topology_name = topology_name.data(); init_args.topology_name_size = topology_name.size(); RETURN_STATUS_IF_PJRT_ERROR( c_api->PJRT_TopologyDescription_Create(&init_args), c_api); PJRT_TopologyDescription* c_topology = init_args.topology; return std::unique_ptr<PjRtTopologyDescription>( std::make_unique<PjRtCApiTopologyDescription>(c_api, c_topology, true)); } }
#include "xla/pjrt/pjrt_c_api_client.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/client/xla_builder.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api_cpu_internal.h" #include "xla/pjrt/pjrt_api.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { static void SetUpCpuPjRtApi() { std::string device_type = "cpu"; auto status = ::pjrt::PjrtApi(device_type); if (!status.ok()) { TF_ASSERT_OK( pjrt::SetPjrtApi(device_type, ::pjrt::cpu_plugin::GetCpuPjrtApi())); } } TEST(PjRtCApiClientTest, IsDynamicDimension) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); std::vector<int32_t> data0{1, 2, 3, 4, 5, 6}; Shape shape0 = ShapeUtil::MakeShape(S32, {2, 3}); TF_ASSERT_OK_AND_ASSIGN( auto param0, client->BufferFromHostBuffer( data0.data(), shape0.element_type(), shape0.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); std::vector<int32_t> data1{2}; Shape shape1 = ShapeUtil::MakeShape(S32, {}); TF_ASSERT_OK_AND_ASSIGN( auto param1, client->BufferFromHostBuffer( data1.data(), shape1.element_type(), shape1.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); XlaBuilder builder("DynamicReshape"); auto inp_0 = Parameter(&builder, 0, shape0, "input0"); auto inp_1 = Parameter(&builder, 1, shape1, "input1"); std::vector<bool> dims_are_dynamic = {false, true}; auto reshaped = DynamicReshape(inp_0, {inp_1, inp_1}, {2, 3}, dims_are_dynamic); auto computation = builder.Build(reshaped).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); ExecuteOptions execute_options; execute_options.non_donatable_input_indices = {0}; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> results = executable->Execute({{param0.get(), param1.get()}}, execute_options) .value(); ASSERT_EQ(results[0].size(), 1); auto* result_buffer = results[0][0].get(); auto is_dynamic_dimension = result_buffer->is_dynamic_dimension(); EXPECT_THAT(is_dynamic_dimension, ::testing::ElementsAreArray(dims_are_dynamic)); } TEST(PjRtCApiClientTest, PlatformId) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); EXPECT_EQ(client->platform_name(), xla::CpuName()); EXPECT_EQ(client->platform_id(), xla::CpuId()); } TEST(PjRtCApiClientTest, EmptyExecutableFingerprint) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); Shape shape = ShapeUtil::MakeShapeWithType<float>({4}); XlaBuilder builder("sum"); auto inp_0 = Parameter(&builder, 0, shape, "input0"); auto inp_1 = Parameter(&builder, 1, shape, "input1"); auto sum = Add(inp_0, inp_1); builder.SetUpAlias({}, 0, {}); auto computation = builder.Build(sum).value(); std::unique_ptr<PjRtLoadedExecutable> executable = client->Compile(computation, CompileOptions()).value(); PjRtCApiClient* c_client = dynamic_cast<PjRtCApiClient*>(client.get()); ASSERT_NE(c_client, nullptr); if (c_client->pjrt_c_api()->pjrt_api_version.minor_version >= 35) { EXPECT_FALSE(executable->FingerprintExecutable().ok()); } else { EXPECT_EQ(executable->FingerprintExecutable().status().code(), absl::StatusCode::kUnimplemented); } } TEST(PjRtClientTest, CreateViewAndCopyToDeviceAsyncExternalCpuOnly) { SetUpCpuPjRtApi(); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<PjRtClient> client, GetCApiClient("cpu")); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable {})); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PjRtBuffer> result, buffer->CopyToDevice(client->addressable_devices()[1])); buffer.reset(); ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_c_api_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_c_api_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d58050f3-3eca-4d91-8bb5-3561892698dc
cpp
tensorflow/tensorflow
calibration_statistics_saver_op
tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_saver_op.cc
tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_saver_op_test.cc
#include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_collector_average_min_max.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_collector_base.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_collector_histogram.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_collector_min_max.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/logging.h" #include "tsl/platform/file_system.h" namespace tensorflow { namespace { using ::stablehlo::quantization::CalibrationOptions; using CalibrationMethod = ::stablehlo::quantization::CalibrationOptions_CalibrationMethod; using ::tensorflow::calibrator::CalibrationStatistics; using ::tensorflow::calibrator::CalibrationStatisticsCollectorAverageMinMax; using ::tensorflow::calibrator::CalibrationStatisticsCollectorBase; using ::tensorflow::calibrator::CalibrationStatisticsCollectorHistogram; using ::tensorflow::calibrator::CalibrationStatisticsCollectorMinMax; using ::tensorflow::calibrator::CalibrationStatisticsMap; } REGISTER_OP("CalibrationStatisticsSaver") .Input("args: Tin") .Attr("Tin: list(type) >= 0") .Attr("ids: list(string) >= 1") .Attr("calibration_methods: list(int) >= 1") .Attr("output_file_path: string") .SetIsStateful() .Doc(R"doc( Aggregates and saves the calibration statistics data. This op collects outputs of multiples CustomAggregator ops, which includes `min`, `max` and `histogram`. Then it aggregates them according to the calibration method and save the result to the given file path as a binary proto file.)doc"); class CalibrationStatisticsSaverOp : public OpKernel { public: explicit CalibrationStatisticsSaverOp( absl::Nonnull<OpKernelConstruction*> context) : OpKernel(context) { std::string output_file_path; OP_REQUIRES_OK(context, context->GetAttr("output_file_path", &output_file_path)); OP_REQUIRES_OK(context, context->env()->NewWritableFile(output_file_path, &output_file_)); OP_REQUIRES_OK(context, context->GetAttr("ids", &ids_)); OP_REQUIRES_OK(context, context->GetAttr("calibration_methods", &calibration_methods_)); OP_REQUIRES( context, ids_.size() == calibration_methods_.size(), absl::AbortedError( "The `ids` and `calibration_methods` must have the same size.")); OP_REQUIRES(context, context->num_inputs() == ids_.size() * 3, absl::AbortedError("The number of inputs must be three times " "the size of the `ids` list.")); for (int i = 0; i < ids_.size(); ++i) { OP_REQUIRES(context, context->input_type(i * 3) == DT_FLOAT, absl::AbortedError("The input `min` must have float type.")); OP_REQUIRES(context, context->input_type(i * 3 + 1) == DT_FLOAT, absl::AbortedError("The input `max` must have float type.")); OP_REQUIRES( context, context->input_type(i * 3 + 2) == DT_INT64, absl::AbortedError("The input `histogram` must have int64 type.")); } } ~CalibrationStatisticsSaverOp() override { CalibrationStatisticsMap statistics_map; for (const auto& [id, collector] : id_to_collector_) { std::optional<CalibrationStatistics> statistics = collector->GetStatistics(); if (!statistics.has_value()) continue; statistics_map.mutable_statistics()->emplace(id, std::move(*statistics)); } if (auto status = output_file_->Append(statistics_map.SerializeAsString()); !status.ok()) { LOG(ERROR) << "Failed to write calibration statistics: " << status.message(); } if (auto status = output_file_->Close(); !status.ok()) { LOG(ERROR) << "Failed to close calibration statistics file: " << status.message(); } } void Compute(absl::Nonnull<OpKernelContext*> context) override { for (int idx = 0; idx < ids_.size(); ++idx) { AssignIfNotExists( ids_[idx], static_cast<CalibrationMethod>(calibration_methods_[idx])); const Tensor& min_tensor = context->input(3 * idx); const Tensor& max_tensor = context->input(3 * idx + 1); const Tensor& histogram_tensor = context->input(3 * idx + 2); const float min_value = min_tensor.scalar<float>()(); const float max_value = max_tensor.scalar<float>()(); auto histogram_flat = histogram_tensor.flat<int64_t>(); absl::Span<const int64_t> histogram_data = absl::MakeSpan(histogram_flat.data(), histogram_flat.size()); id_to_collector_[ids_[idx]]->Collect(min_value, max_value, histogram_data); } } private: std::unique_ptr<tsl::WritableFile> output_file_; std::vector<std::string> ids_; std::vector<int32_t> calibration_methods_; absl::flat_hash_map<std::string, std::unique_ptr<CalibrationStatisticsCollectorBase>> id_to_collector_; void AssignIfNotExists(absl::string_view id, const CalibrationMethod calibration_method) { std::unique_ptr<CalibrationStatisticsCollectorBase>& collector = id_to_collector_[id]; if (collector != nullptr) return; switch (calibration_method) { case CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX: collector = std::make_unique<CalibrationStatisticsCollectorAverageMinMax>(); break; case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_PERCENTILE: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_SYMMETRIC: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_MAX_FREQUENCY: collector = std::make_unique<CalibrationStatisticsCollectorHistogram>(); break; case CalibrationOptions::CALIBRATION_METHOD_MIN_MAX: default: collector = std::make_unique<CalibrationStatisticsCollectorMinMax>(); } } }; REGISTER_KERNEL_BUILDER(Name("CalibrationStatisticsSaver").Device(DEVICE_CPU), CalibrationStatisticsSaverOp); }
#include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace { using ::stablehlo::quantization::CalibrationOptions; using ::tensorflow::calibrator::CalibrationStatistics; using ::tensorflow::calibrator::CalibrationStatisticsMap; using ::testing::Contains; using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::Key; using ::testing::SizeIs; using ::tsl::testing::StatusIs; class CalibrationStatisticsSaverTest : public OpsTestBase {}; TEST_F(CalibrationStatisticsSaverTest, MissingOutputPath) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Finalize(node_def())); ASSERT_THAT(InitOp(), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("NodeDef missing attr 'output_file_path'"))); } TEST_F(CalibrationStatisticsSaverTest, WrongNumInputs) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", "/tmp/statistics.pbtxt") .Finalize(node_def())); ASSERT_THAT(InitOp(), StatusIs(tsl::error::ABORTED, HasSubstr("The number of inputs must be three times " "the size of the `ids` list."))); } TEST_F(CalibrationStatisticsSaverTest, WrongInputTypes) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_FLOAT); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", "/tmp/statistics.pbtxt") .Finalize(node_def())); ASSERT_THAT( InitOp(), StatusIs(tsl::error::ABORTED, HasSubstr("The input `histogram` must have int64 type"))); } TEST_F(CalibrationStatisticsSaverTest, SimpleMinMax) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_MIN_MAX}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_INT64); const std::string dir = testing::TmpDir(); const std::string output_file_path = io::JoinPath(dir, "statistics.pbtxt"); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", output_file_path) .Finalize(node_def())); TF_CHECK_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {1.f}); AddInputFromArray<float>(TensorShape({}), {5.f}); AddInputFromArray<int64_t>(TensorShape({0}), {}); TF_CHECK_OK(RunOpKernel()); kernel_.reset(); CalibrationStatisticsMap statistics_map; TF_CHECK_OK( ReadBinaryProto(Env::Default(), output_file_path, &statistics_map)); ASSERT_THAT(statistics_map.statistics(), SizeIs(1)); ASSERT_THAT(statistics_map.statistics(), ElementsAre(Key("1"))); const CalibrationStatistics& stats = statistics_map.statistics().at("1"); ASSERT_TRUE(stats.has_min_max_statistics()); EXPECT_FLOAT_EQ(stats.min_max_statistics().global_min(), 1.f); EXPECT_FLOAT_EQ(stats.min_max_statistics().global_max(), 5.f); } TEST_F(CalibrationStatisticsSaverTest, SimpleAverageMinMax) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_INT64); const std::string dir = testing::TmpDir(); const std::string output_file_path = io::JoinPath(dir, "statistics.pbtxt"); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", output_file_path) .Finalize(node_def())); TF_CHECK_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {1.f}); AddInputFromArray<float>(TensorShape({}), {5.f}); AddInputFromArray<int64_t>(TensorShape({0}), {}); TF_CHECK_OK(RunOpKernel()); kernel_.reset(); CalibrationStatisticsMap statistics_map; TF_CHECK_OK( ReadBinaryProto(Env::Default(), output_file_path, &statistics_map)); ASSERT_THAT(statistics_map.statistics(), SizeIs(1)); ASSERT_THAT(statistics_map.statistics(), ElementsAre(Key("1"))); const CalibrationStatistics& stats = statistics_map.statistics().at("1"); ASSERT_TRUE(stats.has_average_min_max_statistics()); EXPECT_FLOAT_EQ(stats.average_min_max_statistics().min_sum(), 1.f); EXPECT_FLOAT_EQ(stats.average_min_max_statistics().max_sum(), 5.f); EXPECT_EQ(stats.average_min_max_statistics().num_samples(), 1); } TEST_F(CalibrationStatisticsSaverTest, SimpleHistogram) { std::vector<std::string> ids{"1"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_INT64); const std::string dir = testing::TmpDir(); const std::string output_file_path = io::JoinPath(dir, "statistics.pbtxt"); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", output_file_path) .Finalize(node_def())); TF_CHECK_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {1.f}); AddInputFromArray<float>(TensorShape({}), {5.f}); AddInputFromArray<int64_t>(TensorShape({8}), {1, 4, 6, 7, 3, 2, 1, 0}); TF_CHECK_OK(RunOpKernel()); kernel_.reset(); CalibrationStatisticsMap statistics_map; TF_CHECK_OK( ReadBinaryProto(Env::Default(), output_file_path, &statistics_map)); ASSERT_THAT(statistics_map.statistics(), SizeIs(1)); ASSERT_THAT(statistics_map.statistics(), ElementsAre(Key("1"))); const CalibrationStatistics& stats = statistics_map.statistics().at("1"); ASSERT_TRUE(stats.has_histogram_statistics()); EXPECT_FLOAT_EQ(stats.histogram_statistics().bin_width(), 0.5f); EXPECT_FLOAT_EQ(stats.histogram_statistics().lower_bound(), 1.f); EXPECT_THAT(stats.histogram_statistics().hist_freq(), ElementsAre(1, 4, 6, 7, 3, 2, 1)); } TEST_F(CalibrationStatisticsSaverTest, MultipleStats) { std::vector<std::string> ids{"1", "2"}; std::vector<int32_t> calibration_methods{ CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX, CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE}; std::vector<NodeDefBuilder::NodeOut> inputs; inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_INT64); inputs.emplace_back("min", 0, DT_FLOAT); inputs.emplace_back("max", 0, DT_FLOAT); inputs.emplace_back("histogram", 0, DT_INT64); const std::string dir = testing::TmpDir(); const std::string output_file_path = io::JoinPath(dir, "statistics.pbtxt"); TF_CHECK_OK(NodeDefBuilder("op", "CalibrationStatisticsSaver") .Input(inputs) .Attr("ids", ids) .Attr("calibration_methods", calibration_methods) .Attr("output_file_path", output_file_path) .Finalize(node_def())); TF_CHECK_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {1.f}); AddInputFromArray<float>(TensorShape({}), {5.f}); AddInputFromArray<int64_t>(TensorShape({0}), {}); AddInputFromArray<float>(TensorShape({}), {1.f}); AddInputFromArray<float>(TensorShape({}), {5.f}); AddInputFromArray<int64_t>(TensorShape({8}), {1, 4, 6, 7, 3, 2, 1, 0}); TF_CHECK_OK(RunOpKernel()); kernel_.reset(); CalibrationStatisticsMap statistics_map; TF_CHECK_OK( ReadBinaryProto(Env::Default(), output_file_path, &statistics_map)); ASSERT_THAT(statistics_map.statistics(), SizeIs(2)); ASSERT_THAT(statistics_map.statistics(), Contains(Key("1"))); ASSERT_THAT(statistics_map.statistics(), Contains(Key("2"))); const CalibrationStatistics& stats_1 = statistics_map.statistics().at("1"); ASSERT_TRUE(stats_1.has_average_min_max_statistics()); EXPECT_FLOAT_EQ(stats_1.average_min_max_statistics().min_sum(), 1.f); EXPECT_FLOAT_EQ(stats_1.average_min_max_statistics().max_sum(), 5.f); EXPECT_EQ(stats_1.average_min_max_statistics().num_samples(), 1); const CalibrationStatistics& stats_2 = statistics_map.statistics().at("2"); ASSERT_TRUE(stats_2.has_histogram_statistics()); EXPECT_FLOAT_EQ(stats_2.histogram_statistics().bin_width(), 0.5f); EXPECT_FLOAT_EQ(stats_2.histogram_statistics().lower_bound(), 1.f); EXPECT_THAT(stats_2.histogram_statistics().hist_freq(), ElementsAre(1, 4, 6, 7, 3, 2, 1)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_saver_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/calibrator/calibration_statistics_saver_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0bc63f44-f8b9-4765-a91f-c9b302a20911
cpp
tensorflow/tensorflow
hlo_schedule
third_party/xla/xla/hlo/ir/hlo_schedule.cc
third_party/xla/xla/service/hlo_schedule_test.cc
#include "xla/hlo/ir/hlo_schedule.h" #include <cstdint> #include <ostream> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/map_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/gtl/map_util.h" #include "xla/util.h" namespace xla { absl::StatusOr<HloSchedule> HloSchedule::CreateFromProto( const HloModule* module, const HloScheduleProto& proto) { absl::flat_hash_map<int64_t, const HloComputation*> id_to_computation; for (const HloComputation* computation : module->computations()) { id_to_computation[computation->unique_id()] = computation; } HloSchedule schedule(module); for (const auto& id_sequence : proto.sequences()) { int64_t computation_id = id_sequence.first; auto comp_it = id_to_computation.find(computation_id); if (comp_it == id_to_computation.end()) { continue; } const HloComputation* computation = comp_it->second; absl::flat_hash_map<int64_t, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { id_to_instruction[instruction->unique_id()] = instruction; } HloInstructionSequence& sequence = schedule.GetOrCreateSequence(computation); for (const int64_t instruction_id : id_sequence.second.instruction_ids()) { auto instr_it = id_to_instruction.find(instruction_id); TF_RET_CHECK(instr_it != id_to_instruction.end()) << "No instruction exists in HLO computation " << computation->name() << " with id " << instruction_id; sequence.push_back(instr_it->second); } } TF_RETURN_IF_ERROR(schedule.Verify()); return std::move(schedule); } absl::StatusOr<HloScheduleProto> HloSchedule::ToProto() const { TF_RETURN_IF_ERROR(Verify()); HloScheduleProto proto; for (const auto& id_sequence : sequences_) { int64_t computation_id = id_sequence.first; const HloInstructionSequence& sequence = id_sequence.second; HloScheduleProto::InstructionSequence& proto_sequence = (*proto.mutable_sequences())[computation_id]; proto_sequence.mutable_instruction_ids()->Reserve(sequence.size()); for (const int64_t id : sequence.ids()) { proto_sequence.add_instruction_ids(id); } } return std::move(proto); } void HloSchedule::set_sequence(const HloComputation* computation, absl::Span<HloInstruction* const> sequence) { set_sequence(computation, HloInstructionSequence(sequence)); } void HloSchedule::set_sequence(const HloComputation* computation, HloInstructionSequence sequence) { CHECK(computation->parent() == module_); sequences_[computation->unique_id()] = std::move(sequence); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); } HloInstructionSequence& HloSchedule::GetOrCreateSequence( const HloComputation* computation) { auto it = sequences_.find(computation->unique_id()); if (it == sequences_.end()) { CHECK(computation->parent() == module_); execution_threads_[computation->unique_id()] = std::string(computation->execution_thread()); return sequences_[computation->unique_id()]; } else { return it->second; } } const HloInstructionSequence& HloSchedule::sequence( const HloComputation* computation) const { return sequences_.at(computation->unique_id()); } absl::Status HloSchedule::UpdateComputationSchedule( const HloComputation* computation) { absl::flat_hash_map<int, HloInstruction*> id_to_instruction; for (HloInstruction* instruction : computation->instructions()) { InsertOrDie(&id_to_instruction, instruction->unique_id(), instruction); } absl::flat_hash_set<int> ids_in_schedule; for (int id : sequences_.at(computation->unique_id()).ids()) { InsertOrDie(&ids_in_schedule, id); } absl::flat_hash_map<const HloInstruction*, std::vector<HloInstruction*>> new_instruction_uses; absl::flat_hash_map<const HloInstruction*, int> unscheduled_operand_count; std::queue<HloInstruction*> worklist; for (HloInstruction* instruction : computation->instructions()) { if (!ids_in_schedule.contains(instruction->unique_id())) { if (instruction->operands().empty()) { worklist.push(instruction); } else { for (const HloInstruction* operand : instruction->operands()) { new_instruction_uses[operand].push_back(instruction); } unscheduled_operand_count[instruction] = instruction->operand_count(); } } } HloInstructionSequence new_sequence; auto schedule_worklist = [&]() { while (!worklist.empty()) { HloInstruction* instruction = worklist.front(); worklist.pop(); new_sequence.push_back(instruction); std::vector<HloInstruction*>* new_users = tsl::gtl::FindOrNull(new_instruction_uses, instruction); if (new_users != nullptr) { for (HloInstruction* new_user : *new_users) { unscheduled_operand_count.at(new_user)--; CHECK_GE(unscheduled_operand_count.at(new_user), 0); if (unscheduled_operand_count.at(new_user) == 0) { worklist.push(new_user); } } } } }; schedule_worklist(); for (int id : sequences_.at(computation->unique_id()).ids()) { auto it = id_to_instruction.find(id); if (it == id_to_instruction.end()) { continue; } worklist.push(it->second); schedule_worklist(); } set_sequence(computation, std::move(new_sequence)); return absl::OkStatus(); } absl::Status HloSchedule::Update( const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations(execution_threads); for (const HloComputation* computation : nonfusion_computations) { if (!is_computation_scheduled(computation)) { GetOrCreateSequence(computation); TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } } auto sum_of_sequences_for_threads = [&]() -> int64_t { if (execution_threads.empty()) { return sequences_.size(); } int64_t sequences_num_for_threads = 0; for (const auto& [thread_name, sequence_num] : num_sequences_by_execution_thread()) { sequences_num_for_threads += execution_threads.contains(thread_name) ? sequence_num : 0; } return sequences_num_for_threads; }; int64_t sequence_sum = sum_of_sequences_for_threads(); if (sequence_sum > nonfusion_computations.size()) { absl::flat_hash_set<int64_t> nonfusion_computations_ids; for (const HloComputation* computation : nonfusion_computations) { nonfusion_computations_ids.insert(computation->unique_id()); } for (auto it = sequences_.begin(); it != sequences_.end();) { std::string sequence_thread_name = tsl::gtl::FindWithDefault( execution_threads_, it->first, HloInstruction::kMainExecutionThread); bool is_thread_included = execution_threads.empty() || execution_threads.contains(sequence_thread_name); if (!nonfusion_computations_ids.contains(it->first) && is_thread_included) { execution_threads_.erase(it->first); sequences_.erase(it++); } else { ++it; } } } sequence_sum = sum_of_sequences_for_threads(); CHECK_EQ(sequence_sum, nonfusion_computations.size()); for (const HloComputation* computation : nonfusion_computations) { TF_RETURN_IF_ERROR(UpdateComputationSchedule(computation)); } TF_RETURN_IF_ERROR(Verify()); return absl::OkStatus(); } absl::flat_hash_map<std::string, int64_t> HloSchedule::num_sequences_by_execution_thread() const { absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads; for (const auto& id_sequence_item : sequences_) { ++sequence_num_by_execution_threads[tsl::gtl::FindWithDefault( execution_threads_, id_sequence_item.first, HloInstruction::kMainExecutionThread)]; } return sequence_num_by_execution_threads; } absl::Status HloSchedule::Verify() const { VLOG(2) << "VerifySchedule()"; XLA_VLOG_LINES(2, ToString()); absl::flat_hash_map<std::string, int64_t> sequence_num_by_execution_threads = num_sequences_by_execution_thread(); for (const auto& [thread_name, sequence_size] : sequence_num_by_execution_threads) { std::vector<HloComputation*> nonfusion_computations = module_->MakeNonfusionComputations({thread_name}); TF_RET_CHECK(nonfusion_computations.size() == sequence_size) << "For thread " << thread_name << ", schedule has " << sequence_size << " sequences, but module has " << nonfusion_computations.size() << " non-fusion computations for thread " << thread_name; for (const HloComputation* computation : nonfusion_computations) { TF_RET_CHECK(sequences_.contains(computation->unique_id())) << "Computation " << computation->name() << " missing from HLO schedule."; } for (const HloComputation* computation : nonfusion_computations) { absl::flat_hash_map<const HloInstruction*, int> instruction_position; int pos = 0; for (const HloInstruction* instruction : sequence(computation).instructions()) { TF_RET_CHECK(instruction_position.insert({instruction, pos}).second) << "Instruction " << instruction->name() << " appears more than once in the schedule"; pos++; } TF_RET_CHECK(instruction_position.size() == computation->instruction_count()) << "Schedule for computation " << computation->name() << " has " << instruction_position.size() << " instructions, expected " << computation->instruction_count(); for (const HloInstruction* instruction : computation->instructions()) { TF_RET_CHECK(instruction_position.contains(instruction)) << "Instruction " << instruction->name() << " is not in schedule"; } for (const HloInstruction* instruction : computation->instructions()) { for (const HloInstruction* operand : instruction->operands()) { TF_RET_CHECK(instruction_position.at(operand) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its operand " << operand->name(); } for (const HloInstruction* pred : instruction->control_predecessors()) { TF_RET_CHECK(instruction_position.at(pred) < instruction_position.at(instruction)) << "Instruction " << instruction->name() << " is not scheduled after its control predecessor " << pred->name(); } } } } return absl::OkStatus(); } namespace { const HloComputation* IdToComputation(const HloModule* module, int64_t id) { for (const HloComputation* computation : module->computations()) { if (computation->unique_id() == id) { return computation; } } return nullptr; } } std::string HloSchedule::ToString() const { std::vector<std::string> pieces; pieces.push_back("HloSchedule"); std::vector<int64_t> sorted_ids; for (const auto& id_sequence : sequences_) { sorted_ids.push_back(id_sequence.first); } absl::c_sort(sorted_ids); for (const int64_t id : sorted_ids) { const HloComputation* computation = IdToComputation(module_, id); const HloInstructionSequence& sequence = sequences_.at(id); if (computation == nullptr) { pieces.push_back(absl::StrFormat( "computation with id %d (no longer in HLO module):", id)); for (int id : sequence.ids()) { pieces.push_back(absl::StrCat(" ", id)); } } else { pieces.push_back(absl::StrFormat("computation %s:", computation->name())); for (const HloInstruction* instruction : sequence.instructions()) { pieces.push_back(absl::StrCat(" ", instruction->name())); } } } return absl::StrJoin(pieces, "\n"); } std::ostream& operator<<(std::ostream& out, const HloSchedule& schedule) { return out << schedule.ToString(); } }
#include "xla/hlo/ir/hlo_schedule.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HloScheduleTest : public HloTestBase {}; TEST_F(HloScheduleTest, UpdateScheduleUnchangedModule) { const std::string module_str = R"( HloModule UpdateScheduleUnchanged ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); const auto& entry_schedule = schedule.sequence(module->entry_computation()).instructions(); EXPECT_EQ(entry_schedule.size(), 6); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(entry_schedule, schedule.sequence(module->entry_computation()).instructions()); } TEST_F(HloScheduleTest, UpdateScheduleWithNewInstructions) { const std::string module_str = R"( HloModule UpdateScheduleWithNewInstructions ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); const Shape shape = entry->root_instruction()->shape(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* sub = entry->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, constant, entry->root_instruction())); entry->set_root_instruction(sub); auto in_schedule = [&](const HloInstruction* hlo) { return absl::c_linear_search(schedule.sequence(entry).instructions(), hlo); }; EXPECT_EQ(schedule.sequence(entry).size(), 6); EXPECT_FALSE(in_schedule(constant)); EXPECT_FALSE(in_schedule(sub)); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 8); EXPECT_TRUE(in_schedule(constant)); EXPECT_TRUE(in_schedule(sub)); } TEST_F(HloScheduleTest, UpdateScheduleWithAddedAndDeletedInstruction) { const std::string module_str = R"( HloModule UpdateScheduleWithAddedAndDeletedInstruction ENTRY main { a = f32[] parameter(0) b = f32[] parameter(1) c = f32[] constant(42.0) sum = f32[] add(a, b) neg = f32[] negate(c) ROOT root = f32[] multiply(sum, neg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); HloInstruction* new_root = entry->AddInstruction( HloInstruction::CreateBinary(constant->shape(), HloOpcode::kSubtract, constant, entry->parameter_instruction(0))); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 6); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 4); } TEST_F(HloScheduleTest, UpdateScheduleWithCompletelyReplacedModule) { const std::string module_str = R"( HloModule UpdateScheduleWithCompletelyReplacedModule ENTRY main { a = f32[] constant(42.0) b = f32[] constant(123.0) ROOT sum = f32[] add(a, b) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape()); })); HloComputation* entry = module->entry_computation(); HloInstruction* constant = entry->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* new_root = entry->AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); entry->set_root_instruction(new_root); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(entry).size(), 3); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(entry).size(), 2); } TEST_F(HloScheduleTest, UpdateScheduleWithMultipleComputations) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); const HloInstruction* xla_while = module->entry_computation()->root_instruction()->operand(0); HloComputation* body = xla_while->while_body(); HloComputation* cond = xla_while->while_condition(); cond->set_root_instruction(cond->AddInstruction( HloInstruction::CreateUnary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kNot, cond->root_instruction()))); body->set_root_instruction(body->parameter_instruction(0)); HloDCE dce; TF_ASSERT_OK(dce.Run(module.get()).status()); EXPECT_EQ(schedule.sequence(body).size(), 7); EXPECT_EQ(schedule.sequence(cond).size(), 4); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); EXPECT_EQ(schedule.sequence(body).size(), 1); EXPECT_EQ(schedule.sequence(cond).size(), 5); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemoved) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %WhileLoop () -> s32[] { %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), sizeof(void*)); })); HloInstruction* xla_while = module->entry_computation()->root_instruction()->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 3); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 1); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update()); TF_ASSERT_OK(schedule.Verify()); } TEST_F(HloScheduleTest, UpdateScheduleComputationRemovedWithMultiThreads) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloInstruction* xla_while = module->entry_computation() ->root_instruction() ->mutable_operand(0) ->mutable_operand(0); HloInstruction* init = xla_while->mutable_operand(0); TF_ASSERT_OK(xla_while->ReplaceAllUsesWith(init)); HloDCE dce; ASSERT_EQ(module->computation_count(), 4); TF_ASSERT_OK(dce.Run(module.get()).status()); ASSERT_EQ(module->computation_count(), 2); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_EQ(module->MakeNonfusionComputations({"parallel_thread"}).size(), 1); ASSERT_FALSE(schedule.is_computation_scheduled( module->MakeNonfusionComputations({"parallel_thread"}).front())); } TEST_F(HloScheduleTest, UpdateScheduleAddComputation) { const std::string module_str = R"( HloModule UpdateScheduleWithMultipleComputations %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } %async_builder { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) ROOT %foo = add(%p0, %p1) }, execution_thread="parallel_thread" ENTRY %WhileLoop () -> (s32[], f32[10]) { %p0 = f32[10] parameter(0) %p1 = f32[10] parameter(1) %zero = s32[] constant(0) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %zero, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body %async-start = ((f32[10], f32[10]), f32[10], s32[]) async-start(f32[10] %p0, f32[10] %p1), async_execution_thread="parallel_thread",calls=%async_builder %async-done = f32[10]{0} async-done(((f32[10], f32[10]), f32[10], s32[]) %async-start), async_execution_thread="parallel_thread", calls=%async_builder %main_res = s32[] get-tuple-element((s32[], token[]) %while), index=0 ROOT %res = tuple(%main_res, %async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_str)); TF_ASSERT_OK_AND_ASSIGN( HloSchedule schedule, ScheduleModule(module.get(), [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf( buffer.shape(), sizeof(void*)); }, {}, {HloInstruction::kMainExecutionThread})); HloComputation* entry_computation = module->entry_computation(); HloComputation::Builder comp_builder("fusion_computation"); HloInstruction* entry_comp_parameter_0 = entry_computation->parameter_instruction(0); HloInstruction* entry_comp_parameter_1 = entry_computation->parameter_instruction(1); std::vector<HloInstruction*> instructions_in_new_computation; HloInstruction* added_instruction = entry_computation->AddInstruction(HloInstruction::CreateBinary( entry_comp_parameter_0->shape(), HloOpcode::kMultiply, entry_comp_parameter_0, entry_comp_parameter_1)); instructions_in_new_computation.push_back(added_instruction); HloInstruction* call = entry_computation->CreateCallInstruction(instructions_in_new_computation); Shape completion_sflag_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSERT_OK_AND_ASSIGN( HloInstruction * async_done, entry_computation->CreateAsyncInstructions( call, {completion_sflag_shape}, entry_computation->execution_thread(), true, true)); HloInstruction* result_2 = entry_computation->root_instruction()->mutable_operand(1); HloInstruction* modified_result_2 = entry_computation->AddInstruction(HloInstruction::CreateBinary( result_2->shape(), HloOpcode::kAdd, async_done, result_2)); TF_ASSERT_OK(result_2->ReplaceAllUsesWith(modified_result_2)); auto added_computation_name = async_done->operand(0)->called_computations()[0]->name(); ASSERT_FALSE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); ASSERT_IS_NOT_OK(schedule.Verify()); TF_ASSERT_OK(schedule.Update({HloInstruction::kMainExecutionThread})); TF_ASSERT_OK(schedule.Verify()); ASSERT_TRUE(schedule.is_computation_scheduled( module->GetComputationWithName(added_computation_name))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_schedule.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_schedule_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8ad50b9e-3347-4ebf-a039-ec6826ed5c98
cpp
google/quiche
connect_ip_datagram_payload
quiche/common/masque/connect_ip_datagram_payload.cc
quiche/common/masque/connect_ip_datagram_payload_test.cc
#include "quiche/common/masque/connect_ip_datagram_payload.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_data_reader.h" #include "quiche/common/quiche_data_writer.h" namespace quiche { std::unique_ptr<ConnectIpDatagramPayload> ConnectIpDatagramPayload::Parse( absl::string_view datagram_payload) { QuicheDataReader data_reader(datagram_payload); uint64_t context_id; if (!data_reader.ReadVarInt62(&context_id)) { QUICHE_DVLOG(1) << "Could not parse malformed IP proxy payload"; return nullptr; } if (ContextId{context_id} == ConnectIpDatagramIpPacketPayload::kContextId) { return std::make_unique<ConnectIpDatagramIpPacketPayload>( data_reader.ReadRemainingPayload()); } else { return std::make_unique<ConnectIpDatagramUnknownPayload>( ContextId{context_id}, data_reader.ReadRemainingPayload()); } } std::string ConnectIpDatagramPayload::Serialize() const { std::string buffer(SerializedLength(), '\0'); QuicheDataWriter writer(buffer.size(), buffer.data()); bool result = SerializeTo(writer); QUICHE_DCHECK(result); QUICHE_DCHECK_EQ(writer.remaining(), 0u); return buffer; } ConnectIpDatagramIpPacketPayload::ConnectIpDatagramIpPacketPayload( absl::string_view ip_packet) : ip_packet_(ip_packet) {} ConnectIpDatagramPayload::ContextId ConnectIpDatagramIpPacketPayload::GetContextId() const { return kContextId; } ConnectIpDatagramPayload::Type ConnectIpDatagramIpPacketPayload::GetType() const { return Type::kIpPacket; } absl::string_view ConnectIpDatagramIpPacketPayload::GetIpProxyingPayload() const { return ip_packet_; } size_t ConnectIpDatagramIpPacketPayload::SerializedLength() const { return ip_packet_.size() + QuicheDataWriter::GetVarInt62Len(uint64_t{kContextId}); } bool ConnectIpDatagramIpPacketPayload::SerializeTo( QuicheDataWriter& writer) const { if (!writer.WriteVarInt62(uint64_t{kContextId})) { return false; } if (!writer.WriteStringPiece(ip_packet_)) { return false; } return true; } ConnectIpDatagramUnknownPayload::ConnectIpDatagramUnknownPayload( ContextId context_id, absl::string_view ip_proxying_payload) : context_id_(context_id), ip_proxying_payload_(ip_proxying_payload) { if (context_id == ConnectIpDatagramIpPacketPayload::kContextId) { QUICHE_BUG(ip_proxy_unknown_payload_ip_context) << "ConnectIpDatagramUnknownPayload created with IP packet context " "ID (0). Should instead create a " "ConnectIpDatagramIpPacketPayload."; } } ConnectIpDatagramPayload::ContextId ConnectIpDatagramUnknownPayload::GetContextId() const { return context_id_; } ConnectIpDatagramPayload::Type ConnectIpDatagramUnknownPayload::GetType() const { return Type::kUnknown; } absl::string_view ConnectIpDatagramUnknownPayload::GetIpProxyingPayload() const { return ip_proxying_payload_; } size_t ConnectIpDatagramUnknownPayload::SerializedLength() const { return ip_proxying_payload_.size() + QuicheDataWriter::GetVarInt62Len(uint64_t{context_id_}); } bool ConnectIpDatagramUnknownPayload::SerializeTo( QuicheDataWriter& writer) const { if (!writer.WriteVarInt62(uint64_t{context_id_})) { return false; } if (!writer.WriteStringPiece(ip_proxying_payload_)) { return false; } return true; } }
#include "quiche/common/masque/connect_ip_datagram_payload.h" #include <memory> #include <string> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche::test { namespace { TEST(ConnectIpDatagramPayloadTest, ParseIpPacket) { static constexpr char kDatagramPayload[] = "\x00packet"; std::unique_ptr<ConnectIpDatagramPayload> parsed = ConnectIpDatagramPayload::Parse( absl::string_view(kDatagramPayload, sizeof(kDatagramPayload) - 1)); ASSERT_TRUE(parsed); EXPECT_EQ(parsed->GetContextId(), ConnectIpDatagramIpPacketPayload::kContextId); EXPECT_EQ(parsed->GetType(), ConnectIpDatagramPayload::Type::kIpPacket); EXPECT_EQ(parsed->GetIpProxyingPayload(), "packet"); } TEST(ConnectIpDatagramPayloadTest, SerializeIpPacket) { static constexpr absl::string_view kIpPacket = "packet"; ConnectIpDatagramIpPacketPayload payload(kIpPacket); EXPECT_EQ(payload.GetIpProxyingPayload(), kIpPacket); EXPECT_EQ(payload.Serialize(), std::string("\x00packet", 7)); } TEST(ConnectIpDatagramPayloadTest, ParseUnknownPacket) { static constexpr char kDatagramPayload[] = "\x05packet"; std::unique_ptr<ConnectIpDatagramPayload> parsed = ConnectIpDatagramPayload::Parse( absl::string_view(kDatagramPayload, sizeof(kDatagramPayload) - 1)); ASSERT_TRUE(parsed); EXPECT_EQ(parsed->GetContextId(), 5); EXPECT_EQ(parsed->GetType(), ConnectIpDatagramPayload::Type::kUnknown); EXPECT_EQ(parsed->GetIpProxyingPayload(), "packet"); } TEST(ConnectIpDatagramPayloadTest, SerializeUnknownPacket) { static constexpr absl::string_view kInnerIpProxyingPayload = "packet"; ConnectIpDatagramUnknownPayload payload(4u, kInnerIpProxyingPayload); EXPECT_EQ(payload.GetIpProxyingPayload(), kInnerIpProxyingPayload); EXPECT_EQ(payload.Serialize(), std::string("\x04packet", 7)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/masque/connect_ip_datagram_payload.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/masque/connect_ip_datagram_payload_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
ed33b6cb-931a-44ad-a7c0-aa72370d85d7
cpp
tensorflow/tensorflow
tuple
third_party/xla/xla/hlo/builder/lib/tuple.cc
third_party/xla/xla/hlo/builder/lib/tuple_test.cc
#include "xla/hlo/builder/lib/tuple.h" #include <utility> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<ShapeTree<XlaOp>> DisassembleTuple(XlaOp tuple) { TF_ASSIGN_OR_RETURN(Shape shape, tuple.builder()->GetShape(tuple)); ShapeTree<XlaOp> result(shape); result.ForEachMutableElement([&](ShapeIndexView index, XlaOp* element) { if (index.empty()) { *element = tuple; } else { ShapeIndexView parent_index = index.subspan(0, index.size() - 1); XlaOp parent = result.element(parent_index); *element = GetTupleElement(parent, index.back()); } }); return std::move(result); } XlaOp AssembleTuple(XlaBuilder* builder, ShapeTree<XlaOp> elements) { elements.ForEachMutableElementPostOrder( [&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(elements.shape(), index); if (subshape.IsTuple()) { absl::InlinedVector<XlaOp, 2> children; ShapeIndex child_index = index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(elements.element(child_index)); child_index.pop_back(); } *element = Tuple(builder, children); } }); return elements.element({}); } }
#include "xla/hlo/builder/lib/tuple.h" #include <cstdint> #include <memory> #include <utility> #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/service.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TupleTest : public ClientLibraryTestBase {}; XLA_TEST_F(TupleTest, DisassembleAssemble) { XlaBuilder builder(TestName()); Shape shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(S32, {3}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {4}), ShapeUtil::MakeShape(S32, {5})}), ShapeUtil::MakeShape(S32, {6}), }); Literal input = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{42}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{43}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{44})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{45})); XlaOp param = Parameter(&builder, 0, shape, "param"); TF_ASSERT_OK_AND_ASSIGN(ShapeTree<XlaOp> disassembled_tuple, DisassembleTuple(param)); int32_t addend = 1; disassembled_tuple.ForEachMutableElement([&](const ShapeIndex& index, XlaOp* element) { const Shape& subshape = ShapeUtil::GetSubshape(shape, index); if (subshape.IsArray()) { *element = Add( *element, ConstantLiteral(&builder, LiteralUtil::CreateFullWithDescendingLayout( subshape.dimensions(), addend))); ++addend; } }); AssembleTuple(&builder, std::move(disassembled_tuple)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> data, client_->TransferToServer(input)); Literal expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({3}, int32_t{43}), LiteralUtil::MakeTupleOwned( LiteralUtil::CreateFullWithDescendingLayout({4}, int32_t{45}), LiteralUtil::CreateFullWithDescendingLayout({5}, int32_t{47})), LiteralUtil::CreateFullWithDescendingLayout({6}, int32_t{49})); ComputeAndCompareLiteral(&builder, expected, {data.get()}, ErrorSpec(0), &shape); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/tuple.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/tuple_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
acb28b16-a116-4b1a-a11e-a1ee50b66645
cpp
tensorflow/tensorflow
force_xla_constants_on_host_pass
tensorflow/compiler/jit/force_xla_constants_on_host_pass.cc
tensorflow/compiler/jit/force_xla_constants_on_host_pass_test.cc
#include "tensorflow/compiler/jit/force_xla_constants_on_host_pass.h" #include "tensorflow/compiler/jit/compilability_check_util.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/core/common_runtime/optimization_registry.h" namespace tensorflow { Status ForceXlaConstantsOnHostPass::Run( const GraphOptimizationPassOptions& options) { Graph* graph = options.graph->get(); OptimizerOptions opts; auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( nullptr, options.session_options->env, nullptr, TF_GRAPH_DEF_VERSION, options.flib_def, opts); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); for (Node* node : graph->nodes()) { if (CanCreateXlaKernel(node->def())) { const FunctionBody* fbody = nullptr; std::vector<int> constant_arg_indices; std::vector<int> resource_arg_indices; NameAttrList function; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(node->def(), &function)); TF_RETURN_IF_ERROR(GetBodyAndConstantsAndResources( flr, function, &fbody, &constant_arg_indices, &resource_arg_indices)); VLOG(3) << "Found constant arg indices: " << absl::StrJoin(constant_arg_indices, ", "); node->AddAttr("_input_hostmem", constant_arg_indices); } } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/force_xla_constants_on_host_pass.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/compilability_check_util.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { Status ForceXlaConstantsOnHost(const Scope& s, FunctionLibraryDefinition* flib_def, std::unique_ptr<Graph>* result) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); GraphOptimizationPassOptions options; SessionOptions session_options; session_options.env = Env::Default(); options.graph = &graph; options.session_options = &session_options; options.flib_def = flib_def; TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); ForceXlaConstantsOnHostPass rewriter; TF_RETURN_IF_ERROR(rewriter.Run(options)); *result = std::move(graph); return absl::OkStatus(); } TEST(ForceXlaConstantsOnHostPassTest, Simple) { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; FunctionDef called_func = FunctionDefHelper::Create("TransposeCall", {"a:float", "b:int32"}, {"c:float"}, {}, {{{"t0"}, "Transpose", {"a", "b"}, { {"T", DT_FLOAT}, {"Tperm", DT_INT32}, }}}, {{"c", "t0:y:0"}}); AttrValue true_attribute; true_attribute.set_b(true); (*called_func.mutable_attr())[kXlaMustCompileAttr] = true_attribute; *library.add_function() = called_func; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); FunctionLibraryDefinition flib_def(OpRegistry::Global(), library); Output in = ops::Placeholder(root, DT_FLOAT); Output perm = ops::Const(root, {3, 1, 2, 0}); NameAttrList b_name_attr; b_name_attr.set_name("TransposeCall"); ops::PartitionedCall call(root.WithOpName("call"), {in, perm}, {DT_FLOAT}, b_name_attr); call.output.front().node()->AddAttr(kXlaMustCompileAttr, true); std::unique_ptr<Graph> graph; TF_ASSERT_OK(ForceXlaConstantsOnHost(root, &flib_def, &graph)); bool found = false; for (Node* node : graph->nodes()) { if (CanCreateXlaKernel(node->def())) { EXPECT_FALSE(found); found = true; std::vector<int32> hostmem_attr; EXPECT_TRUE(TryGetNodeAttr(node->def(), "_input_hostmem", &hostmem_attr)); EXPECT_EQ(hostmem_attr.size(), 1); EXPECT_EQ(hostmem_attr[0], 1); } } EXPECT_TRUE(found); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/force_xla_constants_on_host_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/force_xla_constants_on_host_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66f0c126-a09c-451b-83a5-da25cfacf60d
cpp
tensorflow/tensorflow
tf_to_xla_attribute_utils
tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_xla_attribute_utils.cc
tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_xla_attribute_utils_test.cc
#include <algorithm> #include <numeric> #include <string> #include "absl/algorithm/container.h" #include "absl/strings/str_format.h" #include "llvm/ADT/ArrayRef.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/lite/core/c/builtin_op_data.h" #include "tensorflow/compiler/mlir/lite/kernels/padding.h" #include "tensorflow/compiler/mlir/quantization/common/attrs_and_constraints.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/constant_fold.h" #include "xla/xla_data.pb.h" namespace mlir::quant { namespace { Value GetDimValue(OpBuilder &builder, Location loc, Value shape_value, int32_t dim) { Type attribute_type = builder.getI64Type(); return builder.create<TF::StridedSliceOp>( loc, RankedTensorType::get( {}, mlir::cast<ShapedType>(shape_value.getType()).getElementType()), shape_value, Create1DConstValue<int32_t>(builder, loc, {dim}), Create1DConstValue<int32_t>(builder, loc, {dim + 1}), Create1DConstValue<int32_t>(builder, loc, {1}), builder.getIntegerAttr(attribute_type, 0), builder.getIntegerAttr(attribute_type, 0), builder.getIntegerAttr(attribute_type, 0), builder.getIntegerAttr(attribute_type, 0), builder.getIntegerAttr(attribute_type, 1)); } void GetSamePaddingValues(OpBuilder &builder, Location loc, Value input_size, int64_t filter_sz, int64_t dilation_rate, int64_t stride, Value &padding_low, Value &padding_high) { Value zero = CreateScalarConstValue<int32_t>(builder, loc, 0); Value one = CreateScalarConstValue<int32_t>(builder, loc, 1); Value two = CreateScalarConstValue<int32_t>(builder, loc, 2); Value filter_size = CreateScalarConstValue<int32_t>(builder, loc, filter_sz); Type int32_scalar_type = zero.getType(); auto scalar_add = [&](Value lhs, Value rhs) { return builder.create<TF::AddOp>(loc, int32_scalar_type, lhs, rhs); }; auto scalar_mul = [&](Value lhs, Value rhs) { return builder.create<TF::MulOp>(loc, int32_scalar_type, lhs, rhs); }; auto scalar_sub = [&](Value lhs, Value rhs) { return builder.create<TF::SubOp>(loc, int32_scalar_type, lhs, rhs); }; auto scalar_div = [&](Value lhs, Value rhs) { return builder.create<TF::DivOp>(loc, int32_scalar_type, lhs, rhs); }; Value stride_value = CreateScalarConstValue<int32_t>(builder, loc, stride); Value dilation_rate_value = CreateScalarConstValue<int32_t>(builder, loc, dilation_rate); Value effective_filter_size_op = scalar_add( scalar_mul(dilation_rate_value, scalar_sub(filter_size, one)), one); Value output_size = scalar_div( scalar_add(input_size, scalar_sub(stride_value, one)), stride_value); Value padding_needed = scalar_sub( scalar_add(effective_filter_size_op, scalar_mul(stride_value, scalar_sub(output_size, one))), input_size); padding_needed = builder.create<TF::MaximumOp>(loc, padding_needed, zero); padding_low = scalar_div(padding_needed, two); padding_high = scalar_sub(padding_needed, padding_low); } Value PadForDynamicShapedInputSamePadding( OpBuilder &builder, Location loc, Value input, Value filter, int8_t input_zp_value, ArrayAttr strides, ArrayAttr dilations, StringAttr conv_padding, Value &padding, int num_dims) { Value zero_rank1 = CreateConstValue<int32_t>(builder, loc, {1}, {0}); SmallVector<Value> temp_padding_values{zero_rank1, zero_rank1}; auto reshape_op = [&](Value value, const SmallVector<int64_t> &shape) { const int64_t rank = shape.size(); return builder.create<TF::ReshapeOp>( loc, RankedTensorType::get(shape, builder.getI32Type()), value, CreateConstValue<int64_t>(builder, loc, {rank}, shape)); }; ShapedType filter_shape = mlir::cast<ShapedType>(filter.getType()); Value input_shape_value = builder.create<TF::ShapeOp>( loc, RankedTensorType::get({num_dims}, builder.getI32Type()), input); auto scalar_to_rank1 = [&](Value value) { return reshape_op(value, {1}); }; for (int i : llvm::seq<int>(1, num_dims - 1)) { Value input_size_i = GetDimValue(builder, loc, input_shape_value, i); const int stride_i = mlir::cast<IntegerAttr>(strides[i]).getInt(); const int dilation_i = mlir::cast<IntegerAttr>(dilations[i]).getInt(); const int filter_i = filter_shape.getDimSize(i - 1); Value pad_i_low, pad_i_high; GetSamePaddingValues(builder, loc, input_size_i, filter_i, dilation_i, stride_i, pad_i_low, pad_i_high); temp_padding_values.push_back(scalar_to_rank1(pad_i_low)); temp_padding_values.push_back(scalar_to_rank1(pad_i_high)); } temp_padding_values.push_back(zero_rank1); temp_padding_values.push_back(zero_rank1); padding = CreateConstValue<int32_t>( builder, loc, {num_dims - 2, 2}, SmallVector<int32_t>(2 * (num_dims - 2), 0)); Value zero = CreateScalarConstValue(builder, loc, 0); Value temp_padding_rank1 = builder.create<TF::ConcatOp>( loc, RankedTensorType::get({2 * num_dims}, builder.getI32Type()), zero, temp_padding_values); Value temp_padding = reshape_op(temp_padding_rank1, {num_dims, 2}); return builder.create<TF::PadV2Op>( loc, input.getType(), input, temp_padding, CreateScalarConstValue<int8_t>(builder, loc, input_zp_value)); } } Value CalculatePaddingAndPadIfNeeded(OpBuilder &builder, Location loc, Value input, Value filter, int8_t input_zp_value, ArrayAttr strides, ArrayAttr dilations, StringAttr conv_padding, ArrayAttr explicit_paddings, Value &padding, int num_dims) { ShapedType input_shape = mlir::cast<ShapedType>(input.getType()); SmallVector<int64_t> spatial_dims(num_dims - 2); absl::c_iota(spatial_dims, 1); bool has_dynamic_spatial_dim = absl::c_any_of( spatial_dims, [&input_shape](int64_t dim) { return input_shape.isDynamicDim(dim); }); if (conv_padding.strref() == "SAME" && has_dynamic_spatial_dim) { return PadForDynamicShapedInputSamePadding( builder, loc, input, filter, input_zp_value, strides, dilations, conv_padding, padding, num_dims); } ShapedType filter_shape = mlir::cast<ShapedType>(filter.getType()); SmallVector<int32_t> padding_values(2 * num_dims, 0); if (conv_padding.strref() == "EXPLICIT") { if (explicit_paddings.size() != 2 * num_dims) { emitError(loc, absl::StrFormat( "explicit_paddings are expected to be %d-element arrays", 2 * num_dims)); return {}; } for (int i : spatial_dims) { padding_values[2 * i] = mlir::cast<IntegerAttr>(explicit_paddings[2 * i]).getInt(); padding_values[2 * i + 1] = mlir::cast<IntegerAttr>(explicit_paddings[2 * i + 1]).getInt(); } } else if (conv_padding.strref() == "SAME") { for (int i : spatial_dims) { int input_size = input_shape.getDimSize(i); int filter_size = filter_shape.getDimSize(i - 1); int stride_i = mlir::cast<IntegerAttr>(strides[i]).getInt(); int dilation_i = mlir::cast<IntegerAttr>(dilations[i]).getInt(); int out_size = tflite_migration::ComputeOutSize( kTfLitePaddingSame, input_size, filter_size, stride_i, dilation_i); int offset = 0; int padding_before = tflite_migration::ComputePaddingWithOffset( stride_i, dilation_i, input_size, filter_size, out_size, &offset); int padding_after = padding_before + offset; padding_values[2 * i] = padding_before; padding_values[2 * i + 1] = padding_after; } } if (input_zp_value == 0 || absl::c_all_of(padding_values, [](int v) { return v == 0; })) { padding = CreateConstValue<int32_t>( builder, loc, {num_dims - 2, 2}, SmallVector<int32_t>(padding_values.begin() + 2, padding_values.end() - 2)); return input; } padding = CreateConstValue<int32_t>(builder, loc, {num_dims - 2, 2}, SmallVector<int32_t>(2 * (num_dims - 2), 0)); Value temp_padding = CreateConstValue<int32_t>(builder, loc, {num_dims, 2}, padding_values); SmallVector<int64_t> output_shape(input_shape.getShape().begin(), input_shape.getShape().end()); for (int i : spatial_dims) { output_shape[i] += padding_values[2 * i] + padding_values[2 * i + 1]; } return builder.create<TF::PadV2Op>( loc, RankedTensorType::get(output_shape, builder.getI8Type()), input, temp_padding, CreateScalarConstValue<int8_t>(builder, loc, input_zp_value)); } Value PackOperand(OpBuilder &builder, Location loc, Value value, int pack_dim) { ShapedType value_type = mlir::cast<ShapedType>(value.getType()); const int rank = value_type.getRank(); SmallVector<int64_t> packed_shape(value_type.getShape().begin(), value_type.getShape().end()); RankedTensorType shape_type = RankedTensorType::get({rank}, builder.getI64Type()); Value shape_value = builder.create<TF::ShapeOp>(loc, shape_type, value); if (packed_shape[pack_dim] % 2 != 0) { packed_shape[pack_dim] += 1; SmallVector<int32_t> padding(rank * 2, 0); padding[pack_dim * 2 + 1] = 1; Value padding_value = CreateConstValue<int32_t>(builder, loc, {rank, 2}, padding); value = builder.create<TF::PadV2Op>( loc, RankedTensorType::get(packed_shape, builder.getI8Type()), value, padding_value, CreateScalarConstValue<int8_t>(builder, loc, 0)); SmallVector<int64_t> shape_add(rank, 0); shape_add[pack_dim] = 1; shape_value = builder.create<TF::AddOp>( loc, shape_type, shape_value, CreateConstValue<int64_t>(builder, loc, {rank}, shape_add)); } packed_shape[pack_dim] /= 2; SmallVector<int64_t> divisor(rank, 1); divisor[pack_dim] = 2; RankedTensorType packed_output_type = RankedTensorType::get(packed_shape, builder.getI8Type()); Value packed_shape_value = builder.create<TF::DivOp>( loc, shape_type, shape_value, CreateConstValue<int64_t>(builder, loc, {rank}, divisor)); Value packed_low_begin_value = CreateConstValue<int64_t>( builder, loc, {rank}, SmallVector<int64_t>(rank, 0)); Value packed_low_value = builder.create<TF::SliceOp>(loc, packed_output_type, value, packed_low_begin_value, packed_shape_value); packed_low_value = builder.create<TF::BitwiseAndOp>( loc, packed_output_type, packed_low_value, CreateScalarConstValue<int8_t>(builder, loc, 0x0F)); SmallVector<int64_t> packed_high_begin(rank, 0); packed_high_begin[pack_dim] = packed_shape[pack_dim]; Value packed_high_begin_value = CreateConstValue<int64_t>(builder, loc, {rank}, packed_high_begin); Value packed_high_value = builder.create<TF::SliceOp>(loc, packed_output_type, value, packed_high_begin_value, packed_shape_value); packed_high_value = builder.create<TF::LeftShiftOp>( loc, packed_output_type, packed_high_value, CreateScalarConstValue<int8_t>(builder, loc, 4)); Operation *packed = builder.create<TF::BitwiseOrOp>( loc, packed_output_type, packed_low_value, packed_high_value); return ConstantFoldOpIfPossible(packed).front(); } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_xla_attribute_utils.h" #include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Debug.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/quantization/common/attrs_and_constraints.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" namespace mlir::quant { namespace { void PackOperandTestHelper( const llvm::SmallVector<int64_t>& unpacked_shape, const llvm::SmallVector<int8_t>& unpacked_values, int pack_dim, const llvm::SmallVector<int64_t>& expected_packed_shape, const llvm::SmallVector<int8_t>& expected_packed_values) { MLIRContext context; OwningOpRef<ModuleOp> module(ModuleOp::create(UnknownLoc::get(&context))); OpBuilder builder(&module->getBodyRegion()); context.loadDialect<TF::TensorFlowDialect>(); Value value = CreateConstValue<int8_t>(builder, module->getLoc(), unpacked_shape, unpacked_values); Value packed_value = PackOperand(builder, module->getLoc(), value, pack_dim); DenseIntElementsAttr packed_value_attr; ASSERT_TRUE(matchPattern(packed_value, m_Constant(&packed_value_attr))); ShapedType packed_shape_type = mlir::dyn_cast<ShapedType>(packed_value.getType()); llvm::SmallVector<int64_t> packed_shape(packed_shape_type.getShape().begin(), packed_shape_type.getShape().end()); EXPECT_THAT(packed_shape, testing::ElementsAreArray(expected_packed_shape)); llvm::SmallVector<int8_t> packed_value_vector( packed_value_attr.getValues<int8_t>()); EXPECT_THAT(packed_value_vector, testing::ElementsAreArray(expected_packed_values)); } TEST(TfToXlaAttributeUtilsTest, PackOperandPackDimSizeEven) { PackOperandTestHelper({2, 2}, {0x01, 0x02, 0x03, 0x04}, 0, {1, 2}, {0x31, 0x42}); } TEST(TfToXlaAttributeUtilsTest, PackOperandPackDimSizeOdd) { PackOperandTestHelper( {2, 3}, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}, 1, {2, 2}, {0x31, 0x02, 0x64, 0x05}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_xla_attribute_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_xla_attribute_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f8005be0-efb5-4e02-b34f-67e3f01f5cb9
cpp
tensorflow/tensorflow
non_max_suppression
tensorflow/lite/kernels/non_max_suppression.cc
tensorflow/lite/kernels/internal/non_max_suppression_test.cc
#include "tensorflow/lite/kernels/internal/reference/non_max_suppression.h" #include <initializer_list> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace non_max_suppression { constexpr int kInputTensorBoxes = 0; constexpr int kInputTensorScores = 1; constexpr int kInputTensorMaxOutputSize = 2; constexpr int kInputTensorIouThreshold = 3; constexpr int kInputTensorScoreThreshold = 4; constexpr int kInputTensorSigma = 5; constexpr int kNMSOutputTensorSelectedIndices = 0; constexpr int kNMSOutputTensorNumSelectedIndices = 1; constexpr int kSoftNMSOutputTensorSelectedIndices = 0; constexpr int kSoftNMSOutputTensorSelectedScores = 1; constexpr int kSoftNMSOutputTensorNumSelectedIndices = 2; TfLiteStatus SetTensorSizes(TfLiteContext* context, TfLiteTensor* tensor, std::initializer_list<int> values) { TfLiteIntArray* size = TfLiteIntArrayCreate(values.size()); int index = 0; for (const auto& v : values) { size->data[index++] = v; } return context->ResizeTensor(context, tensor, size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const int num_inputs = NumInputs(node); const bool is_soft_nms = num_inputs == 6; if (num_inputs != 5 && num_inputs != 6) { TF_LITE_KERNEL_LOG(context, "Found NMS op with invalid num inputs: %d", NumInputs(node)); return kTfLiteError; } const TfLiteTensor* input_boxes; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorBoxes, &input_boxes)); TF_LITE_ENSURE_EQ(context, input_boxes->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_boxes), 2); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input_boxes, 1), 4); const int num_boxes = SizeOfDimension(input_boxes, 0); const TfLiteTensor* input_scores; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorScores, &input_scores)); TF_LITE_ENSURE_EQ(context, input_scores->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_scores), 1); TF_LITE_ENSURE_EQ(context, num_boxes, SizeOfDimension(input_scores, 0)); const TfLiteTensor* input_max_output_size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorMaxOutputSize, &input_max_output_size)); TF_LITE_ENSURE_EQ(context, input_max_output_size->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_max_output_size), 0); const bool is_max_output_size_const = IsConstantOrPersistentTensor(input_max_output_size); int max_output_size_value = 0; if (is_max_output_size_const) { max_output_size_value = *GetTensorData<int>(input_max_output_size); TF_LITE_ENSURE(context, (max_output_size_value >= 0)); } const TfLiteTensor* input_iou_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorIouThreshold, &input_iou_threshold)); TF_LITE_ENSURE_EQ(context, input_iou_threshold->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_iou_threshold), 0); const TfLiteTensor* input_score_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorScoreThreshold, &input_score_threshold)); TF_LITE_ENSURE_EQ(context, input_iou_threshold->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_score_threshold), 0); if (is_soft_nms) { const TfLiteTensor* input_sigma; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorSigma, &input_sigma)); TF_LITE_ENSURE_EQ(context, input_sigma->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_sigma), 0); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 3); TfLiteTensor* output_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedIndices, &output_selected_indices)); output_selected_indices->type = kTfLiteInt32; TfLiteTensor* output_selected_scores; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedScores, &output_selected_scores)); output_selected_scores->type = kTfLiteFloat32; TfLiteTensor* output_num_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); output_num_selected_indices->type = kTfLiteInt32; SetTensorSizes(context, output_num_selected_indices, {}); if (is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); SetTensorSizes(context, output_selected_scores, {max_output_size_value}); } else { SetTensorToDynamic(output_selected_indices); SetTensorToDynamic(output_selected_scores); } } else { TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); TfLiteTensor* output_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kNMSOutputTensorSelectedIndices, &output_selected_indices)); output_selected_indices->type = kTfLiteInt32; TfLiteTensor* output_num_selected_indices; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); output_num_selected_indices->type = kTfLiteInt32; SetTensorSizes(context, output_num_selected_indices, {}); if (is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); } else { SetTensorToDynamic(output_selected_indices); } } return kTfLiteOk; } void ResetUnusedElementsToZeroes(const int max_output_size, const int num_selected_indices, int* selected_indices, float* selected_scores) { for (int i = num_selected_indices; i < max_output_size; ++i) { selected_indices[i] = 0; if (selected_scores) { selected_scores[i] = 0.0; } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const bool is_soft_nms = NumInputs(node) == 6; const TfLiteTensor* input_boxes; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorBoxes, &input_boxes)); const int num_boxes = SizeOfDimension(input_boxes, 0); const TfLiteTensor* input_scores; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorScores, &input_scores)); const TfLiteTensor* input_max_output_size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorMaxOutputSize, &input_max_output_size)); const int max_output_size_value = *GetTensorData<int>(input_max_output_size); TF_LITE_ENSURE(context, (max_output_size_value >= 0)); const bool is_max_output_size_const = IsConstantOrPersistentTensor(input_max_output_size); const TfLiteTensor* input_iou_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorIouThreshold, &input_iou_threshold)); const float iou_threshold = *GetTensorData<float>(input_iou_threshold); const TfLiteTensor* input_score_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorScoreThreshold, &input_score_threshold)); const float score_threshold = *GetTensorData<float>(input_score_threshold); TfLiteTensor* output_selected_indices = nullptr; TfLiteTensor* output_selected_scores = nullptr; TfLiteTensor* output_num_selected_indices = nullptr; if (is_soft_nms) { const TfLiteTensor* input_sigma; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorSigma, &input_sigma)); const float soft_nms_sigma = *GetTensorData<float>(input_sigma); if (soft_nms_sigma < 0) { TF_LITE_KERNEL_LOG(context, "Invalid sigma value for soft NMS: %f", soft_nms_sigma); return kTfLiteError; } TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedIndices, &output_selected_indices)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedScores, &output_selected_scores)); TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); if (!is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); SetTensorSizes(context, output_selected_scores, {max_output_size_value}); } reference_ops::NonMaxSuppression( input_boxes->data.f, num_boxes, input_scores->data.f, max_output_size_value, iou_threshold, score_threshold, soft_nms_sigma, output_selected_indices->data.i32, output_selected_scores->data.f, output_num_selected_indices->data.i32); ResetUnusedElementsToZeroes( max_output_size_value, *output_num_selected_indices->data.i32, output_selected_indices->data.i32, output_selected_scores->data.f); } else { TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kNMSOutputTensorSelectedIndices, &output_selected_indices)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); if (!is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); } reference_ops::NonMaxSuppression( input_boxes->data.f, num_boxes, input_scores->data.f, max_output_size_value, iou_threshold, score_threshold, 0.0, output_selected_indices->data.i32, nullptr, output_num_selected_indices->data.i32); ResetUnusedElementsToZeroes(max_output_size_value, *output_num_selected_indices->data.i32, output_selected_indices->data.i32, nullptr); } return kTfLiteOk; } } TfLiteRegistration* Register_NON_MAX_SUPPRESSION_V4() { static TfLiteRegistration r = {nullptr, nullptr, non_max_suppression::Prepare, non_max_suppression::Eval}; return &r; } TfLiteRegistration* Register_NON_MAX_SUPPRESSION_V5() { static TfLiteRegistration r = {nullptr, nullptr, non_max_suppression::Prepare, non_max_suppression::Eval}; return &r; } } } }
#include "tensorflow/lite/kernels/internal/reference/non_max_suppression.h" #include <algorithm> #include <cmath> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; constexpr int kNumBoxes = 6; void InitializeCandidates(std::vector<float>* boxes, std::vector<float>* scores, bool flip_coordinates = false) { if (!flip_coordinates) { *boxes = { 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 }; } else { *boxes = { 1, 1, 0, 0, 0, 0.1, 1, 1.1, 0, .9f, 1, -0.1, 0, 10, 1, 11, 1, 10.1f, 0, 11.1, 1, 101, 0, 100 }; } *scores = {0.9, 0.75, 0.6, 0.95, 0.5, 0.3}; } template <typename T> void MatchFirstNElements(int num_elements, const std::vector<T>& test_values, const std::vector<T>& reference_values) { EXPECT_LT(num_elements, test_values.size()); EXPECT_EQ(num_elements, reference_values.size()); for (int i = 0; i < num_elements; ++i) { EXPECT_EQ(test_values[i], reference_values[i]); } } TEST(NonMaxSuppression, TestZeroBoxes) { std::vector<float> boxes(1); std::vector<float> scores(1); const float iou_threshold = 0.5; const float score_threshold = 0.4; const int max_output_size = 4; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), 0, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromIdenticalBoxes) { std::vector<float> boxes(kNumBoxes * 4); std::vector<float> scores(kNumBoxes); for (int i = 0; i < kNumBoxes; ++i) { boxes[i * 4 + 0] = 0; boxes[i * 4 + 1] = 0; boxes[i * 4 + 2] = 1; boxes[i * 4 + 3] = 1; scores[i] = 0.75; } const float iou_threshold = 0.5; float score_threshold = 0.5; const int max_output_size = kNumBoxes; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_scores, {.75}); score_threshold = 0.95; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithZeroScoreThreshold) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; int max_output_size; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 3); MatchFirstNElements(3, selected_indices, {3, 0, 5}); MatchFirstNElements(3, selected_scores, {0.95, 0.9, 0.3}); max_output_size = 2; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, max_output_size); MatchFirstNElements(max_output_size, selected_indices, {3, 0}); MatchFirstNElements(max_output_size, selected_scores, {0.95, 0.9}); max_output_size = 0; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithScoreThreshold) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; const float score_threshold = 0.4; int max_output_size; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); MatchFirstNElements(2, selected_indices, {3, 0}); MatchFirstNElements(2, selected_scores, {0.95, 0.9}); max_output_size = 1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_indices, {3}); MatchFirstNElements(1, selected_scores, {0.95}); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithFlippedCoordinates) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores, true); const float iou_threshold = 0.5; const float score_threshold = 0.4; const int max_output_size = 3; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); MatchFirstNElements(2, selected_indices, {3, 0}); MatchFirstNElements(2, selected_scores, {0.95, 0.9}); reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 3); MatchFirstNElements(3, selected_indices, {3, 0, 5}); MatchFirstNElements(3, selected_scores, {0.95, 0.9, 0.3}); } TEST(NonMaxSuppression, TestIoUThresholdBoundaryCases) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float score_threshold = 0.4; const int max_output_size = 4; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, 0.0, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_indices, {3}); MatchFirstNElements(1, selected_scores, {0.95}); reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, 0.9999, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, max_output_size); MatchFirstNElements(max_output_size, selected_indices, {3, 0, 1, 2}); MatchFirstNElements(max_output_size, selected_scores, {0.95, 0.9, 0.75, 0.6}); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithSoftNMS) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 1.0; float score_threshold = 0.0; const float soft_nms_sigma = 0.5; int max_output_size = 6; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, soft_nms_sigma, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 6); EXPECT_THAT(selected_indices, ElementsAreArray({3, 0, 1, 5, 4, 2})); EXPECT_THAT(selected_scores, ElementsAreArray( ArrayFloatNear({0.95, 0.9, 0.384, 0.3, 0.256, 0.197}, 1e-3))); score_threshold = 0.299; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, soft_nms_sigma, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 4); MatchFirstNElements(4, selected_indices, {3, 0, 1, 5}); } TEST(NonMaxSuppression, TestNullSelectedScoresOutput) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; const float score_threshold = 0.4; int max_output_size; std::vector<int> selected_indices(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), nullptr, &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/non_max_suppression.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/non_max_suppression_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2b8f4dea-181a-4111-9c9e-1972e76f79b6
cpp
google/tensorstore
bit_span
tensorstore/util/bit_span.h
tensorstore/util/bit_span_test.cc
#ifndef TENSORSTORE_UTIL_BIT_SPAN_H_ #define TENSORSTORE_UTIL_BIT_SPAN_H_ #include <algorithm> #include <cassert> #include <cstddef> #include <type_traits> #include "absl/base/attributes.h" #include "tensorstore/util/small_bit_set.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_bit_span { template <bool FillValue, typename T> void FillBits(T* base, std::ptrdiff_t offset, std::ptrdiff_t size) { constexpr std::ptrdiff_t kBitsPerBlock = sizeof(T) * 8; constexpr const T kAllOnes = ~static_cast<T>(0); assert(offset >= 0); std::ptrdiff_t end; for (base += offset / kBitsPerBlock, offset %= kBitsPerBlock, end = size + offset; end >= kBitsPerBlock; ++base, offset = 0, end -= kBitsPerBlock) { const T mask = kAllOnes << offset; if (FillValue) { *base |= mask; } else { *base &= ~mask; } } if (end) { const T mask = (kAllOnes << offset) ^ (kAllOnes << (end % kBitsPerBlock)); if (FillValue) { *base |= mask; } else { *base &= ~mask; } } } template <typename T, typename U> void CopyBits(const U* source, std::ptrdiff_t source_offset, T* dest, std::ptrdiff_t dest_offset, std::ptrdiff_t size) { std::copy(BitIterator<const U>(source, source_offset), BitIterator<const U>(source, source_offset + size), BitIterator<T>(dest, dest_offset)); } } template <typename T, std::ptrdiff_t Extent = dynamic_extent> class BitSpan { static_assert(std::is_unsigned_v<T>, "Storage type T must be unsigned."); static_assert(Extent == dynamic_extent || Extent >= 0, "Extent must be dynamic_extent or >= 0."); public: using ExtentType = std::conditional_t<Extent == dynamic_extent, std::ptrdiff_t, std::integral_constant<std::ptrdiff_t, Extent>>; using size_type = std::ptrdiff_t; using difference_type = std::ptrdiff_t; using iterator = BitIterator<T>; using const_iterator = BitIterator<const T>; using pointer = BitIterator<T>; using const_pointer = BitIterator<T>; using value_type = bool; using reference = BitRef<T>; using base_type = T; using element_type = std::conditional_t<std::is_const_v<T>, const bool, bool>; constexpr static std::ptrdiff_t kBitsPerBlock = sizeof(T) * 8; constexpr static std::ptrdiff_t static_extent = Extent; constexpr BitSpan(T* base ABSL_ATTRIBUTE_LIFETIME_BOUND, std::ptrdiff_t offset, std::ptrdiff_t size) : BitSpan(BitIterator<T>(base, offset), size) {} constexpr BitSpan(BitIterator<T> begin, std::ptrdiff_t size) : begin_(begin) { if constexpr (Extent == dynamic_extent) { assert(size >= 0); size_ = size; } else { assert(size == Extent); } } template < typename U, std::ptrdiff_t E, std::enable_if_t<((std::is_same_v<T, U> || std::is_same_v<T, const U>)&&( E == Extent || Extent == dynamic_extent))>* = nullptr> constexpr BitSpan(BitSpan<U, E> other) : begin_(other.begin()), size_(other.size()) {} constexpr T* base() const { return begin().base(); } constexpr std::ptrdiff_t offset() const { return begin().offset(); } constexpr ExtentType size() const { return size_; } BitIterator<T> begin() const { return begin_; } BitIterator<T> end() const { return begin_ + size_; } constexpr BitRef<T> operator[](std::ptrdiff_t i) const { assert(i >= 0 && i <= size()); return *(begin() + i); } template <bool FillValue, int&... ExplicitArgumentBarrier, typename X = T> std::enable_if_t<!std::is_const_v<X>> fill() const { internal_bit_span::FillBits<FillValue>(base(), offset(), size()); } template <int&... ExplicitArgumentBarrier, typename X = T> std::enable_if_t<!std::is_const_v<X>> fill(bool value) const { if (value) { fill<true>(); } else { fill<false>(); } } template <typename U, std::ptrdiff_t E, int&... ExplicitArgumentBarrier, typename X = T> std::enable_if_t<!std::is_const_v<X> && (E == Extent || Extent == dynamic_extent || E == dynamic_extent)> DeepAssign(BitSpan<U, E> other) { assert(other.size() == size()); internal_bit_span::CopyBits(other.base(), other.offset(), base(), offset(), size()); } private: BitIterator<T> begin_; ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ExtentType size_; }; template <typename Block> inline constexpr std::ptrdiff_t BitVectorSizeInBlocks(std::ptrdiff_t length) { return (length + sizeof(Block) * 8 - 1) / (sizeof(Block) * 8); } } #endif
#include "tensorstore/util/bit_span.h" #include <algorithm> #include <array> #include <cstdint> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::BitIterator; using ::tensorstore::BitSpan; using ::tensorstore::BitVectorSizeInBlocks; static_assert( std::is_convertible_v<BitSpan<uint32_t>, BitSpan<const uint32_t>>); static_assert( std::is_convertible_v<BitSpan<const uint32_t, 3>, BitSpan<const uint32_t>>); static_assert( std::is_convertible_v<BitSpan<uint32_t, 3>, BitSpan<const uint32_t>>); TEST(BitSpanTest, Basic) { uint16_t data[2] = {0, 0}; BitSpan<uint16_t> s(data, 11, 10); EXPECT_EQ(10, s.size()); EXPECT_EQ(data, s.base()); EXPECT_EQ(11, s.offset()); } TEST(BitSpanTest, ConstructFromIterator) { uint16_t data[2] = {0, 0}; BitSpan<uint16_t> s(BitIterator<uint16_t>(data, 11), 10); EXPECT_EQ(10, s.size()); EXPECT_EQ(data, s.base()); EXPECT_EQ(11, s.offset()); } TEST(BitSpanTest, Iterate) { uint16_t data[2] = {0, 0}; BitSpan<uint16_t> s(data, 11, 10); std::array<bool, 10> arr = {1, 1, 0, 0, 1, 1, 1, 0, 1, 0}; std::copy(arr.begin(), arr.end(), s.begin()); EXPECT_THAT(data, ::testing::ElementsAre(0x9800 , 0xb )); std::array<bool, 10> arr2; std::copy(s.begin(), s.end(), arr2.begin()); EXPECT_EQ(arr, arr2); std::sort(s.begin(), s.end()); EXPECT_THAT(s, ::testing::ElementsAre(0, 0, 0, 0, 1, 1, 1, 1, 1, 1)); } TEST(BitSpanTest, Convert) { uint16_t data[2] = {0, 0}; BitSpan<uint16_t, 10> s_static(data, 11, 10); BitSpan<uint16_t> s2 = s_static; BitSpan<const uint16_t> s2_const = s2; EXPECT_EQ(data, s_static.base()); EXPECT_EQ(11, s_static.offset()); EXPECT_EQ(10, s_static.size()); EXPECT_EQ(data, s2.base()); EXPECT_EQ(11, s2.offset()); EXPECT_EQ(10, s2.size()); EXPECT_EQ(data, s2_const.base()); EXPECT_EQ(11, s2_const.offset()); EXPECT_EQ(10, s2_const.size()); } TEST(BitSpanTest, FillPartialSingleBlockTrue) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 10, 4).fill(true); EXPECT_THAT(data, ::testing::ElementsAre(0xbeaa , 0xaaaa)); } TEST(BitSpanTest, FillPartialSingleBlockFalse) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 11, 4).fill(false); EXPECT_THAT(data, ::testing::ElementsAre(0x82aa , 0xaaaa)); } TEST(BitSpanTest, FillPartialTwoBlocksTrue) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 11, 10).fill(true); EXPECT_THAT(data, ::testing::ElementsAre(0xfaaa , 0xaabf )); } TEST(BitSpanTest, FillPartialTwoBlocksFalse) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 11, 10).fill(false); EXPECT_THAT(data, ::testing::ElementsAre(0x02aa , 0xaaa0 )); } TEST(BitSpanTest, FillOneBlockExactEndTrue) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 13, 3).fill(true); EXPECT_THAT(data, ::testing::ElementsAre(0xeaaa , 0xaaaa )); } TEST(BitSpanTest, FillOneBlockExactEndFalse) { uint16_t data[2] = {0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 13, 3).fill(false); EXPECT_THAT(data, ::testing::ElementsAre(0x0aaa , 0xaaaa )); } TEST(BitSpanTest, FillTwoBlockExactEndTrue) { uint16_t data[3] = {0xaaaa, 0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 13, 19).fill(true); EXPECT_THAT(data, ::testing::ElementsAre(0xeaaa , 0xffff , 0xaaaa )); } TEST(BitSpanTest, FillTwoBlockExactEndFalse) { uint16_t data[3] = {0xaaaa, 0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 13, 19).fill(false); EXPECT_THAT(data, ::testing::ElementsAre(0x0aaa , 0x0000 , 0xaaaa )); } TEST(BitSpanTest, FillPartialThreeBlocksTrue) { uint16_t data[3] = {0xaaaa, 0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 11, 23).fill(true); EXPECT_THAT(data, ::testing::ElementsAre(0xfaaa , 0xffff , 0xaaab )); } TEST(BitSpanTest, FillPartialThreeBlocksFalse) { uint16_t data[3] = {0xaaaa, 0xaaaa, 0xaaaa}; BitSpan<uint16_t>(data, 11, 23).fill(false); EXPECT_THAT(data, ::testing::ElementsAre(0x02aa , 0x0000 , 0xaaa8 )); } TEST(BitSpanTest, DeepAssign) { uint16_t data[2] = {0x9e0e , 0xe1f1 }; BitSpan<uint16_t> s1(data, 11, 10); uint16_t data2[2] = {0x1e0e , 0xe1f1 }; BitSpan<uint16_t> s2(data2, 9, 10); s2.DeepAssign(s1); EXPECT_THAT(data, ::testing::ElementsAre(0x9e0e , 0xe1f1 )); EXPECT_THAT(data2, ::testing::ElementsAre(0x660e , 0xe1f4 )); } static_assert(BitVectorSizeInBlocks<uint64_t>(0) == 0, ""); static_assert(BitVectorSizeInBlocks<uint64_t>(1) == 1, ""); static_assert(BitVectorSizeInBlocks<uint64_t>(63) == 1, ""); static_assert(BitVectorSizeInBlocks<uint64_t>(64) == 1, ""); static_assert(BitVectorSizeInBlocks<uint64_t>(65) == 2, ""); static_assert(BitVectorSizeInBlocks<uint32_t>(65) == 3, ""); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/bit_span.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/bit_span_test.cc
4f887a6430414cd6088e1743555015b10f116d50
496b588b-9d15-443d-9b70-61c9b5967273
cpp
google/quiche
deterministic_connection_id_generator
quiche/quic/core/deterministic_connection_id_generator.cc
quiche/quic/core/deterministic_connection_id_generator_test.cc
#include "quiche/quic/core/deterministic_connection_id_generator.h" #include <optional> #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { DeterministicConnectionIdGenerator::DeterministicConnectionIdGenerator( uint8_t expected_connection_id_length) : expected_connection_id_length_(expected_connection_id_length) { if (expected_connection_id_length_ > kQuicMaxConnectionIdWithLengthPrefixLength) { QUIC_BUG(quic_bug_465151159_01) << "Issuing connection IDs longer than allowed in RFC9000"; } } std::optional<QuicConnectionId> DeterministicConnectionIdGenerator::GenerateNextConnectionId( const QuicConnectionId& original) { if (expected_connection_id_length_ == 0) { return EmptyQuicConnectionId(); } const uint64_t connection_id_hash64 = QuicUtils::FNV1a_64_Hash( absl::string_view(original.data(), original.length())); if (expected_connection_id_length_ <= sizeof(uint64_t)) { return QuicConnectionId( reinterpret_cast<const char*>(&connection_id_hash64), expected_connection_id_length_); } char new_connection_id_data[255] = {}; const absl::uint128 connection_id_hash128 = QuicUtils::FNV1a_128_Hash( absl::string_view(original.data(), original.length())); static_assert(sizeof(connection_id_hash64) + sizeof(connection_id_hash128) <= sizeof(new_connection_id_data), "bad size"); memcpy(new_connection_id_data, &connection_id_hash64, sizeof(connection_id_hash64)); memcpy(new_connection_id_data + sizeof(connection_id_hash64), &connection_id_hash128, sizeof(connection_id_hash128)); return QuicConnectionId(new_connection_id_data, expected_connection_id_length_); } std::optional<QuicConnectionId> DeterministicConnectionIdGenerator::MaybeReplaceConnectionId( const QuicConnectionId& original, const ParsedQuicVersion& version) { if (original.length() == expected_connection_id_length_) { return std::optional<QuicConnectionId>(); } QUICHE_DCHECK(version.AllowsVariableLengthConnectionIds()); std::optional<QuicConnectionId> new_connection_id = GenerateNextConnectionId(original); if (!new_connection_id.has_value()) { QUIC_BUG(unset_next_connection_id); return std::nullopt; } QUICHE_DCHECK_EQ( *new_connection_id, static_cast<QuicConnectionId>(*GenerateNextConnectionId(original))); QUICHE_DCHECK_EQ(expected_connection_id_length_, new_connection_id->length()); QUIC_DLOG(INFO) << "Replacing incoming connection ID " << original << " with " << *new_connection_id; return new_connection_id; } }
#include "quiche/quic/core/deterministic_connection_id_generator.h" #include <optional> #include <ostream> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { struct TestParams { TestParams(int connection_id_length) : connection_id_length_(connection_id_length) {} TestParams() : TestParams(kQuicDefaultConnectionIdLength) {} friend std::ostream& operator<<(std::ostream& os, const TestParams& p) { os << "{ connection ID length: " << p.connection_id_length_ << " }"; return os; } int connection_id_length_; }; std::vector<struct TestParams> GetTestParams() { std::vector<struct TestParams> params; std::vector<int> connection_id_lengths{7, 8, 9, 16, 20}; for (int connection_id_length : connection_id_lengths) { params.push_back(TestParams(connection_id_length)); } return params; } class DeterministicConnectionIdGeneratorTest : public QuicTestWithParam<TestParams> { public: DeterministicConnectionIdGeneratorTest() : connection_id_length_(GetParam().connection_id_length_), generator_(DeterministicConnectionIdGenerator(connection_id_length_)), version_(ParsedQuicVersion::RFCv1()) {} protected: int connection_id_length_; DeterministicConnectionIdGenerator generator_; ParsedQuicVersion version_; }; INSTANTIATE_TEST_SUITE_P(DeterministicConnectionIdGeneratorTests, DeterministicConnectionIdGeneratorTest, ::testing::ValuesIn(GetTestParams())); TEST_P(DeterministicConnectionIdGeneratorTest, NextConnectionIdIsDeterministic) { QuicConnectionId connection_id64a = TestConnectionId(33); QuicConnectionId connection_id64b = TestConnectionId(33); EXPECT_EQ(connection_id64a, connection_id64b); EXPECT_EQ(*generator_.GenerateNextConnectionId(connection_id64a), *generator_.GenerateNextConnectionId(connection_id64b)); QuicConnectionId connection_id72a = TestConnectionIdNineBytesLong(42); QuicConnectionId connection_id72b = TestConnectionIdNineBytesLong(42); EXPECT_EQ(connection_id72a, connection_id72b); EXPECT_EQ(*generator_.GenerateNextConnectionId(connection_id72a), *generator_.GenerateNextConnectionId(connection_id72b)); } TEST_P(DeterministicConnectionIdGeneratorTest, NextConnectionIdLengthIsCorrect) { const char connection_id_bytes[255] = {}; for (uint8_t i = 0; i < sizeof(connection_id_bytes) - 1; ++i) { QuicConnectionId connection_id(connection_id_bytes, i); std::optional<QuicConnectionId> replacement_connection_id = generator_.GenerateNextConnectionId(connection_id); ASSERT_TRUE(replacement_connection_id.has_value()); EXPECT_EQ(connection_id_length_, replacement_connection_id->length()); } } TEST_P(DeterministicConnectionIdGeneratorTest, NextConnectionIdHasEntropy) { for (uint64_t i = 0; i < 256; ++i) { QuicConnectionId connection_id_i = TestConnectionId(i); std::optional<QuicConnectionId> new_i = generator_.GenerateNextConnectionId(connection_id_i); ASSERT_TRUE(new_i.has_value()); EXPECT_NE(connection_id_i, *new_i); for (uint64_t j = i + 1; j <= 256; ++j) { QuicConnectionId connection_id_j = TestConnectionId(j); EXPECT_NE(connection_id_i, connection_id_j); std::optional<QuicConnectionId> new_j = generator_.GenerateNextConnectionId(connection_id_j); ASSERT_TRUE(new_j.has_value()); EXPECT_NE(*new_i, *new_j); } } } TEST_P(DeterministicConnectionIdGeneratorTest, OnlyReplaceConnectionIdWithWrongLength) { const char connection_id_input[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14}; for (int i = 0; i < kQuicMaxConnectionIdWithLengthPrefixLength; i++) { QuicConnectionId input = QuicConnectionId(connection_id_input, i); std::optional<QuicConnectionId> output = generator_.MaybeReplaceConnectionId(input, version_); if (i == connection_id_length_) { EXPECT_FALSE(output.has_value()); } else { ASSERT_TRUE(output.has_value()); EXPECT_EQ(*output, generator_.GenerateNextConnectionId(input)); } } } TEST_P(DeterministicConnectionIdGeneratorTest, ReturnLength) { EXPECT_EQ(generator_.ConnectionIdLength(0x01), connection_id_length_); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/deterministic_connection_id_generator.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/deterministic_connection_id_generator_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
0d00504b-3897-43c0-a93d-bf046bfb5a6e
cpp
tensorflow/tensorflow
conditional_code_motion
third_party/xla/xla/service/conditional_code_motion.cc
third_party/xla/xla/service/conditional_code_motion_test.cc
#include "xla/service/conditional_code_motion.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <stack> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/literal.h" #include "xla/map_util.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_verifier.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace conditional_opt { HloInstruction* CloneNestedTuples(HloInstruction* tuple) { if (!tuple->shape().IsTuple()) { return tuple; } std::vector<HloInstruction*> tuple_users, gte_users; for (int i = 0; i < tuple->shape().tuple_shapes_size(); ++i) { gte_users.push_back(nullptr); } for (auto* tuple_user : tuple->users()) { VLOG(2) << "tuple_user: " << tuple_user->ToString() << "\n"; if (tuple_user->opcode() != HloOpcode::kGetTupleElement || tuple_user == tuple->parent()->root_instruction()) { tuple_users.push_back(tuple_user); } else { gte_users[tuple_user->tuple_index()] = tuple_user; } } if (!tuple_users.empty() || tuple->user_count() == 0 || tuple == tuple->parent()->root_instruction()) { VLOG(5) << "CLONING: " << tuple->ToString() << "\n"; int64_t tuple_size = tuple->shape().tuple_shapes_size(); std::vector<HloInstruction*> operands; operands.reserve(tuple_size); for (int64_t j = 0; j < tuple_size; ++j) { HloInstruction* gte = (gte_users[j] == nullptr) ? tuple->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( tuple->shape().tuple_shapes(j), tuple, j)) : gte_users[j]; CHECK_NE(gte, nullptr); operands.push_back(CloneNestedTuples(gte)); } HloInstruction* new_tuple = tuple->parent()->AddInstruction(HloInstruction::CreateTuple(operands)); VLOG(2) << "new_tuple: " << new_tuple->ToString() << "\n"; if (tuple == tuple->parent()->root_instruction()) { tuple->parent()->set_root_instruction(new_tuple, true); } else { for (auto tuple_user : tuple_users) { TF_CHECK_OK(tuple->ReplaceUseWithDifferentShape(tuple_user, new_tuple)); } } return new_tuple; } for (auto gte_user : gte_users) { if (gte_user != nullptr) { auto gte = CloneNestedTuples(gte_user); CHECK_NE(gte, nullptr); } } return tuple; } class BoundaryVisitor { public: explicit BoundaryVisitor(HloInstruction* conditional) { Boundary b(Boundary::Position::kInsideBranch); b.mutable_operands().push_back(conditional); worklist_.push_back(b); } BoundaryVisitor() {} Boundary PopNextBoundary() { CHECK(!worklist_.empty()); Boundary b = worklist_.front(); worklist_.pop_front(); while (!worklist_.empty() && ContainsKey(visited_, b)) { b = worklist_.front(); worklist_.pop_front(); } visited_.insert(b); return b; } void AddToWorkList(const Boundary& b) { CHECK(!b.operands().empty()); worklist_.push_back(b); } bool HasNextBoundary() { while (!worklist_.empty()) { Boundary b = worklist_.front(); if (!ContainsKey(visited_, b)) { break; } worklist_.pop_front(); } return !worklist_.empty(); } private: std::deque<Boundary> worklist_; absl::flat_hash_set<Boundary> visited_; }; template <class OpCollection> int64_t CountNonLeafOps(const OpCollection& ops) { absl::flat_hash_set<HloInstruction*> op_set; for (auto op : ops) { if (!op_set.contains(op) && op->opcode() != HloOpcode::kConstant) { op_set.insert(op); } } return op_set.size(); } int64_t ReusesCarriedBy(HloOpcode op, HloOpcode user) { switch (user) { case HloOpcode::kGetTupleElement: return 0; case HloOpcode::kConvert: switch (op) { case HloOpcode::kConvolution: case HloOpcode::kDot: return 0; default: break; } break; default: break; } switch (op) { case HloOpcode::kParameter: case HloOpcode::kConstant: case HloOpcode::kGetTupleElement: return 0; case HloOpcode::kConditional: return 10; default: return -10; } } bool WorthHoisting(HloOpcode op, HloOpcode child_op) { switch (op) { case HloOpcode::kConvert: switch (child_op) { case HloOpcode::kAllReduce: case HloOpcode::kReshape: case HloOpcode::kGetTupleElement: return true; default: return false; } case HloOpcode::kGetTupleElement: case HloOpcode::kTuple: switch (child_op) { case HloOpcode::kParameter: return false; default: return true; } case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kReduce: case HloOpcode::kConstant: case HloOpcode::kReshape: case HloOpcode::kBroadcast: return true; default: if (HloInstruction::IsOpElementwise(op)) { return true; } return false; } } bool InstructionWithinBranchIdentical( const std::vector<HloInstruction*>& instructions, bool is_layout_sensitive) { auto eq_operand = [&](const HloInstruction* a, const HloInstruction* b) { bool eq_operands = is_layout_sensitive ? ShapeUtil::Equal(a->shape(), b->shape()) : ShapeUtil::Compatible(a->shape(), b->shape()); return eq_operands; }; auto eq_computations = [](const HloComputation* a, const HloComputation* b) { return *a == *b; }; if (instructions.empty()) { return false; } if (instructions[0]->IsCrossModuleAllReduce()) { return std::all_of( instructions.begin(), instructions.end(), [&](HloInstruction* instruction) { if (!instruction->IsCrossModuleAllReduce()) { return false; } auto old_channel_id = instruction->channel_id(); instruction->set_channel_id(instructions[0]->channel_id()); bool eq_instructions = instructions[0]->Identical( *instruction, eq_operand, eq_computations, is_layout_sensitive); instruction->set_channel_id(old_channel_id); return eq_instructions; }); } return std::all_of(instructions.begin(), instructions.end(), [&](HloInstruction* instruction) { return instructions[0]->Identical( *instruction, eq_operand, eq_computations, is_layout_sensitive); }); } void CopyOutOfConditional( Boundary& boundary, HloInstruction* conditional, absl::flat_hash_map<Boundary, Boundary>& hoisted_boundaries) { CHECK(boundary.IsInsideBranch()); absl::InlinedVector<HloInstruction*, 4> new_operands; const HloInstruction* branch0_inst = boundary.operands()[0]; for (int i = 0; i < branch0_inst->operands().size(); ++i) { Boundary operand_boundary(boundary.GetPosition()); for (HloInstruction* operand : boundary.operands()) { operand_boundary.mutable_operands().push_back(operand->operands()[i]); } VLOG(2) << "Looking for: " << operand_boundary.ToString(); auto hoisted_boundaries_it = hoisted_boundaries.find(operand_boundary); CHECK(hoisted_boundaries_it != hoisted_boundaries.end()); Boundary hoisted_boundary = hoisted_boundaries_it->second; CHECK(hoisted_boundary.IsOutsideBranchUser()); CHECK_EQ(hoisted_boundary.operands().size(), 1); new_operands.push_back(hoisted_boundary.operands()[0]); } HloInstruction* new_instruction = conditional->parent()->AddInstruction( branch0_inst->CloneWithNewOperands(branch0_inst->shape(), new_operands)); VLOG(2) << "new instruction:" << new_instruction->ToString(); Boundary hoisted_boundary(Boundary::Position::kOutsideBranchUser); hoisted_boundary.mutable_operands().push_back(new_instruction); hoisted_boundaries[boundary] = hoisted_boundary; } void CopyIntoConditional( Boundary& boundary, HloInstruction* conditional, absl::flat_hash_map<Boundary, Boundary>& hoisted_boundaries) { CHECK(boundary.IsOutsideBranchUser() || boundary.IsOutsideBranchOperand()); CHECK_EQ(boundary.operands().size(), 1); int num_branches = conditional->branch_count(); std::vector<absl::InlinedVector<HloInstruction*, 4>> new_operands( num_branches); HloInstruction* op = boundary.operands()[0]; for (HloInstruction* operand : op->operands()) { Boundary operand_boundary(boundary.GetPosition()); operand_boundary.mutable_operands().push_back(operand); VLOG(2) << "Looking for: " << operand_boundary.ToString(); auto hoisted_boundaries_it = hoisted_boundaries.find(operand_boundary); if (hoisted_boundaries_it != hoisted_boundaries.end()) { Boundary hoisted_boundary = hoisted_boundaries_it->second; CHECK(hoisted_boundary.IsInsideBranch()); CHECK_EQ(hoisted_boundary.operands().size(), num_branches); for (int j = 0; j < num_branches; ++j) { new_operands[j].push_back(hoisted_boundary.operands()[j]); } } else { for (int j = 0; j < num_branches; ++j) { switch (operand->opcode()) { case HloOpcode::kConstant: { auto new_operand = conditional->branch_computation(j)->AddInstruction( operand->Clone()); VLOG(2) << "new instruction:" << new_operand->ToString(); new_operands[j].push_back(new_operand); break; } case HloOpcode::kGetTupleElement: { auto gte = Cast<HloGetTupleElementInstruction>(operand); int64_t index = gte->tuple_index(); HloInstruction* root = conditional->branch_computation(j)->root_instruction(); CHECK(root->opcode() == HloOpcode::kTuple && index < root->operand_count()) << root->ToString() << " " << gte->ToString(); auto new_operand = root->mutable_operand(index); VLOG(2) << "new instruction:" << new_operand->ToString(); new_operands[j].push_back(new_operand); break; } default: LOG(FATAL) << "Unexpected out-of-boundary instruction:" << operand->ToString() << "\n"; } } } } Boundary hoisted_boundary(Boundary::Position::kInsideBranch); for (int j = 0; j < num_branches; ++j) { HloInstruction* new_instruction = conditional->branch_computation(j)->AddInstruction( op->CloneWithNewOperands(op->shape(), new_operands[j])); VLOG(2) << "new instruction:" << new_instruction->ToString(); hoisted_boundary.mutable_operands().push_back(new_instruction); } hoisted_boundaries[boundary] = hoisted_boundary; } absl::flat_hash_set<int64_t> FindSpecialConverts(HloInstruction* old_root, int branch_count, HloInstruction* conditional, bool is_layout_sensitive) { absl::flat_hash_set<int64_t> special_convert; auto convert_invalid = [](const HloInstruction* convert_set_candidate) -> bool { bool invalid_user = absl::c_any_of( convert_set_candidate->users(), [](const HloInstruction* user) -> bool { return (user->opcode() == HloOpcode::kConvert); }); bool invalid_producer = absl::c_any_of(convert_set_candidate->operands(), [](const HloInstruction* operand) -> bool { return (operand->opcode() == HloOpcode::kConvert); }); return (invalid_user || invalid_producer); }; for (int64_t operand_num = 0; operand_num < old_root->operand_count(); ++operand_num) { if (old_root->operand(operand_num)->opcode() != HloOpcode::kConvert) { continue; } bool replica = true; HloInstruction* special_convert_candidate = old_root->mutable_operand(operand_num); auto repeated = absl::c_count_if(old_root->operands(), [&](const HloInstruction* operand) -> bool { return (special_convert_candidate == operand); }) > 1; if (convert_invalid(special_convert_candidate) || repeated) { continue; } for (int others = 1; others < branch_count; ++others) { HloInstruction* others_root = conditional->branch_computation(others)->root_instruction(); const HloInstruction* other_convert = others_root->operand(operand_num); if (other_convert->opcode() != HloOpcode::kConvert || convert_invalid(other_convert)) { replica = false; break; } bool eq_shape = is_layout_sensitive ? ShapeUtil::Equal(other_convert->shape(), special_convert_candidate->shape()) && ShapeUtil::Equal( other_convert->operand(0)->shape(), special_convert_candidate->operand(0)->shape()) : ShapeUtil::Compatible(other_convert->shape(), special_convert_candidate->shape()) && ShapeUtil::Compatible( other_convert->operand(0)->shape(), special_convert_candidate->operand(0)->shape()); if (!eq_shape) { replica = false; break; } auto repeated = absl::c_count_if(others_root->operands(), [&](const HloInstruction* operand) -> bool { return (special_convert_candidate == operand); }) > 1; if (repeated) { replica = false; break; } } if (replica) { special_convert.insert(operand_num); } } return special_convert; } absl::Status RestructureConditionalInstruction(HloComputation* computation, HloInstruction* conditional) { HloInstruction* old_root = computation->root_instruction(); std::vector<HloInstruction*> new_operands; int cur_index = 0; for (; cur_index < ShapeUtil::TupleElementCount(conditional->shape()); ++cur_index) { new_operands.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetTupleElementShape(conditional->shape(), cur_index), conditional, cur_index))); } HloInstruction* new_tuple = computation->AddInstruction(HloInstruction::CreateTuple(new_operands)); if (old_root == conditional) { computation->set_root_instruction(new_tuple); } else { std::vector<HloInstruction*> new_tuple_users; for (auto conditional_user : conditional->users()) { auto is_new_gte = absl::c_find_if( new_operands, [&](HloInstruction* instr) { return instr == conditional_user; }); if (is_new_gte == new_operands.end()) { new_tuple_users.push_back(conditional_user); } } for (auto new_tuple_user : new_tuple_users) { TF_RETURN_IF_ERROR( conditional->ReplaceUseWith(new_tuple_user, new_tuple)); } } VLOG(2) << "computation after root restructure:\n" << computation->ToString(); return absl::OkStatus(); } absl::StatusOr<bool> ConvertSpecialMove(HloInstruction* conditional, bool is_layout_sensitive) { int branch_count = conditional->branch_count(); if (branch_count <= 0) { return false; } for (int branch_num = 0; branch_num < branch_count; ++branch_num) { HloInstruction* branch_root = conditional->branch_computation(branch_num)->root_instruction(); if (branch_root->opcode() != HloOpcode::kTuple) { return false; } } HloInstruction* old_root = conditional->branch_computation(0)->root_instruction(); VLOG(2) << "BEFORE :" << conditional->GetModule()->ToString(); auto find_gte = [](const HloInstruction* conditional_result, int64_t index) -> HloInstruction* { for (HloInstruction* instr : conditional_result->users()) { if (instr->opcode() != HloOpcode::kGetTupleElement) { return nullptr; } if (instr->tuple_index() == index) { return instr; } } return nullptr; }; absl::flat_hash_set<int64_t> special_convert = FindSpecialConverts( old_root, branch_count, conditional, is_layout_sensitive); if (special_convert.empty()) { return false; } TF_RETURN_IF_ERROR( RestructureConditionalInstruction(conditional->parent(), conditional)); for (int branch = 0; branch < branch_count; branch++) { old_root = conditional->branch_computation(branch)->root_instruction(); absl::flat_hash_map<HloInstruction*, int64_t> map_inst_to_tuple_index; std::vector<HloInstruction*> new_operands(old_root->operand_count()); absl::flat_hash_set<HloInstruction*> to_hoist_set; for (int64_t operand_num = 0; operand_num < old_root->operand_count(); ++operand_num) { map_inst_to_tuple_index[old_root->mutable_operand(operand_num)] = operand_num; } for (int64_t operand_num = 0; operand_num < old_root->operand_count(); ++operand_num) { HloInstruction* hoist = old_root->mutable_operand(operand_num); if (!special_convert.contains(operand_num)) { new_operands[operand_num] = old_root->mutable_operand(operand_num); continue; } to_hoist_set.insert(hoist); int64_t new_tuple_count = old_root->operand_count(); bool inplace = true; CHECK(!hoist->operands().empty()); for (HloInstruction* prod : hoist->operands()) { if (inplace) { map_inst_to_tuple_index[prod] = map_inst_to_tuple_index[hoist]; new_operands[map_inst_to_tuple_index[hoist]] = prod; inplace = false; } else { map_inst_to_tuple_index[prod] = new_tuple_count++; new_operands.push_back(prod); } } } HloComputation* cur_branch = conditional->branch_computation(branch); HloInstruction* new_branch_root = cur_branch->AddInstruction(HloInstruction::CreateTuple(new_operands)); cur_branch->set_root_instruction(new_branch_root, true ); TF_CHECK_OK(cur_branch->RemoveInstruction(old_root)); if (branch != 0) { continue; } HloComputation* conditional_parent = conditional->parent(); HloInstruction* newconditional = conditional_parent->AddInstruction(HloInstruction::CreateConditional( cur_branch->root_instruction()->shape(), conditional->mutable_operand(0), absl::MakeSpan(conditional->branch_computations()), absl::MakeSpan(conditional->operands()).subspan(1))); TF_RETURN_IF_ERROR( conditional->ReplaceAllUsesWithDifferentShape(newconditional)); TF_CHECK_OK(conditional_parent->RemoveInstruction(conditional)); conditional = newconditional; for (HloInstruction* hoist : to_hoist_set) { VLOG(2) << "Hoisting instruction:" << hoist->ToString(); int64_t hoist_index = map_inst_to_tuple_index[hoist]; HloInstruction* gte_hoist = find_gte(conditional, hoist_index); CHECK(gte_hoist != nullptr); std::vector<HloInstruction*> new_operands; for (HloInstruction* op : hoist->operands()) { HloInstruction* gte = conditional_parent->AddInstruction( HloInstruction::CreateGetTupleElement(op->shape(), conditional, map_inst_to_tuple_index[op])); new_operands.push_back(gte); } HloInstruction* hoisted = conditional_parent->AddInstruction( hoist->CloneWithNewOperands(hoist->shape(), new_operands)); VLOG(2) << "Hoisted instruction in parent:" << hoisted->ToString(); TF_RETURN_IF_ERROR(gte_hoist->ReplaceAllUsesWith(hoisted)); TF_CHECK_OK(conditional_parent->RemoveInstruction(gte_hoist)); } } VLOG(2) << "AFTER :" << conditional->GetModule()->ToString(); return true; } absl::StatusOr<bool> ConditionalCodeMotion::MoveInstructionOut( HloInstruction* conditional, std::vector<Boundary>& to_move_out, std::vector<Boundary>& new_boundaries) { if (to_move_out.empty()) { return false; } VLOG(1) << "Modifying code--number of boundaries to move out of conditional:" << to_move_out.size() << "\n"; HloComputation* conditional_parent = conditional->parent(); std::vector<HloInstruction*> old_conditional_users = conditional->users(); absl::flat_hash_map<Boundary, Boundary> hoisted_boundaries; VLOG(2) << "before opt:" << conditional_parent->ToString(HloPrintOptions::Fingerprint()) << "\n"; int64_t op_index = 0; for (const Boundary& b : new_boundaries) { HloInstruction* op = b.operands()[0]; CHECK(op != nullptr); VLOG(2) << "Mapping new boundary instr: " << op->ToString() << "\n"; HloInstruction* gtr = conditional_parent->AddInstruction( HloInstruction::CreateGetTupleElement(op->shape(), conditional, op_index++)); Boundary b2(Boundary::Position::kOutsideBranchUser); b2.mutable_operands().push_back(gtr); hoisted_boundaries[b] = b2; } for (int64_t i = to_move_out.size() - 1; i >= 0; i--) { CopyOutOfConditional(to_move_out[i], conditional, hoisted_boundaries); } VLOG(2) << "Done copy branch instructions out\n" << conditional_parent->ToString(HloPrintOptions::Fingerprint()) << "\n"; for (auto user_instr : old_conditional_users) { VLOG(2) << "Checking conditional user: " << user_instr->ToString() << "\n"; CHECK(user_instr->opcode() == HloOpcode::kGetTupleElement); auto tuple_opd = static_cast<HloGetTupleElementInstruction*>(user_instr); int64_t index = tuple_opd->tuple_index(); Boundary old_user_boundary(Boundary::Position::kInsideBranch); for (const HloComputation* called_computation : conditional->called_computations()) { HloInstruction* root = called_computation->root_instruction(); CHECK(root->operands().size() > index); old_user_boundary.mutable_operands().push_back(root->operands()[index]); } CHECK(ContainsKey(hoisted_boundaries, old_user_boundary)); HloInstruction* new_opd = hoisted_boundaries[old_user_boundary].operands()[0]; CHECK(new_opd != nullptr); VLOG(2) << "Try replace all uses of :" << old_user_boundary.ToString() << "\n"; TF_RETURN_IF_ERROR(user_instr->ReplaceAllUsesWith(new_opd)); TF_RETURN_IF_ERROR(conditional_parent->RemoveInstruction(user_instr)); } VLOG(2) << "Done changing conditional users\n" << conditional_parent->ToString() << "\n"; int64_t branch_count = conditional->branch_count(); for (int i = 0; i < branch_count; i++) { auto computation = conditional->branch_computation(i); std::vector<HloInstruction*> elements; for (const auto& b1 : new_boundaries) { HloInstruction* op = b1.operands()[i]; CHECK(op != nullptr); VLOG(2) << "Adding to root " << i << " with " << op->ToString() << "\n"; elements.push_back(op); } HloInstruction* tuple = computation->AddInstruction(HloInstruction::CreateTuple(elements)); computation->set_root_instruction(tuple, true); VLOG(2) << "computation is :" << computation->ToString() << "\n"; for (const auto& b2 : to_move_out) { auto instr_to_remove = b2.operands()[i]; if (!computation->IsMarkedAsDead(instr_to_remove) && instr_to_remove->IsDead()) { VLOG(2) << "Removing boundary:" << b2.ToString() << "\n"; VLOG(2) << "computation: " << computation->ToString() << "\n"; TF_RETURN_IF_ERROR(computation->RemoveInstruction(instr_to_remove)); } } } HloInstruction* new_root = conditional->branch_computation(0)->root_instruction(); *conditional->mutable_shape() = new_root->shape(); conditional->copy_sharding(new_root); VLOG(2) << "done moving instructions out of branches\n" << conditional_parent->ToString(HloPrintOptions::Fingerprint()); return true; } absl::StatusOr<bool> ConditionalCodeMotion::MoveUserInstructionsIn( HloInstruction* conditional, std::vector<Boundary>& to_move_in) { if (to_move_in.empty()) { return false; } absl::flat_hash_map<Boundary, Boundary> hoisted_boundaries; int64_t to_move_in_size = to_move_in.size(); int64_t branch_count = conditional->branch_count(); HloGetTupleElementInstruction* tuple_use = DynCast<HloGetTupleElementInstruction>(to_move_in[0].operands()[0]); int64_t use_index = (tuple_use != nullptr && tuple_use->user_count() == 1) ? tuple_use->tuple_index() : -1; VLOG(2) << "Tuple use index = " << use_index << "\n"; int64_t op_index = conditional->shape().IsTuple() ? ((use_index >= 0) ? conditional->shape().tuple_shapes_size() - 1 : conditional->shape().tuple_shapes_size()) : 0; Boundary b_opd_use(Boundary::Position::kInsideBranch); Boundary b_old_root(Boundary::Position::kInsideBranch); for (int i = 0; i < branch_count; i++) { auto computation = conditional->branch_computation(i); auto old_root = computation->root_instruction(); b_old_root.mutable_operands().push_back(old_root); std::vector<HloInstruction*> operands; if (old_root->opcode() == HloOpcode::kTuple) { for (int i = 0; i < old_root->operand_count(); ++i) { if (i != use_index) { operands.push_back(old_root->operands()[i]); } else { b_opd_use.mutable_operands().push_back(old_root->operands()[i]); } } } else if (old_root->shape().IsTuple()) { const Shape& old_shape = old_root->shape(); for (int i = 0; i < old_shape.tuple_shapes_size(); ++i) { auto element = computation->AddInstruction(HloInstruction::CreateGetTupleElement( old_shape.tuple_shapes(i), old_root, i)); if (i != use_index) { operands.push_back(element); } else { b_opd_use.mutable_operands().push_back(element); } } } else { b_opd_use.mutable_operands().push_back(conditional); } HloInstruction* new_root = computation->AddInstruction(HloInstruction::CreateTuple(operands)); VLOG(2) << "setting new root: " << new_root->ToString() << "\n"; computation->set_root_instruction(new_root, true); if (old_root->opcode() == HloOpcode::kTuple) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(old_root)); } VLOG(2) << "new branch computation: " << computation->ToString() << "\n"; } if (use_index != -1) { for (auto* user : conditional->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && user->tuple_index() > use_index) { user->set_tuple_index(user->tuple_index() - 1); } } } Boundary conditional_boundary(Boundary::Position::kOutsideBranchUser); conditional_boundary.mutable_operands().push_back(conditional); hoisted_boundaries[conditional_boundary] = b_old_root; if (use_index >= 0) { VLOG(2) << "Mapping GTE: " << tuple_use->ToString() << "\n"; Boundary tuple_use_boundary(Boundary::Position::kOutsideBranchUser); tuple_use_boundary.mutable_operands().push_back(tuple_use); hoisted_boundaries[tuple_use_boundary] = b_opd_use; } int64_t cp_start = (tuple_use != nullptr) ? 1 : 0; for (int64_t to_move_index = cp_start; to_move_index < to_move_in_size; to_move_index++) { Boundary b_to_move = to_move_in[to_move_index]; HloInstruction* op = b_to_move.operands()[0]; CHECK(op != nullptr); bool to_be_used_outside = true; VLOG(2) << "Mapping new boundary instr: " << op->ToString() << "\n"; if (to_move_index < to_move_in_size - 1 && op->user_count() == 1 && op->users()[0] == to_move_in[to_move_index + 1].operands()[0]) { to_be_used_outside = false; VLOG(2) << "Instruction is not to be used outside the branch\n"; } Boundary b(Boundary::Position::kInsideBranch); CopyIntoConditional(b_to_move, conditional, hoisted_boundaries); if (to_be_used_outside) { for (int i = 0; i < branch_count; ++i) { auto computation = conditional->branch_computation(i); auto new_op = hoisted_boundaries[b_to_move].operands()[i]; auto new_root = computation->root_instruction(); new_root->AppendOperand(new_op); *new_root->mutable_shape()->add_tuple_shapes() = new_op->shape(); VLOG(2) << "Extending conditional root " << i << " : " << new_root->ToString() << "\n"; } HloInstruction* gtr = conditional->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(op->shape(), conditional, op_index++)); TF_RETURN_IF_ERROR(op->ReplaceAllUsesWith(gtr)); if (conditional->parent()->root_instruction() == op) { conditional->parent()->set_root_instruction(gtr); } } } VLOG(2) << "Done copying instructions inside branch: " << conditional->ToString(HloPrintOptions::Fingerprint()) << "\n"; HloInstruction* new_root = conditional->branch_computation(0)->root_instruction(); *conditional->mutable_shape() = new_root->shape(); conditional->copy_sharding(new_root); if (use_index != -1) { for (auto* user : conditional->users()) { if (user->opcode() == HloOpcode::kGetTupleElement) { VLOG(2) << "Resetting shape of user: " << user->ToString() << "\n"; *user->mutable_shape() = conditional->shape().tuple_shapes(user->tuple_index()); } } } VLOG(2) << "Done moving user instructions inside branches\n" << conditional->parent()->ToString(HloPrintOptions::Fingerprint()); return true; } class MoveOperandIntoBranch { public: MoveOperandIntoBranch() = default; absl::Status operator()(HloInstruction* inst, HloInstruction*& user) { VLOG(1) << "operand to move into branch: " << inst->ToString(); VLOG(2) << "MoveIntoBranches user =" << user->ToString() << "\n"; CHECK(inst->user_count() == 1 || inst->opcode() == HloOpcode::kBroadcast); absl::InlinedVector<HloInstruction*, 4> new_operands; std::vector<std::vector<int64_t>> matching_tuple_indices; TF_RETURN_IF_ERROR( ReplaceInputInUser(inst, user, new_operands, matching_tuple_indices)); TF_RETURN_IF_ERROR( MoveInputIntoBranch(inst, user, new_operands, matching_tuple_indices)); if (inst->user_count() == 0) { TF_RETURN_IF_ERROR(inst->parent()->RemoveInstruction(inst)); } return absl::OkStatus(); } private: HloInstruction* InsertIntoBranch(HloInstruction* inst, HloInstruction* branch_input) { VLOG(2) << "Branch input=" << branch_input->ToString() << "\n"; auto branch_comp = branch_input->parent(); std::vector<HloInstruction*> operands(inst->operand_count()); for (int64_t i = 0; i < inst->operand_count(); ++i) { VLOG(2) << "processing operand =" << i << "\n"; if (branch_input->shape().IsTuple()) { int64_t j = std::find(inst->operands().begin(), inst->operands().end(), inst->operands()[i]) - inst->operands().begin(); VLOG(2) << "operand index = " << j << "\n"; CHECK(j < branch_input->shape().tuple_shapes_size()); if (j < i) { operands[i] = operands[j]; } else { CHECK(op_map_.contains(inst->operands()[i])); int64_t index = op_map_[inst->operands()[i]]; operands[i] = branch_comp->AddInstruction(HloInstruction::CreateGetTupleElement( branch_input->shape().tuple_shapes(index), branch_input, index)); } } else { CHECK(inst->operands()[i] == inst->operands()[0]); operands[i] = branch_input; } } return branch_comp->AddInstruction( inst->CloneWithNewOperands(inst->shape(), operands)); } bool UpdateParamShape( std::vector<std::vector<int64_t>>& matching_tuple_indices, const Shape* param_shape, HloInstruction*& branch_param, HloInstruction*& param_tuple) { bool used = false; for (int64_t matching_index = matching_tuple_indices.size() - 1; matching_index >= 0; --matching_index) { auto* new_tuple = CloneNestedTuples(branch_param); CHECK_NE(new_tuple, nullptr); VLOG(5) << "Cloned new tuple:" << new_tuple->parent()->ToString() << "\n"; std::vector<std::vector<HloInstruction*>> gte_users; gte_users.reserve(branch_param->shape().tuple_shapes_size()); for (int64_t j = 0; j < branch_param->shape().tuple_shapes_size(); ++j) { gte_users.push_back(std::vector<HloInstruction*>()); } for (auto* param_user : branch_param->users()) { if (param_user->opcode() == HloOpcode::kGetTupleElement) { CHECK_LT(param_user->tuple_index(), gte_users.size()); gte_users[param_user->tuple_index()].push_back(param_user); } } used = false; *branch_param->mutable_shape() = *param_shape; const Shape* new_param_shape = nullptr; for (auto param_users : gte_users) { if (param_users.empty()) continue; CHECK_EQ(param_users[0]->opcode(), HloOpcode::kGetTupleElement); auto tuple_index = param_users[0]->tuple_index(); VLOG(1) << "Processing gte users: " << param_users.size() << "\n"; VLOG(1) << "tuple_index: " << tuple_index << "\n"; VLOG(1) << "matching_tuple_indices: " << matching_tuple_indices[matching_index][0] << "\n"; if (matching_tuple_indices[matching_index].end() == std::find(matching_tuple_indices[matching_index].begin(), matching_tuple_indices[matching_index].end(), tuple_index)) { continue; } for (HloInstruction* param_user : param_users) { VLOG(1) << "param_user: " << param_user->ToString() << "\n"; if (new_param_shape == nullptr) { branch_param = param_user; if (matching_index > 0) { param_tuple = branch_param; } CHECK_GT(param_shape->tuple_shapes_size(), tuple_index); new_param_shape = &param_shape->tuple_shapes(tuple_index); param_shape = new_param_shape; VLOG(1) << "new_param_shape: " << param_shape->ToString(); *param_user->mutable_shape() = *new_param_shape; VLOG(1) << "branch parameter: " << param_user->ToString(); used = true; } else { VLOG(1) << "new_param_shape=" << new_param_shape->ToString(); *param_user->mutable_shape() = *new_param_shape; TF_CHECK_OK(param_user->ReplaceAllUsesWith(branch_param)); } } } if (!used) { break; } } return used; } absl::Status ReplaceInputInUser( HloInstruction* input, HloInstruction*& user, absl::InlinedVector<HloInstruction*, 4>& new_operands, std::vector<std::vector<int64_t>>& matching_tuple_indices) { for (int64_t j = 0; j < input->operand_count(); ++j) { VLOG(2) << "Push back input operand index: " << j; auto operand = input->mutable_operand(j); if (std::find(new_operands.begin(), new_operands.end(), operand) == new_operands.end()) { new_operands.push_back(operand); } } if (user->opcode() == HloOpcode::kTuple) { for (HloInstruction *input_now = input, *user_now = user; user_now->opcode() != HloOpcode::kConditional; input_now = user_now, user_now = user_now->users()[0]) { std::vector<int64_t> matching_tuple_index; for (int64_t i = 0; i < user_now->operand_count(); ++i) { if (user_now->operand(i) != input_now) { continue; } matching_tuple_index.push_back(i); } CHECK(!matching_tuple_index.empty()); matching_tuple_indices.push_back(matching_tuple_index); CHECK_EQ(user_now->user_count(), 1); } CHECK(!matching_tuple_indices.empty()); int64_t repl_count = 0; for (auto opd_index : matching_tuple_indices[0]) { HloInstruction* new_input = (repl_count < new_operands.size()) ? new_operands[repl_count++] : input->AddInstruction(HloInstruction::CreateTuple({})); op_map_[new_input] = opd_index; VLOG(2) << "Mapping operand " << repl_count << " = " << new_input->ToString() << " to " << opd_index; TF_RETURN_IF_ERROR( user->ReplaceOperandWithDifferentShape(opd_index, new_input)); *user->mutable_shape()->mutable_tuple_shapes(opd_index) = new_input->shape(); } while (repl_count < new_operands.size()) { HloInstruction* new_input = new_operands[repl_count++]; auto new_input_in_user = std::find(user->operands().begin(), user->operands().end(), new_input); int64_t opd_index = (new_input_in_user == user->operands().end()) ? user->operand_count() : new_input_in_user - user->operands().begin(); op_map_[new_input] = opd_index; CHECK(op_map_.contains(new_input)); VLOG(2) << "Mapping operand " << new_input->ToString() << " to " << opd_index; user->AppendOperand(new_input); user->mutable_shape()->mutable_tuple_shapes()->push_back( new_input->shape()); } int64_t nesting_index = 1; for (auto user_now = user->users()[0]; nesting_index < matching_tuple_indices.size() && user_now->opcode() != HloOpcode::kConditional; user = user_now, user_now = user_now->users()[0], nesting_index++) { VLOG(2) << "Replacing tuple: " << user->ToString(); CHECK(user_now->shape().IsTuple()); for (auto opd_index : matching_tuple_indices[nesting_index]) { *user_now->mutable_shape()->mutable_tuple_shapes(opd_index) = user->shape(); } VLOG(2) << "Done replacing tuple:" << user->ToString(); CHECK_EQ(user_now->user_count(), 1); } VLOG(2) << "User: " << user->ToString() << "\n"; } return absl::OkStatus(); } absl::Status MoveInputIntoBranch( HloInstruction* input, HloInstruction*& user, absl::InlinedVector<HloInstruction*, 4>& new_operands, std::vector<std::vector<int64_t>>& matching_tuple_indices) { HloInstruction* cond = (user->opcode() != HloOpcode::kConditional && user->user_count() == 1) ? user->users()[0] : user; if (user == cond) { auto new_input = input->AddInstruction(HloInstruction::CreateTuple(new_operands)); for (int64_t i = 0; i < new_operands.size(); ++i) { op_map_[new_operands[i]] = i; } user = new_input; TF_RETURN_IF_ERROR(input->ReplaceUseWithDifferentShape(cond, new_input)); } TF_RET_CHECK(cond->opcode() == HloOpcode::kConditional) << "User has non-conditional users"; for (int64_t branch = 0; branch < cond->branch_count(); ++branch) { if (cond->operand(branch + 1) != user) { continue; } VLOG(2) << "Modifying conditional branch: " << branch << "\n"; auto branch_comp = cond->branch_computation(branch); auto branch_param = branch_comp->parameter_instruction(0); auto* param_shape = &user->shape(); VLOG(2) << "param_shape: " << param_shape->ToString() << "\n"; VLOG(2) << "branch parameter: " << branch_param->ToString() << "\n"; HloInstruction* param_tuple = branch_param; if (matching_tuple_indices.empty()) { VLOG(2) << "The original input is passed in as conditional parameter " "directly."; VLOG(5) << branch_comp->ToString() << "\n"; *branch_param->mutable_shape() = *param_shape; if (branch_param == branch_comp->root_instruction()) { VLOG(2) << "Cloning root user"; auto new_user = branch_comp->AddInstruction(HloInstruction::CreateGetTupleElement( branch_param->shape().tuple_shapes(0), branch_param, 0)); VLOG(2) << "new_user: " << new_user->ToString() << "\n"; branch_comp->set_root_instruction(new_user, true); } } else { if (!UpdateParamShape(matching_tuple_indices, param_shape, branch_param, param_tuple)) { VLOG(2) << "instruction is not used in this branch."; continue; } } auto inserted = InsertIntoBranch(input, param_tuple); VLOG(2) << "Inserted operands:" << inserted->ToString() << "\n"; std::vector<HloInstruction*> tuple_users = branch_param->users(); for (auto param_user : tuple_users) { if (param_user == inserted || (param_user->opcode() == HloOpcode::kGetTupleElement && param_user != branch_comp->root_instruction())) { continue; } TF_RETURN_IF_ERROR( branch_param->ReplaceUseWithDifferentShape(param_user, inserted)); if (branch_comp->root_instruction()->opcode() == HloOpcode::kGetTupleElement && !branch_comp->root_instruction()->operand(0)->shape().IsTuple()) { branch_comp->set_root_instruction( branch_comp->root_instruction()->mutable_operands()[0]); } UpdateTupleUsers(inserted); } } return absl::OkStatus(); } void UpdateTupleUsers(HloInstruction* param_user) { for (auto new_user : param_user->users()) { if (new_user->opcode() == HloOpcode::kTuple) { for (int64_t opd_index = 0; opd_index < new_user->operand_count(); ++opd_index) { if (new_user->operands()[opd_index] != param_user) { continue; } *new_user->mutable_shape()->mutable_tuple_shapes(opd_index) = param_user->shape(); UpdateTupleUsers(new_user); VLOG(2) << "Updated tuple user: " << new_user->ToString() << "\n"; } } } } absl::flat_hash_map<const HloInstruction*, int64_t> op_map_; }; absl::StatusOr<bool> ConditionalCodeMotion::MoveOperandInstructionsIn( HloInstruction* conditional, std::vector<Boundary>& to_move_in) { int64_t to_move_in_size = to_move_in.size(); CHECK_GT(to_move_in_size, 0); VLOG(2) << "Before moving operand instructions inside branch: " << conditional->ToString(HloPrintOptions::Fingerprint()) << "\n"; HloInstruction* user = conditional; int64_t user_index = 0; MoveOperandIntoBranch move_into_branch; for (int64_t to_move_index = 0; to_move_index < to_move_in_size; to_move_index++) { Boundary b_to_move = to_move_in[to_move_index]; HloInstruction* op = b_to_move.operands()[0]; CHECK_NE(op, nullptr); if (op->user_count() == 1) { user = op->users()[0]; user_index = user->operand_index(op); } if (op->opcode() == HloOpcode::kTuple) { continue; } VLOG(1) << "Mapping new boundary instr: " << op->ToString() << "\n"; VLOG(1) << "current user = " << user->ToString(); std::vector<std::pair<HloInstruction*, int64_t>> users; for (auto* user_now = user; user_now != conditional; user_now = user_now->users()[0]) { CHECK_EQ(user_now->user_count(), 1); VLOG(1) << "Saving user: " << user_now->ToString() << "\n"; users.push_back(std::make_pair( user_now->users()[0], user_now->users()[0]->operand_index(user_now))); } TF_RETURN_IF_ERROR(move_into_branch(op, user)); for (int64_t i = users.size() - 1; i > 0; --i) { CHECK_NE(users[i].first, nullptr); CHECK_NE(users[i - 1].first, nullptr); users[i - 1].first = users[i].first->mutable_operand(users[i].second); } if (!users.empty()) { user = users.front().first->mutable_operand(users.front().second); VLOG(1) << "Updated user: " << user->ToString() << "\n"; } } VLOG(2) << "Done moving operand instructions inside branch: " << conditional->ToString(HloPrintOptions::Fingerprint()) << "\n"; return true; } class GroupConnectedBoundaries { private: std::vector<Boundary> connected_boundaries_, new_boundaries_; int64_t connected_boundaries_memory_increase_ = 0; HloInstruction* conditional_; HloComputation* conditional_parent_; bool is_layout_sensitive_; absl::flat_hash_map<HloInstruction*, int>& visited_count_; std::vector<std::vector<int64_t>>& move_config_; std::vector<std::vector<int64_t>>& reuse_config_; absl::Span<int64_t> search_config_vec_; int64_t& search_config_; int64_t search_subscript_; absl::flat_hash_map<const int64_t*, int64_t> flipped_; int64_t FlipMutation(int64_t* loc, const int64_t non_zero, const std::string& msg) { if (search_config_ == 0 || ContainsKey(flipped_, loc)) { VLOG(2) << "Configured not to search or loc is already flipped."; return *loc; } int c = ConditionalCodeMotion::flip_start(search_config_); VLOG(2) << "flip start index = " << c << "\n"; if (c > 0) { search_config_--; return *loc; } auto flip_count = ConditionalCodeMotion::DecrementMaxFlip(&search_config_); VLOG(2) << "max flip count = " << flip_count << "\n"; VLOG(2) << "Updating max Flipping configuration = " << search_config_ << "\n"; if (flip_count == 0) { VLOG(2) << "Maximum flip count has reached. "; if (search_subscript_ + 1 < search_config_vec_.size()) { VLOG(2) << "search_subscript_ = " << search_subscript_; VLOG(2) << "search config vec size = " << search_config_vec_.size(); search_config_ = search_config_vec_[++search_subscript_]; } else { return *loc; } } auto flip_stride = ConditionalCodeMotion::flip_stride(search_config_); search_config_ += flip_stride; VLOG(2) << "flip stride = " << flip_stride << "\n"; VLOG(2) << "Updating Flipping Stride = " << search_config_ << "\n"; flipped_[loc] = *loc; switch (*loc) { case 0: *loc = non_zero; break; default: *loc = 0; break; } VLOG(2) << "Flipping decision for: " << msg << ": from " << flipped_[loc] << " to " << *loc << "\n"; return *loc; } static std::vector<int64_t>& EnsureSearchConfig( std::vector<int64_t>& search_config) { if (search_config.empty()) { search_config.push_back(0); } return search_config; } public: explicit GroupConnectedBoundaries( HloInstruction* conditional, bool is_layout_sensitive, absl::flat_hash_map<HloInstruction*, int>& visited_count, std::vector<std::vector<int64_t>>* move_config, std::vector<std::vector<int64_t>>* reuse_config, std::vector<int64_t>& search_config) : conditional_(conditional), conditional_parent_(conditional->parent()), is_layout_sensitive_(is_layout_sensitive), visited_count_(visited_count), move_config_(*move_config), reuse_config_(*reuse_config), search_config_vec_(EnsureSearchConfig(search_config)), search_config_(search_config_vec_.front()), search_subscript_(0) { VLOG(2) << "Initializing Group Connected Boundaries\n"; } int64_t ReusesCarriedBy(HloInstruction* op, HloInstruction* user) { std::vector<int64_t>& curconfig = reuse_config_[static_cast<uint32_t>(op->opcode())]; int64_t config = (search_config_ < 0) ? FlipMutation(&curconfig[static_cast<uint32_t>(user->opcode())], -10, absl::StrCat(HloOpcodeString(op->opcode()), "->", HloOpcodeString(user->opcode()))) : curconfig[static_cast<uint32_t>(user->opcode())]; VLOG(2) << "ConditionalCodeMotion: Add reuses carried by instr: " << op->ToString() << "=>" << user->ToString() << " : " << config << "\n"; if (config < 0) { int count1 = CountNonLeafOps(op->users()); int count2 = CountNonLeafOps(user->operands()); return (-config) / count1 / count2; } return config; } void clear_recently_visited() { for (const auto& boundary : new_boundaries_) { visited_count_.erase(boundary.operands()[0]); } } bool WorthHoisting(HloInstruction* instruction, Boundary::Position pos, int64_t index) { VLOG(1) << "Check Worth hoisting\n"; HloOpcode opcode = instruction->opcode(); if (opcode == HloOpcode::kTuple && instruction == conditional_parent_->root_instruction()) { VLOG(1) << "Do not move conditional parent."; return false; } if (pos == Boundary::Position::kOutsideBranchOperand) { if (opcode == HloOpcode::kTuple && instruction->has_sharding()) { VLOG(1) << "Not moving operand because of sharding annotations."; return false; } if (instruction->user_count() > 1) { VLOG(1) << "Not moving operand b/c it has >1 users."; return false; } if (instruction->HasSideEffect()) { VLOG(1) << "Not moving operand b/c it has side effects."; return false; } if (opcode == HloOpcode::kGetTupleElement) { VLOG(1) << "Do not move GetTupleElement."; return false; } } if (DynCast<HloChannelInstruction>(instruction) && pos != Boundary::Position::kInsideBranch) { VLOG(1) << "It is not safe to move collectives inside branches."; return false; } if (opcode == HloOpcode::kParameter) { return false; } if (opcode == HloOpcode::kGetTupleElement && pos == Boundary::Position::kOutsideBranchOperand) { return false; } std::vector<int64_t>& curconfig = move_config_[static_cast<uint32_t>(opcode)]; auto col = (curconfig.size() == 1) ? 0 : (instruction->operand_count() > 0) ? static_cast<uint32_t>(instruction->operand(0)->opcode()) : 0; VLOG(2) << "column = " << col << "\n"; VLOG(2) << "config size = " << curconfig.size() << "\n"; VLOG(2) << "search_config = " << search_config_ << "\n"; CHECK(col < curconfig.size()); uint32_t config = (search_config_ > 0) ? FlipMutation(&curconfig[col], 1, absl::StrCat("Move-", HloOpcodeString(opcode))) : curconfig[col]; VLOG(2) << "Checking instruction is worth moving: " << config << "\n"; VLOG(2) << "after checking search_config = " << search_config_ << "\n"; return (config != 0); } int64_t ReusesBeforeBoundary(HloInstruction* user) { int64_t reuses = 0; for (auto op : user->operands()) { if (!ContainsKey(visited_count_, op) && op != conditional_) { continue; } if (auto tuple_gte = DynCast<HloGetTupleElementInstruction>(user)) { if (op->opcode() == HloOpcode::kConditional) { auto tuple = op->branch_computation(0)->root_instruction(); if (tuple->opcode() == HloOpcode::kTuple) { auto index = tuple_gte->tuple_index(); CHECK(index < tuple->operand_count()); op = tuple->mutable_operand(index); } } reuses += ReusesCarriedBy(op, user->users()[0]); } else { reuses += ReusesCarriedBy(op, user); } } VLOG(2) << "Reuses before instruction " << user->ToString() << ":" << reuses << "\n"; return reuses; } int64_t ReusesAfterBoundary(HloInstruction* user, int64_t tuple_idx = -1) { CHECK(user != nullptr); if (user->opcode() == HloOpcode::kConstant) { return 0; } auto all_users = user->users(); if (tuple_idx < 0 && all_users.size() > 1) { VLOG(2) << "Having multiple users from: " << user->ToString() << "\n"; return 0; } if (!all_users.empty()) { auto op = all_users[0]; int64_t reuses = 0; if (tuple_idx >= 0) { VLOG(2) << "Reuse for conditional operands with tuple index = " << tuple_idx << "\n"; VLOG(2) << "user op = " << op->ToString(); if (op->opcode() == HloOpcode::kConditional) { int64_t reuse_count = 0; for (int64_t i = 0; i < conditional_->branch_count(); ++i) { VLOG(5) << "Counting use in branch " << i << "\n"; if (conditional_->operand(i + 1) != user) { continue; } CHECK_EQ(conditional_->branch_computation(i) ->parameter_instructions() .size(), 1); auto param_i = conditional_->branch_computation(i)->parameter_instruction(0); if (param_i == conditional_->branch_computation(i)->root_instruction()) { VLOG(5) << "parameter is root.\n"; reuse_count++; continue; } if (!param_i->shape().IsTuple() && param_i->user_count() > 0) { VLOG(5) << "parameter is not tuple and is used. \n"; reuse_count++; continue; } for (auto* param_i_user : param_i->users()) { if (param_i_user->opcode() == HloOpcode::kGetTupleElement && param_i_user->tuple_index() == tuple_idx) { reuse_count++; VLOG(5) << "Found user" << param_i_user->ToString() << "\n"; break; } } } VLOG(2) << "Reuse count for conditional:" << reuse_count << "\n"; if (reuse_count < conditional_->branch_count()) { reuses += 10; } } else if (op->opcode() == HloOpcode::kTuple) { VLOG(2) << "new tuple index = " << op->operand_index(user); return ReusesAfterBoundary(op, op->operand_index(user)); } else { return ReusesAfterBoundary(op, tuple_idx); } } else if (op == conditional_->branch_computation(0)->root_instruction()) { int64_t index = op->operand_index(user); for (auto op2 : conditional_->users()) { if (op2->opcode() == HloOpcode::kGetTupleElement) { auto tuple_opd = static_cast<HloGetTupleElementInstruction*>(op2); if (index == tuple_opd->tuple_index()) { all_users = op2->users(); if (!all_users.empty()) { reuses += ReusesCarriedBy(user, all_users[0]); break; } } } } } else if (ContainsKey(visited_count_, op)) { reuses += ReusesCarriedBy(user, op); } VLOG(2) << "reuses after instruction " << user->ToString() << ":" << reuses << "\n"; return reuses; } return 0; } int64_t BenefitForMovingBoundaries(const std::vector<Boundary>& boundaries, bool perform_reuse_analysis = true) { int64_t reuses_before = 0, reuses_after = 0; if ((boundaries[0].IsInsideBranch() || boundaries[0].IsOutsideBranchOperand()) && absl::c_count_if(boundaries, [](const Boundary& b) { return b.operands()[0]->opcode() != HloOpcode::kTuple; }) == 0) { return -1; } if (boundaries.size() == 1) { if (boundaries[0].IsOutsideBranchUser() && boundaries[0].operands()[0]->opcode() == HloOpcode::kGetTupleElement) { return -1; } } if (!perform_reuse_analysis) { return 1; } auto get_copy_folding_benefit = [&](HloInstruction* hlo) -> int64_t { if (hlo->opcode() != HloOpcode::kCopy) { return 0; } const HloGetTupleElementInstruction* gte = DynCast<HloGetTupleElementInstruction>(hlo->operand(0)); if (gte == nullptr) { return 0; } const HloInstruction* conditional = gte->operand(0); if (conditional != conditional_) { return 0; } int64_t benefit = 0; for (auto* branch : conditional->called_computations()) { HloInstruction* root = branch->root_instruction(); if (root->opcode() == HloOpcode::kTuple) { const auto* tuple_operand = root->operand(gte->tuple_index()); if (tuple_operand->opcode() == HloOpcode::kCopy) { if (Shape::Equal()(tuple_operand->operand(0)->shape(), hlo->shape())) { benefit += 10; } } } } return benefit; }; for (const Boundary& b : boundaries) { auto op = b.operands()[0]; if (op == conditional_->branch_computation(0)->root_instruction()) { continue; } VLOG(2) << "Benefit for " << op->ToString(); reuses_before += ReusesBeforeBoundary(op); VLOG(2) << "Reuses before boundary so far: " << reuses_before << "\n"; reuses_after += ReusesAfterBoundary( op, boundaries[0].IsOutsideBranchOperand() ? 0 : -1); VLOG(2) << "Reuese after boundary so far : " << reuses_after << "\n"; } int64_t copy_folding_benefit = 0; if (boundaries[0].IsOutsideBranchUser()) { for (const Boundary& b : boundaries) { auto op = b.operands()[0]; copy_folding_benefit += get_copy_folding_benefit(op); } } VLOG(2) << "Copy folding benefit: " << copy_folding_benefit; if (reuses_after == 0 && reuses_before == 0 && copy_folding_benefit == 0) { return -1; } else if (boundaries[0].IsInsideBranch()) { return reuses_after - reuses_before; } else if (boundaries[0].IsOutsideBranchUser()) { return reuses_before - reuses_after - 1 + copy_folding_benefit; } else { CHECK(boundaries[0].IsOutsideBranchOperand()); return reuses_after > 0; } } Boundary GetNextBoundary(const Boundary& b, int64_t op_index) { Boundary b2(b.GetPosition()); for (int j = 0; j < b.operands().size(); ++j) { HloInstruction* inst = b.operands()[j]; CHECK(inst != nullptr); HloInstruction* op = (b.IsInsideBranch() || b.IsOutsideBranchOperand()) ? inst->operands()[op_index] : inst->users()[op_index]; CHECK(op != nullptr); b2.mutable_operands().push_back(op); } return b2; } bool IsSafeToMoveBoundary(const Boundary& next_boundary) { VLOG(1) << "Check is safe to move boundary.\n"; int64_t next_boundary_count = (next_boundary.IsInsideBranch() || next_boundary.IsOutsideBranchOperand()) ? next_boundary.operands()[0]->user_count() : CountNonLeafOps(next_boundary.operands()[0]->operands()); if (next_boundary_count <= 1) { if (next_boundary.IsOutsideBranchOperand() && next_boundary.operands()[0]->users()[0] == conditional_ && next_boundary.operands()[0] == conditional_->operand(0)) { return false; } return true; } else { if (!ContainsKey(visited_count_, next_boundary.operands()[0])) { VLOG(1) << "Skip next boundary " << next_boundary.ToString() << "\n" << " because it has multiple dependents: " << next_boundary_count << "\n"; visited_count_[next_boundary.operands()[0]] = 1; new_boundaries_.push_back(next_boundary); } else { auto pos = std::find(new_boundaries_.begin(), new_boundaries_.end(), next_boundary); if (pos != new_boundaries_.end() || next_boundary.operands().size() == 1) { int count = ++visited_count_[next_boundary.operands()[0]]; if (count == next_boundary_count) { VLOG(2) << "Recovering next boundary " << next_boundary.ToString() << "\n" << " because all of its dependents have been visited: " << next_boundary_count << "\n"; visited_count_.erase(next_boundary.operands()[0]); if (pos != new_boundaries_.end()) { new_boundaries_.erase(pos); } return true; } } else { VLOG(1) << "Skip incompatible multi-dependent boundary: " << next_boundary.ToString() << ":" << next_boundary_count << "\n"; } } } return false; } void AddBoundaries(const Boundary& boundary) { auto calc_memory_size = [](const HloInstruction* hlo) -> int64_t { if (hlo->shape().IsTuple()) { return 0; } return ShapeUtil::ByteSizeOf(hlo->shape(), 1) >> 9; }; BoundaryVisitor visitor; visitor.AddToWorkList(boundary); int64_t boundary_index = 0; while (visitor.HasNextBoundary()) { Boundary b = visitor.PopNextBoundary(); VLOG(1) << "visiting boundary " << b.ToString() << "\n"; VLOG(1) << "boundary index=" << boundary_index << "\n"; if ((b.IsOutsideBranchUser() || b.IsOutsideBranchOperand() || InstructionWithinBranchIdentical(b.operands(), is_layout_sensitive_)) && IsSafeToMoveBoundary(b) && WorthHoisting(b.operands()[0], b.GetPosition(), boundary_index)) { connected_boundaries_.push_back(b); boundary_index++; auto output_size = calc_memory_size(b.operands()[0]); connected_boundaries_memory_increase_ -= output_size; VLOG(1) << "memory incr = " << connected_boundaries_memory_increase_ << " after subtracting output size.\n"; VLOG(1) << "boundary can be moved."; int64_t operand_count = (b.IsInsideBranch() || b.IsOutsideBranchOperand()) ? b.operands()[0]->operand_count() : b.operands()[0]->users().size(); for (int i = 0; i < operand_count; i++) { Boundary next_boundary = GetNextBoundary(b, i); VLOG(1) << "Add operand/user " << i << " to visit later\n"; visitor.AddToWorkList(next_boundary); connected_boundaries_memory_increase_ += calc_memory_size(next_boundary.operands()[0]); VLOG(1) << "memory incr = " << connected_boundaries_memory_increase_ << " after adding shape size of operand " << i << "\n"; } } else if (b.IsOutsideBranchOperand() && b.operands()[0]->opcode() == HloOpcode::kBroadcast && connected_boundaries_.size() > 1 && absl::c_find( b.operands()[0]->users(), connected_boundaries_[connected_boundaries_.size() - 1] .operands()[0]) != b.operands()[0]->users().end() && connected_boundaries_[connected_boundaries_.size() - 1] .operands()[0] ->opcode() != HloOpcode::kTuple) { VLOG(1) << "Replicating multi-use broadcasts:" << b.ToString() << "\n"; connected_boundaries_.push_back(b); auto output_size = calc_memory_size(b.operands()[0]) - calc_memory_size(b.operands()[0]->operand(0)); connected_boundaries_memory_increase_ -= output_size; VLOG(1) << "memory incr = " << connected_boundaries_memory_increase_; VLOG(1) << "boundary can be moved."; } else { VLOG(1) << "boundary cannot be moved\n"; visited_count_[b.operands()[0]] = 1; new_boundaries_.push_back(b); } } } std::pair<std::vector<Boundary>, int64_t> BoundariesToMoveInOrOut( HloInstruction* conditional, const Boundary& b) { HloInstruction* inst = b.operands()[0]; if (inst == conditional) { int branch_count = inst->branch_count(); Boundary boundary_in(Boundary::Position::kInsideBranch); for (int i = 0; i < branch_count; i++) { HloComputation* branch_computation = inst->branch_computation(i); HloInstruction* root_inst = branch_computation->root_instruction(); CHECK(root_inst != nullptr); boundary_in.mutable_operands().push_back(root_inst); } new_boundaries_.push_back(boundary_in); for (auto u : inst->users()) { Boundary boundary_in(Boundary::Position::kOutsideBranchUser); boundary_in.mutable_operands().push_back(u); new_boundaries_.push_back(boundary_in); } for (int64_t opd_idx = 1; opd_idx < inst->operand_count(); opd_idx++) { HloInstruction* u = inst->mutable_operand(opd_idx); Boundary boundary_in(Boundary::Position::kOutsideBranchOperand); boundary_in.mutable_operands().push_back(u); new_boundaries_.push_back(boundary_in); } } else { AddBoundaries(b); } return std::pair<std::vector<Boundary>, int64_t>( connected_boundaries_, connected_boundaries_memory_increase_); } void AddNewBoundaries(std::vector<Boundary>& b) { b.insert(b.end(), new_boundaries_.begin(), new_boundaries_.end()); } }; ConditionalCodeMotion::Decision ConditionalCodeMotion::ConsiderCodeMotion( HloInstruction* conditional, const Boundary& cur_boundary, std::vector<Boundary>& to_move, std::vector<Boundary>& new_boundaries, absl::flat_hash_map<HloInstruction*, int>& visited_count) { GroupConnectedBoundaries connect(conditional, is_layout_sensitive_, visited_count, &move_config_, &reuse_config_, search_config_); auto move_in_or_out = connect.BoundariesToMoveInOrOut(conditional, cur_boundary); if (!move_in_or_out.first.empty()) { auto benefit = connect.BenefitForMovingBoundaries( move_in_or_out.first, search_config_map_.empty()); VLOG(2) << "benefit of moving in or out " << cur_boundary.operands()[0]->ToString() << ":" << benefit << "\n"; if (benefit >= 0) { if (move_in_or_out.second > 0 && move_in_or_out.second / move_in_or_out.first.size() > memory_increase_allowance_) { VLOG(1) << "Stop moving operands because of memory pressure: " << move_in_or_out.second << " / " << move_in_or_out.first.size() << " > " << memory_increase_allowance_ << "\n"; benefit = -1; } else { VLOG(1) << "Increase memory pressure by " << move_in_or_out.second << "\n"; memory_increase_ += move_in_or_out.second; } } if (benefit >= 0) { new_boundaries.clear(); connect.AddNewBoundaries(new_boundaries); to_move = move_in_or_out.first; return Decision(to_move[0].IsInsideBranch() ? Decision::Direction::kMoveOutOfBranch : Decision::Direction::kMoveIntoBranch, benefit); } else { connect.clear_recently_visited(); } } else { connect.AddNewBoundaries(new_boundaries); } return Decision(Decision::Direction::kNoChange, 0); } absl::StatusOr<bool> ConditionalCodeMotion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Begin a new pass of conditional code motion optimization.\n"; if (!ConsumeFuel("conditional_code_motion", [&] { return "Skipping conditional opt after allowed limit reaching 0.\n"; })) { return false; } bool changed = false; bool cleanup_changed = false; { HloPassPipeline subpipeline("before_conditional_code_motion"); subpipeline.AddPass<HloCSE>(is_layout_sensitive_); subpipeline.AddPass<HloDCE>(); TF_ASSIGN_OR_RETURN(auto cleanup_changed_now, subpipeline.Run(module, execution_threads)); cleanup_changed |= cleanup_changed_now; } std::vector<HloInstruction*> conditional_ops; absl::flat_hash_map<HloComputation*, int> conditional_computations; for (auto* comp : module->MakeComputationPostOrder(execution_threads)) { for (auto* instr : comp->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kConditional) { int branch_count = instr->branch_count(); for (int i = 0; i < branch_count; ++i) { HloComputation* branch_i = instr->branch_computation(i); if (ContainsKey(conditional_computations, branch_i)) { conditional_computations[branch_i]++; } else { conditional_computations[branch_i] = 0; } } if (instr->shape().IsTuple()) { bool can_change_tuple_shape = true; for (auto user : instr->users()) { VLOG(2) << "user is : " << user->ToString() << "\n"; if (user->opcode() != HloOpcode::kGetTupleElement) { can_change_tuple_shape = false; } } if (can_change_tuple_shape) { conditional_ops.push_back(instr); } } else { conditional_ops.push_back(instr); } } } } int64_t conditional_index = 0; HloCloneContext clone_context(module); for (HloInstruction* conditional : conditional_ops) { if (conditional_index == 0 || !search_config_map_.empty()) { auto config_entry = search_config_map_.find(conditional_index); if (config_entry != search_config_map_.end()) { search_config_ = (*config_entry).second; VLOG(2) << "config entry value extracted:" << search_config_.size(); search_config_index_ = 0; } VLOG(2) << "Obtaining default configuration for conditional " << conditional_index << "\n"; SetDefaultMoveConfig(); VLOG(2) << "Done obtaining default configuration\n"; conditional_index++; } int branch_count = conditional->branch_count(); bool conditional_is_shared = false; for (int i = 0; i < branch_count; ++i) { HloComputation* branch_i = conditional->branch_computation(i); if (conditional_computations[branch_i] > 0) { conditional_is_shared = true; break; } } std::vector<std::vector<Boundary>> to_move_out, to_move_in; std::vector<std::vector<Boundary>> new_boundaries_for_moveout; std::vector<std::vector<Boundary>> new_boundaries_for_movein; absl::flat_hash_map<HloInstruction*, int> visited_count; int benefit_move_out = 0, benefit_move_in = 0; Decision::Direction final_d = Decision::Direction::kNoChange; BoundaryVisitor visitor(conditional); VLOG(2) << "Analyzing conditional:" << conditional->ToString() << "\n"; while (visitor.HasNextBoundary()) { std::vector<Boundary> to_move, next_boundary; Boundary boundary = visitor.PopNextBoundary(); VLOG(2) << "Analyzing boundary:" << boundary.ToString() << "\n"; auto d = ConsiderCodeMotion(conditional, boundary, to_move, next_boundary, visited_count); switch (d.GetDirection()) { case Decision::Direction::kMoveOutOfBranch: VLOG(2) << "Local Decision is move out of branch\n"; to_move_out.push_back(to_move); new_boundaries_for_moveout.push_back(next_boundary); benefit_move_out += d.GetBenefit(); if (benefit_move_out >= benefit_move_in) { final_d = Decision::Direction::kMoveOutOfBranch; VLOG(2) << "Current Decision is move out of branch (" << to_move_out.size() << ")\n"; } else { VLOG(2) << "Current Decision remains move into branch\n"; } break; case Decision::Direction::kMoveIntoBranch: VLOG(2) << "Decision is move into branch\n"; to_move_in.push_back(to_move); new_boundaries_for_movein.push_back(next_boundary); benefit_move_in += d.GetBenefit(); if (benefit_move_out >= benefit_move_in) { VLOG(2) << "Current Decision remains move out of branch\n"; } else { final_d = Decision::Direction::kMoveIntoBranch; VLOG(2) << "Current Decision is move into branch (" << to_move_in.size() << ")\n"; } break; case Decision::Direction::kNoChange: VLOG(2) << "Decision is no change\n"; for (const Boundary& b : next_boundary) { visitor.AddToWorkList(b); VLOG(2) << "Adding new boundary to worklist:" << b.ToString() << "\n"; } break; } } if (final_d != Decision::Direction::kNoChange && conditional_is_shared) { for (int i = 0; i < branch_count; ++i) { HloComputation* branch_i = conditional->branch_computation(i); if (conditional_computations[branch_i] > 0) { HloComputation* clone_i = conditional->GetModule()->AddEmbeddedComputation( branch_i->Clone("clone", &clone_context)); conditional->set_branch_computation(i, clone_i); conditional_computations[branch_i]--; auto update_boundary = [&](Boundary& boundary) { auto cloned_instr = clone_context.FindInstruction(boundary.operands()[i]); CHECK(cloned_instr != nullptr); VLOG(2) << "boundary before cloning:" << boundary.operands()[i] << "\n"; boundary.mutable_operands()[i] = cloned_instr; VLOG(2) << "boundary after cloning:" << boundary.operands()[i] << "\n"; }; if (final_d == Decision::Direction::kMoveOutOfBranch) { for (int i = 0; i < to_move_out.size(); ++i) { std::vector<Boundary>& m = to_move_out[i]; std::for_each(m.begin(), m.end(), update_boundary); } for (int i = 0; i < new_boundaries_for_moveout.size(); ++i) { std::vector<Boundary>& m = new_boundaries_for_moveout[i]; std::for_each(m.begin(), m.end(), update_boundary); } } } } VLOG(2) << "Cloned branches as needed: " << conditional->ToString() << "\n"; } if (final_d == Decision::Direction::kMoveOutOfBranch) { CHECK(to_move_out.size() == new_boundaries_for_moveout.size()); for (int i = 0; i < to_move_out.size(); ++i) { TF_ASSIGN_OR_RETURN(bool result, MoveInstructionOut(conditional, to_move_out[i], new_boundaries_for_moveout[i])); changed |= result; } VLOG(2) << "Done moving out of branches " << to_move_out.size() << " times. \n"; if (!ConsumeFuel("conditional_code_motion", [&] { return "Skipping conditional opt after allowed limit reaching " "0.\n"; })) { break; } } else if (final_d == Decision::Direction::kMoveIntoBranch) { CHECK(to_move_in.size() == new_boundaries_for_movein.size()); for (int i = 0; i < to_move_in.size(); ++i) { if (to_move_in[i].empty()) { continue; } VLOG(2) << "before opt:" << conditional->parent()->ToString( HloPrintOptions::Fingerprint()); if (to_move_in[i][0].IsOutsideBranchOperand()) { VLOG(1) << "Modifying code---number of operand boundaries to move in:" << to_move_in[i].size() << "\n"; TF_ASSIGN_OR_RETURN(bool result, MoveOperandInstructionsIn( conditional, to_move_in[i])); changed |= result; } else { VLOG(1) << "Modifying code---number of user boundaries to move in:" << to_move_in[i].size() << "\n"; CHECK(to_move_in[i][0].IsOutsideBranchUser()); TF_ASSIGN_OR_RETURN( bool result, MoveUserInstructionsIn(conditional, to_move_in[i])); changed |= result; } VLOG(2) << "Before removing instructions:" << conditional->parent()->ToString() << "\n"; for (int64_t j = to_move_in[i].size() - 1; j >= 0; j--) { Boundary boundary_to_move_in = to_move_in[i][j]; HloInstruction* op = boundary_to_move_in.operands()[0]; if (op->user_count() == 0 && op->parent() != nullptr) { VLOG(2) << "Removing boundary:" << boundary_to_move_in.ToString() << "\n"; TF_RETURN_IF_ERROR(conditional->parent()->RemoveInstruction(op)); VLOG(2) << "Done removing boundary.\n"; } } VLOG(2) << "Done moving instructions inside branches\n" << conditional->parent()->ToString( HloPrintOptions::Fingerprint()) << "\n"; VLOG(2) << "Done moving into branches " << to_move_in.size() << " times. \n"; if (!ConsumeFuel("conditional_code_motion", [&] { return "Skipping conditional opt after allowed limit reaching " "0.\n"; })) { break; } } } else if (pursue_full_conditional_code_motion_ && !conditional_is_shared) { TF_ASSIGN_OR_RETURN( bool convert_result, ConvertSpecialMove(conditional, is_layout_sensitive_)); if (convert_result) { VLOG(2) << "Done special moving of convert\n"; if (!ConsumeFuel("conditional_code_motion", [&] { return "Skipping conditional opt after allowed limit reaching " "0.\n"; })) { break; } } changed |= convert_result; } } if (changed) { HloPassPipeline subpipeline( "after_conditional_code_motion_after_convert_hoisting"); VLOG(2) << "starting after motion passes: DCE\n"; subpipeline.AddPass<HloDCE>(); subpipeline.AddPass<TupleSimplifier>(); subpipeline.AddPass<HloDCE>(); TF_ASSIGN_OR_RETURN(auto cleanup_changed_now, subpipeline.Run(module)); cleanup_changed |= cleanup_changed_now; } if (cleanup_changed) { VLOG(2) << "subpipeline cleanup have modified code\n"; } return changed; } void ConditionalCodeMotion::SetDefaultMoveConfig() { VLOG(2) << "search_config_index = " << search_config_index_ << "\n"; VLOG(2) << "search_config_ size = " << search_config_.size() << "\n"; int64_t cur_search_config = (search_config_index_ < 0 || search_config_index_ >= search_config_.size()) ? 0 : search_config_[search_config_index_]; enum class TuningOption { kDoNotTune = 0, kTuneTransformationDecision = 1, kTuneReuseModel = 2, }; TuningOption tuning_option = (cur_search_config == 0) ? TuningOption::kDoNotTune : (cur_search_config > 0) ? TuningOption::kTuneTransformationDecision : TuningOption::kTuneReuseModel; auto row = HloOpcodeCount(); auto col = row; VLOG(2) << "Start setting default configuration\n"; reuse_config_.clear(); move_config_.clear(); reuse_config_.reserve(row); move_config_.reserve(row); for (int64_t opcode = 0; opcode < row; ++opcode) { std::vector<int64_t> reuse_vec(col, 0); for (uint32_t j = 0; j < col; ++j) { reuse_vec[j] = ReusesCarriedBy(static_cast<HloOpcode>(opcode), static_cast<HloOpcode>(j)); } reuse_config_.push_back(reuse_vec); std::vector<int64_t> move_vec; switch (tuning_option) { case TuningOption::kTuneTransformationDecision: move_vec.push_back(1); break; case TuningOption::kTuneReuseModel: case TuningOption::kDoNotTune: move_vec.reserve(col); for (uint32_t j = 0; j < col; ++j) { move_vec.push_back(WorthHoisting(static_cast<HloOpcode>(opcode), static_cast<HloOpcode>(j))); } break; } move_config_.push_back(move_vec); } } void ConditionalCodeMotion::ParseSearchConfiguration( const std::string& search_config) { if (search_config.empty()) { return; } search_config_index_ = 0; std::vector<std::string> configs = absl::StrSplit(search_config, ';'); for (const std::string& config : configs) { std::vector<std::string> specs = absl::StrSplit(config, ','); CHECK_EQ(specs.size(), 4); int64_t condition_index; CHECK(absl::SimpleAtoi(specs[0], &condition_index)); auto& cur_config_entry = search_config_map_[condition_index]; int64_t flip_start, max_flip, flip_stride; CHECK(absl::SimpleAtoi(specs[1], &flip_start)); CHECK(absl::SimpleAtoi(specs[2], &max_flip)); CHECK(absl::SimpleAtoi(specs[3], &flip_stride)); int64_t cur_config = MakeSearchConfig(flip_start, max_flip, flip_stride); cur_config_entry.push_back(cur_config); VLOG(2) << "Setting search config " << condition_index << "->" << cur_config << "\n"; } } } }
#include "xla/service/conditional_code_motion.h" #include <optional> #include <sstream> #include <string> #include <utility> #include <gmock/gmock.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace xla { namespace conditional_opt { using ConditionalCodeMotionTest = HloTestBase; namespace op = xla::testing::opcode_matchers; TEST_F(ConditionalCodeMotionTest, MoveSubsetTupleOut) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}, f32[2,512,364]{2,1,0}) tuple(%convert.2894, %reshape.8493) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %add = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.9717, f32[2,512,364]{2,1,0} %reshape.9717) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}, f32[2,512,364]{2,1,0}) tuple(%convert.3604, %add) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) conditional = (bf16[2,512,364]{2,1,0}, f32[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 get-first-index.2 = f32[2,512,364]{2,1,0} get-tuple-element(conditional), index=1 ROOT result = (bf16[2,512,364]{2,1,0}, f32[2,512,364]{2,1,0}) tuple(get-first-index, get-first-index.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::Convert(), op::GetTupleElement()))); } TEST_F(ConditionalCodeMotionTest, VerifyConditionalAnalysisWithWhileTuple) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut body { %p_body = (f32[2], bf16[2], s32[]) parameter(0) %val = f32[2] get-tuple-element(p_body), index=0 %val2 = bf16[2] get-tuple-element(p_body), index=1 %const = s32[] constant(-1) ROOT root = (f32[2], bf16[2], s32[]) tuple(%val, %val2, %const) } condition { %p_cond = (f32[2], bf16[2], s32[]) parameter(0) %gte = s32[] get-tuple-element(%p_cond), index=2 %const = s32[] constant(42) ROOT result = pred[] compare(%gte, %const), direction=EQ } on_true { %arg_tuple.1 = f32[2] parameter(0) %const = s32[] constant(42) %add.8493 = f32[2] add(f32[2] %arg_tuple.1, f32[2] %arg_tuple.1) %convert.2894 = bf16[2] convert(f32[2] %add.8493) ROOT %tuple.1 = (f32[2], bf16[2], s32[]) tuple(%add.8493, %convert.2894, %const) } on_false { %arg_tuple.1 = f32[2] parameter(0) %const = s32[] constant(42) %add.8493 = f32[2] add(f32[2] %arg_tuple.1, f32[2] %arg_tuple.1) %convert.2894 = bf16[2] convert(f32[2] %add.8493) %while_init = (f32[2], bf16[2], s32[]) tuple(%add.8493, %convert.2894, %const) ROOT while = (f32[2], bf16[2], s32[]) while(%while_init), condition=condition, body=body } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = f32[2] parameter(1) ROOT conditional = (f32[2], bf16[2], s32[]) conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, MoveConvertOutConditionalRoot) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.8493, f32[2,512,364]{2,1,0} %reshape.8493) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %add.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.9717, f32[2,512,364]{2,1,0} %reshape.9717) %sub.8493 = f32[2,512,364]{2,1,0} subtract(f32[2,512,364]{2,1,0} %add.8493, f32[2,512,364]{2,1,0} %reshape.9717) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) ROOT conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::Convert()))); } TEST_F(ConditionalCodeMotionTest, MoveConvertOutConditional) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.8493, f32[2,512,364]{2,1,0} %reshape.8493) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %add.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.9717, f32[2,512,364]{2,1,0} %reshape.9717) %sub.8493 = f32[2,512,364]{2,1,0} subtract(f32[2,512,364]{2,1,0} %add.8493, f32[2,512,364]{2,1,0} %reshape.9717) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 ROOT result = (bf16[2,512,364]{2,1,0}) tuple(get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::Convert()))); } TEST_F(ConditionalCodeMotionTest, ConditionalShapeNotMutable) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.8493, f32[2,512,364]{2,1,0} %reshape.8493) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %add.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.9717, f32[2,512,364]{2,1,0} %reshape.9717) %sub.8493 = f32[2,512,364]{2,1,0} subtract(f32[2,512,364]{2,1,0} %add.8493, f32[2,512,364]{2,1,0} %reshape.9717) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 ROOT result = (bf16[2,512,364]{2,1,0}, (bf16[2,512,364]{2,1,0})) tuple(get-first-index, conditional) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, MoveConvertOut) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 add.1 = bf16[2,512,364]{2,1,0} add(bf16[2,512,364]{2,1,0} get-first-index, bf16[2,512,364]{2,1,0} get-first-index) ROOT result = (bf16[2,512,364]{2,1,0}) tuple(add.1) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); CHECK_NE(conditional, nullptr); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 1); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 1); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Tuple(op::Add( op::Convert(op::Reshape(op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape(op::GetTupleElement(op::Conditional()))))))); } TEST_F(ConditionalCodeMotionTest, UserShareOperandCannotBeMoved) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[]) parameter(0) get-tuple-element.1 = f32[] get-tuple-element(arg_tuple.1), index=0 constant.1 = f32[] constant(1) constant.2 = f32[] constant(2) constant.3 = f32[] constant(3) constant.4 = f32[] constant(4) constant.5 = f32[] constant(5) add.1 = f32[] add(get-tuple-element.1, constant.1) add.2 = f32[] add(add.1, constant.2) add.3 = f32[] add(add.1, constant.3) add.4 = f32[] add(add.3, constant.5) multiply.1 = f32[] multiply(add.4, constant.4) ROOT tuple.6 = (f32[], f32[]) tuple(multiply.1, add.4) } on_false { arg_tuple.2 = (f32[]) parameter(0) get-tuple-element.2 = f32[] get-tuple-element(arg_tuple.2), index=0 constant.6 = f32[] constant(1) constant.7 = f32[] constant(2) constant.8 = f32[] constant(3) constant.9 = f32[] constant(4) constant.10 = f32[] constant(5) add.4 = f32[] add(get-tuple-element.2, constant.6) sub.1 = f32[] subtract(add.4, constant.7) add.5 = f32[] add(add.4, constant.8) add.6 = f32[] add(add.5, constant.10) multiply.2 = f32[] multiply(sub.1, constant.9) ROOT tuple.6 = (f32[], f32[]) tuple(multiply.2, add.6) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[]) parameter(1) tuple.2 = (f32[]) parameter(2) conditional = (f32[], f32[]) conditional(pred.1, tuple.1, tuple.2), true_computation=on_true, false_computation=on_false get-first-index = f32[] get-tuple-element(conditional), index=0 get-second-index = f32[] get-tuple-element(conditional), index=1 ROOT result = f32[] add(get-first-index, get-second-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 9); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 11); std::optional<int> on_false_sub_idx; std::optional<int> on_false_add_idx; for (int i = 0; i < on_false->root_instruction()->operand_count(); ++i) { const HloInstruction* root_operand = on_false->root_instruction()->operand(i); if (root_operand->opcode() == HloOpcode::kAdd) { on_false_add_idx = i; } else if (root_operand->opcode() == HloOpcode::kSubtract) { on_false_sub_idx = i; } } ASSERT_TRUE(on_false_add_idx.has_value()); ASSERT_TRUE(on_false_sub_idx.has_value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Add( op::Multiply( op::GetTupleElement(op::Conditional(), *on_false_sub_idx), op::Constant()), op::GetTupleElement(op::Conditional(), *on_false_add_idx)))); } TEST_F(ConditionalCodeMotionTest, ConditionalBoundaryAliasingBug) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[], f32[]) parameter(0) get-tuple-element.1 = f32[] get-tuple-element(arg_tuple.1), index=0 get-tuple-element.2 = f32[] get-tuple-element(arg_tuple.1), index=1 cos = f32[] cosine(get-tuple-element.2) multiply.1 = f32[] multiply(get-tuple-element.1, cos) ROOT res.1 = (f32[], f32[]) tuple(multiply.1, cos) } on_false { arg_tuple.1 = (f32[], f32[]) parameter(0) get-tuple-element.3 = f32[] get-tuple-element(arg_tuple.1), index=0 constant.6 = f32[] constant(3) multiply.2 = f32[] multiply(get-tuple-element.3, constant.6) constant.2 = f32[] constant(0) ROOT res.2 = (f32[], f32[]) tuple(multiply.2, constant.2) } ENTRY main { pred.1 = pred[] parameter(0) param.2 = f32[] parameter(1) param.3 = f32[] parameter(2) tuple = (f32[], f32[]) tuple(param.2, param.3) conditional = (f32[], f32[]) conditional(pred.1, tuple, tuple), true_computation=on_true, false_computation=on_false get-tuple-element.3 = f32[] get-tuple-element(conditional), index=0 get-tuple-element.4 = f32[] get-tuple-element(conditional), index=1 ROOT result = f32[] add(get-tuple-element.3, get-tuple-element.4) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_false = conditional->branch_computation(1); std::optional<int> on_false_gte_idx; std::optional<int> on_false_const_idx; for (int i = 0; i < on_false->root_instruction()->operand_count(); ++i) { const HloInstruction* root_operand = on_false->root_instruction()->operand(i); if (root_operand->opcode() == HloOpcode::kGetTupleElement) { on_false_gte_idx = i; } else if (root_operand->opcode() == HloOpcode::kConstant) { on_false_const_idx = i; } } ASSERT_TRUE(on_false_gte_idx.has_value()); ASSERT_TRUE(on_false_const_idx.has_value()); EXPECT_THAT(on_false->root_instruction()->operand(*on_false_const_idx), op::Constant(LiteralUtil::CreateR0<float>(3.0))); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root->operand(0), op::Multiply( op::GetTupleElement(op::Conditional(), *on_false_gte_idx), op::GetTupleElement(op::Conditional(), *on_false_const_idx))); } TEST_F(ConditionalCodeMotionTest, ConditionalRootElementChanged) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[]) parameter(0) get-tuple-element.1 = f32[] get-tuple-element(arg_tuple.1), index=0 constant.1 = f32[] constant(1) constant.2 = f32[] constant(2) add.1 = f32[] add(get-tuple-element.1, constant.1) add.2 = f32[] add(get-tuple-element.1, constant.2) add.3 = f32[] add(add.1, add.2) ROOT tuple.3 = (f32[]) tuple(add.3) } on_false { arg_tuple.2 = (f32[]) parameter(0) get-tuple-element.2 = f32[] get-tuple-element(arg_tuple.2), index=0 constant.3 = f32[] constant(1) constant.4 = f32[] constant(2) add.4 = f32[] add(constant.4, constant.3) add.5 = f32[] add(get-tuple-element.2, constant.4) add.6 = f32[] add(add.4, add.5) ROOT tuple.4 = (f32[]) tuple(add.6) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[]) parameter(1) tuple.2 = (f32[]) parameter(2) conditional = (f32[]) conditional(pred.1, tuple.1, tuple.2), true_computation=on_true, false_computation=on_false get-first-index = f32[] get-tuple-element(conditional), index=0 ROOT result = f32[] add(get-first-index, get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); EXPECT_EQ(on_true->instruction_count(), 3); EXPECT_THAT(on_true->root_instruction(), op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::GetTupleElement(op::Parameter(0), 0))); const HloComputation* on_false = conditional->branch_computation(1); EXPECT_EQ(on_false->instruction_count(), 4); std::optional<int> on_false_const_idx; std::optional<int> on_false_gte_idx; for (int i = 0; i < on_false->root_instruction()->operand_count(); ++i) { const HloInstruction* root_operand = on_false->root_instruction()->operand(i); if (root_operand->opcode() == HloOpcode::kConstant) { on_false_const_idx = i; } else if (root_operand->opcode() == HloOpcode::kGetTupleElement) { on_false_gte_idx = i; } } ASSERT_TRUE(on_false_const_idx.has_value()); ASSERT_TRUE(on_false_gte_idx.has_value()); EXPECT_THAT(on_false->root_instruction()->operand(*on_false_const_idx), op::Constant(LiteralUtil::CreateR0<float>(2.0))); EXPECT_THAT(on_false->root_instruction()->operand(*on_false_gte_idx), op::GetTupleElement(op::Parameter(0), 0)); HloInstruction* root = module->entry_computation()->root_instruction(); auto get_first_index_matcher = op::Add( op::Add(op::GetTupleElement(op::Conditional(), *on_false_const_idx), op::Constant(LiteralUtil::CreateR0<float>(1.0))), op::Add(op::GetTupleElement(op::Conditional(), *on_false_gte_idx), op::Constant(LiteralUtil::CreateR0<float>(2.0)))); EXPECT_THAT(root, op::Add(get_first_index_matcher, get_first_index_matcher)); } TEST_F(ConditionalCodeMotionTest, ConditionalIsRootInstruction) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[]) parameter(0) get-tuple-element.1 = f32[] get-tuple-element(arg_tuple.1), index=0 constant.1 = f32[] constant(1) constant.2 = f32[] constant(2) constant.3 = f32[] constant(3) constant.4 = f32[] constant(4) constant.5 = f32[] constant(5) add.1 = f32[] add(get-tuple-element.1, constant.1) add.2 = f32[] add(add.1, constant.2) add.3 = f32[] add(add.1, constant.3) add.4 = f32[] add(add.3, constant.5) multiply.1 = f32[] multiply(add.2, constant.4) ROOT tuple.6 = (f32[], f32[]) tuple(multiply.1, add.4) } on_false { arg_tuple.2 = (f32[]) parameter(0) get-tuple-element.2 = f32[] get-tuple-element(arg_tuple.2), index=0 constant.6 = f32[] constant(1) constant.7 = f32[] constant(2) constant.8 = f32[] constant(3) constant.9 = f32[] constant(4) constant.10 = f32[] constant(5) add.4 = f32[] add(get-tuple-element.2, constant.6) sub.1 = f32[] subtract(add.4, constant.7) add.5 = f32[] add(add.4, constant.8) add.6 = f32[] add(add.5, constant.10) multiply.2 = f32[] multiply(sub.1, constant.9) ROOT tuple.6 = (f32[], f32[]) tuple(multiply.2, add.6) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[]) parameter(1) tuple.2 = (f32[]) parameter(2) ROOT conditional = (f32[], f32[]) conditional(pred.1, tuple.1, tuple.2), true_computation=on_true, false_computation=on_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, LayoutMisMatchCannotMovedOut) { absl::string_view hlo_string = R"( HloModule LayoutMisMatchCannotMovedOut %add.64 (x.139: bf16[], y.139: bf16[]) -> bf16[] { %x.139 = bf16[]{:T(512)} parameter(0) %y.139 = bf16[]{:T(512)} parameter(1) ROOT %add.44073 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.139, bf16[]{:T(512)} %y.139) } %add.181 (x.256: bf16[], y.256: bf16[]) -> bf16[] { %x.256 = bf16[]{:T(512)} parameter(0) %y.256 = bf16[]{:T(512)} parameter(1) ROOT %add.44842 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.256, bf16[]{:T(512)} %y.256) } on_true { %arg_tuple.1 = (bf16[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = bf16[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %all-reduce.1 = bf16[93184,4]{1,0} all-reduce(bf16[93184,4]{1,0} %get-tuple-element.1), channel_id=188, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.64 %convert.2894 = f32[93184,4]{1,0} convert(bf16[93184, 4]{1,0} %all-reduce.1) ROOT %tuple.1 = (f32[93184,4]{1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (bf16[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = bf16[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %copy.1 = bf16[93184,4]{0,1} copy(bf16[93184,4]{1,0} %get-tuple-element.3) %all-reduce.2 = bf16[93184,4]{0, 1} all-reduce(bf16[93184,4]{0, 1} %copy.1), channel_id=188, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.181 %convert.3604 = f32[93184,4]{0,1} convert(bf16[93184,4]{0,1} %all-reduce.2) ROOT %tuple.2 = (f32[93184,4]{0,1}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (bf16[93184,4]{1,0}) parameter(1) arg_tuple.22 = (bf16[93184,4]{1,0}) parameter(2) conditional = (f32[93184,4]{1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = f32[93184,4]{1,0} get-tuple-element(conditional), index=0 ROOT result = (f32[93184,4]{1,0}) tuple(get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, MoveCrossModuleAllReduceOut) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction %add.64 (x.139: bf16[], y.139: bf16[]) -> bf16[] { %x.139 = bf16[]{:T(512)} parameter(0) %y.139 = bf16[]{:T(512)} parameter(1) ROOT %add.44073 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.139, bf16[]{:T(512)} %y.139) } %add.181 (x.256: bf16[], y.256: bf16[]) -> bf16[] { %x.256 = bf16[]{:T(512)} parameter(0) %y.256 = bf16[]{:T(512)} parameter(1) ROOT %add.44842 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.256, bf16[]{:T(512)} %y.256) } on_true { arg_tuple.1 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(0) get-tuple-element.11 = bf16[2,54,168,128] get-tuple-element(arg_tuple.1), index=0 get-tuple-element.12 = bf16[2,52,168,128] get-tuple-element(arg_tuple.1), index=1 convolution.1 = bf16[3,3,128,128] convolution(bf16[2,54,168,128] get-tuple-element.11, bf16[2,52,168,128] get-tuple-element.12), window={size=52x168 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf all-reduce.1 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %convolution.1), channel_id=188, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.64, metadata={op_type="Conv2DBackpropFilter" op_name="gradients/resnet50/conv2d_22/Conv2D_grad/Conv2DBackpropFilter"} convert.1 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.1), metadata={op_type="Cast" op_name="Cast_15"} ROOT tuple.1 = (f32[3,3,128,128]) tuple(convert.1) } on_false { arg_tuple.2 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(0) get-tuple-element.21 = bf16[2,86,104,128] get-tuple-element(arg_tuple.2), index=0 get-tuple-element.22 = bf16[2,84,104,128] get-tuple-element(arg_tuple.2), index=1 convolution.2 = bf16[3,3,128,128] convolution(bf16[2,86,104,128] get-tuple-element.21, bf16[2,84,104,128] get-tuple-element.22), window={size=84x104 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf all-reduce.2 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %convolution.2), channel_id=485, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.181, metadata={op_type="Conv2DBackpropFilter" op_name="gradients/resnet50/conv2d_22/Conv2D_grad/Conv2DBackpropFilter"} convert.2 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.2), metadata={op_type="Cast" op_name="Cast_15"} ROOT tuple.2 = (f32[3,3,128,128]) tuple(convert.2) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.3 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(1) arg_tuple.4 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(2) arg_tuple.5 = f32[3,3,128,128] parameter(3) conditional = (f32[3,3,128,128]) conditional(pred.1, arg_tuple.3, arg_tuple.4), true_computation=on_true, false_computation=on_false get-first-index = f32[3,3,128,128] get-tuple-element(conditional), index=0 add.1 = f32[3,3,128,128] add(f32[3,3,128,128] get-first-index, f32[3,3,128,128] get-first-index) ROOT result = (f32[3,3,128,128]) tuple(add.1) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); CHECK(conditional != nullptr); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 5); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 5); ASSERT_TRUE(ShapeUtil::Compatible( conditional->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape( BF16, {3, 3, 128, 128})}))); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Tuple(op::Add( op::Convert(op::AllReduce(op::GetTupleElement(op::Conditional()))), op::Convert( op::AllReduce(op::GetTupleElement(op::Conditional()))))))); } TEST_F(ConditionalCodeMotionTest, DoNotMoveAllReduceIn) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction %add.64 (x.139: bf16[], y.139: bf16[]) -> bf16[] { %x.139 = bf16[]{:T(512)} parameter(0) %y.139 = bf16[]{:T(512)} parameter(1) ROOT %add.44073 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.139, bf16[]{:T(512)} %y.139) } %add.181 (x.256: bf16[], y.256: bf16[]) -> bf16[] { %x.256 = bf16[]{:T(512)} parameter(0) %y.256 = bf16[]{:T(512)} parameter(1) ROOT %add.44842 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.256, bf16[]{:T(512)} %y.256) } on_true { arg_tuple.1 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(0) get-tuple-element.11 = bf16[2,54,168,128] get-tuple-element(arg_tuple.1), index=0 get-tuple-element.12 = bf16[2,52,168,128] get-tuple-element(arg_tuple.1), index=1 convolution.1 = bf16[3,3,128,128] convolution(bf16[2,54,168,128] get-tuple-element.11, bf16[2,52,168,128] get-tuple-element.12), window={size=52x168 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf add.1 = bf16[3,3,128,128] add(bf16[3,3,128,128] convolution.1, bf16[3,3,128,128] convolution.1) ROOT tuple.1 = (bf16[3,3,128,128]) tuple(add.1) } on_false { arg_tuple.2 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(0) get-tuple-element.21 = bf16[2,86,104,128] get-tuple-element(arg_tuple.2), index=0 get-tuple-element.22 = bf16[2,84,104,128] get-tuple-element(arg_tuple.2), index=1 convolution.2 = bf16[3,3,128,128] convolution(bf16[2,86,104,128] get-tuple-element.21, bf16[2,84,104,128] get-tuple-element.22), window={size=84x104 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf add.2 = bf16[3,3,128,128] add(bf16[3,3,128,128] convolution.2, bf16[3,3,128,128] convolution.2) ROOT tuple.2 = (bf16[3,3,128,128]) tuple(add.2) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.3 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(1) arg_tuple.4 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(2) arg_tuple.5 = f32[3,3,128,128] parameter(3) conditional = (bf16[3,3,128,128]) conditional(pred.1, arg_tuple.3, arg_tuple.4), true_computation=on_true, false_computation=on_false get-first-index = bf16[3,3,128,128] get-tuple-element(conditional), index=0 all-reduce.2 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %get-first-index), channel_id=485, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.181, metadata={op_type="Conv2DBackpropFilter" op_name="gradients/resnet50/conv2d_22/Conv2D_grad/Conv2DBackpropFilter"} convert.2 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.2), metadata={op_type="Cast" op_name="Cast_15"} ROOT result = (f32[3,3,128,128]) tuple(convert.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); CHECK(conditional != nullptr); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 6); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 6); ASSERT_TRUE(ShapeUtil::Compatible( conditional->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape( BF16, {3, 3, 128, 128})}))); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::Convert(op::AllReduce( op::GetTupleElement(op::Conditional())))))); } TEST_F(ConditionalCodeMotionTest, MovePowOpIn) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[10]) parameter(0) get-tuple-element.1 = f32[10] get-tuple-element(arg_tuple.1), index=0 add.1 = f32[10] add(get-tuple-element.1, get-tuple-element.1) ROOT tuple.3 = (f32[10]) tuple(add.1) } on_false { arg_tuple.2 = (f32[10]) parameter(0) get-tuple-element.2 = f32[10] get-tuple-element(arg_tuple.2), index=0 mul.1 = f32[10] multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.4 = (f32[10]) tuple(mul.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[10]) parameter(1) tuple.2 = (f32[10]) parameter(2) conditional = (f32[10]) conditional(pred.1, tuple.1, tuple.2), true_computation=on_true, false_computation=on_false get-first-index = f32[10] get-tuple-element(conditional), index=0 ROOT pow.1 = f32[10] power(get-first-index, get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 5); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 5); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::GetTupleElement(op::Conditional()))); } TEST_F(ConditionalCodeMotionTest, MoveInWithMultipleGTE) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction on_true { arg_tuple.1 = (f32[10]) parameter(0) get-tuple-element.1 = f32[10] get-tuple-element(arg_tuple.1), index=0 add.1 = f32[10] add(get-tuple-element.1, get-tuple-element.1) ROOT tuple.3 = (f32[10]) tuple(add.1) } on_false { arg_tuple.2 = (f32[10]) parameter(0) get-tuple-element.2 = f32[10] get-tuple-element(arg_tuple.2), index=0 mul.1 = f32[10] multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple.4 = (f32[10]) tuple(mul.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[10]) parameter(1) tuple.2 = (f32[10]) parameter(2) conditional = (f32[10]) conditional(pred.1, tuple.1, tuple.2), true_computation=on_true, false_computation=on_false get-first-index = f32[10] get-tuple-element(conditional), index=0 get-first-index.2 = f32[10] get-tuple-element(conditional), index=0 pow.1 = f32[10] power(get-first-index, get-first-index.2) ROOT tuple.3 = (f32[10], f32[10]) tuple(pow.1, get-first-index.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(op::Conditional()), op::GetTupleElement(op::Conditional()))); } TEST_F(ConditionalCodeMotionTest, MoveOutWithSharedBranch) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch { arg_tuple.1 = (f32[10]) parameter(0) get-tuple-element.1 = f32[10] get-tuple-element(arg_tuple.1), index=0 add.1 = f32[10] add(get-tuple-element.1, get-tuple-element.1) ROOT tuple.3 = (f32[10]) tuple(add.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[10]) parameter(1) tuple.2 = (f32[10]) parameter(2) conditional = (f32[10]) conditional(pred.1, tuple.1, tuple.2), true_computation=branch, false_computation=branch get-first-index = f32[10] get-tuple-element(conditional), index=0 ROOT pow.1 = f32[10] power(get-first-index, get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 1); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 1); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Power(op::Add(op::GetTupleElement(op::Conditional()), op::GetTupleElement(op::Conditional())), op::Add(op::GetTupleElement(op::Conditional()), op::GetTupleElement(op::Conditional()))))); } TEST_F(ConditionalCodeMotionTest, MovePowInWithNonTupleRoot) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch { arg_tuple.1 = (f32[10]) parameter(0) get-tuple-element.1 = f32[10] get-tuple-element(arg_tuple.1), index=0 ROOT add.1 = f32[10] add(get-tuple-element.1, get-tuple-element.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[10]) parameter(1) tuple.2 = (f32[10]) parameter(2) conditional = f32[10] conditional(pred.1, tuple.1, tuple.2), true_computation=branch, false_computation=branch ROOT pow.1 = f32[10] power(conditional, conditional) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 5); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 5); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::GetTupleElement(op::Conditional()))); } TEST_F(ConditionalCodeMotionTest, MovePowInWithEmptyBranch) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch1 { arg_tuple.1 = (f32[10]) parameter(0) get-tuple-element.1 = f32[10] get-tuple-element(arg_tuple.1), index=0 add.1 = f32[10] add(get-tuple-element.1, get-tuple-element.1) ROOT tuple.3 = (f32[10]) tuple(add.1) } branch2 { ROOT arg_tuple.1 = (f32[10]) parameter(0) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = (f32[10]) parameter(1) tuple.2 = (f32[10]) parameter(2) conditional = (f32[10]) conditional(pred.1, tuple.1, tuple.2), true_computation=branch1, false_computation=branch2 get-first-index = f32[10] get-tuple-element(conditional), index=0 ROOT pow.1 = f32[10] power(get-first-index, get-first-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 5); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 4); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::GetTupleElement(op::Conditional()))); } TEST_F(ConditionalCodeMotionTest, MovePowInWithNonTupleParameter) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch { arg.1 = f32[10] parameter(0) ROOT add.1 = f32[10] add(arg.1, arg.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = f32[10] parameter(1) tuple.2 = f32[10] parameter(2) conditional = f32[10] conditional(pred.1, tuple.1, tuple.2), true_computation=branch, false_computation=branch ROOT pow.1 = f32[10] power(conditional, conditional) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 4); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 4); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::GetTupleElement(op::Conditional()))); } TEST_F(ConditionalCodeMotionTest, MoveCopyInBranch) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch1 { arg_tuple.1 = (s32[], f32[10,3]{0,1}) parameter(0) constant.1 = s32[] constant(4) get-tuple-element.1 = s32[] get-tuple-element(arg_tuple.1), index=0 add.1 = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = f32[10,3]{0,1} get-tuple-element(arg_tuple.1), index=1 slice.1 = f32[4,3]{0,1} slice(get-tuple-element.2), slice={[0:4:1], [0:3:1]} constant.2 = f32[] constant(0.0) ROOT tuple.1 = (f32[4,3]{0,1}, s32[],f32[]) tuple(slice.1, add.1, constant.2) } branch2 { arg_tuple.2 = (s32[], f32[4,3]{1,0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(arg_tuple.2), index=0 copy.1 = s32[] copy(get-tuple-element.3) get-tuple-element.4 = f32[4,3]{1,0} get-tuple-element(arg_tuple.2), index=1 copy.2 = f32[4,3]{0,1} copy(get-tuple-element.4) constant.2 = f32[] constant(0.0) ROOT tuple.2 = (f32[4,3]{0,1}, s32[], f32[]) tuple(copy.2, copy.1, constant.2) } ENTRY main { pred.1 = pred[] parameter(0) tuple.3 = (s32[], f32[10,3]{0,1}) parameter(1) tuple.4 = (s32[], f32[4,3]{1,0}) parameter(2) conditional = (f32[4,3]{0,1}, s32[], f32[]) conditional(pred.1, tuple.3, tuple.4), true_computation=branch1, false_computation=branch2 get-zero-index = f32[4,3]{0,1} get-tuple-element(conditional), index=0 get-first-index = s32[] get-tuple-element(conditional), index=1 get-second-index = f32[] get-tuple-element(conditional), index=2 copy.3 = f32[4,3]{1,0} copy(get-zero-index) ROOT tuple.5 = (f32[4,3]{0,1}, s32[], f32[]) tuple(copy.3, get-first-index, get-second-index) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); VLOG(1) << module->ToString(); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 9); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 8); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::GetTupleElement(op::Conditional(), 2), op::GetTupleElement(op::Conditional(), 0), op::GetTupleElement(op::Conditional(), 1)))); } TEST_F(ConditionalCodeMotionTest, MoveCopy2InBranch) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction %branch0 (state.2: (f32[1,3,2])) -> (f32[1,3,2]) { %state.2 = (f32[1,3,2]{1,2,0}) parameter(0) %get-tuple-element.32 = f32[1,3,2]{1,2,0} get-tuple-element((f32[1,3,2]{1,2,0}) %state.2), index=0 %copy.1 = f32[1,3,2]{0,2,1} copy(f32[1,3,2]{1,2,0} %get-tuple-element.32) ROOT %tuple.13 = (f32[1,3,2]{0,2,1}) tuple(f32[1,3,2]{0,2,1} %copy.1) } %branch1 (state.1: (s32[], f32[8,3,2], s32[2])) -> (f32[1,3,2]) { %state.1 = (s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) parameter(0) %get-tuple-element.17 = f32[8,3,2]{0,2,1} get-tuple-element((s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) %state.1), index=1 %get-tuple-element.18 = s32[2]{0} get-tuple-element((s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) %state.1), index=2 %get-tuple-element.16 = s32[] get-tuple-element((s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) %state.1), index=0 %dynamic-slice.3 = s32[1]{0} dynamic-slice(s32[2]{0} %get-tuple-element.18, s32[] %get-tuple-element.16), dynamic_slice_sizes={1} %reshape.19 = s32[] reshape(s32[1]{0} %dynamic-slice.3) %constant.21 = s32[] constant(0) %dynamic-slice.4 = f32[1,3,2]{0,2,1} dynamic-slice(f32[8,3,2]{0,2,1} %get-tuple-element.17, s32[] %reshape.19, s32[] %constant.21, s32[] %constant.21), dynamic_slice_sizes={1,3,2} ROOT %tuple.9 = (f32[1,3,2]{0,2,1}) tuple(f32[1,3,2]{0,2,1} %dynamic-slice.4) } ENTRY %f32_8_3_2__1-1.32 (idxs.1: s32[2], single_io.2: f32[8,3,2], repeated_io_0.3: f32[1,3,2]) -> (f32[1,3,2]) { %idxs.1 = s32[2]{0} parameter(0) %slice.10 = s32[1]{0} slice(s32[2]{0} %idxs.1), slice={[0:1]} %reshape.11 = s32[] reshape(s32[1]{0} %slice.10) %constant.12 = s32[] constant(0) %compare.13 = pred[] compare(s32[] %reshape.11, s32[] %constant.12), direction=EQ %repeated_io_0.3 = f32[1,3,2]{1,2,0} parameter(2) %tuple.11 = (f32[1,3,2]{1,2,0}) tuple(f32[1,3,2]{1,2,0} %repeated_io_0.3) %constant.5 = s32[] constant(1) %single_io.2 = f32[8,3,2]{0,2,1} parameter(1) %tuple.15 = (s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) tuple(s32[] %constant.5, f32[8,3,2]{0,2,1} %single_io.2, s32[2]{0} %idxs.1) %conditional.28 = (f32[1,3,2]{0,2,1}) conditional(pred[] %compare.13, (f32[1,3,2]{1,2,0}) %tuple.11, (s32[], f32[8,3,2]{0,2,1}, s32[2]{0}) %tuple.15), true_computation=%branch0, false_computation=%branch1 %get-tuple-element.33 = f32[1,3,2]{0,2,1} get-tuple-element((f32[1,3,2]{0,2,1}) %conditional.28), index=0 %copy.2 = f32[1,3,2]{1,2,0} copy(f32[1,3,2]{0,2,1} %get-tuple-element.33) ROOT %tuple.16 = (f32[1,3,2]{1,2,0}) tuple(f32[1,3,2]{1,2,0} %copy.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); } TEST_F(ConditionalCodeMotionTest, MoveReplicatedTupleEntryOut) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction %add.64 (x.139: bf16[], y.139: bf16[]) -> bf16[] { %x.139 = bf16[]{:T(512)} parameter(0) %y.139 = bf16[]{:T(512)} parameter(1) ROOT %add.44073 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.139, bf16[]{:T(512)} %y.139) } %add.181 (x.256: bf16[], y.256: bf16[]) -> bf16[] { %x.256 = bf16[]{:T(512)} parameter(0) %y.256 = bf16[]{:T(512)} parameter(1) ROOT %add.44842 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.256, bf16[]{:T(512)} %y.256) } on_true { arg_tuple.1 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(0) get-tuple-element.11 = bf16[2,54,168,128] get-tuple-element(arg_tuple.1), index=0 get-tuple-element.12 = bf16[2,52,168,128] get-tuple-element(arg_tuple.1), index=1 convolution.1 = bf16[3,3,128,128] convolution(bf16[2,54,168,128] get-tuple-element.11, bf16[2,52,168,128] get-tuple-element.12), window={size=52x168 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf all-reduce.1 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %convolution.1), channel_id=188, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.64 convert.1 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.1) all-reduce.3 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %convolution.1), channel_id=188, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.64 convert.3 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.3) ROOT tuple.1 = (f32[3,3,128,128], f32[3,3,128,128]) tuple(convert.1, convert.3) } on_false { arg_tuple.2 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(0) get-tuple-element.21 = bf16[2,86,104,128] get-tuple-element(arg_tuple.2), index=0 get-tuple-element.22 = bf16[2,84,104,128] get-tuple-element(arg_tuple.2), index=1 convolution.2 = bf16[3,3,128,128] convolution(bf16[2,86,104,128] get-tuple-element.21, bf16[2,84,104,128] get-tuple-element.22), window={size=84x104 pad=0_0x1_1}, dim_labels=f01b_i01o->01bf all-reduce.2 = bf16[3,3,128,128] all-reduce(bf16[3,3,128,128] %convolution.2), channel_id=485, replica_groups={{0,1}}, use_global_device_ids=true, to_apply=%add.181 convert.2 = f32[3,3,128,128] convert(bf16[3,3,128,128] %all-reduce.2) ROOT tuple.2 = (f32[3,3,128,128], f32[3,3,128,128]) tuple(convert.2, convert.2) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.3 = (bf16[2,54,168,128], bf16[2,52,168,128]) parameter(1) arg_tuple.4 = (bf16[2,86,104,128], bf16[2,84,104,128]) parameter(2) conditional = (f32[3,3,128,128], f32[3,3,128,128]) conditional(pred.1, arg_tuple.3, arg_tuple.4), true_computation=on_true, false_computation=on_false get-first-index = f32[3,3,128,128] get-tuple-element(conditional), index=0 add.1 = f32[3,3,128,128] add(f32[3,3,128,128] get-first-index, f32[3,3,128,128] get-first-index) ROOT result = (f32[3,3,128,128]) tuple(add.1) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 5); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 5); ASSERT_TRUE(ShapeUtil::Compatible( conditional->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape( BF16, {3, 3, 128, 128})}))); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Tuple(op::Add( op::Convert(op::AllReduce(op::GetTupleElement(op::Conditional()))), op::Convert( op::AllReduce(op::GetTupleElement(op::Conditional()))))))); } TEST_F(ConditionalCodeMotionTest, DoNotMoveWithExtraOperand) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction branch { arg.1 = f32[10] parameter(0) ROOT add.1 = f32[10] add(arg.1, arg.1) } ENTRY main { pred.1 = pred[] parameter(0) tuple.1 = f32[10] parameter(1) tuple.2 = f32[10] parameter(2) conditional = f32[10] conditional(pred.1, tuple.1, tuple.2), true_computation=branch, false_computation=branch ROOT pow.1 = f32[10] power(conditional, tuple.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, MultipleIndependentMoveIns) { absl::string_view hlo_string = R"( HloModule FromNMT %add.31755 (x.139: f32[], y.139: bf16[]) -> bf16[] { %x.139 = bf16[]{:T(512)} parameter(0) %y.139 = bf16[]{:T(512)} parameter(1) ROOT %add.44073 = bf16[]{:T(512)} add(bf16[]{:T(512)} %x.139, bf16[]{:T(512)} %y.139) } %nmt.1 { %wide_param.3 = (bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) parameter(0) %get-tuple-element.16525 = bf16[1024,4096]{1,0} get-tuple-element((bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) %wide_param.3), index=0 %get-tuple-element.16527 = bf16[18,64,1024]{2,1,0} get-tuple-element((bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) %wide_param.3), index=1 %get-tuple-element.16588 = s32[] get-tuple-element((bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) %wide_param.3), index=2 %add.3764 = s32[] add(s32[] %get-tuple-element.16588, s32[] %get-tuple-element.16588), metadata={op_type="Sub" op_name="sub"} %reshape.9821 = s32[1]{0} reshape(s32[] %add.3764) %reshape.9822 = s32[] reshape(s32[1]{0} %reshape.9821) %constant.13127 = s32[] constant(0) %dynamic-slice.1245 = bf16[1,64,1024]{2,1,0} dynamic-slice(bf16[18,64,1024]{2,1,0} %get-tuple-element.16527, s32[] %reshape.9822, s32[] %constant.13127, s32[] %constant.13127), dynamic_slice_sizes={1,64,1024} %reshape.9825 = bf16[64,1024]{1,0} reshape(bf16[1,64,1024]{2,1,0} %dynamic-slice.1245), metadata={op_type="GatherV2" op_name="GatherV2"} %logistic.814 = bf16[64,1024]{1,0} logistic(bf16[64,1024]{1,0} %reshape.9825), metadata={op_type="Sigmoid" op_name="Sigmoid"} %multiply.4890 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %reshape.9825, bf16[64,1024]{1,0} %logistic.814), metadata={op_type="Mul" op_name="mul"} %tanh.573 = bf16[64,1024]{1,0} tanh(bf16[64,1024]{1,0} %reshape.9825), metadata={op_type="Tanh" op_name="Tanh"} %multiply.4891 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %logistic.814, bf16[64,1024]{1,0} %tanh.573), metadata={op_type="Mul" op_name="mul_1"} %add.3766 = bf16[64,1024]{1,0} add(bf16[64,1024]{1,0} %multiply.4890, bf16[64,1024]{1,0} %multiply.4891), metadata={op_type="AddV2" op_name="add_1"} %multiply.4894 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %add.3766, bf16[64,1024]{1,0} %logistic.814), metadata={op_type="Mul" op_name="gradients_1/mul_grad/Mul"} %constant.10568 = bf16[] constant(1), metadata={op_type="TanhGrad" op_name="gradients/Tanh_1_grad/TanhGrad"} %broadcast.7198 = bf16[64,1024]{1,0} broadcast(bf16[] %constant.10568), dimensions={}, metadata={op_type="TanhGrad" op_name="gradients/Tanh_1_grad/TanhGrad"} %multiply.4896 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %tanh.573, bf16[64,1024]{1,0} %tanh.573), metadata={op_type="TanhGrad" op_name="gradients/Tanh_1_grad/TanhGrad"} %constant.10571 = bf16[] constant(1), metadata={op_type="SigmoidGrad" op_name="gradients/Sigmoid_grad/SigmoidGrad"} %broadcast.7201 = bf16[64,1024]{1,0} broadcast(bf16[] %constant.10571), dimensions={}, metadata={op_type="SigmoidGrad" op_name="gradients/Sigmoid_grad/SigmoidGrad"} %subtract.1702 = bf16[64,1024]{1,0} subtract(bf16[64,1024]{1,0} %broadcast.7201, bf16[64,1024]{1,0} %logistic.814), metadata={op_type="SigmoidGrad" op_name="gradients/Sigmoid_grad/SigmoidGrad"} %multiply.4907 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %tanh.573, bf16[64,1024]{1,0} %add.3766), metadata={op_type="Mul" op_name="gradients/mul_2_grad/Mul_1"} %multiply.4908 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %multiply.4907, bf16[64,1024]{1,0} %logistic.814), metadata={op_type="SigmoidGrad" op_name="gradients/Sigmoid_2_grad/SigmoidGrad"} %dot.781 = bf16[64,4096]{1,0} dot(bf16[64,1024]{1,0} %multiply.4908, bf16[1024,4096]{1,0} %get-tuple-element.16525), lhs_contracting_dims={1}, rhs_contracting_dims={0}, metadata={op_type="MatMul" op_name="MatMul"} ROOT %tuple.3200 = (bf16[64,1024]{1,0}, bf16[64,4096]{1,0}, s32[]) tuple(bf16[64,1024]{1,0} %multiply.4894, bf16[64,4096]{1,0} %dot.781, s32[] %reshape.9822) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.3 = (bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) parameter(1) arg_tuple.4 = (bf16[1024,4096]{1,0}, bf16[18,64,1024]{2,1,0}, s32[]) parameter(2) %arg.2 = s32[] parameter(3) %conditional.3 = (bf16[64,1024]{1,0}, bf16[64,4096]{1,0}, s32[]) conditional(pred.1, arg_tuple.3, arg_tuple.4), true_computation=nmt.1, false_computation=nmt.1 %get-tuple-element.15889 = bf16[64,1024]{1,0} get-tuple-element((bf16[64,1024]{1,0}, bf16[64,4096]{1,0}, s32[]) %conditional.3), index=0, metadata={op_type="Case" op_name="switch_case/indexed_case"} %multiply.4596 = bf16[64,1024]{1,0} multiply(bf16[64,1024]{1,0} %get-tuple-element.15889, bf16[64,1024]{1,0} %get-tuple-element.15889), metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %constant.10279 = bf16[] constant(0), metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %reduce.844 = bf16[] reduce(bf16[64,1024]{1,0} %multiply.4596, bf16[] %constant.10279), dimensions={0,1}, to_apply=%add.31755, metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %get-tuple-element.15890 = bf16[64,4096]{1,0} get-tuple-element((bf16[64,1024]{1,0}, bf16[64,4096]{1,0}, s32[]) %conditional.3), index=1, metadata={op_type="Case" op_name="switch_case/indexed_case"} %multiply.4597 = bf16[64,4096]{1,0} multiply(bf16[64,4096]{1,0} %get-tuple-element.15890, bf16[64,4096]{1,0} %get-tuple-element.15890), metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %constant.10280 = bf16[] constant(0), metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %reduce.845 = bf16[] reduce(bf16[64,4096]{1,0} %multiply.4597, bf16[] %constant.10280), dimensions={0,1}, to_apply=%add.31755, metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} %multiply.4667 = bf16[] multiply(bf16[] %reduce.845, bf16[]{:T(128)} %reduce.844), metadata={op_type="L2Loss" op_name="global_norm/L2Loss"} ROOT %tuple.3200 = (bf16[], s32[]) tuple(%multiply.4667, s32[] %arg.2) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_TRUE(pass.Run(&*module).value()); const HloInstruction* conditional = FindInstruction(module.get(), "conditional.3"); CHECK(conditional != nullptr); const HloComputation* on_true = conditional->branch_computation(0); ASSERT_EQ(on_true->instruction_count(), 27); const HloComputation* on_false = conditional->branch_computation(1); ASSERT_EQ(on_false->instruction_count(), 27); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Tuple(op::GetTupleElement(op::Conditional()), op::Parameter()))); } TEST_F(ConditionalCodeMotionTest, TestConfigurationFlag) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 add.1 = bf16[2,512,364]{2,1,0} add(bf16[2,512,364]{2,1,0} get-first-index, bf16[2,512,364]{2,1,0} get-first-index) ROOT result = (bf16[2,512,364]{2,1,0}) tuple(add.1) } )"; for (int max_flip = 1; max_flip < 3; ++max_flip) { for (int flip_stride = 1; flip_stride < ((max_flip > 1) ? 7 : 2); ++flip_stride) { for (int flip_start = 0; flip_start < 7; ++flip_start) { int64_t search_config = ConditionalCodeMotion::MakeSearchConfig( flip_start, max_flip, flip_stride); ConditionalCodeMotion pass(true, true, search_config); VLOG(1) << "Testing max_flip=" << max_flip << "; flip_start = " << flip_start << "; flip_stride = " << flip_stride << "; search_config=" << search_config; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); bool opt_result = pass.Run(&*module).value(); if (flip_start < 2 && max_flip > 1 && flip_stride == 1) { CHECK_EQ(opt_result, false); continue; } CHECK_EQ(opt_result, true); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); const HloComputation* on_false = conditional->branch_computation(1); HloInstruction* root = module->entry_computation()->root_instruction(); switch (flip_start) { case 0: [[fallthrough]]; case 1: ASSERT_EQ(on_true->instruction_count(), 6); ASSERT_EQ(on_false->instruction_count(), 6); EXPECT_THAT(root, AllOf(op::Conditional())); break; case 2: ASSERT_EQ(on_true->instruction_count(), 4); ASSERT_EQ(on_false->instruction_count(), 4); EXPECT_THAT( root, AllOf(op::Tuple(op::Add( op::Convert(op::GetTupleElement(op::Conditional())), op::Convert(op::GetTupleElement(op::Conditional())))))); break; case 3: ASSERT_EQ(on_true->instruction_count(), 1); ASSERT_EQ(on_false->instruction_count(), 1); EXPECT_THAT(root, AllOf(op::Tuple(op::Add( op::Convert(op::Reshape( op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape(op::GetTupleElement( op::Conditional()))))))); break; case 4: case 5: case 6: ASSERT_EQ(on_true->instruction_count(), 2); ASSERT_EQ(on_false->instruction_count(), 2); EXPECT_THAT(root, AllOf(op::Tuple(op::Add( op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional())))), op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional())))))))); break; default: ASSERT_EQ(on_true->instruction_count(), 1); ASSERT_EQ(on_false->instruction_count(), 1); EXPECT_THAT(root, AllOf(op::Tuple(op::Add( op::Convert(op::Reshape( op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape(op::GetTupleElement( op::Conditional()))))))); break; } } } } } TEST_F(ConditionalCodeMotionTest, TestMultipleConfigurationFlags) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %convert.2894 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}) tuple(%convert.2894) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %convert.3604 = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717), metadata={op_type="Cast" op_name="gradients/Cast_125_grad/Cast"} ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}) tuple(%convert.3604) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) pred.2 = pred[] parameter(3) conditional = (bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index = bf16[2,512,364]{2,1,0} get-tuple-element(conditional), index=0 add.1 = bf16[2,512,364]{2,1,0} add(bf16[2,512,364]{2,1,0} get-first-index, bf16[2,512,364]{2,1,0} get-first-index) conditional.2 = (bf16[2,512,364]{2,1,0}) conditional(pred.2, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false get-first-index.2 = bf16[2,512,364]{2,1,0} get-tuple-element(conditional.2), index=0 add.2 = bf16[2,512,364]{2,1,0} add(bf16[2,512,364]{2,1,0} get-first-index.2, bf16[2,512,364]{2,1,0} get-first-index.2) ROOT result = (bf16[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) tuple(add.1, add.2) } )"; for (int max_flip = 1; max_flip < 3; ++max_flip) { for (int flip_stride = 1; flip_stride < ((max_flip > 1) ? 7 : 2); ++flip_stride) { for (int flip_start = 0; flip_start < 7; ++flip_start) { std::stringstream config_stream; config_stream << 0 << "," << flip_start << "," << max_flip << "," << flip_stride << ";"; config_stream << 1 << "," << flip_start << "," << max_flip << "," << flip_stride; auto search_config = config_stream.str(); ConditionalCodeMotion pass(true, true, search_config); VLOG(1) << "Testing max_flip=" << max_flip << "; flip_start = " << flip_start << "; flip_stride = " << flip_stride << "; search_config=" << search_config; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); bool opt_result = pass.Run(&*module).value(); if (flip_start < 2 && max_flip > 1 && flip_stride == 1) { CHECK_EQ(opt_result, false); continue; } CHECK_EQ(opt_result, true); const HloInstruction* conditional = FindInstruction(module.get(), "conditional"); const HloComputation* on_true = conditional->branch_computation(0); const HloComputation* on_false = conditional->branch_computation(1); HloInstruction* root = module->entry_computation()->root_instruction(); switch (flip_start) { case 0: [[fallthrough]]; case 1: ASSERT_EQ(on_true->instruction_count(), 6); ASSERT_EQ(on_false->instruction_count(), 6); EXPECT_THAT( root, AllOf(op::Tuple(op::GetTupleElement(op::Conditional()), op::GetTupleElement(op::Conditional())))); break; case 2: ASSERT_EQ(on_true->instruction_count(), 4); ASSERT_EQ(on_false->instruction_count(), 4); EXPECT_THAT( root, AllOf(op::Tuple( op::Add( op::Convert(op::GetTupleElement(op::Conditional())), op::Convert(op::GetTupleElement(op::Conditional()))), op::Add( op::Convert(op::GetTupleElement(op::Conditional())), op::Convert(op::GetTupleElement(op::Conditional())))))); break; case 3: ASSERT_EQ(on_true->instruction_count(), 1); ASSERT_EQ(on_false->instruction_count(), 1); EXPECT_THAT( root, AllOf(op::Tuple( op::Add(op::Convert(op::Reshape( op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape( op::GetTupleElement(op::Conditional())))), op::Add(op::Convert(op::Reshape( op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape(op::GetTupleElement( op::Conditional()))))))); break; case 4: case 5: case 6: ASSERT_EQ(on_true->instruction_count(), 2); ASSERT_EQ(on_false->instruction_count(), 2); EXPECT_THAT( root, AllOf(op::Tuple( op::Add(op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional())))), op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional()))))), op::Add(op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional())))), op::Convert(op::Reshape(op::GetTupleElement( op::GetTupleElement(op::Conditional())))))))); break; default: ASSERT_EQ(on_true->instruction_count(), 1); ASSERT_EQ(on_false->instruction_count(), 1); EXPECT_THAT(root, AllOf(op::Tuple(op::Add( op::Convert(op::Reshape( op::GetTupleElement(op::Conditional()))), op::Convert(op::Reshape(op::GetTupleElement( op::Conditional()))))))); break; } } } } } TEST_F(ConditionalCodeMotionTest, ShapeChangingMovePreservesSharding) { absl::string_view hlo_string = R"( HloModule RemoveIdenticalInstruction %on_true (arg_tuple.1: (f32[10])) -> (f32[10]) { %arg_tuple.1 = (f32[10]{0}) parameter(0), sharding={{devices=[4]0,1,2,3}} %get-tuple-element.1 = f32[10]{0} get-tuple-element((f32[10]{0}) %arg_tuple.1), index=0, sharding={devices=[4]0,1,2,3} %add.1 = f32[10]{0} add(f32[10]{0} %get-tuple-element.1, f32[10]{0} %get-tuple-element.1), sharding={devices=[4]0,1,2,3} ROOT %tuple.3 = (f32[10]{0}) tuple(f32[10]{0} %add.1), sharding={{devices=[4]0,1,2,3}} } %on_false (arg_tuple.2: (f32[10])) -> (f32[10]) { %arg_tuple.2 = (f32[10]{0}) parameter(0), sharding={{devices=[4]0,1,2,3}} %get-tuple-element.2 = f32[10]{0} get-tuple-element((f32[10]{0}) %arg_tuple.2), index=0, sharding={devices=[4]0,1,2,3} %mul.1 = f32[10]{0} multiply(f32[10]{0} %get-tuple-element.2, f32[10]{0} %get-tuple-element.2), sharding={devices=[4]0,1,2,3} ROOT %tuple.4 = (f32[10]{0}) tuple(f32[10]{0} %mul.1), sharding={{devices=[4]0,1,2,3}} } ENTRY %main (pred.1: pred[], tuple.1: (f32[10]), tuple.2: (f32[10])) -> (f32[10], f32[10]) { %pred.1 = pred[] parameter(0), sharding={replicated} %tuple.1 = (f32[10]{0}) parameter(1), sharding={{replicated}} %tuple.2 = (f32[10]{0}) parameter(2), sharding={{devices=[4]0,1,2,3}} %conditional = (f32[10]{0}) conditional(pred[] %pred.1, (f32[10]{0}) %tuple.1, (f32[10]{0}) %tuple.2), true_computation=%on_true, false_computation=%on_false, sharding={{devices=[4]0,1,2,3}} %get-first-index = f32[10]{0} get-tuple-element((f32[10]{0}) %conditional), index=0, sharding={devices=[4]0,1,2,3} %get-first-index.2 = f32[10]{0} get-tuple-element((f32[10]{0}) %conditional), index=0, sharding={devices=[4]0,1,2,3} %pow.1 = f32[10]{0} power(f32[10]{0} %get-first-index, f32[10]{0} %get-first-index.2), sharding={devices=[4]0,1,2,3} ROOT %tuple.0 = (f32[10]{0}, f32[10]{0}) tuple(f32[10]{0} %pow.1, f32[10]{0} %get-first-index.2), sharding={{devices=[4]0,1,2,3}, {devices=[4]0,1,2,3}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ConditionalCodeMotion pass(true, true); TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); ASSERT_TRUE(changed); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(op::Conditional()), op::GetTupleElement(op::Conditional()))); EXPECT_EQ(root->operand(0)->operand(0), root->operand(1)->operand(0)); const HloInstruction* conditional = root->operand(0)->operand(0); EXPECT_THAT( conditional, AnyOf(op::NoSharding(), op::Sharding("{{devices=[4]0,1,2,3},{devices=[4]0,1,2,3}}"))); } TEST_F(ConditionalCodeMotionTest, ConvertDuplicate) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.8493, f32[2,512,364]{2,1,0} %reshape.8493) %convert = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %add.8493) ROOT %tuple.1 = ( bf16[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) tuple(%convert, %convert) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %convert = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717) ROOT %tuple.2 = (bf16[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) tuple(%convert, %convert) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) ROOT conditional = (bf16[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); VLOG(2) << "module:\n" << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); } TEST_F(ConditionalCodeMotionTest, NestedConvert) { absl::string_view hlo_string = R"( HloModule RemoveDotOpOut on_true { %arg_tuple.1 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.1 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.1), index=0 %reshape.8493 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.1) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.8493, f32[2,512,364]{2,1,0} %reshape.8493) %convert = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %add.8493) %convert.2894 = f32[2,512,364]{2,1,0} convert(bf16[2,512,364]{2,1,0} %convert) ROOT %tuple.1 = ( f32[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) tuple(%convert.2894, %convert) } on_false { %arg_tuple.2 = (f32[93184,4]{1,0}) parameter(0) %get-tuple-element.3 = f32[93184,4]{1,0} get-tuple-element(%arg_tuple.2), index=0 %reshape.9717 = f32[2,512,364]{2,1,0} reshape(f32[93184,4]{1,0} %get-tuple-element.3) %add.8493 = f32[2,512,364]{2,1,0} add(f32[2,512,364]{2,1,0} %reshape.9717, f32[2,512,364]{2,1,0} %reshape.9717) %sub.8493 = f32[2,512,364]{2,1,0} subtract(f32[2,512,364]{2,1,0} %add.8493, f32[2,512,364]{2,1,0} %reshape.9717) %convert = bf16[2,512,364]{2,1,0} convert(f32[2,512,364]{2,1,0} %reshape.9717) %convert.3604 = f32[2,512,364]{2,1,0} convert(%convert) ROOT %tuple.2 = (f32[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) tuple(%convert.3604, %convert) } ENTRY main { pred.1 = pred[] parameter(0) arg_tuple.11 = (f32[93184,4]{1,0}) parameter(1) arg_tuple.22 = (f32[93184,4]{1,0}) parameter(2) ROOT conditional = (f32[2,512,364]{2,1,0}, bf16[2,512,364]{2,1,0}) conditional(pred.1, arg_tuple.11, arg_tuple.22), true_computation=on_true, false_computation=on_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); VLOG(2) << "module:\n" << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); VLOG(2) << "module:\n" << module->ToString(); } TEST_F(ConditionalCodeMotionTest, NestedConditionalDisableMoveConvert) { absl::string_view hlo_string = R"( HloModule xla_computation_unknown.45 %branch_0_comp.11 (parameter.12: (u32[])) -> (s8[]) { %parameter.12 = (u32[]) parameter(0) %get-tuple-element.13 = u32[] get-tuple-element((u32[]) %parameter.12), index=0 %convert.15 = s8[] convert(u32[] %get-tuple-element.13) ROOT %tuple.18 = (s8[]) tuple(s8[] %convert.15) } %branch_0_comp__1.19 (parameter.20: (pred[])) -> (s8[]) { %parameter.20 = (pred[]) parameter(0) %get-tuple-element.21 = pred[] get-tuple-element((pred[]) %parameter.20), index=0 %convert.23 = s8[] convert(pred[] %get-tuple-element.21) ROOT %tuple.24 = (s8[]) tuple(s8[] %convert.23) } %branch_1_comp__1.25 (parameter.26: (pred[])) -> (s8[]) { %parameter.26 = (pred[]) parameter(0) %get-tuple-element.27 = pred[] get-tuple-element((pred[]) %parameter.26), index=0 %convert.29 = s8[] convert(pred[] %get-tuple-element.27) ROOT %tuple.30 = (s8[]) tuple(s8[] %convert.29) } %branch_1_comp.31 (parameter.32: (u32[])) -> (s8[]) { %parameter.32 = (u32[]) parameter(0) %get-tuple-element.33 = u32[] get-tuple-element((u32[]) %parameter.32), index=0 %convert.35 = pred[] convert(u32[] %get-tuple-element.33) %convert.36 = s32[] convert(pred[] %convert.35) %constant.37 = pred[] constant(true) %tuple.38 = (pred[]) tuple(pred[] %constant.37) ROOT %conditional.39 = (s8[]) conditional(s32[] %convert.36, (pred[]) %tuple.38, (pred[]) %tuple.38), branch_computations={%branch_0_comp__1.19, %branch_1_comp__1.25} } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation_unknown.45 (parameter.3: u8[], parameter.4: u8[], parameter.5: u32[15,14]) -> (s8[]) { %parameter.3 = u8[] parameter(0) %parameter.4 = u8[] parameter(1) %compare.7 = pred[] compare(u8[] %parameter.3, u8[] %parameter.4), direction=LT %convert.9 = s32[] convert(pred[] %compare.7) %parameter.5 = u32[15,14]{1,0} parameter(2) %constant.2 = u32[] constant(0) %reduce.1 = u32[] reduce(u32[15,14]{1,0} %parameter.5, u32[] %constant.2), dimensions={1,0}, to_apply=%scalar_add_computation.1 %tuple.10 = (u32[]) tuple(u32[] %reduce.1) ROOT %conditional.42 = (s8[]) conditional(s32[] %convert.9, (u32[]) %tuple.10, (u32[]) %tuple.10), branch_computations={%branch_0_comp.11, %branch_1_comp.31} } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands1) { absl::string_view hlo_string = R"( HloModule xla_computation_unknown.45 %branch_0_comp.11 (parameter.12: (u32[])) -> (s8[]) { %parameter.12 = (u32[], u32[]) parameter(0) %get-tuple-element.13 = u32[] get-tuple-element(%parameter.12), index=1 %convert.15 = s8[] convert(u32[] %get-tuple-element.13) ROOT %tuple.18 = (s8[]) tuple(s8[] %convert.15) } %branch_0_comp__1.19 (parameter.20: (pred[])) -> (s8[]) { %parameter.20 = (pred[],s8[]) parameter(0) %get-tuple-element.21 = pred[] get-tuple-element(%parameter.20), index=0 %convert.23 = s8[] convert(pred[] %get-tuple-element.21) ROOT %tuple.24 = (s8[]) tuple(s8[] %convert.23) } %branch_1_comp__1.25 (parameter.26: (pred[])) -> (s8[]) { %parameter.26 = (pred[],s8[]) parameter(0) %get-tuple-element.27 = s8[] get-tuple-element(%parameter.26), index=1 ROOT %tuple.30 = (s8[]) tuple(s8[] %get-tuple-element.27) } %branch_1_comp.31 (parameter.32: (u32[])) -> (s8[]) { %parameter.32 = (u32[], u32[]) parameter(0) %get-tuple-element.33 = u32[] get-tuple-element(%parameter.32), index=0 %convert.35 = pred[] convert(%get-tuple-element.33) %convert.36 = s32[] convert(%get-tuple-element.33) %constant.37 = s8[] constant(1) %add.0 = s8[] add(constant.37, constant.37) %tuple.38 = (pred[], s8[]) tuple(pred[] %convert.35, s8[] add.0) ROOT %conditional.39 = (s8[]) conditional(%convert.36, %tuple.38, %tuple.38), branch_computations={%branch_0_comp__1.19, %branch_1_comp__1.25} } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation_unknown.45 (parameter.3: u8[], parameter.4: u8[], parameter.5: u32[15,14]) -> (s8[]) { %parameter.3 = u8[] parameter(0) %parameter.4 = u8[] parameter(1) %compare.7 = pred[] compare(u8[] %parameter.3, u8[] %parameter.4), direction=LT %convert.9 = s32[] convert(pred[] %compare.7) %parameter.5 = u32[15,14]{1,0} parameter(2) %constant.2 = u32[] constant(0) %reduce.1 = u32[] reduce(u32[15,14]{1,0} %parameter.5, u32[] %constant.2), dimensions={1,0}, to_apply=%scalar_add_computation.1 %tuple.10 = (u32[], u32[]) tuple(%reduce.1, constant.2) ROOT %conditional.42 = (s8[]) conditional(s32[] %convert.9, %tuple.10, %tuple.10), branch_computations={%branch_0_comp.11, %branch_1_comp.31} } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); VLOG(3) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 4); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 8); HloInstruction* conditional_39 = root->branch_computation(1)->root_instruction(); CHECK_EQ(conditional_39->opcode(), HloOpcode::kConditional); const HloInstruction* conditional_39_pred = conditional_39->operand(0); EXPECT_THAT( conditional_39_pred, op::Convert(op::Reduce(op::GetTupleElement(), op::GetTupleElement()))); const HloInstruction* conditional_39_true = conditional_39->branch_computation(0)->root_instruction(); EXPECT_THAT(conditional_39_true, op::Tuple(op::Convert(op::Convert( op::GetTupleElement(op::Parameter()))))); const HloInstruction* conditional_39_false = conditional_39->branch_computation(1)->root_instruction(); EXPECT_THAT(conditional_39_false, op::Tuple(op::Add(op::Constant(), op::Constant()))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands2) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp_0 = ((f32[], f32[])) parameter(0) tmp_1 = (f32[]{:T(256)}, f32[]) get-tuple-element(((f32[], f32[])) tmp_0), index=0 tmp_2 = f32[]{:T(256)} get-tuple-element((f32[], f32[]) tmp_1), index=0 tmp_3 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=1 tmp_4 = f32[] multiply(f32[] tmp_2, f32[] tmp_3) tmp_5 = f32[1]{0} reshape(f32[] tmp_4) ROOT tmp_6 = (f32[], f32[1]{0}) tuple(f32[] tmp_4, f32[1]{0} tmp_5) } %branch_false { tmp_0 = (f32[]) parameter(0) tmp_1 = f32[] get-tuple-element((f32[]) tmp_0), index=0 tmp_2 = f32[1]{0} reshape(f32[] tmp_1) ROOT tmp_3 = (f32[], f32[1]{0}) tuple(f32[] tmp_1, f32[1]{0} tmp_2) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = ((f32[], f32[])) parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %constant.13862, f32[] %power.1) %tuple.87 = (f32[]) tuple(f32[] %multiply.13463) ROOT conditional.1 = (f32[], f32[1]{0}) conditional(%parameter.2, %parameter.1, %tuple.87), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 7); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 9); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT( conditional_false, op::Tuple( op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement()))), op::Reshape(op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement())))))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands3) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp_0 = ((f32[], f32[])) parameter(0) tmp_1 = (f32[]{:T(256)}, f32[]) get-tuple-element(((f32[], f32[])) tmp_0), index=0 tmp_2 = f32[]{:T(256)} get-tuple-element((f32[], f32[]) tmp_1), index=0 tmp_3 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=1 tmp_4 = f32[] multiply(f32[] tmp_2, f32[] tmp_3) ROOT tmp_5 = (f32[]) tuple(tmp_4) } %branch_false { ROOT tmp_0 = (f32[]) parameter(0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = ((f32[], f32[])) parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %constant.13862, f32[] %power.1) %tuple.87 = (f32[]) tuple(f32[] %multiply.13463) ROOT conditional.1 = (f32[]) conditional(%parameter.2, %parameter.1, %tuple.87), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 6); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 8); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT( conditional_false, op::Tuple(op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement()))))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands4) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp_0 = ((f32[], f32[])) parameter(0) tmp_1 = (f32[]{:T(256)}, f32[]) get-tuple-element(((f32[], f32[])) tmp_0), index=0 tmp_2 = f32[]{:T(256)} get-tuple-element((f32[], f32[]) tmp_1), index=0 tmp_3 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=1 tmp_4 = f32[] multiply(f32[] tmp_2, f32[] tmp_3) tmp_5 = (f32[]) tuple(tmp_4) ROOT tmp_6 = ((f32[])) tuple(tmp_5) } %branch_false { tmp_0 = (f32[]) parameter(0) ROOT tmp_1 = ((f32[])) tuple(tmp_0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = ((f32[], f32[])) parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %constant.13862, f32[] %power.1) %tuple.87 = (f32[]) tuple(f32[] %multiply.13463) ROOT conditional.1 = ((f32[])) conditional(%parameter.2, %parameter.1, %tuple.87), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 7); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 9); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT( conditional_false, op::Tuple(op::Tuple(op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement())))))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands5) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp_0 = ((f32[], f32[])) parameter(0) tmp_1 = (f32[]{:T(256)}, f32[]) get-tuple-element(((f32[], f32[])) tmp_0), index=0 tmp_2 = f32[]{:T(256)} get-tuple-element((f32[], f32[]) tmp_1), index=0 tmp_3 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=1 tmp_4 = f32[] multiply(f32[] tmp_2, f32[] tmp_3) ROOT tmp_5 = (f32[]) tuple(tmp_4) } %branch_false { tmp_0 = f32[] parameter(0) ROOT tmp_1 = (f32[]) tuple(tmp_0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = ((f32[], f32[])) parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %constant.13862, f32[] %power.1) ROOT conditional.1 = (f32[]) conditional(%parameter.2, %parameter.1, %multiply.13463), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 6); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 8); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT( conditional_false, op::Tuple(op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement()))))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands6) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp_0 = ((f32[], f32[])) parameter(0) tmp_1 = (f32[], f32[]) get-tuple-element(((f32[], f32[])) tmp_0), index=0 tmp_2 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=0 tmp_3 = f32[] get-tuple-element((f32[], f32[]) tmp_1), index=1 tmp_4 = f32[] multiply(f32[] tmp_2, f32[] tmp_3) ROOT tmp_5 = (f32[]) tuple(tmp_4) } %branch_false { tmp_0 = f32[] parameter(0) ROOT tmp_1 = (f32[]) tuple(tmp_0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = f32[] parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %add.0 = f32[] add(parameter.1, parameter.1) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %constant.13862, f32[] %power.1) %tuple.1 = (f32[], f32[]) tuple(add.0, add.0) %tuple.2 = ((f32[], f32[])) tuple(%tuple.1) ROOT conditional.1 = (f32[]) conditional(%parameter.2, %tuple.2, %multiply.13463), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 6); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 8); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT( conditional_false, op::Tuple(op::Multiply( op::Constant(), op::Power(op::Constant(), op::Floor(op::GetTupleElement()))))); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands7) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { window.58 = bf16[1,23,768]{2,1,0} parameter(0) ROOT collective-permute.29 = bf16[1,23,768]{2,1,0} collective-permute(window.58), channel_id=100, source_target_pairs={{0,1},{1,0}} } %branch_false { ROOT window.59 = bf16[1,23,768]{2,1,0} parameter(0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = bf16[1,23,768]{2,1,0} parameter(0) %parameter.1 = bf16[1,23,768]{2,1,0} parameter(1) %parameter.2 = pred[] parameter(2) add.244 = bf16[1,23,768]{2,1,0} add(parameter.0, parameter.1) ROOT conditional.1 = bf16[1,23,768]{2,1,0} conditional(%parameter.2, %add.244, %add.244), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands8) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { window.58 = bf16[1,23,768]{2,1,0} parameter(0) ROOT collective-permute.29 = bf16[1,23,768]{2,1,0} collective-permute(window.58), channel_id=100, source_target_pairs={{0,1},{1,0}} } %branch_false { ROOT window.59 = bf16[1,23,768]{2,1,0} parameter(0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = bf16[1,23,768]{2,1,0} parameter(0) %parameter.1 = bf16[1,23,768]{2,1,0} parameter(1) %parameter.2 = pred[] parameter(2) add.244 = bf16[1,23,768]{2,1,0} add(parameter.0, parameter.1) ROOT conditional.1 = bf16[1,23,768]{2,1,0} conditional(%parameter.2, %parameter.0, %add.244), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); VLOG(2) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); EXPECT_EQ(root->branch_computation(0)->instruction_count(), 2); EXPECT_EQ(root->branch_computation(1)->instruction_count(), 4); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); EXPECT_THAT(conditional_false, op::Add(op::GetTupleElement(), op::GetTupleElement())); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands9) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { ROOT tmp = ((f32[], f32[])) parameter(0) } %branch_false { ROOT tmp = ((f32[], f32[])) parameter(0) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = f32[] parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %add.0 = f32[] add(parameter.1, parameter.1) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %parameter.1, f32[] %power.1) %multiply.13464 = f32[] multiply(f32[] %parameter.0, f32[] %multiply.13463) %tuple.1 = (f32[], f32[]) tuple(add.0, add.0) %tuple.2 = ((f32[], f32[])) tuple(%tuple.1) %tuple.3 = (f32[], f32[]) tuple(multiply.13463, multiply.13464) %tuple.4 = ((f32[], f32[])) tuple(tuple.3) ROOT conditional.1 = ((f32[], f32[])) conditional(%parameter.2, %tuple.2, %tuple.4), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); const HloInstruction* conditional_true = root->branch_computation(0)->root_instruction(); EXPECT_THAT(conditional_false->shape().tuple_shapes_size(), 1); EXPECT_THAT(conditional_false->shape().tuple_shapes(0).tuple_shapes_size(), 2); EXPECT_THAT(conditional_true->shape().tuple_shapes_size(), 1); EXPECT_THAT(conditional_true->shape().tuple_shapes(0).tuple_shapes_size(), 2); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands10) { absl::string_view hlo_string = R"( HloModule xla_computation %branch_true { tmp = ((f32[], f32[])) parameter(0) tmp1 = (f32[], f32[]) get-tuple-element(tmp), index=0 tmp2 = f32[] get-tuple-element(tmp1), index=0 tmp3 = f32[] get-tuple-element(tmp1), index=1 add = f32[] add(tmp2, tmp3) ROOT tuple = (f32[], (f32[], f32[])) tuple(add, tmp1) } %branch_false { tmp = ((f32[], f32[])) parameter(0) tmp1 = (f32[], f32[]) get-tuple-element(tmp), index=0 tmp2 = f32[] get-tuple-element(tmp1), index=0 ROOT tuple = (f32[], (f32[], f32[])) tuple(tmp2, tmp1) } %scalar_add_computation.1 (scalar_lhs.1: u32[], scalar_rhs.1: u32[]) -> u32[] { %scalar_lhs.1 = u32[] parameter(0) %scalar_rhs.1 = u32[] parameter(1) ROOT %add.1 = u32[] add(u32[] %scalar_lhs.1, u32[] %scalar_rhs.1) } ENTRY %xla_computation { %parameter.0 = f32[] parameter(0) %parameter.1 = f32[] parameter(1) %parameter.2 = pred[] parameter(2) %constant.13862 = f32[] constant(0.00025) %constant.13863 = f32[] constant(0.97) %add.0 = f32[] add(parameter.1, parameter.1) %floor.145 = f32[]{:T(256)} floor(f32[]{:T(256)} %parameter.0) %power.1 = f32[] power(f32[] %constant.13863, f32[]{:T(256)} %floor.145) %multiply.13463 = f32[] multiply(f32[] %parameter.1, f32[] %power.1) %multiply.13464 = f32[] multiply(f32[] %parameter.0, f32[] %multiply.13463) %tuple.1 = (f32[], f32[]) tuple(add.0, add.0) %tuple.2 = ((f32[], f32[])) tuple(%tuple.1) %tuple.3 = (f32[], f32[]) tuple(multiply.13463, multiply.13464) %tuple.4 = ((f32[], f32[])) tuple(tuple.3) ROOT conditional.1 = (f32[], (f32[], f32[])) conditional(%parameter.2, %tuple.2, %tuple.4), true_computation=branch_true, false_computation=branch_false } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional()); const HloInstruction* conditional_false = root->branch_computation(1)->root_instruction(); const HloInstruction* conditional_true = root->branch_computation(0)->root_instruction(); EXPECT_THAT(conditional_false->shape().tuple_shapes_size(), 2); EXPECT_THAT(conditional_false->shape().tuple_shapes(1).tuple_shapes_size(), 2); EXPECT_THAT(conditional_true->shape().tuple_shapes_size(), 2); EXPECT_THAT(conditional_true->shape().tuple_shapes(1).tuple_shapes_size(), 2); } TEST_F(ConditionalCodeMotionTest, MovePartialyUsedOperands11) { absl::string_view hlo_string = R"( HloModule xla_computation region_2.494 { Arg_.495 = (u32[], u32[]) parameter(0) get-tuple-element = u32[] get-tuple-element(Arg_.495), index=1, metadata={op_type="Less" op_name="cond_1/Less"} bitcast-convert = s32[] bitcast-convert(get-tuple-element), metadata={op_type="Less" op_name="cond_1/Less"} constant.172 = s32[] constant(0), metadata={op_type="Less" op_name="cond_1/Less"} compare = pred[] compare(bitcast-convert, constant.172), direction=LT, metadata={op_type="Less" op_name="cond_1/Less"} constant.1 = u32[] constant(0) compare.1 = pred[] compare(get-tuple-element, constant.1), direction=EQ, metadata={op_type="Less" op_name="cond_1/Less"} get-tuple-element.2 = u32[] get-tuple-element(Arg_.495), index=0, metadata={op_type="Less" op_name="cond_1/Less"} constant = u32[] constant(25000), metadata={op_type="Less" op_name="cond_1/Less"} compare.2 = pred[] compare(get-tuple-element.2, constant), direction=LT, metadata={op_type="Less" op_name="cond_1/Less"} and = pred[] and(compare.1, compare.2), metadata={op_type="Less" op_name="cond_1/Less"} or = pred[] or(compare, and), metadata={op_type="Less" op_name="cond_1/Less"} ROOT tuple.1 = (pred[]) tuple(or) } region_3.498 { Arg_.499 = pred[] parameter(0) ROOT tuple.2 = (pred[]) tuple(Arg_.499) } ENTRY %xla_computation { custom-call = u32[]{:T(256)} parameter(0) bitcast-convert.31 = s32[]{:T(256)} parameter(1) constant.202 = s32[]{:T(256)} parameter(2) constant.21 = u32[]{:T(256)} parameter(3) custom-call.1 = u32[]{:T(256)} parameter(4) compare.38 = pred[]{:T(256)} compare(bitcast-convert.31, constant.202), direction=GT, metadata={op_type="GreaterEqual" op_name="GreaterEqual"} compare.39 = pred[]{:T(256)} compare(custom-call, constant.21), direction=EQ, metadata={op_type="GreaterEqual" op_name="GreaterEqual"} or.17 = pred[]{:T(256)} or(compare.38, compare.39), metadata={op_type="GreaterEqual" op_name="GreaterEqual"} tuple.20 = (u32[]{:T(256)}, u32[]{:T(256)}) tuple(custom-call.1, custom-call), sharding={{maximal device=0}, {maximal device=0}} ROOT conditional = (pred[]) conditional(or.17, tuple.20, or.17), true_computation=region_2.494, false_computation=region_3.498, metadata={op_type="If" op_name="cond_1"} } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); ConditionalCodeMotion pass(true, true); pass.Run(&*module).value(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Conditional(op::Or(), op::Tuple(), op::Or())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_code_motion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/conditional_code_motion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fd8bcab4-0896-4547-adfa-bf93fb8d2f73
cpp
tensorflow/tensorflow
log_softmax
tensorflow/compiler/tf2tensorrt/convert/ops/log_softmax.cc
tensorflow/lite/kernels/log_softmax_test.cc
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/convert_nodes.h" #include "tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.h" #include "tensorflow/compiler/tf2tensorrt/convert/ops/layer_utils.h" namespace tensorflow { namespace tensorrt { namespace convert { class ConvertLogSoftmax : public OpConverterBase<ConvertLogSoftmax> { public: explicit ConvertLogSoftmax(const OpConverterParams *params) : OpConverterBase<ConvertLogSoftmax>(params) {} static constexpr std::array<InputArgSpec, 1> InputSpec() { return std::array<InputArgSpec, 1>{ InputArgSpec::Create("logits", TrtInputArg::kTensor)}; } Status Validate() { const auto &params = *this->params_; const auto &inputs = params.inputs; ITensorProxyPtr logits_tensor = inputs.at(0).tensor(); const int num_trt_dims = logits_tensor->getDimensions().nbDims; if (!num_trt_dims && params.use_implicit_batch) { return errors::InvalidArgument( "TensorRT LogSoftmax cannot apply on the batch dimension"); } return OkStatus(); } Status Convert() { const auto &params = *this->params_; const auto &inputs = params.inputs; const auto &node_def = params.node_def; ITensorProxyPtr logits_tensor = inputs.at(0).tensor(); const int num_trt_dims = logits_tensor->getDimensions().nbDims; nvinfer1::IUnaryLayer *exp = params.converter->network()->addUnary( *logits_tensor->trt_tensor(), nvinfer1::UnaryOperation::kEXP); TFTRT_RETURN_ERROR_IF_NULLPTR(exp, node_def.name()); params.converter->SetLayerName(exp, node_def, "exp"); nvinfer1::IReduceLayer *reduced_sum = params.converter->network()->addReduce( *exp->getOutput(0), nvinfer1::ReduceOperation::kSUM, (1 << (num_trt_dims - 1)), true ); params.converter->SetLayerName(reduced_sum, node_def, "reduced_sum"); nvinfer1::IUnaryLayer *log_reduced_sum = params.converter->network()->addUnary(*reduced_sum->getOutput(0), nvinfer1::UnaryOperation::kLOG); TFTRT_RETURN_ERROR_IF_NULLPTR(log_reduced_sum, node_def.name()); params.converter->SetLayerName(log_reduced_sum, node_def, "log_reduced_sum"); nvinfer1::IElementWiseLayer *sub = params.converter->network()->addElementWise( *logits_tensor->trt_tensor(), *log_reduced_sum->getOutput(0), nvinfer1::ElementWiseOperation::kSUB); TFTRT_RETURN_ERROR_IF_NULLPTR(sub, node_def.name()); params.converter->SetLayerName(sub, node_def, "sub"); params.outputs->push_back(TRT_TensorOrWeights(sub->getOutput(0))); return OkStatus(); } }; REGISTER_DEFAULT_TRT_OP_CONVERTER(MakeConverterFunction<ConvertLogSoftmax>(), "LogSoftmax"); } } } #endif
#include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { class LogSoftmaxOpModel : public SingleOpModel { public: LogSoftmaxOpModel(int batches, int size) : batches_(batches), input_size_(size) { input_ = AddInput(TensorType_FLOAT32); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_LOG_SOFTMAX, BuiltinOptions_LogSoftmaxOptions, CreateLogSoftmaxOptions(builder_).Union()); BuildInterpreter({{batches_, input_size_}}); } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } private: int input_; int output_; int batches_; int input_size_; }; TEST(LogSoftmaxOpTest, SimpleTest) { LogSoftmaxOpModel m(2, 5); m.SetInput({ 1.0, 2.0, 3.0, 4.0, 5.0, -1.0, -2.0, -3.0, -4.0, -5.0, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-4.45191431, -3.45191431, -2.45191431, -1.45191443, -0.4519144, -0.4519144, -1.45191443, -2.45191431, -3.45191431, -4.45191431}, 1e-6))); } TEST(LogSoftmaxOpTest, CompareWithTFmini) { const int batch_size = 2; const int input_size = 5; static float input_buffer[] = { 1.0, 2.0, 3.0, 4.0, 5.0, -1.0, -2.0, -3.0, -4.0, -5.0, }; LogSoftmaxOpModel m(batch_size, input_size); m.SetInput(0, input_buffer, input_buffer + input_size * batch_size); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::unique_ptr<float[]> output_buffer(new float[input_size * batch_size]); auto input_shape = RuntimeShape({batch_size, 1, 1, input_size}); SoftmaxParams params; tflite::reference_ops::LogSoftmax(params, input_shape, input_buffer, input_shape, output_buffer.get()); std::vector<float> expected; expected.insert(expected.end(), output_buffer.get(), output_buffer.get() + input_size * batch_size); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear(expected, 1e-6))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/ops/log_softmax.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/log_softmax_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
38fbeaea-f8df-4f7a-a655-4f468d1949c7
cpp
tensorflow/tensorflow
target_util
third_party/xla/xla/service/gpu/target_util.cc
third_party/xla/xla/service/gpu/target_util_test.cc
#include "xla/service/gpu/target_util.h" #include <functional> #include <string> #include <variant> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/llvm_ir/llvm_type_conversion_util.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { using absl::StrCat; struct TargetIntrinsics { llvm::Intrinsic::ID nvptx_intrinsic; std::variant<llvm::Intrinsic::ID, std::function<llvm::CallInst*(llvm::IRBuilder<>*)>> amdgpu_intrinsic_or_function; std::variant<llvm::Intrinsic::ID, std::function<llvm::CallInst*(llvm::IRBuilder<>*)>> spir_intrinsic_or_function; }; struct TargetIntrinsics GetIntrinsic(TargetIntrinsicID intrin) { switch (intrin) { case TargetIntrinsicID::kThreadIdx: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x, llvm::Intrinsic::amdgcn_workitem_id_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kThreadIdy: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_y, llvm::Intrinsic::amdgcn_workitem_id_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kThreadIdz: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_z, llvm::Intrinsic::amdgcn_workitem_id_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdx: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_x, llvm::Intrinsic::amdgcn_workgroup_id_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdy: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_y, llvm::Intrinsic::amdgcn_workgroup_id_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdz: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_z, llvm::Intrinsic::amdgcn_workgroup_id_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBarrierId: { return {llvm::Intrinsic::nvvm_barrier0, llvm::Intrinsic::amdgcn_s_barrier, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z22__spirv_ControlBarrierjjj", {b_->getInt32(2), b_->getInt32(2), b_->getInt32(272)}, {U32, U32, U32}, U32, llvm::AttrBuilder(b_->getContext()) .addAttribute(llvm::Attribute::Convergent), b_); }}; } case TargetIntrinsicID::kBlockDimx: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kBlockDimy: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kBlockDimz: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kGroupBarrierId: { return {llvm::Intrinsic::nvvm_bar_warp_sync, llvm::Intrinsic::amdgcn_wave_barrier, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z22__spirv_ControlBarrierjjj", {b_->getInt32(2), b_->getInt32(2), b_->getInt32(272)}, {U32, U32, U32}, U32, llvm::AttrBuilder(b_->getContext()) .addAttribute(llvm::Attribute::Convergent), b_); }}; } } } struct TargetDeviceFunction { const std::string nvptx_root; const std::string amdgpu_root; const std::string spir_root; }; struct TargetDeviceFunction GetDeviceFunctionRoot( TargetDeviceFunctionID func_id) { switch (func_id) { case TargetDeviceFunctionID::kAtan2: { return {"__nv_atan2", "__ocml_atan2", "_Z17__spirv_ocl_atan2"}; } case TargetDeviceFunctionID::kCos: { return {"__nv_cos", "__ocml_cos", "_Z15__spirv_ocl_cos"}; } case TargetDeviceFunctionID::kErf: { return {"__nv_erf", "__ocml_erf", "_Z15__spirv_ocl_erf"}; } case TargetDeviceFunctionID::kExp: { return {"__nv_exp", "__ocml_exp", "_Z15__spirv_ocl_exp"}; } case TargetDeviceFunctionID::kExpm1: { return {"__nv_expm1", "__ocml_expm1", "_Z17__spirv_ocl_expm1"}; } case TargetDeviceFunctionID::kFmod: { return {"__nv_fmod", "__ocml_fmod", "_Z16__spirv_ocl_fmod"}; } case TargetDeviceFunctionID::kHypot: { return {"__nv_hypot", "__ocml_hypot", "_Z17__spirv_ocl_hypot"}; } case TargetDeviceFunctionID::kLog: { return {"__nv_log", "__ocml_log", "_Z15__spirv_ocl_log"}; } case TargetDeviceFunctionID::kLog1p: { return {"__nv_log1p", "__ocml_log1p", "_Z17__spirv_ocl_log1p"}; } case TargetDeviceFunctionID::kPow: { return {"__nv_pow", "__ocml_pow", "_Z15__spirv_ocl_pow"}; } case TargetDeviceFunctionID::kRsqrt: { return {"__nv_rsqrt", "__ocml_rsqrt", "_Z17__spirv_ocl_rsqrt"}; } case TargetDeviceFunctionID::kSin: { return {"__nv_sin", "__ocml_sin", "_Z15__spirv_ocl_sin"}; } case TargetDeviceFunctionID::kSqrt: { return {"__nv_sqrt", "__ocml_sqrt", "_Z16__spirv_ocl_sqrt"}; } case TargetDeviceFunctionID::kTan: { return {"__nv_tan", "__ocml_tan", "_Z15__spirv_ocl_tan"}; } case TargetDeviceFunctionID::kTanh: { return {"__nv_tanh", "__ocml_tanh", "_Z16__spirv_ocl_tanh"}; } case TargetDeviceFunctionID::kCbrt: { return {"__nv_cbrt", "__ocml_cbrt", "_Z16__spirv_ocl_cbrt"}; } } } } absl::StatusOr<TargetDeviceFunctionID> GetTargetDeviceFunctionID(HloOpcode op) { switch (op) { case HloOpcode::kAtan2: return TargetDeviceFunctionID::kAtan2; case HloOpcode::kCos: return TargetDeviceFunctionID::kCos; case HloOpcode::kExp: return TargetDeviceFunctionID::kExp; case HloOpcode::kErf: return TargetDeviceFunctionID::kErf; case HloOpcode::kExpm1: return TargetDeviceFunctionID::kExpm1; case HloOpcode::kLog: return TargetDeviceFunctionID::kLog; case HloOpcode::kLog1p: return TargetDeviceFunctionID::kLog1p; case HloOpcode::kPower: return TargetDeviceFunctionID::kPow; case HloOpcode::kRemainder: return TargetDeviceFunctionID::kFmod; case HloOpcode::kRsqrt: return TargetDeviceFunctionID::kRsqrt; case HloOpcode::kSin: return TargetDeviceFunctionID::kSin; case HloOpcode::kSqrt: return TargetDeviceFunctionID::kSqrt; case HloOpcode::kTan: return TargetDeviceFunctionID::kTan; case HloOpcode::kTanh: return TargetDeviceFunctionID::kTanh; case HloOpcode::kCbrt: return TargetDeviceFunctionID::kCbrt; default: break; } return NotFound("The HLO opcode %s is not mapped to a device function", HloOpcodeString(op)); } std::string ObtainDeviceFunctionName(TargetDeviceFunctionID func_id, PrimitiveType output_type, llvm::Triple target_triple) { struct TargetDeviceFunction gpu_root_names = GetDeviceFunctionRoot(func_id); if (target_triple.isNVPTX()) { if (output_type == F32) { return StrCat(gpu_root_names.nvptx_root, "f"); } else if (output_type == F64) { return gpu_root_names.nvptx_root; } else { LOG(FATAL) << "Unexpected type while getting device function name: " << primitive_util::LowercasePrimitiveTypeName(output_type); } } else if (target_triple.getArch() == llvm::Triple::amdgcn) { if (output_type == F32) { return StrCat(gpu_root_names.amdgpu_root, "_f32"); } else if (output_type == F64) { return StrCat(gpu_root_names.amdgpu_root, "_f64"); } else { LOG(FATAL) << "Unexpected type while getting device function name."; } } else if (target_triple.isSPIR()) { if (output_type == F32) { if (gpu_root_names.spir_root == "_Z17__spirv_ocl_hypot" || gpu_root_names.spir_root == "_Z15__spirv_ocl_pow" || gpu_root_names.spir_root == "_Z17__spirv_ocl_atan2" || gpu_root_names.spir_root == "_Z16__spirv_ocl_fmod") { return StrCat(gpu_root_names.spir_root, "ff"); } else { return StrCat(gpu_root_names.spir_root, "f"); } } else if (output_type == F64) { if (gpu_root_names.spir_root == "_Z17__spirv_ocl_hypot" || gpu_root_names.spir_root == "_Z15__spirv_ocl_pow" || gpu_root_names.spir_root == "_Z17__spirv_ocl_atan2" || gpu_root_names.spir_root == "_Z16__spirv_ocl_fmod") { return StrCat(gpu_root_names.spir_root, "dd"); } else { return StrCat(gpu_root_names.spir_root, "d"); } } else { LOG(FATAL) << "Unexpected type while getting device function name."; } } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } } llvm::CallInst* EmitDeviceFunctionCall( const std::string& callee_name, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, const llvm::AttrBuilder& attributes, llvm::IRBuilder<>* b, absl::string_view name) { std::vector<llvm::Type*> ir_input_types; llvm::Module* module = b->GetInsertBlock()->getModule(); llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); for (PrimitiveType input_type : input_types) { ir_input_types.push_back( llvm_ir::PrimitiveTypeToIrType(input_type, module)); } llvm::FunctionType* callee_type = llvm::FunctionType::get( llvm_ir::PrimitiveTypeToIrType(output_type, module), ir_input_types, false); llvm::Function* callee = llvm::dyn_cast<llvm::Function>( b->GetInsertBlock() ->getModule() ->getOrInsertFunction(callee_name, callee_type) .getCallee()); callee->addFnAttrs(attributes); if (target_triple.isSPIR()) callee->setCallingConv(llvm::CallingConv::SPIR_FUNC); return b->CreateCall(callee, llvm_ir::AsArrayRef(operands), name.data()); } llvm::CallInst* EmitCallToTargetIntrinsic( TargetIntrinsicID intrinsic_id, absl::Span<llvm::Value* const> operands, absl::Span<llvm::Type* const> overloaded_types, llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); struct TargetIntrinsics gpu_intrinsic_id = GetIntrinsic(intrinsic_id); llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); llvm::Intrinsic::ID llvm_intrinsic_id = llvm::Intrinsic::not_intrinsic; if (target_triple.isNVPTX()) { llvm_intrinsic_id = gpu_intrinsic_id.nvptx_intrinsic; } else if (target_triple.getArch() == llvm::Triple::amdgcn) { llvm::Intrinsic::ID* llvm_intrinsic_id_ptr = std::get_if<llvm::Intrinsic::ID>( &gpu_intrinsic_id.amdgpu_intrinsic_or_function); if (llvm_intrinsic_id_ptr) { llvm_intrinsic_id = *llvm_intrinsic_id_ptr; } else { std::function<llvm::CallInst*(llvm::IRBuilder<>*)>* builder_func = std::get_if<std::function<llvm::CallInst*(llvm::IRBuilder<>*)>>( &gpu_intrinsic_id.amdgpu_intrinsic_or_function); return (*builder_func)(b); } } else if (target_triple.isSPIR()) { llvm::Intrinsic::ID* llvm_intrinsic_id_ptr = std::get_if<llvm::Intrinsic::ID>( &gpu_intrinsic_id.spir_intrinsic_or_function); if (llvm_intrinsic_id_ptr) { llvm_intrinsic_id = *llvm_intrinsic_id_ptr; } else { std::function<llvm::CallInst*(llvm::IRBuilder<>*)>* builder_func = std::get_if<std::function<llvm::CallInst*(llvm::IRBuilder<>*)>>( &gpu_intrinsic_id.spir_intrinsic_or_function); return (*builder_func)(b); } } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } llvm::Function* intrinsic = llvm::Intrinsic::getDeclaration( module, llvm_intrinsic_id, llvm_ir::AsArrayRef(overloaded_types)); return b->CreateCall(intrinsic, llvm_ir::AsArrayRef(operands)); } void AnnotateFunctionAsGpuKernel(llvm::Module* module, llvm::Function* func, llvm::IRBuilder<>* b) { llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); if (target_triple.isNVPTX()) { llvm::LLVMContext& context = module->getContext(); llvm::NamedMDNode* nvvm_annotations_node = module->getOrInsertNamedMetadata("nvvm.annotations"); nvvm_annotations_node->addOperand(llvm::MDNode::get( context, {llvm::ConstantAsMetadata::get(func), llvm::MDString::get(context, "kernel"), llvm::ConstantAsMetadata::get(b->getInt32(1))})); } else if (target_triple.getArch() == llvm::Triple::amdgcn) { func->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); func->addFnAttr("amdgpu-flat-work-group-size", "1, 1024"); } else if (target_triple.isSPIR()) { func->setCallingConv(llvm::CallingConv::SPIR_KERNEL); } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } } } }
#include "xla/service/gpu/target_util.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/raw_ostream.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { class TargetUtilTest : public testing::Test { public: TargetUtilTest() : module_("test", ctx_), builder_(ctx_) {} protected: void SetUp() override { auto fn = llvm::Function::Create( llvm::FunctionType::get(llvm::Type::getVoidTy(ctx_), {}), llvm::Function::LinkageTypes::ExternalLinkage, "fn", module_); auto block = llvm::BasicBlock::Create(ctx_, "blk", fn); builder_.SetInsertPoint(block); } llvm::LLVMContext ctx_; llvm::Module module_; llvm::IRBuilder<> builder_; }; TEST_F(TargetUtilTest, NVPTXGroupBarrier) { module_.setTargetTriple("nvptx"); EmitCallToTargetIntrinsic(TargetIntrinsicID::kGroupBarrierId, {builder_.getInt32(-1)}, {}, &builder_); builder_.CreateRetVoid(); EXPECT_FALSE(llvm::verifyModule(module_, &llvm::errs())); } TEST_F(TargetUtilTest, AMDGCNGroupBarrier) { module_.setTargetTriple("amdgcn"); EmitCallToTargetIntrinsic(TargetIntrinsicID::kGroupBarrierId, {}, {}, &builder_); builder_.CreateRetVoid(); EXPECT_FALSE(llvm::verifyModule(module_, &llvm::errs())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/target_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/target_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10c4bede-30e8-4734-9dc4-15868981b86b
cpp
tensorflow/tensorflow
async_collective_creator
third_party/xla/xla/service/async_collective_creator.cc
third_party/xla/xla/service/async_collective_creator_test.cc
#include "xla/service/async_collective_creator.h" #include <cstdint> #include <iterator> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/frontend_attributes.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct ReplacedAsync { HloInstruction* start; HloInstruction* done; }; absl::StatusOr<ReplacedAsync> CreateAsyncAllReduce( HloInstruction* instruction) { HloComputation* computation = instruction->parent(); auto* ar = Cast<HloAllReduceInstruction>(instruction); HloInstruction* start = computation->AddInstruction(HloInstruction::CreateAllReduceStart( ar->shape(), ar->operands(), ar->to_apply(), ar->device_list(), ar->constrain_layout(), ar->channel_id(), ar->use_global_device_ids())); HloInstruction* done = computation->AddInstruction(HloInstruction::CreateUnary( ar->shape(), HloOpcode::kAllReduceDone, start)); return ReplacedAsync{start, done}; } absl::StatusOr<ReplacedAsync> CreateAsyncAllGather( HloInstruction* instruction) { HloComputation* computation = instruction->parent(); auto* ag = Cast<HloAllGatherInstruction>(instruction); std::vector<const Shape*> operand_shapes; operand_shapes.reserve(ag->operand_count()); for (const HloInstruction* op : ag->operands()) { operand_shapes.push_back(&op->shape()); } Shape shape = ShapeUtil::MakeTupleShape( {ag->operand_count() > 1 ? ShapeUtil::MakeTupleShapeWithPtrs(operand_shapes) : *operand_shapes[0], ag->shape()}); HloInstruction* start = computation->AddInstruction(HloInstruction::CreateAllGatherStart( shape, ag->operands(), ag->all_gather_dimension(), ag->device_list(), ag->constrain_layout(), ag->channel_id(), ag->use_global_device_ids())); HloInstruction* done = computation->AddInstruction(HloInstruction::CreateUnary( ag->shape(), HloOpcode::kAllGatherDone, start)); return ReplacedAsync{start, done}; } absl::StatusOr<ReplacedAsync> CreateAsyncCollectivePermute( HloInstruction* instruction, absl::Span<const Shape> context_shapes) { HloComputation* computation = instruction->parent(); auto* cp = Cast<HloCollectivePermuteInstruction>(instruction); HloInstruction* start; HloInstruction* operand = cp->mutable_operand(0); if (cp->operand_count() == 1) { start = computation->AddInstruction( HloInstruction::CreateCollectivePermuteStart( ShapeInference::InferCollectivePermuteStartShape( {&operand->shape()}, context_shapes) .value(), operand, cp->source_target_pairs(), cp->channel_id())); } else { CHECK_EQ(cp->operand_count(), 4); std::vector<const Shape*> operand_shapes; absl::c_transform( cp->operands(), std::back_inserter(operand_shapes), [](const HloInstruction* operand) { return &(operand->shape()); }); start = computation->AddInstruction( HloInstruction::CreateCollectivePermuteStart( ShapeInference::InferCollectivePermuteStartShape(operand_shapes, context_shapes) .value(), operand, cp->mutable_operand(1), cp->mutable_operand(2), cp->mutable_operand(3), cp->source_target_pairs(), cp->dynamic_slice_sizes_list(), cp->channel_id())); if (HasDisjointReadWriteRegionsAttr(cp)) { SetDisjointReadWriteRegionsAttr(start); } } HloInstruction* done = computation->AddInstruction(HloInstruction::CreateUnary( cp->shape(), HloOpcode::kCollectivePermuteDone, start)); return ReplacedAsync{start, done}; } absl::StatusOr<ReplacedAsync> CreateAsyncStartDone( HloInstruction* instruction, absl::Span<const Shape> context_shapes) { HloComputation* computation = instruction->parent(); TF_ASSIGN_OR_RETURN( HloInstruction * done, computation->CreateAsyncInstructions(instruction, context_shapes, HloInstruction::kMainExecutionThread, false)); HloInstruction* start = done->mutable_operand(0); return ReplacedAsync{start, done}; } int64_t GetShapeSize(const Shape& shape) { int64_t size_in_bytes = 0; if (shape.IsTuple()) { for (int64_t i = 0; i < shape.tuple_shapes_size(); ++i) { size_in_bytes += GetShapeSize(shape.tuple_shapes(i)); } return size_in_bytes; } return ShapeUtil::ByteSizeOfElements(shape); } } std::vector<HloInstruction*> AsyncCollectiveCreator::MatchCollectives( HloComputation* computation) { std::vector<HloInstruction*> supported_collectives; for (HloInstruction* instruction : computation->instructions()) { const HloOpcode op = instruction->opcode(); if ((op == HloOpcode::kAllReduce && config_.convert_all_reduce(instruction) && GetShapeSize(instruction->shape()) >= config_.all_reduce_min_threshold_in_bytes) || (op == HloOpcode::kAllGather && config_.convert_all_gather(instruction)) || (op == HloOpcode::kCollectiveBroadcast && config_.convert_collective_broadcast(instruction)) || (op == HloOpcode::kCollectivePermute && config_.convert_collective_permute(instruction)) || (op == HloOpcode::kAllToAll && config_.convert_all_to_all(instruction)) || (op == HloOpcode::kReduceScatter && config_.convert_reduce_scatter(instruction))) { supported_collectives.push_back(instruction); } } return supported_collectives; } absl::StatusOr<bool> AsyncCollectiveCreator::ReplaceCollectives( HloComputation* computation, std::vector<HloInstruction*>& supported_collectives) { bool changed = false; HloModule* module = computation->parent(); absl::flat_hash_map<HloInstruction*, ReplacedAsync> replaced_pairs; const bool should_update_schedule = module->has_schedule() && module->schedule().is_computation_scheduled(computation); for (HloInstruction* instruction : supported_collectives) { absl::StatusOr<ReplacedAsync> async_pair; switch (instruction->opcode()) { case HloOpcode::kAllReduce: async_pair = CreateAsyncAllReduce(instruction); break; case HloOpcode::kAllGather: async_pair = CreateAsyncAllGather(instruction); break; case HloOpcode::kCollectivePermute: async_pair = CreateAsyncCollectivePermute( instruction, config_.get_context_shapes(instruction)); break; case HloOpcode::kCollectiveBroadcast: case HloOpcode::kAllToAll: case HloOpcode::kReduceScatter: async_pair = CreateAsyncStartDone( instruction, config_.get_context_shapes(instruction)); break; default: return Internal("Unexpected opcode %s", HloOpcodeString(instruction->opcode())); } TF_RETURN_IF_ERROR(async_pair.status()); async_pair->start->set_metadata(instruction->metadata()); async_pair->start->CopyBackendConfigFrom(instruction); if (should_update_schedule) { replaced_pairs[instruction] = *async_pair; } TF_RETURN_IF_ERROR( instruction->CopyAllControlDepsTo(async_pair->start, async_pair->done)); TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_WITH_CONTEXT_IF_ERROR( computation->ReplaceInstruction(instruction, async_pair->done), "replacing ", instruction->ToShortString()); changed = true; } if (should_update_schedule) { std::vector<HloInstruction*> new_sequence; const HloInstructionSequence& sequence = module->schedule().sequence(computation); new_sequence.reserve(sequence.size() + replaced_pairs.size()); for (HloInstruction* instr : sequence.instructions()) { auto it = replaced_pairs.find(instr); if (it != replaced_pairs.end()) { new_sequence.push_back(it->second.start); new_sequence.push_back(it->second.done); continue; } new_sequence.push_back(instr); } module->schedule().set_sequence(computation, new_sequence); } return changed; } absl::StatusOr<bool> AsyncCollectiveCreator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; int64_t collectives_replaced = 0; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { std::vector<HloInstruction*> supported_collectives = MatchCollectives(computation); if (supported_collectives.empty()) { continue; } TF_ASSIGN_OR_RETURN(bool comp_changed, ReplaceCollectives(computation, supported_collectives)); collectives_replaced += supported_collectives.size(); changed |= comp_changed; } VLOG(1) << "Replaced " << collectives_replaced << " sync collectives with async versions."; return changed; } }
#include "xla/service/async_collective_creator.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::NotNull; using ::testing::SizeIs; using AsyncAllReduceCreatorTest = HloTestBase; TEST_F(AsyncAllReduceCreatorTest, SplitsSingleAllReduce) { constexpr absl::string_view hlo_string = R"( HloModule test add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry { p0 = f32[1024] parameter(0) ROOT ar = f32[1024] all-reduce(p0), to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_all_reduce = HloPredicateTrue; config.all_reduce_min_threshold_in_bytes = 4096; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kAllReduceDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kAllReduceStart); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleAllGather) { constexpr absl::string_view hlo_string = R"( HloModule test ENTRY entry { p0 = f32[1] parameter(0) ROOT ag = f32[8] all-gather(p0), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_all_gather = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kAllGatherDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kAllGatherStart); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleCollectivePermute) { constexpr absl::string_view hlo_string = R"( HloModule test ENTRY entry { %p0 = bf16[8]{0} parameter(0) ROOT %collective-permute.1 = bf16[8]{0} collective-permute(bf16[8]{0} p0), source_target_pairs={{0,1},{1,2},{2,3}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_collective_permute = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kCollectivePermuteDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kCollectivePermuteStart); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleInPlaceCollectivePermute) { std::string hlo_string = std::string(R"( HloModule module ENTRY %module_spmd () -> f32[4,4,128] { %constant.8 = u32[] constant(0) %constant.5 = u32[] constant(2) %tuple.1 = (u32[], u32[], u32[]) tuple(u32[] %constant.8, u32[] %constant.8, u32[] %constant.8) %tuple = (u32[], u32[], u32[]) tuple(u32[] %constant.5, u32[] %constant.8, u32[] %constant.8) %custom-call = f32[4,4,128]{2,1,0:T(4,128)} custom-call(), custom_call_target="SomeCustomCall" ROOT %collective-permute = f32[4,4,128]{2,1,0:T(4,128)} collective-permute(f32[4,4,128]{2,1,0:T(4,128)} %custom-call, f32[4,4,128]{2,1,0:T(4,128)} %custom-call, (u32[], u32[], u32[]) %tuple, (u32[], u32[], u32[]) %tuple.1), channel_id=958, source_target_pairs={{0,4},{4,0},{1,5},{5,1},{2,6},{6,2},{3,7},{7,3}}, slice_sizes={{2,4,128}} } )"); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_collective_permute = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 7); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kCollectivePermuteDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kCollectivePermuteStart); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleCollectivePermuteScheduled) { constexpr absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY entry { %p0 = bf16[8]{0} parameter(0) ROOT %collective-permute.1 = bf16[8]{0} collective-permute(bf16[8]{0} p0), source_target_pairs={{0,1},{1,2},{2,3}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); const int64_t original_instr_sequence_size = hlo_module->schedule().sequence(hlo_module->entry_computation()).size(); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_collective_permute = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kCollectivePermuteDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kCollectivePermuteStart); EXPECT_EQ( hlo_module->schedule().sequence(hlo_module->entry_computation()).size(), original_instr_sequence_size + 1); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleCollectiveBroadcast) { constexpr absl::string_view hlo_string = R"( HloModule test ENTRY entry { p0 = f32[8,16] parameter(0) ROOT cb = f32[8,16] collective-broadcast(p0), replica_groups={{7,0,1,2,3,4,5,6}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_collective_broadcast = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kAsyncDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kAsyncStart); ASSERT_THAT(start->async_wrapped_instruction(), NotNull()); EXPECT_THAT(start->async_wrapped_opcode(), HloOpcode::kCollectiveBroadcast); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleAllToAll) { constexpr absl::string_view hlo_string = R"( HloModule test ENTRY entry { p0 = f32[8,16] parameter(0) ROOT ata = f32[8,16] all-to-all(p0), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_all_to_all = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); XLA_VLOG_LINES(0, hlo_module->ToString()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kAsyncDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kAsyncStart); ASSERT_THAT(start->async_wrapped_instruction(), NotNull()); EXPECT_THAT(start->async_wrapped_opcode(), HloOpcode::kAllToAll); } TEST_F(AsyncAllReduceCreatorTest, SplitsSingleReduceScatter) { constexpr absl::string_view hlo_string = R"( HloModule test add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } ENTRY entry { p0 = f32[8,16] parameter(0) ROOT ata = f32[1,16] reduce-scatter(p0), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_reduce_scatter = HloPredicateTrue; TF_ASSERT_OK(AsyncCollectiveCreator(config).Run(hlo_module.get()).status()); XLA_VLOG_LINES(0, hlo_module->ToString()); HloComputation* computation = hlo_module->entry_computation(); ASSERT_THAT(computation, NotNull()); ASSERT_EQ(computation->instruction_count(), 3); const HloInstruction* done = computation->root_instruction(); EXPECT_EQ(done->opcode(), HloOpcode::kAsyncDone); ASSERT_THAT(done->operands(), SizeIs(1)); const HloInstruction* start = done->operand(0); EXPECT_EQ(start->opcode(), HloOpcode::kAsyncStart); ASSERT_THAT(start->async_wrapped_instruction(), NotNull()); EXPECT_THAT(start->async_wrapped_opcode(), HloOpcode::kReduceScatter); } TEST_F(AsyncAllReduceCreatorTest, ControlPredecessor) { constexpr absl::string_view hlo_string = R"( HloModule test ENTRY entry { p0 = f32[1] parameter(0) ag = f32[8] all-gather(p0), dimensions={0}, replica_groups={{0,1,2,3,4,5,6,7}}, control-predecessors={p0} p1 = f32[1] parameter(1), control-predecessors={ag} ROOT sum = add(ag, ag) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(hlo_string)); AsyncCollectiveCreator::CollectiveCreatorConfig config; config.convert_all_gather = HloPredicateTrue; TF_ASSERT_OK( RunHloPass(AsyncCollectiveCreator(config), hlo_module.get()).status()); SCOPED_TRACE(hlo_module->ToString()); HloInstruction* start; HloInstruction* done; ASSERT_THAT( hlo_module->entry_computation()->root_instruction(), GmockMatch(m::Add(m::Op(), m::Op(&done) .WithOpcode(HloOpcode::kAllGatherDone) .WithOperand(0, m::Op(&start).WithOpcode( HloOpcode::kAllGatherStart))))); EXPECT_EQ(start->control_successors().size(), 0); ASSERT_EQ(start->control_predecessors().size(), 1); EXPECT_THAT(start->control_predecessors()[0], GmockMatch(m::Parameter(0))); EXPECT_EQ(done->control_predecessors().size(), 0); ASSERT_EQ(done->control_successors().size(), 1); EXPECT_THAT(done->control_successors()[0], GmockMatch(m::Parameter(1))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/async_collective_creator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/async_collective_creator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0977269c-291b-49e7-ae5b-3ecff7f99329
cpp
google/arolla
accessor_helpers
arolla/io/accessor_helpers.h
arolla/io/accessor_helpers_test.cc
#ifndef AROLLA_IO_ACCESSOR_HELPERS_H_ #define AROLLA_IO_ACCESSOR_HELPERS_H_ #include <cstddef> #include <string> #include <tuple> #include <type_traits> #include <utility> namespace arolla::accessor_helpers_impl { template <class... NameAccessors> class VariadicPackToNestedTupleImpl { private: template <size_t I> using AccessorType = std::remove_cv_t<std::remove_reference_t<typename std::tuple_element< I * 2 + 1, std::tuple<NameAccessors...>>::type>>; template <size_t I> AccessorType<I> Accessor() const { return std::get<I * 2 + 1>(name_accessors_); } template <size_t... Is> using NestedTupleType = std::tuple<std::pair<std::string, AccessorType<Is>>...>; template <size_t... Is> NestedTupleType<Is...> MakeNestedTupleImpl(std::index_sequence<Is...>) const { return std::make_tuple(std::make_pair(Name<Is>(), Accessor<Is>())...); } template <size_t I> std::string Name() const { return std::string(std::get<I * 2>(name_accessors_)); } public: static_assert( sizeof...(NameAccessors) % 2 == 0, "NameAccessors must be formed as name, accessor, name, accessor, ..."); static constexpr size_t kAccessorCount = sizeof...(NameAccessors) / 2; explicit VariadicPackToNestedTupleImpl( std::tuple<NameAccessors...> name_accessors) : name_accessors_(name_accessors) {} auto MakeNestedTuple() const -> decltype(MakeNestedTupleImpl( std::make_index_sequence< VariadicPackToNestedTupleImpl::kAccessorCount>())) { return MakeNestedTupleImpl( std::make_index_sequence< VariadicPackToNestedTupleImpl::kAccessorCount>()); } private: std::tuple<NameAccessors...> name_accessors_; }; template <class... NameAccessors> auto ConvertNameAccessorsPackToNestedTuple(NameAccessors... name_accessors) -> decltype(VariadicPackToNestedTupleImpl<NameAccessors...>( std::make_tuple(name_accessors...)) .MakeNestedTuple()) { return VariadicPackToNestedTupleImpl<NameAccessors...>( std::forward_as_tuple(name_accessors...)) .MakeNestedTuple(); } } #endif
#include "arolla/io/accessor_helpers.h" #include <string> #include <tuple> #include <utility> #include "gtest/gtest.h" namespace arolla::accessor_helpers_impl { namespace { struct TestStruct { int a; double b; }; struct GetAConstRef { const int& operator()(const TestStruct& s) const { return s.a; } }; struct GetBValue { double operator()(const TestStruct& s) const { return s.b; } }; TEST(InputLoaderTest, ConvertNameAccessorsPackToNestedTuple) { { std::tuple<std::pair<std::string, GetAConstRef>, std::pair<std::string, GetBValue>> t = ConvertNameAccessorsPackToNestedTuple("a", GetAConstRef{}, "b", GetBValue{}); EXPECT_EQ(std::get<0>(std::get<0>(t)), "a"); EXPECT_EQ(std::get<0>(std::get<1>(t)), "b"); EXPECT_EQ(std::get<1>(std::get<0>(t))(TestStruct{5, 3.5}), 5); EXPECT_EQ(std::get<1>(std::get<1>(t))(TestStruct{5, 3.5}), 3.5); } { auto t = ConvertNameAccessorsPackToNestedTuple( "a", [](const TestStruct& s) { return s.a; }, "b", [](const TestStruct& s) { return s.b; }); EXPECT_EQ(std::get<0>(std::get<0>(t)), "a"); EXPECT_EQ(std::get<0>(std::get<1>(t)), "b"); EXPECT_EQ(std::get<1>(std::get<0>(t))(TestStruct{5, 3.5}), 5); EXPECT_EQ(std::get<1>(std::get<1>(t))(TestStruct{5, 3.5}), 3.5); } { auto t = ConvertNameAccessorsPackToNestedTuple( "a", GetAConstRef{}, "b", [](const TestStruct& s) { return s.b; }); EXPECT_EQ(std::get<0>(std::get<0>(t)), "a"); EXPECT_EQ(std::get<0>(std::get<1>(t)), "b"); EXPECT_EQ(std::get<1>(std::get<0>(t))(TestStruct{5, 3.5}), 5); EXPECT_EQ(std::get<1>(std::get<1>(t))(TestStruct{5, 3.5}), 3.5); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/accessor_helpers.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/accessor_helpers_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
0f8193a5-8939-4a01-a117-059df31d3aab
cpp
google/quiche
quic_received_packet_manager
quiche/quic/core/quic_received_packet_manager.cc
quiche/quic/core/quic_received_packet_manager_test.cc
#include "quiche/quic/core/quic_received_packet_manager.h" #include <algorithm> #include <limits> #include <utility> #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/core/quic_connection_stats.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { const size_t kMaxPacketsAfterNewMissing = 4; const float kShortAckDecimationDelay = 0.125; } QuicReceivedPacketManager::QuicReceivedPacketManager() : QuicReceivedPacketManager(nullptr) {} QuicReceivedPacketManager::QuicReceivedPacketManager(QuicConnectionStats* stats) : ack_frame_updated_(false), max_ack_ranges_(0), time_largest_observed_(QuicTime::Zero()), save_timestamps_(false), save_timestamps_for_in_order_packets_(false), stats_(stats), num_retransmittable_packets_received_since_last_ack_sent_(0), min_received_before_ack_decimation_(kMinReceivedBeforeAckDecimation), ack_frequency_(kDefaultRetransmittablePacketsBeforeAck), ack_decimation_delay_(GetQuicFlag(quic_ack_decimation_delay)), unlimited_ack_decimation_(false), one_immediate_ack_(false), ignore_order_(false), local_max_ack_delay_( QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs())), ack_timeout_(QuicTime::Zero()), time_of_previous_received_packet_(QuicTime::Zero()), was_last_packet_missing_(false), last_ack_frequency_frame_sequence_number_(-1) {} QuicReceivedPacketManager::~QuicReceivedPacketManager() {} void QuicReceivedPacketManager::SetFromConfig(const QuicConfig& config, Perspective perspective) { if (config.HasClientSentConnectionOption(kAKD3, perspective)) { ack_decimation_delay_ = kShortAckDecimationDelay; } if (config.HasClientSentConnectionOption(kAKDU, perspective)) { unlimited_ack_decimation_ = true; } if (config.HasClientSentConnectionOption(k1ACK, perspective)) { one_immediate_ack_ = true; } } void QuicReceivedPacketManager::RecordPacketReceived( const QuicPacketHeader& header, QuicTime receipt_time, const QuicEcnCodepoint ecn) { const QuicPacketNumber packet_number = header.packet_number; QUICHE_DCHECK(IsAwaitingPacket(packet_number)) << " packet_number:" << packet_number; was_last_packet_missing_ = IsMissing(packet_number); if (!ack_frame_updated_) { ack_frame_.received_packet_times.clear(); } ack_frame_updated_ = true; bool packet_reordered = false; if (LargestAcked(ack_frame_).IsInitialized() && LargestAcked(ack_frame_) > packet_number) { packet_reordered = true; ++stats_->packets_reordered; stats_->max_sequence_reordering = std::max(stats_->max_sequence_reordering, LargestAcked(ack_frame_) - packet_number); int64_t reordering_time_us = (receipt_time - time_largest_observed_).ToMicroseconds(); stats_->max_time_reordering_us = std::max(stats_->max_time_reordering_us, reordering_time_us); } if (!LargestAcked(ack_frame_).IsInitialized() || packet_number > LargestAcked(ack_frame_)) { ack_frame_.largest_acked = packet_number; time_largest_observed_ = receipt_time; } ack_frame_.packets.Add(packet_number); MaybeTrimAckRanges(); if (save_timestamps_) { if (save_timestamps_for_in_order_packets_ && packet_reordered) { QUIC_DLOG(WARNING) << "Not saving receive timestamp for packet " << packet_number; } else if (!ack_frame_.received_packet_times.empty() && ack_frame_.received_packet_times.back().second > receipt_time) { QUIC_LOG(WARNING) << "Receive time went backwards from: " << ack_frame_.received_packet_times.back().second.ToDebuggingValue() << " to " << receipt_time.ToDebuggingValue(); } else { ack_frame_.received_packet_times.push_back( std::make_pair(packet_number, receipt_time)); } } if (ecn != ECN_NOT_ECT) { if (!ack_frame_.ecn_counters.has_value()) { ack_frame_.ecn_counters = QuicEcnCounts(); } switch (ecn) { case ECN_NOT_ECT: QUICHE_NOTREACHED(); break; case ECN_ECT0: ack_frame_.ecn_counters->ect0++; break; case ECN_ECT1: ack_frame_.ecn_counters->ect1++; break; case ECN_CE: ack_frame_.ecn_counters->ce++; break; } } if (least_received_packet_number_.IsInitialized()) { least_received_packet_number_ = std::min(least_received_packet_number_, packet_number); } else { least_received_packet_number_ = packet_number; } } void QuicReceivedPacketManager::MaybeTrimAckRanges() { while (max_ack_ranges_ > 0 && ack_frame_.packets.NumIntervals() > max_ack_ranges_) { ack_frame_.packets.RemoveSmallestInterval(); } } bool QuicReceivedPacketManager::IsMissing(QuicPacketNumber packet_number) { return LargestAcked(ack_frame_).IsInitialized() && packet_number < LargestAcked(ack_frame_) && !ack_frame_.packets.Contains(packet_number); } bool QuicReceivedPacketManager::IsAwaitingPacket( QuicPacketNumber packet_number) const { return quic::IsAwaitingPacket(ack_frame_, packet_number, peer_least_packet_awaiting_ack_); } const QuicFrame QuicReceivedPacketManager::GetUpdatedAckFrame( QuicTime approximate_now) { if (time_largest_observed_ == QuicTime::Zero()) { ack_frame_.ack_delay_time = QuicTime::Delta::Infinite(); } else { ack_frame_.ack_delay_time = approximate_now < time_largest_observed_ ? QuicTime::Delta::Zero() : approximate_now - time_largest_observed_; } const size_t initial_ack_ranges = ack_frame_.packets.NumIntervals(); uint64_t num_iterations = 0; while (max_ack_ranges_ > 0 && ack_frame_.packets.NumIntervals() > max_ack_ranges_) { num_iterations++; QUIC_BUG_IF(quic_rpm_too_many_ack_ranges, (num_iterations % 100000) == 0) << "Too many ack ranges to remove, possibly a dead loop. " "initial_ack_ranges:" << initial_ack_ranges << " max_ack_ranges:" << max_ack_ranges_ << ", current_ack_ranges:" << ack_frame_.packets.NumIntervals() << " num_iterations:" << num_iterations; ack_frame_.packets.RemoveSmallestInterval(); } for (auto it = ack_frame_.received_packet_times.begin(); it != ack_frame_.received_packet_times.end();) { if (LargestAcked(ack_frame_) - it->first >= std::numeric_limits<uint8_t>::max()) { it = ack_frame_.received_packet_times.erase(it); } else { ++it; } } #if QUIC_FRAME_DEBUG QuicFrame frame = QuicFrame(&ack_frame_); frame.delete_forbidden = true; return frame; #else return QuicFrame(&ack_frame_); #endif } void QuicReceivedPacketManager::DontWaitForPacketsBefore( QuicPacketNumber least_unacked) { if (!least_unacked.IsInitialized()) { return; } QUICHE_DCHECK(!peer_least_packet_awaiting_ack_.IsInitialized() || peer_least_packet_awaiting_ack_ <= least_unacked); if (!peer_least_packet_awaiting_ack_.IsInitialized() || least_unacked > peer_least_packet_awaiting_ack_) { peer_least_packet_awaiting_ack_ = least_unacked; bool packets_updated = ack_frame_.packets.RemoveUpTo(least_unacked); if (packets_updated) { ack_frame_updated_ = true; } } QUICHE_DCHECK(ack_frame_.packets.Empty() || !peer_least_packet_awaiting_ack_.IsInitialized() || ack_frame_.packets.Min() >= peer_least_packet_awaiting_ack_); } QuicTime::Delta QuicReceivedPacketManager::GetMaxAckDelay( QuicPacketNumber last_received_packet_number, const RttStats& rtt_stats) const { if (AckFrequencyFrameReceived() || last_received_packet_number < PeerFirstSendingPacketNumber() + min_received_before_ack_decimation_) { return local_max_ack_delay_; } QuicTime::Delta ack_delay = std::min( local_max_ack_delay_, rtt_stats.min_rtt() * ack_decimation_delay_); return std::max(ack_delay, kAlarmGranularity); } void QuicReceivedPacketManager::MaybeUpdateAckFrequency( QuicPacketNumber last_received_packet_number) { if (AckFrequencyFrameReceived()) { return; } if (last_received_packet_number < PeerFirstSendingPacketNumber() + min_received_before_ack_decimation_) { return; } ack_frequency_ = unlimited_ack_decimation_ ? std::numeric_limits<size_t>::max() : kMaxRetransmittablePacketsBeforeAck; } void QuicReceivedPacketManager::MaybeUpdateAckTimeout( bool should_last_packet_instigate_acks, QuicPacketNumber last_received_packet_number, QuicTime last_packet_receipt_time, QuicTime now, const RttStats* rtt_stats) { if (!ack_frame_updated_) { return; } if (!ignore_order_ && was_last_packet_missing_ && last_sent_largest_acked_.IsInitialized() && last_received_packet_number < last_sent_largest_acked_) { ack_timeout_ = now; return; } if (!should_last_packet_instigate_acks) { return; } ++num_retransmittable_packets_received_since_last_ack_sent_; MaybeUpdateAckFrequency(last_received_packet_number); if (num_retransmittable_packets_received_since_last_ack_sent_ >= ack_frequency_) { ack_timeout_ = now; return; } if (!ignore_order_ && HasNewMissingPackets()) { ack_timeout_ = now; return; } const QuicTime updated_ack_time = std::max( now, std::min(last_packet_receipt_time, now) + GetMaxAckDelay(last_received_packet_number, *rtt_stats)); if (!ack_timeout_.IsInitialized() || ack_timeout_ > updated_ack_time) { ack_timeout_ = updated_ack_time; } } void QuicReceivedPacketManager::ResetAckStates() { ack_frame_updated_ = false; ack_timeout_ = QuicTime::Zero(); num_retransmittable_packets_received_since_last_ack_sent_ = 0; last_sent_largest_acked_ = LargestAcked(ack_frame_); } bool QuicReceivedPacketManager::HasMissingPackets() const { if (ack_frame_.packets.Empty()) { return false; } if (ack_frame_.packets.NumIntervals() > 1) { return true; } return peer_least_packet_awaiting_ack_.IsInitialized() && ack_frame_.packets.Min() > peer_least_packet_awaiting_ack_; } bool QuicReceivedPacketManager::HasNewMissingPackets() const { if (one_immediate_ack_) { return HasMissingPackets() && ack_frame_.packets.LastIntervalLength() == 1; } return HasMissingPackets() && ack_frame_.packets.LastIntervalLength() <= kMaxPacketsAfterNewMissing; } bool QuicReceivedPacketManager::ack_frame_updated() const { return ack_frame_updated_; } QuicPacketNumber QuicReceivedPacketManager::GetLargestObserved() const { return LargestAcked(ack_frame_); } QuicPacketNumber QuicReceivedPacketManager::PeerFirstSendingPacketNumber() const { if (!least_received_packet_number_.IsInitialized()) { QUIC_BUG(quic_bug_10849_1) << "No packets have been received yet"; return QuicPacketNumber(1); } return least_received_packet_number_; } bool QuicReceivedPacketManager::IsAckFrameEmpty() const { return ack_frame_.packets.Empty(); } void QuicReceivedPacketManager::OnAckFrequencyFrame( const QuicAckFrequencyFrame& frame) { int64_t new_sequence_number = frame.sequence_number; if (new_sequence_number <= last_ack_frequency_frame_sequence_number_) { return; } last_ack_frequency_frame_sequence_number_ = new_sequence_number; ack_frequency_ = frame.packet_tolerance; local_max_ack_delay_ = frame.max_ack_delay; ignore_order_ = frame.ignore_order; } }
#include "quiche/quic/core/quic_received_packet_manager.h" #include <algorithm> #include <cstddef> #include <ostream> #include <vector> #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_connection_stats.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { class QuicReceivedPacketManagerPeer { public: static void SetOneImmediateAck(QuicReceivedPacketManager* manager, bool one_immediate_ack) { manager->one_immediate_ack_ = one_immediate_ack; } static void SetAckDecimationDelay(QuicReceivedPacketManager* manager, float ack_decimation_delay) { manager->ack_decimation_delay_ = ack_decimation_delay; } }; namespace { const bool kInstigateAck = true; const QuicTime::Delta kMinRttMs = QuicTime::Delta::FromMilliseconds(40); const QuicTime::Delta kDelayedAckTime = QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); class QuicReceivedPacketManagerTest : public QuicTest { protected: QuicReceivedPacketManagerTest() : received_manager_(&stats_) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); rtt_stats_.UpdateRtt(kMinRttMs, QuicTime::Delta::Zero(), QuicTime::Zero()); received_manager_.set_save_timestamps(true, false); } void RecordPacketReceipt(uint64_t packet_number) { RecordPacketReceipt(packet_number, QuicTime::Zero()); } void RecordPacketReceipt(uint64_t packet_number, QuicTime receipt_time) { RecordPacketReceipt(packet_number, receipt_time, ECN_NOT_ECT); } void RecordPacketReceipt(uint64_t packet_number, QuicTime receipt_time, QuicEcnCodepoint ecn_codepoint) { QuicPacketHeader header; header.packet_number = QuicPacketNumber(packet_number); received_manager_.RecordPacketReceived(header, receipt_time, ecn_codepoint); } bool HasPendingAck() { return received_manager_.ack_timeout().IsInitialized(); } void MaybeUpdateAckTimeout(bool should_last_packet_instigate_acks, uint64_t last_received_packet_number) { received_manager_.MaybeUpdateAckTimeout( should_last_packet_instigate_acks, QuicPacketNumber(last_received_packet_number), clock_.ApproximateNow(), clock_.ApproximateNow(), &rtt_stats_); } void CheckAckTimeout(QuicTime time) { QUICHE_DCHECK(HasPendingAck()); QUICHE_DCHECK_EQ(received_manager_.ack_timeout(), time); if (time <= clock_.ApproximateNow()) { received_manager_.ResetAckStates(); QUICHE_DCHECK(!HasPendingAck()); } } MockClock clock_; RttStats rtt_stats_; QuicConnectionStats stats_; QuicReceivedPacketManager received_manager_; }; TEST_F(QuicReceivedPacketManagerTest, DontWaitForPacketsBefore) { QuicPacketHeader header; header.packet_number = QuicPacketNumber(2u); received_manager_.RecordPacketReceived(header, QuicTime::Zero(), ECN_NOT_ECT); header.packet_number = QuicPacketNumber(7u); received_manager_.RecordPacketReceived(header, QuicTime::Zero(), ECN_NOT_ECT); EXPECT_TRUE(received_manager_.IsAwaitingPacket(QuicPacketNumber(3u))); EXPECT_TRUE(received_manager_.IsAwaitingPacket(QuicPacketNumber(6u))); received_manager_.DontWaitForPacketsBefore(QuicPacketNumber(4)); EXPECT_FALSE(received_manager_.IsAwaitingPacket(QuicPacketNumber(3u))); EXPECT_TRUE(received_manager_.IsAwaitingPacket(QuicPacketNumber(6u))); } TEST_F(QuicReceivedPacketManagerTest, GetUpdatedAckFrame) { QuicPacketHeader header; header.packet_number = QuicPacketNumber(2u); QuicTime two_ms = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_FALSE(received_manager_.ack_frame_updated()); received_manager_.RecordPacketReceived(header, two_ms, ECN_NOT_ECT); EXPECT_TRUE(received_manager_.ack_frame_updated()); QuicFrame ack = received_manager_.GetUpdatedAckFrame(QuicTime::Zero()); received_manager_.ResetAckStates(); EXPECT_FALSE(received_manager_.ack_frame_updated()); EXPECT_EQ(QuicTime::Delta::Zero(), ack.ack_frame->ack_delay_time); EXPECT_EQ(1u, ack.ack_frame->received_packet_times.size()); QuicTime four_ms = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(4); ack = received_manager_.GetUpdatedAckFrame(four_ms); received_manager_.ResetAckStates(); EXPECT_FALSE(received_manager_.ack_frame_updated()); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(2), ack.ack_frame->ack_delay_time); EXPECT_EQ(1u, ack.ack_frame->received_packet_times.size()); header.packet_number = QuicPacketNumber(999u); received_manager_.RecordPacketReceived(header, two_ms, ECN_NOT_ECT); header.packet_number = QuicPacketNumber(4u); received_manager_.RecordPacketReceived(header, two_ms, ECN_NOT_ECT); header.packet_number = QuicPacketNumber(1000u); received_manager_.RecordPacketReceived(header, two_ms, ECN_NOT_ECT); EXPECT_TRUE(received_manager_.ack_frame_updated()); ack = received_manager_.GetUpdatedAckFrame(two_ms); received_manager_.ResetAckStates(); EXPECT_FALSE(received_manager_.ack_frame_updated()); EXPECT_EQ(2u, ack.ack_frame->received_packet_times.size()); } TEST_F(QuicReceivedPacketManagerTest, UpdateReceivedConnectionStats) { EXPECT_FALSE(received_manager_.ack_frame_updated()); RecordPacketReceipt(1); EXPECT_TRUE(received_manager_.ack_frame_updated()); RecordPacketReceipt(6); RecordPacketReceipt(2, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1)); EXPECT_EQ(4u, stats_.max_sequence_reordering); EXPECT_EQ(1000, stats_.max_time_reordering_us); EXPECT_EQ(1u, stats_.packets_reordered); } TEST_F(QuicReceivedPacketManagerTest, LimitAckRanges) { received_manager_.set_max_ack_ranges(10); EXPECT_FALSE(received_manager_.ack_frame_updated()); for (int i = 0; i < 100; ++i) { RecordPacketReceipt(1 + 2 * i); EXPECT_TRUE(received_manager_.ack_frame_updated()); received_manager_.GetUpdatedAckFrame(QuicTime::Zero()); EXPECT_GE(10u, received_manager_.ack_frame().packets.NumIntervals()); EXPECT_EQ(QuicPacketNumber(1u + 2 * i), received_manager_.ack_frame().packets.Max()); for (int j = 0; j < std::min(10, i + 1); ++j) { ASSERT_GE(i, j); EXPECT_TRUE(received_manager_.ack_frame().packets.Contains( QuicPacketNumber(1 + (i - j) * 2))); if (i > j) { EXPECT_FALSE(received_manager_.ack_frame().packets.Contains( QuicPacketNumber((i - j) * 2))); } } } } TEST_F(QuicReceivedPacketManagerTest, TrimAckRangesEarly) { const size_t kMaxAckRanges = 10; received_manager_.set_max_ack_ranges(kMaxAckRanges); for (size_t i = 0; i < kMaxAckRanges + 10; ++i) { RecordPacketReceipt(1 + 2 * i); if (i < kMaxAckRanges) { EXPECT_EQ(i + 1, received_manager_.ack_frame().packets.NumIntervals()); } else { EXPECT_EQ(kMaxAckRanges, received_manager_.ack_frame().packets.NumIntervals()); } } } TEST_F(QuicReceivedPacketManagerTest, IgnoreOutOfOrderTimestamps) { EXPECT_FALSE(received_manager_.ack_frame_updated()); RecordPacketReceipt(1, QuicTime::Zero()); EXPECT_TRUE(received_manager_.ack_frame_updated()); EXPECT_EQ(1u, received_manager_.ack_frame().received_packet_times.size()); RecordPacketReceipt(2, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1)); EXPECT_EQ(2u, received_manager_.ack_frame().received_packet_times.size()); RecordPacketReceipt(3, QuicTime::Zero()); EXPECT_EQ(2u, received_manager_.ack_frame().received_packet_times.size()); } TEST_F(QuicReceivedPacketManagerTest, IgnoreOutOfOrderPackets) { received_manager_.set_save_timestamps(true, true); EXPECT_FALSE(received_manager_.ack_frame_updated()); RecordPacketReceipt(1, QuicTime::Zero()); EXPECT_TRUE(received_manager_.ack_frame_updated()); EXPECT_EQ(1u, received_manager_.ack_frame().received_packet_times.size()); RecordPacketReceipt(4, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1)); EXPECT_EQ(2u, received_manager_.ack_frame().received_packet_times.size()); RecordPacketReceipt(3, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(3)); EXPECT_EQ(2u, received_manager_.ack_frame().received_packet_times.size()); } TEST_F(QuicReceivedPacketManagerTest, HasMissingPackets) { EXPECT_QUIC_BUG(received_manager_.PeerFirstSendingPacketNumber(), "No packets have been received yet"); RecordPacketReceipt(4, QuicTime::Zero()); EXPECT_EQ(QuicPacketNumber(4), received_manager_.PeerFirstSendingPacketNumber()); EXPECT_FALSE(received_manager_.HasMissingPackets()); RecordPacketReceipt(3, QuicTime::Zero()); EXPECT_FALSE(received_manager_.HasMissingPackets()); EXPECT_EQ(QuicPacketNumber(3), received_manager_.PeerFirstSendingPacketNumber()); RecordPacketReceipt(1, QuicTime::Zero()); EXPECT_EQ(QuicPacketNumber(1), received_manager_.PeerFirstSendingPacketNumber()); EXPECT_TRUE(received_manager_.HasMissingPackets()); RecordPacketReceipt(2, QuicTime::Zero()); EXPECT_EQ(QuicPacketNumber(1), received_manager_.PeerFirstSendingPacketNumber()); EXPECT_FALSE(received_manager_.HasMissingPackets()); } TEST_F(QuicReceivedPacketManagerTest, OutOfOrderReceiptCausesAckSent) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 5); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(6, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 6); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 2); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 1); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(7, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 7); CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, OutOfOrderReceiptCausesAckSent1Ack) { QuicReceivedPacketManagerPeer::SetOneImmediateAck(&received_manager_, true); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 5); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(6, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 6); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 2); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 1); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(7, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 7); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } TEST_F(QuicReceivedPacketManagerTest, OutOfOrderAckReceiptCausesNoAck) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 2); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 1); EXPECT_FALSE(HasPendingAck()); } TEST_F(QuicReceivedPacketManagerTest, AckReceiptCausesAckSend) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 1); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 2); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); clock_.AdvanceTime(kDelayedAckTime); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 4); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 5); EXPECT_FALSE(HasPendingAck()); } TEST_F(QuicReceivedPacketManagerTest, AckSentEveryNthPacket) { EXPECT_FALSE(HasPendingAck()); received_manager_.set_ack_frequency(3); for (size_t i = 1; i <= 39; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 3 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } } TEST_F(QuicReceivedPacketManagerTest, AckDecimationReducesAcks) { EXPECT_FALSE(HasPendingAck()); received_manager_.set_min_received_before_ack_decimation(10); for (size_t i = 1; i <= 29; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i <= 10) { if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } continue; } if (i == 20) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kMinRttMs * 0.25); } } RecordPacketReceipt(30, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 30); CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, SendDelayedAckDecimation) { EXPECT_FALSE(HasPendingAck()); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.25; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (uint64_t i = 1; i < 10; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, SendDelayedAckDecimationMin1ms) { EXPECT_FALSE(HasPendingAck()); rtt_stats_.UpdateRtt(kAlarmGranularity, QuicTime::Delta::Zero(), clock_.ApproximateNow()); QuicTime ack_time = clock_.ApproximateNow() + kAlarmGranularity; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (uint64_t i = 1; i < 10; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, SendDelayedAckDecimationUnlimitedAggregation) { EXPECT_FALSE(HasPendingAck()); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kAKDU); config.SetConnectionOptionsToSend(connection_options); received_manager_.SetFromConfig(config, Perspective::IS_CLIENT); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.25; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (int i = 1; i <= 18; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(ack_time); } TEST_F(QuicReceivedPacketManagerTest, SendDelayedAckDecimationEighthRtt) { EXPECT_FALSE(HasPendingAck()); QuicReceivedPacketManagerPeer::SetAckDecimationDelay(&received_manager_, 0.125); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.125; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (uint64_t i = 1; i < 10; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, UpdateMaxAckDelayAndAckFrequencyFromAckFrequencyFrame) { EXPECT_FALSE(HasPendingAck()); QuicAckFrequencyFrame frame; frame.max_ack_delay = QuicTime::Delta::FromMilliseconds(10); frame.packet_tolerance = 5; received_manager_.OnAckFrequencyFrame(frame); for (int i = 1; i <= 50; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % frame.packet_tolerance == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + frame.max_ack_delay); } } } TEST_F(QuicReceivedPacketManagerTest, DisableOutOfOrderAckByIgnoreOrderFromAckFrequencyFrame) { EXPECT_FALSE(HasPendingAck()); QuicAckFrequencyFrame frame; frame.max_ack_delay = kDelayedAckTime; frame.packet_tolerance = 2; frame.ignore_order = true; received_manager_.OnAckFrequencyFrame(frame); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 4); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 5); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 2); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 1); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } TEST_F(QuicReceivedPacketManagerTest, DisableMissingPaketsAckByIgnoreOrderFromAckFrequencyFrame) { EXPECT_FALSE(HasPendingAck()); QuicConfig config; config.SetConnectionOptionsToSend({kAFFE}); received_manager_.SetFromConfig(config, Perspective::IS_CLIENT); QuicAckFrequencyFrame frame; frame.max_ack_delay = kDelayedAckTime; frame.packet_tolerance = 2; frame.ignore_order = true; received_manager_.OnAckFrequencyFrame(frame); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 1); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 2); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 4); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 5); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(7, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 7); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } TEST_F(QuicReceivedPacketManagerTest, AckDecimationDisabledWhenAckFrequencyFrameIsReceived) { EXPECT_FALSE(HasPendingAck()); QuicAckFrequencyFrame frame; frame.max_ack_delay = kDelayedAckTime; frame.packet_tolerance = 3; frame.ignore_order = true; received_manager_.OnAckFrequencyFrame(frame); uint64_t kFirstDecimatedPacket = 101; uint64_t FiftyPacketsAfterAckDecimation = kFirstDecimatedPacket + 50; for (uint64_t i = 1; i < FiftyPacketsAfterAckDecimation; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 3 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } } TEST_F(QuicReceivedPacketManagerTest, UpdateAckTimeoutOnPacketReceiptTime) { EXPECT_FALSE(HasPendingAck()); QuicTime packet_receipt_time3 = clock_.ApproximateNow(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); RecordPacketReceipt(3, packet_receipt_time3); received_manager_.MaybeUpdateAckTimeout( kInstigateAck, QuicPacketNumber(3), packet_receipt_time3, clock_.ApproximateNow(), &rtt_stats_); CheckAckTimeout(packet_receipt_time3 + kDelayedAckTime); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 4); CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, UpdateAckTimeoutOnPacketReceiptTimeLongerQueuingTime) { EXPECT_FALSE(HasPendingAck()); QuicTime packet_receipt_time3 = clock_.ApproximateNow(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100)); RecordPacketReceipt(3, packet_receipt_time3); received_manager_.MaybeUpdateAckTimeout( kInstigateAck, QuicPacketNumber(3), packet_receipt_time3, clock_.ApproximateNow(), &rtt_stats_); CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(QuicReceivedPacketManagerTest, CountEcnPackets) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, QuicTime::Zero(), ECN_NOT_ECT); RecordPacketReceipt(4, QuicTime::Zero(), ECN_ECT0); RecordPacketReceipt(5, QuicTime::Zero(), ECN_ECT1); RecordPacketReceipt(6, QuicTime::Zero(), ECN_CE); QuicFrame ack = received_manager_.GetUpdatedAckFrame(QuicTime::Zero()); EXPECT_TRUE(ack.ack_frame->ecn_counters.has_value()); EXPECT_EQ(ack.ack_frame->ecn_counters->ect0, 1); EXPECT_EQ(ack.ack_frame->ecn_counters->ect1, 1); EXPECT_EQ(ack.ack_frame->ecn_counters->ce, 1); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_received_packet_manager.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_received_packet_manager_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
800feb57-d016-4a87-a837-c3d1bbe0754c
cpp
tensorflow/tensorflow
reduction_base
third_party/xla/xla/service/gpu/fusions/reduction_base.cc
third_party/xla/xla/service/gpu/fusions/reduction_base_test.cc
#include "xla/service/gpu/fusions/reduction_base.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <optional> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/container/node_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "mlir/IR/AffineExpr.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/primitive_util.h" #include "xla/service/gpu/fusions/fusion_emitter.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/union_find.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { int RowReductionGetRowsPerWarp(int reduced_dimension_size) { if (WarpSize() % reduced_dimension_size != 0 || reduced_dimension_size >= WarpSize()) { return 1; } return WarpSize() / reduced_dimension_size; } int GetVectorSize(const HloFusionAnalysis& analysis, const ReductionDimensions& reduction_dimensions, int num_threads, Vector3 reduction_tiling) { int64_t minor_dim = reduction_dimensions.dimensions.back(); if (minor_dim % 2 != 0) { return 1; } if (num_threads * 2 > minor_dim) { return 1; } if (MayPreventVectorization(analysis.fusion())) { return 1; } if (reduction_dimensions.is_row_reduction) { constexpr int kRowMinorReduced = ReductionDimensions::kRowMinorReducedDimension; const auto* cuda_cc = std::get_if<se::CudaComputeCapability>( &analysis.device_info().gpu_compute_capability()); if (cuda_cc == nullptr) return 1; if (cuda_cc->IsAtLeast(se::CudaComputeCapability::VOLTA)) return 2; if (cuda_cc->IsAtLeast(se::CudaComputeCapability::PASCAL_)) { return analysis.input_output_info().smallest_input_dtype_bits <= 32 && reduction_dimensions.dimensions[kRowMinorReduced] % (reduction_tiling[kRowMinorReduced] * num_threads) == 0 ? 2 : 1; } return 1; } return 1; } int GetVectorSizeForMlir(const HloFusionAnalysis& analysis, int64_t minor_dim, int num_threads) { if (minor_dim % 2 != 0) { return 1; } if (num_threads * 2 > minor_dim) { return 1; } for (HloInstructionAdaptor hero : analysis.fusion_heroes()) { for (HloInstructionAdaptor operand : hero.GetOperands()) { if (primitive_util::IsComplexType(operand.shape().element_type())) { return 1; } } } if (analysis.input_output_info().smallest_input_dtype_bits >= 64) { return 1; } if (analysis.input_output_info().smallest_input_dtype_bits >= 32) { return 2; } if (num_threads * 4 > minor_dim) { return 2; } return minor_dim % 4 == 0 ? 4 : 2; } ReductionGroups GroupDisjointReductions(const HloFusionAnalysis& analysis, bool for_mlir) { const int num_fusion_outputs = analysis.fusion_root_count(); CHECK_NE(0, num_fusion_outputs); if (num_fusion_outputs == 1) { return {{{&analysis.fusion_root(0).instruction()}}, {0}, {true}}; } absl::node_hash_map<HloInstructionAdaptor, UnionFind<HloInstructionAdaptor>> disjoint_sets; UnionFind<HloInstructionAdaptor>* first_non_reduction_root = nullptr; absl::node_hash_map<HloInstructionAdaptor, absl::flat_hash_set<HloInstructionAdaptor>> reachable_outputs; absl::flat_hash_set<HloInstructionAdaptor> roots_with_reduction; absl::flat_hash_map<const HloInstruction*, int> root_indices; const auto& roots = analysis.fusion().GetRoots(); ReductionGroups result; result.group_id_per_root.resize(roots.size()); result.is_reduction_root.reserve(roots.size()); for (auto [root, hero] : llvm::zip(roots, analysis.fusion_heroes())) { int index = root_indices.size(); root_indices[&root.instruction()] = index; auto [it, inserted] = disjoint_sets.try_emplace(root, root); CHECK(inserted) << "Duplicate root " << root.ToString(); reachable_outputs[root].insert(root); result.is_reduction_root.push_back( IsRealReductionHero(root.instruction(), hero.instruction())); if (result.is_reduction_root.back()) { roots_with_reduction.insert(root); } else if (first_non_reduction_root != nullptr) { first_non_reduction_root->Merge(&it->second); } else { first_non_reduction_root = &it->second; } } absl::flat_hash_set<HloInstructionAdaptor> instructions; for (const HloInstruction* operand : analysis.fusion().GetParameters()) { instructions.insert(HloInstructionAdaptor{*operand, &analysis.fusion()}); } auto visit = [&](absl::Span<const HloInstructionAdaptor> roots) { HloBfsConsumersFirstTraversal( roots, analysis.fusion(), [&](HloInstructionAdaptor consumer) { auto& consumer_reachable = reachable_outputs[consumer]; for (auto producer : consumer.GetOperands()) { reachable_outputs[producer].insert(consumer_reachable.begin(), consumer_reachable.end()); } instructions.insert(consumer); return TraversalResult::kAdvance; }); }; if (for_mlir) { for (auto root : roots) { visit({root}); } } else { visit(roots); } for (auto instr : instructions) { const auto& reachable = reachable_outputs[instr]; std::vector<HloInstructionAdaptor> reached_output_ids; bool added_to_reduce = false; for (auto output : roots) { bool has_real_hero = roots_with_reduction.contains(output); if (has_real_hero && (hlo_query::IsBroadcastedConstantOrScalar(instr.instruction()))) { if (added_to_reduce) { VLOG(3) << "Skip broadcasted constant or scalar " << instr.ToString(); continue; } } if (reachable.contains(output)) { VLOG(3) << "Reaching " << output.ToString() << " from " << instr.ToString(); reached_output_ids.push_back(output); if (has_real_hero) { added_to_reduce = true; } } } auto& first_reached_output = disjoint_sets.at(reached_output_ids.front()); for (size_t j = 1; j < reached_output_ids.size(); ++j) { first_reached_output.Merge(&disjoint_sets.at(reached_output_ids[j])); } } ConstHloInstructionMap<std::vector<const HloInstruction*>> group_map; for (auto root : roots) { group_map[&disjoint_sets.at(root).Get().instruction()].push_back( &root.instruction()); } result.grouped_roots.reserve(group_map.size()); absl::c_for_each(group_map, [&](auto& it) { for (auto* root : it.second) { result.group_id_per_root[root_indices[root]] = result.grouped_roots.size(); } result.grouped_roots.emplace_back(std::move(it.second)); }); return result; } void AddGroupIdConstraint(IndexingMap& map, int64_t root_index, const ReductionGroups& groups) { int group_index = groups.group_id_per_root[root_index]; map.AddConstraint( mlir::getAffineDimExpr(KernelFusionInterface::kIndexingMapBlockIdxDims[1], map.GetMLIRContext()), {group_index, group_index}); } } }
#include "xla/service/gpu/fusions/reduction_base.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::SizeIs; using MlirReductionBaseTest = HloTestBase; TEST_F(MlirReductionBaseTest, TwoGroups) { auto module = ParseAndReturnVerifiedModule(R"( add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) %c0 = f32[] constant(-inf) %r0 = f32[] reduce(%p0, %c0), dimensions={0}, to_apply=add %c1 = f32[] constant(inf) %r1 = f32[] reduce(%p1, %c1), dimensions={0}, to_apply=add ROOT %tuple = (f32[], f32[]) tuple(%r0, %r1) } ENTRY entry { %p0 = f32[2] parameter(0) %p1 = f32[2] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%p0, %p1), kind=kInput, calls=fusion })") .value(); auto* root = module->entry_computation()->root_instruction(); auto device_info = TestGpuDeviceInfo::CudaOrRocmDeviceInfo(); auto analysis = HloFusionAnalysis::Create(*root, device_info); auto reduction_groups = GroupDisjointReductions(analysis, true); EXPECT_THAT(reduction_groups.grouped_roots, ElementsAre(ElementsAre(&analysis.fusion_root(0).instruction()), ElementsAre(&analysis.fusion_root(1).instruction()))); } TEST_F(MlirReductionBaseTest, OneGroup) { auto module = ParseAndReturnVerifiedModule(R"( %add { %p0 = c128[] parameter(0) %p1 = c128[] parameter(1) ROOT %add.35 = c128[] add(c128[] %p0, c128[] %p1) } %fusion { %p0 = c128[1,2] parameter(0) %c0 = c128[] constant((0, 0)) %reduce = c128[] reduce(%p0, %c0), dimensions={0,1}, to_apply=%add %real = f64[] real(c128[] %reduce) %imag = f64[] imag(c128[] %reduce) %negate = f64[] negate(f64[] %imag) ROOT %tuple.29 = (f64[], f64[]) tuple(f64[] %real, f64[] %negate) } ENTRY entry { %p0 = c128[1,2] parameter(0) ROOT %fusion = (f64[], f64[]) fusion(%p0), kind=kInput, calls=fusion })") .value(); auto device_info = TestGpuDeviceInfo::CudaOrRocmDeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root, device_info); auto reduction_groups = GroupDisjointReductions(analysis, true); EXPECT_THAT(reduction_groups.grouped_roots, SizeIs(1)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/reduction_base.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/reduction_base_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
15dff040-9d15-4863-8bdf-21b9008d68d1
cpp
google/quiche
balsa_frame
quiche/balsa/balsa_frame.cc
quiche/balsa/balsa_frame_test.cc
#include "quiche/balsa/balsa_frame.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstring> #include <limits> #include <memory> #include <string> #include <utility> #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/string_view.h" #include "quiche/balsa/balsa_enums.h" #include "quiche/balsa/balsa_headers.h" #include "quiche/balsa/balsa_visitor_interface.h" #include "quiche/balsa/header_properties.h" #include "quiche/common/platform/api/quiche_logging.h" #define CHAR_LT(a, b) \ (static_cast<unsigned char>(a) < static_cast<unsigned char>(b)) #define CHAR_LE(a, b) \ (static_cast<unsigned char>(a) <= static_cast<unsigned char>(b)) #define CHAR_GT(a, b) \ (static_cast<unsigned char>(a) > static_cast<unsigned char>(b)) #define CHAR_GE(a, b) \ (static_cast<unsigned char>(a) >= static_cast<unsigned char>(b)) #define QUICHE_DCHECK_CHAR_GE(a, b) \ QUICHE_DCHECK_GE(static_cast<unsigned char>(a), static_cast<unsigned char>(b)) namespace quiche { namespace { using FirstLineValidationOption = HttpValidationPolicy::FirstLineValidationOption; constexpr size_t kContinueStatusCode = 100; constexpr size_t kSwitchingProtocolsStatusCode = 101; constexpr absl::string_view kChunked = "chunked"; constexpr absl::string_view kContentLength = "content-length"; constexpr absl::string_view kIdentity = "identity"; constexpr absl::string_view kTransferEncoding = "transfer-encoding"; bool IsInterimResponse(size_t response_code) { return response_code >= 100 && response_code < 200; } bool IsObsTextChar(char c) { return static_cast<uint8_t>(c) >= 0x80; } } void BalsaFrame::Reset() { last_char_was_slash_r_ = false; saw_non_newline_char_ = false; start_was_space_ = true; chunk_length_character_extracted_ = false; allow_reading_until_close_for_request_ = false; chunk_length_remaining_ = 0; content_length_remaining_ = 0; last_slash_n_idx_ = 0; term_chars_ = 0; parse_state_ = BalsaFrameEnums::READING_HEADER_AND_FIRSTLINE; last_error_ = BalsaFrameEnums::BALSA_NO_ERROR; lines_.clear(); if (continue_headers_ != nullptr) { continue_headers_->Clear(); } if (headers_ != nullptr) { headers_->Clear(); } trailer_lines_.clear(); start_of_trailer_line_ = 0; trailer_length_ = 0; if (trailers_ != nullptr) { trailers_->Clear(); } is_valid_target_uri_ = true; } namespace { inline char* ParseOneIsland(char* current, char* begin, char* end, size_t* first_whitespace, size_t* first_nonwhite) { *first_whitespace = current - begin; while (current < end && CHAR_LE(*current, ' ')) { ++current; } *first_nonwhite = current - begin; while (current < end && CHAR_GT(*current, ' ')) { ++current; } return current; } } bool ParseHTTPFirstLine(char* begin, char* end, bool is_request, BalsaHeaders* headers, BalsaFrameEnums::ErrorCode* error_code, FirstLineValidationOption whitespace_option) { while (begin < end && (end[-1] == '\n' || end[-1] == '\r')) { --end; } if (whitespace_option != FirstLineValidationOption::NONE) { constexpr absl::string_view kBadWhitespace = "\r\t"; char* pos = std::find_first_of(begin, end, kBadWhitespace.begin(), kBadWhitespace.end()); if (pos != end) { if (whitespace_option == FirstLineValidationOption::REJECT) { *error_code = static_cast<BalsaFrameEnums::ErrorCode>( BalsaFrameEnums::INVALID_WS_IN_STATUS_LINE + static_cast<int>(is_request)); return false; } QUICHE_DCHECK(whitespace_option == FirstLineValidationOption::SANITIZE); std::replace_if( pos, end, [](char c) { return c == '\r' || c == '\t'; }, ' '); } } char* current = ParseOneIsland(begin, begin, end, &headers->whitespace_1_idx_, &headers->non_whitespace_1_idx_); current = ParseOneIsland(current, begin, end, &headers->whitespace_2_idx_, &headers->non_whitespace_2_idx_); current = ParseOneIsland(current, begin, end, &headers->whitespace_3_idx_, &headers->non_whitespace_3_idx_); const char* last = end; while (current <= last && CHAR_LE(*last, ' ')) { --last; } headers->whitespace_4_idx_ = last - begin + 1; QUICHE_DCHECK(begin == end || static_cast<unsigned char>(*begin) > ' '); QUICHE_DCHECK_EQ(0u, headers->whitespace_1_idx_); QUICHE_DCHECK_EQ(0u, headers->non_whitespace_1_idx_); QUICHE_DCHECK(begin == end || headers->non_whitespace_1_idx_ < headers->whitespace_2_idx_); if (headers->non_whitespace_2_idx_ == headers->whitespace_3_idx_) { *error_code = static_cast<BalsaFrameEnums::ErrorCode>( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_VERSION + static_cast<int>(is_request)); if (!is_request) { return false; } } if (headers->whitespace_3_idx_ == headers->non_whitespace_3_idx_) { if (*error_code == BalsaFrameEnums::BALSA_NO_ERROR) { *error_code = static_cast<BalsaFrameEnums::ErrorCode>( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_STATUSCODE + static_cast<int>(is_request)); } } if (!is_request) { headers->parsed_response_code_ = 0; if (headers->non_whitespace_2_idx_ < headers->whitespace_3_idx_) { if (!absl::SimpleAtoi( absl::string_view(begin + headers->non_whitespace_2_idx_, headers->non_whitespace_3_idx_ - headers->non_whitespace_2_idx_), &headers->parsed_response_code_)) { *error_code = BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT; return false; } } } return true; } namespace { bool IsValidTargetUri(absl::string_view method, absl::string_view target_uri) { if (target_uri.empty()) { QUICHE_CODE_COUNT(invalid_target_uri_empty); return false; } if (target_uri == "*") { if (method == "OPTIONS") { return true; } QUICHE_CODE_COUNT(invalid_target_uri_asterisk_not_options); return false; } if (method == "CONNECT") { size_t index = target_uri.find_last_of(':'); if (index == absl::string_view::npos || index == 0) { QUICHE_CODE_COUNT(invalid_target_uri_connect_missing_port); return false; } if (target_uri[0] == '[' && target_uri[index - 1] != ']') { QUICHE_CODE_COUNT(invalid_target_uri_connect_bad_v6_literal); return false; } int port; if (!absl::SimpleAtoi(target_uri.substr(index + 1), &port) || port < 0 || port > 65535) { QUICHE_CODE_COUNT(invalid_target_uri_connect_bad_port); return false; } return true; } if (target_uri[0] == '/' || absl::StrContains(target_uri, ": return true; } QUICHE_CODE_COUNT(invalid_target_uri_bad_path); return false; } } void BalsaFrame::ProcessFirstLine(char* begin, char* end) { BalsaFrameEnums::ErrorCode previous_error = last_error_; if (!ParseHTTPFirstLine( begin, end, is_request_, headers_, &last_error_, http_validation_policy().sanitize_cr_tab_in_first_line)) { parse_state_ = BalsaFrameEnums::ERROR; HandleError(last_error_); return; } if (previous_error != last_error_) { HandleWarning(last_error_); } const absl::string_view line_input( begin + headers_->non_whitespace_1_idx_, headers_->whitespace_4_idx_ - headers_->non_whitespace_1_idx_); const absl::string_view part1( begin + headers_->non_whitespace_1_idx_, headers_->whitespace_2_idx_ - headers_->non_whitespace_1_idx_); const absl::string_view part2( begin + headers_->non_whitespace_2_idx_, headers_->whitespace_3_idx_ - headers_->non_whitespace_2_idx_); const absl::string_view part3( begin + headers_->non_whitespace_3_idx_, headers_->whitespace_4_idx_ - headers_->non_whitespace_3_idx_); if (is_request_) { is_valid_target_uri_ = IsValidTargetUri(part1, part2); if (http_validation_policy().disallow_invalid_target_uris && !is_valid_target_uri_) { parse_state_ = BalsaFrameEnums::ERROR; last_error_ = BalsaFrameEnums::INVALID_TARGET_URI; HandleError(last_error_); return; } visitor_->OnRequestFirstLineInput(line_input, part1, part2, part3); if (part3.empty()) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; } return; } visitor_->OnResponseFirstLineInput(line_input, part1, part2, part3); } void BalsaFrame::CleanUpKeyValueWhitespace( const char* stream_begin, const char* line_begin, const char* current, const char* line_end, HeaderLineDescription* current_header_line) { const char* colon_loc = current; QUICHE_DCHECK_LT(colon_loc, line_end); QUICHE_DCHECK_EQ(':', *colon_loc); QUICHE_DCHECK_EQ(':', *current); QUICHE_DCHECK_CHAR_GE(' ', *line_end) << "\"" << std::string(line_begin, line_end) << "\""; --current; while (current > line_begin && CHAR_LE(*current, ' ')) { --current; } current += static_cast<int>(current != colon_loc); current_header_line->key_end_idx = current - stream_begin; current = colon_loc; QUICHE_DCHECK_EQ(':', *current); ++current; while (current < line_end && CHAR_LE(*current, ' ')) { ++current; } current_header_line->value_begin_idx = current - stream_begin; QUICHE_DCHECK_GE(current_header_line->key_end_idx, current_header_line->first_char_idx); QUICHE_DCHECK_GE(current_header_line->value_begin_idx, current_header_line->key_end_idx); QUICHE_DCHECK_GE(current_header_line->last_char_idx, current_header_line->value_begin_idx); } bool BalsaFrame::FindColonsAndParseIntoKeyValue(const Lines& lines, bool is_trailer, BalsaHeaders* headers) { QUICHE_DCHECK(!lines.empty()); const char* stream_begin = headers->OriginalHeaderStreamBegin(); const Lines::size_type lines_size_m1 = lines.size() - 1; int first_header_idx = (is_trailer ? 0 : 1); const char* current = stream_begin + lines[first_header_idx].first; for (Lines::size_type i = first_header_idx; i < lines_size_m1;) { const char* line_begin = stream_begin + lines[i].first; for (++i; i < lines_size_m1; ++i) { const char c = *(stream_begin + lines[i].first); if (CHAR_GT(c, ' ')) { break; } if ((c != ' ' && c != '\t') || http_validation_policy().disallow_header_continuation_lines) { HandleError(is_trailer ? BalsaFrameEnums::INVALID_TRAILER_FORMAT : BalsaFrameEnums::INVALID_HEADER_FORMAT); return false; } } const char* line_end = stream_begin + lines[i - 1].second; QUICHE_DCHECK_LT(line_begin - stream_begin, line_end - stream_begin); --line_end; QUICHE_DCHECK_EQ('\n', *line_end) << "\"" << std::string(line_begin, line_end) << "\""; while (CHAR_LE(*line_end, ' ') && line_end > line_begin) { --line_end; } ++line_end; QUICHE_DCHECK_CHAR_GE(' ', *line_end); QUICHE_DCHECK_LT(line_begin, line_end); headers->header_lines_.push_back(HeaderLineDescription( line_begin - stream_begin, line_end - stream_begin, line_end - stream_begin, line_end - stream_begin, 0)); if (current >= line_end) { if (http_validation_policy().require_header_colon) { HandleError(is_trailer ? BalsaFrameEnums::TRAILER_MISSING_COLON : BalsaFrameEnums::HEADER_MISSING_COLON); return false; } HandleWarning(is_trailer ? BalsaFrameEnums::TRAILER_MISSING_COLON : BalsaFrameEnums::HEADER_MISSING_COLON); continue; } if (current < line_begin) { current = line_begin; } for (; current < line_end; ++current) { const char c = *current; if (c == ':') { break; } if (http_validation_policy().disallow_double_quote_in_header_name) { if (header_properties::IsInvalidHeaderKeyChar(c)) { HandleError(is_trailer ? BalsaFrameEnums::INVALID_TRAILER_NAME_CHARACTER : BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); return false; } } else if (header_properties::IsInvalidHeaderKeyCharAllowDoubleQuote(c)) { HandleError(is_trailer ? BalsaFrameEnums::INVALID_TRAILER_NAME_CHARACTER : BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); return false; } if (http_validation_policy().disallow_obs_text_in_field_names && IsObsTextChar(c)) { HandleError(is_trailer ? BalsaFrameEnums::INVALID_TRAILER_NAME_CHARACTER : BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); return false; } } if (current == line_end) { if (http_validation_policy().require_header_colon) { HandleError(is_trailer ? BalsaFrameEnums::TRAILER_MISSING_COLON : BalsaFrameEnums::HEADER_MISSING_COLON); return false; } HandleWarning(is_trailer ? BalsaFrameEnums::TRAILER_MISSING_COLON : BalsaFrameEnums::HEADER_MISSING_COLON); continue; } QUICHE_DCHECK_EQ(*current, ':'); QUICHE_DCHECK_LE(current - stream_begin, line_end - stream_begin); QUICHE_DCHECK_LE(stream_begin - stream_begin, current - stream_begin); HeaderLineDescription& current_header_line = headers->header_lines_.back(); current_header_line.key_end_idx = current - stream_begin; current_header_line.value_begin_idx = current_header_line.key_end_idx; if (current < line_end) { ++current_header_line.key_end_idx; CleanUpKeyValueWhitespace(stream_begin, line_begin, current, line_end, &current_header_line); } } return true; } void BalsaFrame::HandleWarning(BalsaFrameEnums::ErrorCode error_code) { last_error_ = error_code; visitor_->HandleWarning(last_error_); } void BalsaFrame::HandleError(BalsaFrameEnums::ErrorCode error_code) { last_error_ = error_code; parse_state_ = BalsaFrameEnums::ERROR; visitor_->HandleError(last_error_); } BalsaHeadersEnums::ContentLengthStatus BalsaFrame::ProcessContentLengthLine( HeaderLines::size_type line_idx, size_t* length) { const HeaderLineDescription& header_line = headers_->header_lines_[line_idx]; const char* stream_begin = headers_->OriginalHeaderStreamBegin(); const char* line_end = stream_begin + header_line.last_char_idx; const char* value_begin = (stream_begin + header_line.value_begin_idx); if (value_begin >= line_end) { QUICHE_DVLOG(1) << "invalid content-length -- no non-whitespace value data"; return BalsaHeadersEnums::INVALID_CONTENT_LENGTH; } *length = 0; while (value_begin < line_end) { if (*value_begin < '0' || *value_begin > '9') { QUICHE_DVLOG(1) << "invalid content-length - non numeric character detected"; return BalsaHeadersEnums::INVALID_CONTENT_LENGTH; } const size_t kMaxDiv10 = std::numeric_limits<size_t>::max() / 10; size_t length_x_10 = *length * 10; const size_t c = *value_begin - '0'; if (*length > kMaxDiv10 || (std::numeric_limits<size_t>::max() - length_x_10) < c) { QUICHE_DVLOG(1) << "content-length overflow"; return BalsaHeadersEnums::CONTENT_LENGTH_OVERFLOW; } *length = length_x_10 + c; ++value_begin; } QUICHE_DVLOG(1) << "content_length parsed: " << *length; return BalsaHeadersEnums::VALID_CONTENT_LENGTH; } void BalsaFrame::ProcessTransferEncodingLine(HeaderLines::size_type line_idx) { const HeaderLineDescription& header_line = headers_->header_lines_[line_idx]; const char* stream_begin = headers_->OriginalHeaderStreamBegin(); const absl::string_view transfer_encoding( stream_begin + header_line.value_begin_idx, header_line.last_char_idx - header_line.value_begin_idx); if (absl::EqualsIgnoreCase(transfer_encoding, kChunked)) { headers_->transfer_encoding_is_chunked_ = true; return; } if (absl::EqualsIgnoreCase(transfer_encoding, kIdentity)) { headers_->transfer_encoding_is_chunked_ = false; return; } if (http_validation_policy().validate_transfer_encoding) { HandleError(BalsaFrameEnums::UNKNOWN_TRANSFER_ENCODING); } } bool BalsaFrame::CheckHeaderLinesForInvalidChars(const Lines& lines, const BalsaHeaders* headers) { const char* stream_begin = headers->OriginalHeaderStreamBegin() + lines.front().first; const char* stream_end = headers->OriginalHeaderStreamBegin() + lines.back().second; bool found_invalid = false; for (const char* c = stream_begin; c < stream_end; c++) { if (header_properties::IsInvalidHeaderChar(*c)) { found_invalid = true; } if (*c == '\r' && http_validation_policy().disallow_lone_cr_in_request_headers && c + 1 < stream_end && *(c + 1) != '\n') { found_invalid = true; } } return found_invalid; } void BalsaFrame::ProcessHeaderLines(const Lines& lines, bool is_trailer, BalsaHeaders* headers) { QUICHE_DCHECK(!lines.empty()); QUICHE_DVLOG(1) << "******@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@**********\n"; if (invalid_chars_error_enabled() && CheckHeaderLinesForInvalidChars(lines, headers)) { HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER); return; } if (lines.size() <= (is_trailer ? 1 : 2)) { return; } HeaderLines::size_type content_length_idx = 0; HeaderLines::size_type transfer_encoding_idx = 0; const char* stream_begin = headers->OriginalHeaderStreamBegin(); if (!FindColonsAndParseIntoKeyValue(lines, is_trailer, headers)) { return; } const HeaderLines::size_type lines_size = headers->header_lines_.size(); for (HeaderLines::size_type i = 0; i < lines_size; ++i) { const HeaderLineDescription& line = headers->header_lines_[i]; const absl::string_view key(stream_begin + line.first_char_idx, line.key_end_idx - line.first_char_idx); QUICHE_DVLOG(2) << "[" << i << "]: " << key << " key_len: " << key.length(); if (key.empty() || key[0] == ' ') { parse_state_ = BalsaFrameEnums::ERROR; HandleError(is_trailer ? BalsaFrameEnums::INVALID_TRAILER_FORMAT : BalsaFrameEnums::INVALID_HEADER_FORMAT); return; } if (is_trailer) { continue; } if (absl::EqualsIgnoreCase(key, kContentLength)) { size_t length = 0; BalsaHeadersEnums::ContentLengthStatus content_length_status = ProcessContentLengthLine(i, &length); if (content_length_idx == 0) { content_length_idx = i + 1; headers->content_length_status_ = content_length_status; headers->content_length_ = length; content_length_remaining_ = length; continue; } if ((headers->content_length_status_ != content_length_status) || ((headers->content_length_status_ == BalsaHeadersEnums::VALID_CONTENT_LENGTH) && (http_validation_policy().disallow_multiple_content_length || length != headers->content_length_))) { HandleError(BalsaFrameEnums::MULTIPLE_CONTENT_LENGTH_KEYS); return; } continue; } if (absl::EqualsIgnoreCase(key, kTransferEncoding)) { if (http_validation_policy().validate_transfer_encoding && transfer_encoding_idx != 0) { HandleError(BalsaFrameEnums::MULTIPLE_TRANSFER_ENCODING_KEYS); return; } transfer_encoding_idx = i + 1; } } if (!is_trailer) { if (http_validation_policy().validate_transfer_encoding && http_validation_policy() .disallow_transfer_encoding_with_content_length && content_length_idx != 0 && transfer_encoding_idx != 0) { HandleError(BalsaFrameEnums::BOTH_TRANSFER_ENCODING_AND_CONTENT_LENGTH); return; } if (headers->transfer_encoding_is_chunked_) { headers->content_length_ = 0; headers->content_length_status_ = BalsaHeadersEnums::NO_CONTENT_LENGTH; content_length_remaining_ = 0; } if (transfer_encoding_idx != 0) { ProcessTransferEncodingLine(transfer_encoding_idx - 1); } } } void BalsaFrame::AssignParseStateAfterHeadersHaveBeenParsed() { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; int response_code = headers_->parsed_response_code_; if (!is_request_ && (request_was_head_ || !BalsaHeaders::ResponseCanHaveBody(response_code))) { return; } if (headers_->transfer_encoding_is_chunked_) { parse_state_ = BalsaFrameEnums::READING_CHUNK_LENGTH; return; } switch (headers_->content_length_status_) { case BalsaHeadersEnums::VALID_CONTENT_LENGTH: if (headers_->content_length_ == 0) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; } else { parse_state_ = BalsaFrameEnums::READING_CONTENT; } break; case BalsaHeadersEnums::CONTENT_LENGTH_OVERFLOW: case BalsaHeadersEnums::INVALID_CONTENT_LENGTH: HandleError(BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH); break; case BalsaHeadersEnums::NO_CONTENT_LENGTH: if (is_request_) { const absl::string_view method = headers_->request_method(); if ((method != "POST" && method != "PUT") || !http_validation_policy().require_content_length_if_body_required) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; break; } else if (!allow_reading_until_close_for_request_) { HandleError(BalsaFrameEnums::REQUIRED_BODY_BUT_NO_CONTENT_LENGTH); break; } } parse_state_ = BalsaFrameEnums::READING_UNTIL_CLOSE; HandleWarning(BalsaFrameEnums::MAYBE_BODY_BUT_NO_CONTENT_LENGTH); break; default: QUICHE_LOG(FATAL) << "Saw a content_length_status: " << headers_->content_length_status_ << " which is unknown."; } } size_t BalsaFrame::ProcessHeaders(const char* message_start, size_t message_length) { const char* const original_message_start = message_start; const char* const message_end = message_start + message_length; const char* message_current = message_start; const char* checkpoint = message_start; if (message_length == 0) { return message_current - original_message_start; } while (message_current < message_end) { size_t base_idx = headers_->GetReadableBytesFromHeaderStream(); if (!saw_non_newline_char_) { do { const char c = *message_current; if (c != '\r' && c != '\n') { if (CHAR_LE(c, ' ')) { HandleError(BalsaFrameEnums::NO_REQUEST_LINE_IN_REQUEST); return message_current - original_message_start; } break; } ++message_current; if (message_current == message_end) { return message_current - original_message_start; } } while (true); saw_non_newline_char_ = true; message_start = message_current; checkpoint = message_current; } while (message_current < message_end) { if (*message_current != '\n') { ++message_current; continue; } const size_t relative_idx = message_current - message_start; const size_t message_current_idx = 1 + base_idx + relative_idx; lines_.push_back(std::make_pair(last_slash_n_idx_, message_current_idx)); if (lines_.size() == 1) { headers_->WriteFromFramer(checkpoint, 1 + message_current - checkpoint); checkpoint = message_current + 1; char* begin = headers_->OriginalHeaderStreamBegin(); QUICHE_DVLOG(1) << "First line " << std::string(begin, lines_[0].second); QUICHE_DVLOG(1) << "is_request_: " << is_request_; ProcessFirstLine(begin, begin + lines_[0].second); if (parse_state_ == BalsaFrameEnums::MESSAGE_FULLY_READ) { break; } if (parse_state_ == BalsaFrameEnums::ERROR) { return message_current - original_message_start; } } const size_t chars_since_last_slash_n = (message_current_idx - last_slash_n_idx_); last_slash_n_idx_ = message_current_idx; if (chars_since_last_slash_n > 2) { ++message_current; continue; } if ((chars_since_last_slash_n == 1) || (((message_current > message_start) && (*(message_current - 1) == '\r')) || (last_char_was_slash_r_))) { break; } ++message_current; } if (message_current == message_end) { continue; } ++message_current; QUICHE_DCHECK(message_current >= message_start); if (message_current > message_start) { headers_->WriteFromFramer(checkpoint, message_current - checkpoint); } if (headers_->GetReadableBytesFromHeaderStream() > max_header_length_) { HandleHeadersTooLongError(); return message_current - original_message_start; } headers_->DoneWritingFromFramer(); visitor_->OnHeaderInput(headers_->GetReadablePtrFromHeaderStream()); ProcessHeaderLines(lines_, false , headers_); if (parse_state_ == BalsaFrameEnums::ERROR) { return message_current - original_message_start; } if (use_interim_headers_callback_ && IsInterimResponse(headers_->parsed_response_code()) && headers_->parsed_response_code() != kSwitchingProtocolsStatusCode) { visitor_->OnInterimHeaders( std::make_unique<BalsaHeaders>(std::move(*headers_))); Reset(); checkpoint = message_start = message_current; continue; } if (continue_headers_ != nullptr && headers_->parsed_response_code_ == kContinueStatusCode) { BalsaHeaders saved_continue_headers = std::move(*headers_); Reset(); *continue_headers_ = std::move(saved_continue_headers); visitor_->ContinueHeaderDone(); checkpoint = message_start = message_current; continue; } AssignParseStateAfterHeadersHaveBeenParsed(); if (parse_state_ == BalsaFrameEnums::ERROR) { return message_current - original_message_start; } visitor_->ProcessHeaders(*headers_); visitor_->HeaderDone(); if (parse_state_ == BalsaFrameEnums::MESSAGE_FULLY_READ) { visitor_->MessageDone(); } return message_current - original_message_start; } last_char_was_slash_r_ = (*(message_end - 1) == '\r'); QUICHE_DCHECK(message_current >= message_start); if (message_current > message_start) { headers_->WriteFromFramer(checkpoint, message_current - checkpoint); } return message_current - original_message_start; } size_t BalsaFrame::BytesSafeToSplice() const { switch (parse_state_) { case BalsaFrameEnums::READING_CHUNK_DATA: return chunk_length_remaining_; case BalsaFrameEnums::READING_UNTIL_CLOSE: return std::numeric_limits<size_t>::max(); case BalsaFrameEnums::READING_CONTENT: return content_length_remaining_; default: return 0; } } void BalsaFrame::BytesSpliced(size_t bytes_spliced) { switch (parse_state_) { case BalsaFrameEnums::READING_CHUNK_DATA: if (chunk_length_remaining_ < bytes_spliced) { HandleError(BalsaFrameEnums:: CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT); return; } chunk_length_remaining_ -= bytes_spliced; if (chunk_length_remaining_ == 0) { parse_state_ = BalsaFrameEnums::READING_CHUNK_TERM; } return; case BalsaFrameEnums::READING_UNTIL_CLOSE: return; case BalsaFrameEnums::READING_CONTENT: if (content_length_remaining_ < bytes_spliced) { HandleError(BalsaFrameEnums:: CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT); return; } content_length_remaining_ -= bytes_spliced; if (content_length_remaining_ == 0) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; visitor_->MessageDone(); } return; default: HandleError(BalsaFrameEnums::CALLED_BYTES_SPLICED_WHEN_UNSAFE_TO_DO_SO); return; } } size_t BalsaFrame::ProcessInput(const char* input, size_t size) { const char* current = input; const char* on_entry = current; const char* end = current + size; QUICHE_DCHECK(headers_ != nullptr); if (headers_ == nullptr) { return 0; } if (parse_state_ == BalsaFrameEnums::READING_HEADER_AND_FIRSTLINE) { const size_t header_length = headers_->GetReadableBytesFromHeaderStream(); if (header_length > max_header_length_ || (header_length == max_header_length_ && size > 0)) { HandleHeadersTooLongError(); return current - input; } const size_t bytes_to_process = std::min(max_header_length_ - header_length, size); current += ProcessHeaders(input, bytes_to_process); if (parse_state_ == BalsaFrameEnums::READING_HEADER_AND_FIRSTLINE) { const size_t header_length_after = headers_->GetReadableBytesFromHeaderStream(); if (header_length_after >= max_header_length_) { HandleHeadersTooLongError(); } } return current - input; } if (parse_state_ == BalsaFrameEnums::MESSAGE_FULLY_READ || parse_state_ == BalsaFrameEnums::ERROR) { return current - input; } QUICHE_DCHECK_LE(current, end); if (current == end) { return current - input; } while (true) { switch (parse_state_) { case BalsaFrameEnums::READING_CHUNK_LENGTH: QUICHE_DCHECK_LE(current, end); while (true) { if (current == end) { visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); return current - input; } const char c = *current; ++current; static const signed char kBad = -1; static const signed char kDelimiter = -2; signed char addition = kBad; switch (c) { case '0': addition = 0; break; case '1': addition = 1; break; case '2': addition = 2; break; case '3': addition = 3; break; case '4': addition = 4; break; case '5': addition = 5; break; case '6': addition = 6; break; case '7': addition = 7; break; case '8': addition = 8; break; case '9': addition = 9; break; case 'a': addition = 0xA; break; case 'b': addition = 0xB; break; case 'c': addition = 0xC; break; case 'd': addition = 0xD; break; case 'e': addition = 0xE; break; case 'f': addition = 0xF; break; case 'A': addition = 0xA; break; case 'B': addition = 0xB; break; case 'C': addition = 0xC; break; case 'D': addition = 0xD; break; case 'E': addition = 0xE; break; case 'F': addition = 0xF; break; case '\t': case '\n': case '\r': case ' ': case ';': addition = kDelimiter; break; default: break; } if (addition >= 0) { chunk_length_character_extracted_ = true; size_t length_x_16 = chunk_length_remaining_ * 16; const size_t kMaxDiv16 = std::numeric_limits<size_t>::max() / 16; if ((chunk_length_remaining_ > kMaxDiv16) || (std::numeric_limits<size_t>::max() - length_x_16) < static_cast<size_t>(addition)) { visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); HandleError(BalsaFrameEnums::CHUNK_LENGTH_OVERFLOW); return current - input; } chunk_length_remaining_ = length_x_16 + addition; continue; } if (!chunk_length_character_extracted_ || addition == kBad) { visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); HandleError(BalsaFrameEnums::INVALID_CHUNK_LENGTH); return current - input; } break; } --current; parse_state_ = BalsaFrameEnums::READING_CHUNK_EXTENSION; last_char_was_slash_r_ = false; visitor_->OnChunkLength(chunk_length_remaining_); continue; case BalsaFrameEnums::READING_CHUNK_EXTENSION: { const char* extensions_start = current; size_t extensions_length = 0; QUICHE_DCHECK_LE(current, end); while (true) { if (current == end) { visitor_->OnChunkExtensionInput( absl::string_view(extensions_start, extensions_length)); visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); return current - input; } const char c = *current; if (http_validation_policy_.disallow_lone_cr_in_chunk_extension) { const bool cr_followed_by_non_lf = c == '\r' && current + 1 < end && *(current + 1) != '\n'; const bool previous_cr_followed_by_non_lf = last_char_was_slash_r_ && current == input && c != '\n'; if (cr_followed_by_non_lf || previous_cr_followed_by_non_lf) { HandleError(BalsaFrameEnums::INVALID_CHUNK_EXTENSION); return current - input; } if (current + 1 == end) { last_char_was_slash_r_ = c == '\r'; } } if (c == '\r' || c == '\n') { extensions_length = (extensions_start == current) ? 0 : current - extensions_start - 1; } ++current; if (c == '\n') { break; } } chunk_length_character_extracted_ = false; visitor_->OnChunkExtensionInput( absl::string_view(extensions_start, extensions_length)); if (chunk_length_remaining_ != 0) { parse_state_ = BalsaFrameEnums::READING_CHUNK_DATA; continue; } HeaderFramingFound('\n'); parse_state_ = BalsaFrameEnums::READING_LAST_CHUNK_TERM; continue; } case BalsaFrameEnums::READING_CHUNK_DATA: while (current < end) { if (chunk_length_remaining_ == 0) { break; } size_t bytes_remaining = end - current; size_t consumed_bytes = (chunk_length_remaining_ < bytes_remaining) ? chunk_length_remaining_ : bytes_remaining; const char* tmp_current = current + consumed_bytes; visitor_->OnRawBodyInput( absl::string_view(on_entry, tmp_current - on_entry)); visitor_->OnBodyChunkInput( absl::string_view(current, consumed_bytes)); on_entry = current = tmp_current; chunk_length_remaining_ -= consumed_bytes; } if (chunk_length_remaining_ == 0) { parse_state_ = BalsaFrameEnums::READING_CHUNK_TERM; continue; } visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); return current - input; case BalsaFrameEnums::READING_CHUNK_TERM: QUICHE_DCHECK_LE(current, end); while (true) { if (current == end) { visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); return current - input; } const char c = *current; ++current; if (c == '\n') { break; } } parse_state_ = BalsaFrameEnums::READING_CHUNK_LENGTH; continue; case BalsaFrameEnums::READING_LAST_CHUNK_TERM: QUICHE_DCHECK_LE(current, end); while (true) { if (current == end) { visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); return current - input; } const char c = *current; if (HeaderFramingFound(c) != 0) { ++current; parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); visitor_->MessageDone(); return current - input; } if (!HeaderFramingMayBeFound()) { break; } ++current; } parse_state_ = BalsaFrameEnums::READING_TRAILER; visitor_->OnRawBodyInput( absl::string_view(on_entry, current - on_entry)); on_entry = current; continue; case BalsaFrameEnums::READING_TRAILER: while (current < end) { const char c = *current; ++current; ++trailer_length_; if (trailers_ != nullptr) { if (trailer_length_ > max_header_length_) { --current; HandleError(BalsaFrameEnums::TRAILER_TOO_LONG); return current - input; } if (LineFramingFound(c)) { trailer_lines_.push_back( std::make_pair(start_of_trailer_line_, trailer_length_)); start_of_trailer_line_ = trailer_length_; } } if (HeaderFramingFound(c) != 0) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; if (trailers_ != nullptr) { trailers_->WriteFromFramer(on_entry, current - on_entry); trailers_->DoneWritingFromFramer(); ProcessHeaderLines(trailer_lines_, true , trailers_.get()); if (parse_state_ == BalsaFrameEnums::ERROR) { return current - input; } visitor_->OnTrailers(std::move(trailers_)); trailers_ = std::make_unique<BalsaHeaders>(); } visitor_->OnTrailerInput( absl::string_view(on_entry, current - on_entry)); visitor_->MessageDone(); return current - input; } } if (trailers_ != nullptr) { trailers_->WriteFromFramer(on_entry, current - on_entry); } visitor_->OnTrailerInput( absl::string_view(on_entry, current - on_entry)); return current - input; case BalsaFrameEnums::READING_UNTIL_CLOSE: { const size_t bytes_remaining = end - current; if (bytes_remaining > 0) { visitor_->OnRawBodyInput(absl::string_view(current, bytes_remaining)); visitor_->OnBodyChunkInput( absl::string_view(current, bytes_remaining)); current += bytes_remaining; } return current - input; } case BalsaFrameEnums::READING_CONTENT: while ((content_length_remaining_ != 0u) && current < end) { const size_t bytes_remaining = end - current; const size_t consumed_bytes = (content_length_remaining_ < bytes_remaining) ? content_length_remaining_ : bytes_remaining; visitor_->OnRawBodyInput(absl::string_view(current, consumed_bytes)); visitor_->OnBodyChunkInput( absl::string_view(current, consumed_bytes)); current += consumed_bytes; content_length_remaining_ -= consumed_bytes; } if (content_length_remaining_ == 0) { parse_state_ = BalsaFrameEnums::MESSAGE_FULLY_READ; visitor_->MessageDone(); } return current - input; default: QUICHE_LOG(FATAL) << "Unknown state: " << parse_state_ << " memory corruption?!"; } } } void BalsaFrame::HandleHeadersTooLongError() { if (parse_truncated_headers_even_when_headers_too_long_) { const size_t len = headers_->GetReadableBytesFromHeaderStream(); const char* stream_begin = headers_->OriginalHeaderStreamBegin(); if (last_slash_n_idx_ < len && stream_begin[last_slash_n_idx_] != '\r') { static const absl::string_view kTwoLineEnds = "\r\n\r\n"; headers_->WriteFromFramer(kTwoLineEnds.data(), kTwoLineEnds.size()); lines_.push_back(std::make_pair(last_slash_n_idx_, len + 2)); lines_.push_back(std::make_pair(len + 2, len + 4)); } ProcessHeaderLines(lines_, false, headers_); } HandleError(BalsaFrameEnums::HEADERS_TOO_LONG); } const int32_t BalsaFrame::kValidTerm1; const int32_t BalsaFrame::kValidTerm1Mask; const int32_t BalsaFrame::kValidTerm2; const int32_t BalsaFrame::kValidTerm2Mask; } #undef CHAR_LT #undef CHAR_LE #undef CHAR_GT #undef CHAR_GE #undef QUICHE_DCHECK_CHAR_GE
#include "quiche/balsa/balsa_frame.h" #include <stdlib.h> #include <cstdint> #include <limits> #include <map> #include <memory> #include <random> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/strings/escaping.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "quiche/balsa/balsa_enums.h" #include "quiche/balsa/balsa_headers.h" #include "quiche/balsa/balsa_visitor_interface.h" #include "quiche/balsa/http_validation_policy.h" #include "quiche/balsa/noop_balsa_visitor.h" #include "quiche/balsa/simple_buffer.h" #include "quiche/common/platform/api/quiche_command_line_flags.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_flags.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::_; using ::testing::AnyNumber; using ::testing::AtLeast; using ::testing::InSequence; using ::testing::IsEmpty; using ::testing::Mock; using ::testing::NiceMock; using ::testing::Pointee; using ::testing::Property; using ::testing::Range; using ::testing::StrEq; using ::testing::StrictMock; DEFINE_QUICHE_COMMAND_LINE_FLAG( std::string, randseed, "", "This is the seed for Pseudo-random number" " generator used when generating random messages for unittests"); namespace quiche::test { using RandomEngine = std::mt19937; class BalsaFrameTestPeer { public: static int32_t HeaderFramingFound(BalsaFrame* balsa_frame, char c) { return balsa_frame->HeaderFramingFound(c); } static void FindColonsAndParseIntoKeyValue(BalsaFrame* balsa_frame, const BalsaFrame::Lines& lines, bool is_trailer, BalsaHeaders* headers) { balsa_frame->FindColonsAndParseIntoKeyValue(lines, is_trailer, headers); } }; class BalsaHeadersTestPeer { public: static void WriteFromFramer(BalsaHeaders* headers, const char* ptr, size_t size) { headers->WriteFromFramer(ptr, size); } }; namespace { class TestSeed { public: TestSeed() : test_seed_(0), user_supplied_seed_(false) {} void Initialize(const std::string& seed_flag) { if (!seed_flag.empty()) { ASSERT_TRUE(absl::SimpleAtoi(seed_flag, &test_seed_)); user_supplied_seed_ = true; } } int GetSeed() const { int seed = (user_supplied_seed_ ? test_seed_ : testing::UnitTest::GetInstance()->random_seed()); QUICHE_LOG(INFO) << "**** The current seed is " << seed << " ****"; return seed; } private: int test_seed_; bool user_supplied_seed_; }; static bool RandomBool(RandomEngine& rng) { return rng() % 2 != 0; } std::string EscapeString(absl::string_view message) { return absl::StrReplaceAll( message, {{"\n", "\\\\n\n"}, {"\\r", "\\\\r"}, {"\\t", "\\\\t"}}); } char random_lws(RandomEngine& rng) { if (RandomBool(rng)) { return '\t'; } return ' '; } const char* random_line_term(RandomEngine& rng) { if (RandomBool(rng)) { return "\r\n"; } return "\n"; } void AppendRandomWhitespace(RandomEngine& rng, std::stringstream* s) { for (int i = 0; i < 1000 && RandomBool(rng); ++i) { *s << random_lws(rng); } } std::string CreateFirstLine(const char* tokens[3], const char* whitespace[4], const char* line_ending) { QUICHE_CHECK(tokens != nullptr); QUICHE_CHECK(whitespace != nullptr); QUICHE_CHECK(line_ending != nullptr); QUICHE_CHECK(std::string(line_ending) == "\n" || std::string(line_ending) == "\r\n") << "line_ending: " << EscapeString(line_ending); SimpleBuffer firstline_buffer; firstline_buffer.WriteString(whitespace[0]); for (int i = 0; i < 3; ++i) { firstline_buffer.WriteString(tokens[i]); firstline_buffer.WriteString(whitespace[i + 1]); } firstline_buffer.WriteString(line_ending); return std::string(firstline_buffer.GetReadableRegion()); } std::string CreateMessage(const char* firstline, const std::pair<std::string, std::string>* headers, size_t headers_len, const char* colon, const char* line_ending, const char* body) { SimpleBuffer request_buffer; request_buffer.WriteString(firstline); if (headers_len > 0) { QUICHE_CHECK(headers != nullptr); QUICHE_CHECK(colon != nullptr); } QUICHE_CHECK(line_ending != nullptr); QUICHE_CHECK(std::string(line_ending) == "\n" || std::string(line_ending) == "\r\n") << "line_ending: " << EscapeString(line_ending); QUICHE_CHECK(body != nullptr); for (size_t i = 0; i < headers_len; ++i) { bool only_whitespace_in_key = true; { const char* tmp_key = headers[i].first.c_str(); while (*tmp_key != '\0') { if (*tmp_key > ' ') { only_whitespace_in_key = false; break; } ++tmp_key; } } const char* tmp_colon = colon; if (only_whitespace_in_key) { while (*tmp_colon != ':') { ++tmp_colon; } } request_buffer.WriteString(headers[i].first); request_buffer.WriteString(tmp_colon); request_buffer.WriteString(headers[i].second); request_buffer.WriteString(line_ending); } request_buffer.WriteString(line_ending); request_buffer.WriteString(body); return std::string(request_buffer.GetReadableRegion()); } void VerifyRequestFirstLine(const char* tokens[3], const BalsaHeaders& headers) { EXPECT_EQ(tokens[0], headers.request_method()); EXPECT_EQ(tokens[1], headers.request_uri()); EXPECT_EQ(0u, headers.parsed_response_code()); EXPECT_EQ(tokens[2], headers.request_version()); } void VerifyResponseFirstLine(const char* tokens[3], size_t expected_response_code, const BalsaHeaders& headers) { EXPECT_EQ(tokens[0], headers.response_version()); EXPECT_EQ(tokens[1], headers.response_code()); EXPECT_EQ(expected_response_code, headers.parsed_response_code()); EXPECT_EQ(tokens[2], headers.response_reason_phrase()); } void VerifyHeaderLines( const std::pair<std::string, std::string>* expected_headers, size_t headers_len, const BalsaHeaders& headers) { BalsaHeaders::const_header_lines_iterator it = headers.lines().begin(); for (size_t i = 0; it != headers.lines().end(); ++it, ++i) { ASSERT_GT(headers_len, i); std::string actual_key; std::string actual_value; if (!it->first.empty()) { actual_key = std::string(it->first); } if (!it->second.empty()) { actual_value = std::string(it->second); } EXPECT_THAT(actual_key, StrEq(expected_headers[i].first)); EXPECT_THAT(actual_value, StrEq(expected_headers[i].second)); } EXPECT_TRUE(headers.lines().end() == it); } void FirstLineParsedCorrectlyHelper(const char* tokens[3], size_t expected_response_code, bool is_request, const char* whitespace) { BalsaHeaders headers; BalsaFrame framer; framer.set_is_request(is_request); framer.set_balsa_headers(&headers); const char* tmp_tokens[3] = {tokens[0], tokens[1], tokens[2]}; const char* tmp_whitespace[4] = {"", whitespace, whitespace, ""}; for (int j = 2; j >= 0; --j) { framer.Reset(); std::string firstline = CreateFirstLine(tmp_tokens, tmp_whitespace, "\n"); std::string message = CreateMessage(firstline.c_str(), nullptr, 0, nullptr, "\n", ""); SCOPED_TRACE(absl::StrFormat("input: \n%s", EscapeString(message))); EXPECT_GE(message.size(), framer.ProcessInput(message.data(), message.size())); if (is_request || j >= 1) { EXPECT_FALSE(framer.Error()); if (is_request) { EXPECT_TRUE(framer.MessageFullyRead()); } if (j == 0) { expected_response_code = 0; } if (is_request) { VerifyRequestFirstLine(tmp_tokens, *framer.headers()); } else { VerifyResponseFirstLine(tmp_tokens, expected_response_code, *framer.headers()); } } else { EXPECT_TRUE(framer.Error()); } tmp_tokens[j] = ""; tmp_whitespace[j] = ""; } } TEST(HTTPBalsaFrame, ParseStateToString) { EXPECT_STREQ("ERROR", BalsaFrameEnums::ParseStateToString(BalsaFrameEnums::ERROR)); EXPECT_STREQ("READING_HEADER_AND_FIRSTLINE", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_HEADER_AND_FIRSTLINE)); EXPECT_STREQ("READING_CHUNK_LENGTH", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_CHUNK_LENGTH)); EXPECT_STREQ("READING_CHUNK_EXTENSION", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_CHUNK_EXTENSION)); EXPECT_STREQ("READING_CHUNK_DATA", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_CHUNK_DATA)); EXPECT_STREQ("READING_CHUNK_TERM", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_CHUNK_TERM)); EXPECT_STREQ("READING_LAST_CHUNK_TERM", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_LAST_CHUNK_TERM)); EXPECT_STREQ("READING_TRAILER", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_TRAILER)); EXPECT_STREQ("READING_UNTIL_CLOSE", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_UNTIL_CLOSE)); EXPECT_STREQ("READING_CONTENT", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::READING_CONTENT)); EXPECT_STREQ("MESSAGE_FULLY_READ", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::MESSAGE_FULLY_READ)); EXPECT_STREQ("UNKNOWN_STATE", BalsaFrameEnums::ParseStateToString( BalsaFrameEnums::NUM_STATES)); EXPECT_STREQ("UNKNOWN_STATE", BalsaFrameEnums::ParseStateToString( static_cast<BalsaFrameEnums::ParseState>(-1))); for (int i = 0; i < BalsaFrameEnums::NUM_STATES; ++i) { EXPECT_STRNE("UNKNOWN_STATE", BalsaFrameEnums::ParseStateToString( static_cast<BalsaFrameEnums::ParseState>(i))); } } TEST(HTTPBalsaFrame, ErrorCodeToString) { EXPECT_STREQ("NO_STATUS_LINE_IN_RESPONSE", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::NO_STATUS_LINE_IN_RESPONSE)); EXPECT_STREQ("NO_REQUEST_LINE_IN_REQUEST", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::NO_REQUEST_LINE_IN_REQUEST)); EXPECT_STREQ("FAILED_TO_FIND_WS_AFTER_RESPONSE_VERSION", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_VERSION)); EXPECT_STREQ("FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD)); EXPECT_STREQ( "FAILED_TO_FIND_WS_AFTER_RESPONSE_STATUSCODE", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_STATUSCODE)); EXPECT_STREQ( "FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI)); EXPECT_STREQ( "FAILED_TO_FIND_NL_AFTER_RESPONSE_REASON_PHRASE", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_NL_AFTER_RESPONSE_REASON_PHRASE)); EXPECT_STREQ( "FAILED_TO_FIND_NL_AFTER_REQUEST_HTTP_VERSION", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_TO_FIND_NL_AFTER_REQUEST_HTTP_VERSION)); EXPECT_STREQ("FAILED_CONVERTING_STATUS_CODE_TO_INT", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT)); EXPECT_STREQ("HEADERS_TOO_LONG", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::HEADERS_TOO_LONG)); EXPECT_STREQ("UNPARSABLE_CONTENT_LENGTH", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH)); EXPECT_STREQ("MAYBE_BODY_BUT_NO_CONTENT_LENGTH", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::MAYBE_BODY_BUT_NO_CONTENT_LENGTH)); EXPECT_STREQ("HEADER_MISSING_COLON", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::HEADER_MISSING_COLON)); EXPECT_STREQ("INVALID_CHUNK_LENGTH", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::INVALID_CHUNK_LENGTH)); EXPECT_STREQ("CHUNK_LENGTH_OVERFLOW", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::CHUNK_LENGTH_OVERFLOW)); EXPECT_STREQ("CALLED_BYTES_SPLICED_WHEN_UNSAFE_TO_DO_SO", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::CALLED_BYTES_SPLICED_WHEN_UNSAFE_TO_DO_SO)); EXPECT_STREQ("CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums:: CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT)); EXPECT_STREQ("MULTIPLE_CONTENT_LENGTH_KEYS", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::MULTIPLE_CONTENT_LENGTH_KEYS)); EXPECT_STREQ("MULTIPLE_TRANSFER_ENCODING_KEYS", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::MULTIPLE_TRANSFER_ENCODING_KEYS)); EXPECT_STREQ("INVALID_HEADER_FORMAT", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::INVALID_HEADER_FORMAT)); EXPECT_STREQ("INVALID_TRAILER_FORMAT", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::INVALID_TRAILER_FORMAT)); EXPECT_STREQ("TRAILER_TOO_LONG", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::TRAILER_TOO_LONG)); EXPECT_STREQ("TRAILER_MISSING_COLON", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::TRAILER_MISSING_COLON)); EXPECT_STREQ("INTERNAL_LOGIC_ERROR", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::INTERNAL_LOGIC_ERROR)); EXPECT_STREQ("INVALID_HEADER_CHARACTER", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::INVALID_HEADER_CHARACTER)); EXPECT_STREQ("UNKNOWN_ERROR", BalsaFrameEnums::ErrorCodeToString( BalsaFrameEnums::NUM_ERROR_CODES)); EXPECT_STREQ("UNKNOWN_ERROR", BalsaFrameEnums::ErrorCodeToString( static_cast<BalsaFrameEnums::ErrorCode>(-1))); for (int i = 0; i < BalsaFrameEnums::NUM_ERROR_CODES; ++i) { EXPECT_STRNE("UNKNOWN_ERROR", BalsaFrameEnums::ErrorCodeToString( static_cast<BalsaFrameEnums::ErrorCode>(i))); } } class FakeHeaders { public: struct KeyValuePair { KeyValuePair(const std::string& key, const std::string& value) : key(key), value(value) {} KeyValuePair() {} std::string key; std::string value; }; typedef std::vector<KeyValuePair> KeyValuePairs; KeyValuePairs key_value_pairs_; bool operator==(const FakeHeaders& other) const { if (key_value_pairs_.size() != other.key_value_pairs_.size()) { return false; } for (KeyValuePairs::size_type i = 0; i < key_value_pairs_.size(); ++i) { if (key_value_pairs_[i].key != other.key_value_pairs_[i].key) { return false; } if (key_value_pairs_[i].value != other.key_value_pairs_[i].value) { return false; } } return true; } void AddKeyValue(const std::string& key, const std::string& value) { key_value_pairs_.push_back(KeyValuePair(key, value)); } }; class BalsaVisitorMock : public BalsaVisitorInterface { public: ~BalsaVisitorMock() override = default; void ProcessHeaders(const BalsaHeaders& headers) override { FakeHeaders fake_headers; GenerateFakeHeaders(headers, &fake_headers); ProcessHeaders(fake_headers); } void OnTrailers(std::unique_ptr<BalsaHeaders> trailers) override { FakeHeaders fake_trailers; GenerateFakeHeaders(*trailers, &fake_trailers); OnTrailers(fake_trailers); } MOCK_METHOD(void, OnRawBodyInput, (absl::string_view input), (override)); MOCK_METHOD(void, OnBodyChunkInput, (absl::string_view input), (override)); MOCK_METHOD(void, OnHeaderInput, (absl::string_view input), (override)); MOCK_METHOD(void, OnTrailerInput, (absl::string_view input), (override)); MOCK_METHOD(void, ProcessHeaders, (const FakeHeaders& headers)); MOCK_METHOD(void, OnTrailers, (const FakeHeaders& trailers)); MOCK_METHOD(void, OnRequestFirstLineInput, (absl::string_view line_input, absl::string_view method_input, absl::string_view request_uri, absl::string_view version_input), (override)); MOCK_METHOD(void, OnResponseFirstLineInput, (absl::string_view line_input, absl::string_view version_input, absl::string_view status_input, absl::string_view reason_input), (override)); MOCK_METHOD(void, OnChunkLength, (size_t length), (override)); MOCK_METHOD(void, OnChunkExtensionInput, (absl::string_view input), (override)); MOCK_METHOD(void, OnInterimHeaders, (std::unique_ptr<BalsaHeaders> headers), (override)); MOCK_METHOD(void, ContinueHeaderDone, (), (override)); MOCK_METHOD(void, HeaderDone, (), (override)); MOCK_METHOD(void, MessageDone, (), (override)); MOCK_METHOD(void, HandleError, (BalsaFrameEnums::ErrorCode error_code), (override)); MOCK_METHOD(void, HandleWarning, (BalsaFrameEnums::ErrorCode error_code), (override)); private: static void GenerateFakeHeaders(const BalsaHeaders& headers, FakeHeaders* fake_headers) { for (const auto& line : headers.lines()) { fake_headers->AddKeyValue(std::string(line.first), std::string(line.second)); } } }; class HTTPBalsaFrameTest : public QuicheTest { protected: void SetUp() override { balsa_frame_.set_balsa_headers(&headers_); balsa_frame_.set_balsa_visitor(&visitor_mock_); balsa_frame_.set_is_request(true); balsa_frame_.EnableTrailers(); } void VerifyFirstLineParsing(const std::string& firstline, BalsaFrameEnums::ErrorCode error_code) { balsa_frame_.ProcessInput(firstline.data(), firstline.size()); EXPECT_EQ(error_code, balsa_frame_.ErrorCode()); } BalsaHeaders headers_; BalsaFrame balsa_frame_; NiceMock<BalsaVisitorMock> visitor_mock_; }; TEST_F(HTTPBalsaFrameTest, TestHeaderFramingFound) { EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, ' ')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(BalsaFrame::kValidTerm1, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\t')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(BalsaFrame::kValidTerm1, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, 'a')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(BalsaFrame::kValidTerm2, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '1')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(BalsaFrame::kValidTerm2, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, ':')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\r')); EXPECT_EQ(0, BalsaFrameTestPeer::HeaderFramingFound(&balsa_frame_, '\n')); } TEST_F(HTTPBalsaFrameTest, MissingColonInTrailer) { const absl::string_view trailer = "kv\r\n\r\n"; BalsaFrame::Lines lines; lines.push_back({0, 4}); lines.push_back({4, trailer.length()}); BalsaHeaders trailers; BalsaHeadersTestPeer::WriteFromFramer(&trailers, trailer.data(), trailer.length()); BalsaFrameTestPeer::FindColonsAndParseIntoKeyValue( &balsa_frame_, lines, true , &trailers); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::TRAILER_MISSING_COLON, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FindColonsAndParseIntoKeyValueInTrailer) { const absl::string_view trailer_line1 = "Fraction: 0.23\r\n"; const absl::string_view trailer_line2 = "Some:junk \r\n"; const absl::string_view trailer_line3 = "\r\n"; const std::string trailer = absl::StrCat(trailer_line1, trailer_line2, trailer_line3); BalsaFrame::Lines lines; lines.push_back({0, trailer_line1.length()}); lines.push_back({trailer_line1.length(), trailer_line1.length() + trailer_line2.length()}); lines.push_back( {trailer_line1.length() + trailer_line2.length(), trailer.length()}); BalsaHeaders trailers; BalsaHeadersTestPeer::WriteFromFramer(&trailers, trailer.data(), trailer.length()); BalsaFrameTestPeer::FindColonsAndParseIntoKeyValue( &balsa_frame_, lines, true , &trailers); EXPECT_FALSE(balsa_frame_.Error()); absl::string_view fraction = trailers.GetHeader("Fraction"); EXPECT_EQ("0.23", fraction); absl::string_view some = trailers.GetHeader("Some"); EXPECT_EQ("junk", some); } TEST_F(HTTPBalsaFrameTest, InvalidTrailer) { const absl::string_view trailer_line1 = "Fraction : 0.23\r\n"; const absl::string_view trailer_line2 = "Some\t :junk \r\n"; const absl::string_view trailer_line3 = "\r\n"; const std::string trailer = absl::StrCat(trailer_line1, trailer_line2, trailer_line3); BalsaFrame::Lines lines; lines.push_back({0, trailer_line1.length()}); lines.push_back({trailer_line1.length(), trailer_line1.length() + trailer_line2.length()}); lines.push_back( {trailer_line1.length() + trailer_line2.length(), trailer.length()}); BalsaHeaders trailers; BalsaHeadersTestPeer::WriteFromFramer(&trailers, trailer.data(), trailer.length()); BalsaFrameTestPeer::FindColonsAndParseIntoKeyValue( &balsa_frame_, lines, true , &trailers); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_TRAILER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, OneCharacterFirstLineParsedAsExpected) { VerifyFirstLineParsing( "a\r\n\r\n", BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD); } TEST_F(HTTPBalsaFrameTest, OneCharacterFirstLineWithWhitespaceParsedAsExpected) { VerifyFirstLineParsing( "a \r\n\r\n", BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD); } TEST_F(HTTPBalsaFrameTest, WhitespaceOnlyFirstLineIsNotACompleteHeader) { VerifyFirstLineParsing(" \n\n", BalsaFrameEnums::NO_REQUEST_LINE_IN_REQUEST); } TEST(HTTPBalsaFrame, RequestFirstLineParsedCorrectly) { const char* request_tokens[3] = {"GET", "/jjsdjrqk", "HTTP/1.0"}; FirstLineParsedCorrectlyHelper(request_tokens, 0, true, " "); FirstLineParsedCorrectlyHelper(request_tokens, 0, true, "\t"); FirstLineParsedCorrectlyHelper(request_tokens, 0, true, "\t "); FirstLineParsedCorrectlyHelper(request_tokens, 0, true, " \t"); FirstLineParsedCorrectlyHelper(request_tokens, 0, true, " \t \t "); } TEST(HTTPBalsaFrame, RequestLineSanitizedProperly) { SCOPED_TRACE("Testing that the request line is properly sanitized."); using enum HttpValidationPolicy::FirstLineValidationOption; using FirstLineValidationOption = HttpValidationPolicy::FirstLineValidationOption; struct TestCase { const absl::string_view input; const absl::string_view parsed; FirstLineValidationOption option; BalsaFrameEnums::ErrorCode expected_error; }; const std::vector<TestCase> cases = { {"GET / HTTP/1.1\r\n", "GET / HTTP/1.1", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET / HTTP/1.1\r\n", "GET / HTTP/1.1", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET / HTTP/1.1\r\n", "GET / HTTP/1.1", REJECT, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET /\rHTTP/1.1\r\n", "GET /\rHTTP/1.1", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET /\rHTTP/1.1\r\n", "GET / HTTP/1.1", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET /\rHTTP/1.1\r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_REQUEST_LINE}, {"GET \t/ HTTP/1.1\r\n", "GET \t/ HTTP/1.1", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET \t/ HTTP/1.1\r\n", "GET / HTTP/1.1", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET \t/ HTTP/1.1\r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_REQUEST_LINE}, {"GET \t/\rHTTP/1.1 \r\n", "GET \t/\rHTTP/1.1", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET \t/\rHTTP/1.1 \r\n", "GET / HTTP/1.1", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"GET \t/\rHTTP/1.1 \r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_REQUEST_LINE}, }; const absl::string_view kHeaderLineAndEnding = "Foo: bar\r\n\r\n"; for (auto& [firstline, parsed, ws_option, expected_error] : cases) { SCOPED_TRACE( absl::StrCat("Input: ", absl::CEscape(firstline), " Expected output: ", absl::CEscape(parsed), " whitespace option: ", static_cast<int>(ws_option))); const std::string input = absl::StrCat(firstline, kHeaderLineAndEnding); BalsaHeaders headers; BalsaFrame framer; HttpValidationPolicy policy; policy.sanitize_cr_tab_in_first_line = ws_option; framer.set_http_validation_policy(policy); framer.set_is_request(true); framer.set_balsa_headers(&headers); framer.ProcessInput(input.data(), input.size()); EXPECT_EQ(headers.first_line(), parsed); EXPECT_EQ(framer.ErrorCode(), expected_error); } } TEST_F(HTTPBalsaFrameTest, NonnumericResponseCode) { balsa_frame_.set_is_request(false); VerifyFirstLineParsing("HTTP/1.1 0x3 Digits only\r\n\r\n", BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT); EXPECT_EQ("HTTP/1.1 0x3 Digits only", headers_.first_line()); } TEST_F(HTTPBalsaFrameTest, NegativeResponseCode) { balsa_frame_.set_is_request(false); VerifyFirstLineParsing("HTTP/1.1 -11 No sign allowed\r\n\r\n", BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT); EXPECT_EQ("HTTP/1.1 -11 No sign allowed", headers_.first_line()); } TEST_F(HTTPBalsaFrameTest, WithoutTrailingWhitespace) { balsa_frame_.set_is_request(false); VerifyFirstLineParsing( "HTTP/1.1 101\r\n\r\n", BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_STATUSCODE); EXPECT_EQ("HTTP/1.1 101", headers_.first_line()); } TEST_F(HTTPBalsaFrameTest, TrailingWhitespace) { balsa_frame_.set_is_request(false); std::string firstline = "HTTP/1.1 101 \r\n\r\n"; balsa_frame_.ProcessInput(firstline.data(), firstline.size()); EXPECT_EQ("HTTP/1.1 101 ", headers_.first_line()); } TEST(HTTPBalsaFrame, ResponseFirstLineParsedCorrectly) { const char* response_tokens[3] = {"HTTP/1.1", "200", "A reason\tphrase"}; FirstLineParsedCorrectlyHelper(response_tokens, 200, false, " "); FirstLineParsedCorrectlyHelper(response_tokens, 200, false, "\t"); FirstLineParsedCorrectlyHelper(response_tokens, 200, false, "\t "); FirstLineParsedCorrectlyHelper(response_tokens, 200, false, " \t"); FirstLineParsedCorrectlyHelper(response_tokens, 200, false, " \t \t "); response_tokens[1] = "312"; FirstLineParsedCorrectlyHelper(response_tokens, 312, false, " "); FirstLineParsedCorrectlyHelper(response_tokens, 312, false, "\t"); FirstLineParsedCorrectlyHelper(response_tokens, 312, false, "\t "); FirstLineParsedCorrectlyHelper(response_tokens, 312, false, " \t"); FirstLineParsedCorrectlyHelper(response_tokens, 312, false, " \t \t "); response_tokens[1] = "4242"; FirstLineParsedCorrectlyHelper(response_tokens, 4242, false, " "); FirstLineParsedCorrectlyHelper(response_tokens, 4242, false, "\t"); FirstLineParsedCorrectlyHelper(response_tokens, 4242, false, "\t "); FirstLineParsedCorrectlyHelper(response_tokens, 4242, false, " \t"); FirstLineParsedCorrectlyHelper(response_tokens, 4242, false, " \t \t "); } TEST(HTTPBalsaFrame, StatusLineSanitizedProperly) { SCOPED_TRACE("Testing that the status line is properly sanitized."); using enum HttpValidationPolicy::FirstLineValidationOption; using FirstLineValidationOption = HttpValidationPolicy::FirstLineValidationOption; struct TestCase { const absl::string_view input; const absl::string_view parsed; FirstLineValidationOption option; BalsaFrameEnums::ErrorCode expected_error; }; const std::vector<TestCase> cases = { {"HTTP/1.1 200 OK\r\n", "HTTP/1.1 200 OK", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 200 OK\r\n", "HTTP/1.1 200 OK", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 200 OK\r\n", "HTTP/1.1 200 OK", REJECT, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 200\rOK\r\n", "HTTP/1.1 200\rOK", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 200\rOK\r\n", "HTTP/1.1 200 OK", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 200\rOK\r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_STATUS_LINE}, {"HTTP/1.1 \t200 OK\r\n", "HTTP/1.1 \t200 OK", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 \t200 OK\r\n", "HTTP/1.1 200 OK", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 \t200 OK\r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_STATUS_LINE}, {"HTTP/1.1 \t200\rOK \r\n", "HTTP/1.1 \t200\rOK", NONE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 \t200\rOK \r\n", "HTTP/1.1 200 OK", SANITIZE, BalsaFrameEnums::BALSA_NO_ERROR}, {"HTTP/1.1 \t200\rOK \r\n", "", REJECT, BalsaFrameEnums::INVALID_WS_IN_STATUS_LINE}, }; const absl::string_view kHeaderLineAndEnding = "Foo: bar\r\nContent-Length: 0\r\n\r\n"; for (auto& [firstline, parsed, ws_option, expected_error] : cases) { SCOPED_TRACE( absl::StrCat("Input: ", absl::CEscape(firstline), " Expected output: ", absl::CEscape(parsed), " whitespace option: ", static_cast<int>(ws_option))); const std::string input = absl::StrCat(firstline, kHeaderLineAndEnding); BalsaHeaders headers; BalsaFrame framer; HttpValidationPolicy policy; policy.sanitize_cr_tab_in_first_line = ws_option; framer.set_http_validation_policy(policy); framer.set_is_request(false); framer.set_balsa_headers(&headers); framer.ProcessInput(input.data(), input.size()); EXPECT_EQ(headers.first_line(), parsed); EXPECT_EQ(framer.ErrorCode(), expected_error); } } void HeaderLineTestHelper(const char* firstline, bool is_request, const std::pair<std::string, std::string>* headers, size_t headers_len, const char* colon, const char* line_ending) { BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(is_request); framer.set_balsa_headers(&balsa_headers); std::string message = CreateMessage(firstline, headers, headers_len, colon, line_ending, ""); SCOPED_TRACE(EscapeString(message)); size_t bytes_consumed = framer.ProcessInput(message.data(), message.size()); EXPECT_EQ(message.size(), bytes_consumed); VerifyHeaderLines(headers, headers_len, *framer.headers()); } TEST(HTTPBalsaFrame, RequestLinesParsedProperly) { SCOPED_TRACE("Testing that lines are properly parsed."); const char firstline[] = "GET / HTTP/1.1\r\n"; const std::pair<std::string, std::string> headers[] = { std::pair<std::string, std::string>("foo", "bar"), std::pair<std::string, std::string>("duck", "water"), std::pair<std::string, std::string>("goose", "neck"), std::pair<std::string, std::string>("key_is_fine", "value:includes:colons"), std::pair<std::string, std::string>("trucks", "along\rvalue\rincluding\rslash\rrs"), std::pair<std::string, std::string>("monster", "truck"), std::pair<std::string, std::string>("another_key", ":colons in value"), std::pair<std::string, std::string>("another_key", "colons in value:"), std::pair<std::string, std::string>("another_key", "value includes\r\n continuation"), std::pair<std::string, std::string>("key_without_continuations", "multiple\n in\r\n the\n value"), std::pair<std::string, std::string>("key_without_value", ""), std::pair<std::string, std::string>("", "value without key"), std::pair<std::string, std::string>("", ""), std::pair<std::string, std::string>("normal_key", "normal_value"), }; const size_t headers_len = ABSL_ARRAYSIZE(headers); HeaderLineTestHelper(firstline, true, headers, headers_len, ":", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ": ", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ": ", "\r\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t", "\r\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t ", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t ", "\r\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t\t", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t\t", "\r\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t \t", "\n"); HeaderLineTestHelper(firstline, true, headers, headers_len, ":\t \t", "\r\n"); } TEST(HTTPBalsaFrame, CarriageReturnIllegalInHeaders) { HttpValidationPolicy policy{.disallow_lone_cr_in_request_headers = true}; BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(true); framer.set_balsa_headers(&balsa_headers); framer.set_http_validation_policy(policy); framer.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::pair<std::string, std::string> headers[] = { std::pair<std::string, std::string>("foo", "bar"), std::pair<std::string, std::string>("trucks", "value-has-solo-\r-in it"), }; std::string message = CreateMessage("GET / \rHTTP/1.1\r\n", headers, 2, ":", "\r\n", ""); framer.ProcessInput(message.data(), message.size()); EXPECT_EQ(framer.ErrorCode(), BalsaFrameEnums::INVALID_HEADER_CHARACTER); } TEST(HTTPBalsaFrame, CarriageReturnIllegalInFirstLineOnInputBoundary) { HttpValidationPolicy policy{.disallow_lone_cr_in_request_headers = true}; BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(true); framer.set_balsa_headers(&balsa_headers); framer.set_http_validation_policy(policy); framer.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); constexpr absl::string_view message1("GET / \r"); constexpr absl::string_view message2("HTTP/1.1\r\n\r\n"); EXPECT_EQ(message1.size(), framer.ProcessInput(message1.data(), message1.size())); EXPECT_EQ(message2.size(), framer.ProcessInput(message2.data(), message2.size())); EXPECT_EQ(framer.ErrorCode(), BalsaFrameEnums::INVALID_HEADER_CHARACTER); } TEST(HTTPBalsaFrame, CarriageReturnIllegalInHeaderValueOnInputBoundary) { HttpValidationPolicy policy{.disallow_lone_cr_in_request_headers = true}; BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(true); framer.set_balsa_headers(&balsa_headers); framer.set_http_validation_policy(policy); framer.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); constexpr absl::string_view message1("GET / HTTP/1.1\r\nfoo: b\r"); constexpr absl::string_view message2("ar\r\n\r\n"); EXPECT_EQ(message1.size(), framer.ProcessInput(message1.data(), message1.size())); EXPECT_EQ(message2.size(), framer.ProcessInput(message2.data(), message2.size())); EXPECT_EQ(framer.ErrorCode(), BalsaFrameEnums::INVALID_HEADER_CHARACTER); } TEST(HTTPBalsaFrame, CarriageReturnIllegalInHeaderKey) { BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(true); framer.set_balsa_headers(&balsa_headers); framer.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::pair<std::string, std::string> headers[] = { std::pair<std::string, std::string>("tru\rcks", "along"), }; std::string message = CreateMessage("GET / HTTP/1.1\r\n", headers, 1, ":", "\r\n", ""); framer.ProcessInput(message.data(), message.size()); EXPECT_EQ(framer.ErrorCode(), BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); } TEST(HTTPBalsaFrame, ResponseLinesParsedProperly) { SCOPED_TRACE("ResponseLineParsedProperly"); const char firstline[] = "HTTP/1.0 200 A reason\tphrase\r\n"; const std::pair<std::string, std::string> headers[] = { std::pair<std::string, std::string>("foo", "bar"), std::pair<std::string, std::string>("duck", "water"), std::pair<std::string, std::string>("goose", "neck"), std::pair<std::string, std::string>("key_is_fine", "value:includes:colons"), std::pair<std::string, std::string>("trucks", "along\rvalue\rincluding\rslash\rrs"), std::pair<std::string, std::string>("monster", "truck"), std::pair<std::string, std::string>("another_key", ":colons in value"), std::pair<std::string, std::string>("another_key", "colons in value:"), std::pair<std::string, std::string>("another_key", "value includes\r\n continuation"), std::pair<std::string, std::string>("key_includes_no_continuations", "multiple\n in\r\n the\n value"), std::pair<std::string, std::string>("key_without_value", ""), std::pair<std::string, std::string>("", "value without key"), std::pair<std::string, std::string>("", ""), std::pair<std::string, std::string>("normal_key", "normal_value"), }; const size_t headers_len = ABSL_ARRAYSIZE(headers); HeaderLineTestHelper(firstline, false, headers, headers_len, ":", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ": ", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ": ", "\r\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t", "\r\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t ", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t ", "\r\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t\t", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t\t", "\r\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t \t", "\n"); HeaderLineTestHelper(firstline, false, headers, headers_len, ":\t \t", "\r\n"); } void WhitespaceHeaderTestHelper( const std::string& message, bool is_request, BalsaFrameEnums::ErrorCode expected_error_code) { BalsaHeaders balsa_headers; BalsaFrame framer; framer.set_is_request(is_request); framer.set_balsa_headers(&balsa_headers); SCOPED_TRACE(EscapeString(message)); size_t bytes_consumed = framer.ProcessInput(message.data(), message.size()); EXPECT_EQ(message.size(), bytes_consumed); if (expected_error_code == BalsaFrameEnums::BALSA_NO_ERROR) { EXPECT_EQ(false, framer.Error()); } else { EXPECT_EQ(true, framer.Error()); } EXPECT_EQ(expected_error_code, framer.ErrorCode()); } TEST(HTTPBalsaFrame, WhitespaceInRequestsProcessedProperly) { SCOPED_TRACE( "Test that a request header with a line with spaces and no " "data generates an error."); WhitespaceHeaderTestHelper( "GET / HTTP/1.1\r\n" " \r\n" "\r\n", true, BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); WhitespaceHeaderTestHelper( "GET / HTTP/1.1\r\n" " \r\n" "test: test\r\n" "\r\n", true, BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); SCOPED_TRACE("Test proper handling for line continuation in requests."); WhitespaceHeaderTestHelper( "GET / HTTP/1.1\r\n" "test: test\r\n" " continued\r\n" "\r\n", true, BalsaFrameEnums::BALSA_NO_ERROR); WhitespaceHeaderTestHelper( "GET / HTTP/1.1\r\n" "test: test\r\n" " \r\n" "\r\n", true, BalsaFrameEnums::BALSA_NO_ERROR); SCOPED_TRACE( "Test a confusing and ambiguous case: is it a line continuation or a new " "header field?"); WhitespaceHeaderTestHelper( "GET / HTTP/1.1\r\n" "test: test\r\n" " confusing:continued\r\n" "\r\n", true, BalsaFrameEnums::BALSA_NO_ERROR); } TEST(HTTPBalsaFrame, WhitespaceInResponsesProcessedProperly) { SCOPED_TRACE( "Test that a response header with a line with spaces and no " "data generates an error."); WhitespaceHeaderTestHelper( "HTTP/1.0 200 Reason\r\n" " \r\nContent-Length: 0\r\n" "\r\n", false, BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER); SCOPED_TRACE("Test proper handling for line continuation in responses."); WhitespaceHeaderTestHelper( "HTTP/1.0 200 Reason\r\n" "test: test\r\n" " continued\r\n" "Content-Length: 0\r\n" "\r\n", false, BalsaFrameEnums::BALSA_NO_ERROR); WhitespaceHeaderTestHelper( "HTTP/1.0 200 Reason\r\n" "test: test\r\n" " \r\n" "Content-Length: 0\r\n" "\r\n", false, BalsaFrameEnums::BALSA_NO_ERROR); SCOPED_TRACE( "Test a confusing and ambiguous case: is it a line continuation or a new " "header field?"); WhitespaceHeaderTestHelper( "HTTP/1.0 200 Reason\r\n" "test: test\r\n" " confusing:continued\r\n" "Content-Length: 0\r\n" "\r\n", false, BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForTrivialRequest) { std::string message = "GET /foobar HTTP/1.0\r\n\n"; FakeHeaders fake_headers; { InSequence s; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET /foobar HTTP/1.0", "GET", "/foobar", "HTTP/1.0")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithBlankLines) { std::string message = "\n\n\r\n\nGET /foobar HTTP/1.0\r\n\n"; FakeHeaders fake_headers; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET /foobar HTTP/1.0", "GET", "/foobar", "HTTP/1.0")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput("GET /foobar HTTP/1.0\r\n\n")); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithSplitBlankLines) { std::string blanks = "\n" "\n" "\r\n" "\n"; std::string header_input = "GET /foobar HTTP/1.0\r\n\n"; FakeHeaders fake_headers; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET /foobar HTTP/1.0", "GET", "/foobar", "HTTP/1.0")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput("GET /foobar HTTP/1.0\r\n\n")); ASSERT_EQ(blanks.size(), balsa_frame_.ProcessInput(blanks.data(), blanks.size())); ASSERT_EQ(header_input.size(), balsa_frame_.ProcessInput( header_input.data(), header_input.size())); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithZeroContentLength) { std::string message = "PUT /search?q=fo HTTP/1.1\n" "content-length: 0 \n" "\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "0"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT /search?q=fo HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithMissingContentLength) { std::string message = "PUT /search?q=fo HTTP/1.1\n" "\n"; auto error_code = BalsaFrameEnums::BalsaFrameEnums::REQUIRED_BODY_BUT_NO_CONTENT_LENGTH; EXPECT_CALL(visitor_mock_, HandleError(error_code)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(error_code, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, ContentLengthNotRequired) { HttpValidationPolicy http_validation_policy; http_validation_policy.require_content_length_if_body_required = false; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "PUT /search?q=fo HTTP/1.1\n" "\n"; balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForPermittedMissingContentLength) { std::string message = "PUT /search?q=fo HTTP/1.1\n" "\n"; FakeHeaders fake_headers; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT /search?q=fo HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); } ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenNothingInConnectionLine) { std::string message = "PUT \t /search?q=fo \t HTTP/1.1 \t \r\n" "Connection:\r\n" "content-length: 0\r\n" "\r\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", ""); fake_headers.AddKeyValue("content-length", "0"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT \t /search?q=fo \t HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenOnlyCommentsInConnectionLine) { std::string message = "PUT \t /search?q=fo \t HTTP/1.1 \t \r\n" "Connection: ,,,,,,,,\r\n" "content-length: 0\r\n" "\r\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", ",,,,,,,,"); fake_headers.AddKeyValue("content-length", "0"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT \t /search?q=fo \t HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithZeroContentLengthMk2) { std::string message = "PUT \t /search?q=fo \t HTTP/1.1 \t \r\n" "Connection: \t close \t\r\n" "content-length: \t\t 0 \t\t \r\n" "\r\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", "close"); fake_headers.AddKeyValue("content-length", "0"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT \t /search?q=fo \t HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenNoVisitorIsAssigned) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\r\n"; balsa_frame_.set_balsa_visitor(nullptr); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, RequestWithTrailers) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\r\n"; InSequence s; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", "close"); fake_headers.AddKeyValue("transfer-encoding", "chunked"); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); testing::Mock::VerifyAndClearExpectations(&visitor_mock_); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); FakeHeaders fake_trailers; fake_trailers.AddKeyValue("crass", "monkeys"); fake_trailers.AddKeyValue("funky", "monkeys"); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); EXPECT_CALL(visitor_mock_, OnTrailerInput(_)).Times(AtLeast(1)); EXPECT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenNoVisitorIsAssignedInResponse) { std::string headers = "HTTP/1.1 502 Bad Gateway\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.set_balsa_visitor(nullptr); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TransferEncodingIdentityIsIgnored) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: identity\r\n" "content-length: 10\r\n" "\r\n"; std::string body = "1234567890"; std::string message = (headers + body); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); ASSERT_EQ(body.size(), balsa_frame_.ProcessInput(body.data(), body.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenAVisitorIsChangedToNULLInMidParsing) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); balsa_frame_.set_balsa_visitor(nullptr); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); ASSERT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenAVisitorIsChangedToNULLInMidParsingInTrailer) { std::string headers = "HTTP/1.1 503 Server Not Available\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; balsa_frame_.set_is_request(false); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); balsa_frame_.set_balsa_visitor(nullptr); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); ASSERT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWhenNoVisitorAssignedAndChunkingErrorOccurs) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); balsa_frame_.set_balsa_visitor(nullptr); EXPECT_GE(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::CHUNK_LENGTH_OVERFLOW, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FramerRecognizesSemicolonAsChunkSizeDelimiter) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "8; foo=bar\r\n" "deadbeef\r\n" "0\r\n" "\r\n"; ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); balsa_frame_.set_balsa_visitor(&visitor_mock_); EXPECT_CALL(visitor_mock_, OnChunkLength(8)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput("; foo=bar")); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput("")); EXPECT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, NonAsciiCharacterInChunkLength) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "555\xAB\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", "close"); fake_headers.AddKeyValue("transfer-encoding", "chunked"); auto error_code = BalsaFrameEnums::INVALID_CHUNK_LENGTH; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET / HTTP/1.1", "GET", "/", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput("555\xAB")); EXPECT_CALL(visitor_mock_, HandleError(error_code)); } ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); EXPECT_EQ(strlen("555\xAB"), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_CHUNK_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorCalledAsExpectedWhenChunkingOverflowOccurs) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; const char* chunk_read_before_overflow = "FFFFFFFFFFFFFFFFF"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", "close"); fake_headers.AddKeyValue("transfer-encoding", "chunked"); auto error_code = BalsaFrameEnums::CHUNK_LENGTH_OVERFLOW; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET / HTTP/1.1", "GET", "/", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput(chunk_read_before_overflow)); EXPECT_CALL(visitor_mock_, HandleError(error_code)); } ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); EXPECT_EQ(strlen(chunk_read_before_overflow), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::CHUNK_LENGTH_OVERFLOW, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorCalledAsExpectedWhenInvalidChunkLengthOccurs) { std::string headers = "GET / HTTP/1.1\r\n" "Connection: close\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "12z123 \r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("Connection", "close"); fake_headers.AddKeyValue("transfer-encoding", "chunked"); auto error_code = BalsaFrameEnums::INVALID_CHUNK_LENGTH; { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET / HTTP/1.1", "GET", "/", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput("12z")); EXPECT_CALL(visitor_mock_, HandleError(error_code)); } ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); EXPECT_EQ(3u, balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_CHUNK_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithContentLength) { std::string message_headers = "PUT \t /search?q=fo \t HTTP/1.1 \t \r\n" "content-length: \t\t 20 \t\t \r\n" "\r\n"; std::string message_body = "12345678901234567890"; std::string message = std::string(message_headers) + std::string(message_body); FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "20"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT \t /search?q=fo \t HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput(message_body)); EXPECT_CALL(visitor_mock_, OnBodyChunkInput(message_body)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); ASSERT_EQ(message_body.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithOneCharContentLength) { std::string message_headers = "PUT \t /search?q=fo \t HTTP/1.1 \t \r\n" "content-length: \t\t 2 \t\t \r\n" "\r\n"; std::string message_body = "12"; std::string message = std::string(message_headers) + std::string(message_body); FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "2"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("PUT \t /search?q=fo \t HTTP/1.1", "PUT", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput(message_body)); EXPECT_CALL(visitor_mock_, OnBodyChunkInput(message_body)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); ASSERT_EQ(message_body.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, InvalidChunkExtensionWithCarriageReturn) { balsa_frame_.set_http_validation_policy( HttpValidationPolicy{.disallow_lone_cr_in_chunk_extension = true}); std::string message_headers = "POST /potato?salad=withmayo HTTP/1.1\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string message_body = "9; bad\rextension\r\n" "012345678\r\n" "0\r\n" "\r\n"; std::string message = std::string(message_headers) + std::string(message_body); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_CHUNK_EXTENSION)); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size()); } TEST_F(HTTPBalsaFrameTest, ChunkExtensionCarriageReturnLineFeedAtBoundary) { balsa_frame_.set_http_validation_policy( HttpValidationPolicy{.disallow_lone_cr_in_chunk_extension = true}); EXPECT_CALL(visitor_mock_, ProcessHeaders(_)); EXPECT_CALL(visitor_mock_, HeaderDone()); constexpr absl::string_view headers( "POST / HTTP/1.1\r\n" "transfer-encoding: chunked\r\n\r\n"); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); constexpr absl::string_view body1("3\r"); ASSERT_EQ(body1.size(), balsa_frame_.ProcessInput(body1.data(), body1.size())); ASSERT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); constexpr absl::string_view body2( "\nfoo\r\n" "0\r\n\r\n"); EXPECT_CALL(visitor_mock_, OnBodyChunkInput("foo")); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(body2.size(), balsa_frame_.ProcessInput(body2.data(), body2.size())); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, ChunkExtensionLoneCarriageReturnAtBoundary) { balsa_frame_.set_http_validation_policy( HttpValidationPolicy{.disallow_lone_cr_in_chunk_extension = true}); EXPECT_CALL(visitor_mock_, ProcessHeaders(_)); EXPECT_CALL(visitor_mock_, HeaderDone()); constexpr absl::string_view headers( "POST / HTTP/1.1\r\n" "transfer-encoding: chunked\r\n\r\n"); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); constexpr absl::string_view body1("3\r"); ASSERT_EQ(body1.size(), balsa_frame_.ProcessInput(body1.data(), body1.size())); ASSERT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); constexpr absl::string_view body2("a"); EXPECT_EQ(0, balsa_frame_.ProcessInput(body2.data(), body2.size())); EXPECT_EQ(BalsaFrameEnums::INVALID_CHUNK_EXTENSION, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithTransferEncoding) { std::string message_headers = "DELETE /search?q=fo \t HTTP/1.1 \t \r\n" "trAnsfer-eNcoding: chunked\r\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "0 last one\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = std::string(message_headers) + std::string(message_body); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("DELETE /search?q=fo \t HTTP/1.1", "DELETE", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(10)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput(" chunkjed extension ")); EXPECT_CALL(visitor_mock_, OnChunkLength(63)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput("")); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput(" last one")); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock_, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); EXPECT_CALL(visitor_mock_, OnTrailerInput(_)).Times(0); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_EQ(message_body.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForRequestWithTransferEncodingAndTrailers) { std::string message_headers = "DELETE /search?q=fo \t HTTP/1.1 \t \r\n" "trAnsfer-eNcoding: chunked\r\n" "another_random_header: \r\n" " \t \n" " \t includes a continuation\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "1 \r\n" "x \r\n" "0 last one\r\n"; std::string trailer_data = "a_trailer_key: and a trailer value\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = (std::string(message_headers) + std::string(message_body) + std::string(trailer_data)); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); fake_headers.AddKeyValue("another_random_header", "includes a continuation"); FakeHeaders fake_trailers; fake_trailers.AddKeyValue("a_trailer_key", "and a trailer value"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("DELETE /search?q=fo \t HTTP/1.1", "DELETE", "/search?q=fo", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(10)); EXPECT_CALL(visitor_mock_, OnChunkLength(63)); EXPECT_CALL(visitor_mock_, OnChunkLength(1)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock_, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); EXPECT_CALL(visitor_mock_, OnTrailerInput(trailer_data)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput(_)).Times(AnyNumber()); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_EQ(message_body.size() + trailer_data.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyWithRequestFirstLineWarningWithOnlyMethod) { std::string message = "GET\n"; FakeHeaders fake_headers; auto error_code = BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD; { InSequence s; EXPECT_CALL(visitor_mock_, HandleWarning(error_code)); EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET", "GET", "", "")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyWithRequestFirstLineWarningWithOnlyMethodAndWS) { std::string message = "GET \n"; FakeHeaders fake_headers; auto error_code = BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD; { InSequence s; EXPECT_CALL(visitor_mock_, HandleWarning(error_code)); EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET ", "GET", "", "")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_METHOD, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AbsoluteFormTargetUri) { std::string message = "GET http: "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ("http: balsa_frame_.headers()->request_uri()); EXPECT_EQ("example.com", balsa_frame_.headers()->GetHeader("host")); } TEST_F(HTTPBalsaFrameTest, InvalidAbsoluteFormTargetUri) { std::string message = "GET -pwn/index.html HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.is_valid_target_uri()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ("-pwn/index.html", balsa_frame_.headers()->request_uri()); EXPECT_EQ("example.com", balsa_frame_.headers()->GetHeader("host")); } TEST_F(HTTPBalsaFrameTest, RejectInvalidAbsoluteFormTargetUri) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "GET -pwn/index.html HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); const size_t end_of_first_line = message.find_first_of("\r\n") + 1; EXPECT_EQ(end_of_first_line, balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_TARGET_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, RejectStarForNonOptions) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "GET * HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); const size_t end_of_first_line = message.find_first_of("\r\n") + 1; EXPECT_EQ(end_of_first_line, balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_TARGET_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AllowStarForOptions) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "OPTIONS * HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, RejectConnectWithNoPort) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "CONNECT example.com HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); const size_t end_of_first_line = message.find_first_of("\r\n") + 1; EXPECT_EQ(end_of_first_line, balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_TARGET_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, RejectConnectWithInvalidPort) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "CONNECT example.com:443z HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); const size_t end_of_first_line = message.find_first_of("\r\n") + 1; EXPECT_EQ(end_of_first_line, balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_TARGET_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AllowConnectWithValidPort) { HttpValidationPolicy http_validation_policy{.disallow_invalid_target_uris = true}; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string message = "CONNECT example.com:443 HTTP/1.1\r\n" "Host: example.com\r\n" "\r\n"; balsa_frame_.set_is_request(true); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyWithRequestFirstLineWarningWithMethodAndURI) { std::string message = "GET /uri\n"; FakeHeaders fake_headers; auto error_code = BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI; { InSequence s; EXPECT_CALL(visitor_mock_, HandleWarning(error_code)); EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET /uri", "GET", "/uri", "")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyWithResponseFirstLineError) { std::string message = "HTTP/1.1\n\n"; FakeHeaders fake_headers; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_VERSION; { InSequence s; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput).Times(0); EXPECT_CALL(visitor_mock_, ProcessHeaders(_)).Times(0); EXPECT_CALL(visitor_mock_, HeaderDone()).Times(0); EXPECT_CALL(visitor_mock_, MessageDone()).Times(0); } EXPECT_CALL(visitor_mock_, OnHeaderInput(_)).Times(0); EXPECT_GE(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_RESPONSE_VERSION, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithContentLengthOverflow) { std::string message = "HTTP/1.0 200 OK\r\n" "content-length: 9999999999999999999999999999999999999999\n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithInvalidResponseCode) { std::string message = "HTTP/1.0 x OK\r\n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_GE(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithOverflowingResponseCode) { std::string message = "HTTP/1.0 999999999999999999999999999999999999999 OK\r\n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_GE(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_CONVERTING_STATUS_CODE_TO_INT, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithInvalidContentLength) { std::string message = "HTTP/1.0 200 OK\r\n" "content-length: xxx\n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithNegativeContentLengthValue) { std::string message = "HTTP/1.0 200 OK\r\n" "content-length: -20\n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FlagsErrorWithEmptyContentLengthValue) { std::string message = "HTTP/1.0 200 OK\r\n" "content-length: \n" "\n"; balsa_frame_.set_is_request(false); auto error_code = BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH; EXPECT_CALL(visitor_mock_, HandleError(error_code)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNPARSABLE_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForTrivialResponse) { std::string message = "HTTP/1.0 200 OK\r\n" "content-length: 0\n" "\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "0"); balsa_frame_.set_is_request(false); { InSequence s; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput( "HTTP/1.0 200 OK", "HTTP/1.0", "200", "OK")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithSplitBlankLines) { std::string blanks = "\n" "\r\n" "\r\n"; std::string header_input = "HTTP/1.0 200 OK\r\n" "content-length: 0\n" "\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "0"); balsa_frame_.set_is_request(false); { InSequence s; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput( "HTTP/1.0 200 OK", "HTTP/1.0", "200", "OK")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(header_input)); EXPECT_EQ(blanks.size(), balsa_frame_.ProcessInput(blanks.data(), blanks.size())); EXPECT_EQ(header_input.size(), balsa_frame_.ProcessInput( header_input.data(), header_input.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithBlankLines) { std::string blanks = "\n" "\r\n" "\n" "\n" "\r\n" "\r\n"; std::string header_input = "HTTP/1.0 200 OK\r\n" "content-length: 0\n" "\n"; std::string message = blanks + header_input; FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "0"); balsa_frame_.set_is_request(false); { InSequence s; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput( "HTTP/1.0 200 OK", "HTTP/1.0", "200", "OK")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(header_input)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithContentLength) { std::string message_headers = "HTTP/1.1 \t 200 Ok all is well\r\n" "content-length: \t\t 20 \t\t \r\n" "\r\n"; std::string message_body = "12345678901234567890"; std::string message = std::string(message_headers) + std::string(message_body); FakeHeaders fake_headers; fake_headers.AddKeyValue("content-length", "20"); balsa_frame_.set_is_request(false); { InSequence s1; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput("HTTP/1.1 \t 200 Ok all is well", "HTTP/1.1", "200", "Ok all is well")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnRawBodyInput(message_body)); EXPECT_CALL(visitor_mock_, OnBodyChunkInput(message_body)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_EQ(message_body.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithTransferEncoding) { std::string message_headers = "HTTP/1.1 \t 200 Ok all is well\r\n" "trAnsfer-eNcoding: chunked\r\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "0 last one\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = std::string(message_headers) + std::string(message_body); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); balsa_frame_.set_is_request(false); { InSequence s1; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput("HTTP/1.1 \t 200 Ok all is well", "HTTP/1.1", "200", "Ok all is well")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(10)); EXPECT_CALL(visitor_mock_, OnChunkLength(63)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock_, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); EXPECT_CALL(visitor_mock_, OnTrailerInput(_)).Times(0); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_EQ(message_body.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); } TEST_F(HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithTransferEncodingAndTrailers) { std::string message_headers = "HTTP/1.1 \t 200 Ok all is well\r\n" "trAnsfer-eNcoding: chunked\r\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "0 last one\r\n"; std::string trailer_data = "a_trailer_key: and a trailer value\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = (std::string(message_headers) + std::string(message_body) + std::string(trailer_data)); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); FakeHeaders fake_headers_in_trailer; fake_headers_in_trailer.AddKeyValue("a_trailer_key", "and a trailer value"); balsa_frame_.set_is_request(false); { InSequence s1; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput("HTTP/1.1 \t 200 Ok all is well", "HTTP/1.1", "200", "Ok all is well")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(10)); EXPECT_CALL(visitor_mock_, OnChunkLength(63)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnTrailers(fake_headers_in_trailer)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock_, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); EXPECT_CALL(visitor_mock_, OnTrailerInput(trailer_data)); ASSERT_EQ(message_headers.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_EQ(message_body.size() + trailer_data.size(), balsa_frame_.ProcessInput(message.data() + message_headers.size(), message.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); } TEST_F( HTTPBalsaFrameTest, VisitorInvokedProperlyForResponseWithTransferEncodingAndTrailersBytePer) { std::string message_headers = "HTTP/1.1 \t 200 Ok all is well\r\n" "trAnsfer-eNcoding: chunked\r\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "0 last one\r\n"; std::string trailer_data = "a_trailer_key: and a trailer value\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = (std::string(message_headers) + std::string(message_body) + std::string(trailer_data)); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); FakeHeaders fake_headers_in_trailer; fake_headers_in_trailer.AddKeyValue("a_trailer_key", "and a trailer value"); balsa_frame_.set_is_request(false); { InSequence s1; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput("HTTP/1.1 \t 200 Ok all is well", "HTTP/1.1", "200", "Ok all is well")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(10)); EXPECT_CALL(visitor_mock_, OnChunkLength(63)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnTrailers(fake_headers_in_trailer)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock_, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); std::string trailer_input; EXPECT_CALL(visitor_mock_, OnTrailerInput(_)) .WillRepeatedly([&trailer_input](absl::string_view input) { absl::StrAppend(&trailer_input, input); }); for (size_t i = 0; i < message.size(); ++i) { ASSERT_EQ(1u, balsa_frame_.ProcessInput(message.data() + i, 1)); } EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); EXPECT_EQ(trailer_data, trailer_input); } TEST(HTTPBalsaFrame, VisitorInvokedProperlyForResponseWithTransferEncodingAndTrailersRandom) { TestSeed seed; seed.Initialize(GetQuicheCommandLineFlag(FLAGS_randseed)); RandomEngine rng; rng.seed(seed.GetSeed()); for (int i = 0; i < 1000; ++i) { std::string message_headers = "HTTP/1.1 \t 200 Ok all is well\r\n" "trAnsfer-eNcoding: chunked\r\n" "\r\n"; std::string message_body = "A chunkjed extension \r\n" "01234567890 more crud including numbers 123123\r\n" "3f\n" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n" "0 last one\r\n"; std::string trailer_data = "a_trailer_key: and a trailer value\r\n" "\r\n"; std::string message_body_data = "0123456789" "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"; std::string message = (std::string(message_headers) + std::string(message_body) + std::string(trailer_data)); FakeHeaders fake_headers; fake_headers.AddKeyValue("trAnsfer-eNcoding", "chunked"); FakeHeaders fake_headers_in_trailer; fake_headers_in_trailer.AddKeyValue("a_trailer_key", "and a trailer value"); StrictMock<BalsaVisitorMock> visitor_mock; BalsaHeaders headers; BalsaFrame balsa_frame; balsa_frame.set_is_request(false); balsa_frame.set_balsa_headers(&headers); balsa_frame.EnableTrailers(); balsa_frame.set_balsa_visitor(&visitor_mock); { InSequence s1; EXPECT_CALL(visitor_mock, OnResponseFirstLineInput( "HTTP/1.1 \t 200 Ok all is well", "HTTP/1.1", "200", "Ok all is well")); EXPECT_CALL(visitor_mock, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock, HeaderDone()); EXPECT_CALL(visitor_mock, OnTrailers(fake_headers_in_trailer)); EXPECT_CALL(visitor_mock, MessageDone()); } EXPECT_CALL(visitor_mock, OnHeaderInput(message_headers)); std::string body_input; EXPECT_CALL(visitor_mock, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); std::string body_data; EXPECT_CALL(visitor_mock, OnBodyChunkInput(_)) .WillRepeatedly([&body_data](absl::string_view input) { absl::StrAppend(&body_data, input); }); std::string trailer_input; EXPECT_CALL(visitor_mock, OnTrailerInput(_)) .WillRepeatedly([&trailer_input](absl::string_view input) { absl::StrAppend(&trailer_input, input); }); EXPECT_CALL(visitor_mock, OnChunkLength(_)).Times(AtLeast(1)); EXPECT_CALL(visitor_mock, OnChunkExtensionInput(_)).Times(AtLeast(1)); size_t count = 0; size_t total_processed = 0; for (size_t j = 0; j < message.size();) { auto dist = std::uniform_int_distribution<>(0, message.size() - j + 1); count = dist(rng); size_t processed = balsa_frame.ProcessInput(message.data() + j, count); ASSERT_GE(count, processed); total_processed += processed; j += processed; } EXPECT_EQ(message.size(), total_processed); EXPECT_TRUE(balsa_frame.MessageFullyRead()); EXPECT_FALSE(balsa_frame.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame.ErrorCode()); EXPECT_EQ(message_body, body_input); EXPECT_EQ(message_body_data, body_data); EXPECT_EQ(trailer_data, trailer_input); } } TEST_F(HTTPBalsaFrameTest, AppropriateActionTakenWhenHeadersTooLongWithTooMuchInput) { const absl::string_view message = "GET /asflkasfdhjsafdkljhasfdlkjhasdflkjhsafdlkjhh HTTP/1.1"; const size_t kAmountLessThanHeaderLen = 10; ASSERT_LE(kAmountLessThanHeaderLen, message.size()); auto error_code = BalsaFrameEnums::HEADERS_TOO_LONG; EXPECT_CALL(visitor_mock_, HandleError(error_code)); balsa_frame_.set_max_header_length(message.size() - kAmountLessThanHeaderLen); ASSERT_EQ(balsa_frame_.max_header_length(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::HEADERS_TOO_LONG, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AppropriateActionTakenWhenHeadersTooLongWithBody) { std::string message = "PUT /foo HTTP/1.1\r\n" "Content-Length: 4\r\n" "header: xxxxxxxxx\r\n\r\n" "B"; auto error_code = BalsaFrameEnums::HEADERS_TOO_LONG; EXPECT_CALL(visitor_mock_, HandleError(error_code)); balsa_frame_.set_max_header_length(message.size() - 2); ASSERT_EQ(balsa_frame_.max_header_length(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::HEADERS_TOO_LONG, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AppropriateActionTakenWhenHeadersTooLongWhenReset) { std::string message = "GET /asflkasfdhjsafdkljhasfdlkjhasdflkjhsafdlkjhh HTTP/1.1\r\n" "\r\n"; const size_t kAmountLessThanHeaderLen = 10; ASSERT_LE(kAmountLessThanHeaderLen, message.size()); auto error_code = BalsaFrameEnums::HEADERS_TOO_LONG; ASSERT_EQ(message.size() - 2, balsa_frame_.ProcessInput(message.data(), message.size() - 2)); balsa_frame_.set_max_header_length(message.size() - kAmountLessThanHeaderLen); EXPECT_CALL(visitor_mock_, HandleError(error_code)); ASSERT_EQ(0u, balsa_frame_.ProcessInput(message.data() + message.size() - 2, 2)); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::HEADERS_TOO_LONG, balsa_frame_.ErrorCode()); } class BalsaFrameParsingTest : public QuicheTest { protected: void SetUp() override { balsa_frame_.set_is_request(true); balsa_frame_.set_balsa_headers(&headers_); balsa_frame_.set_balsa_visitor(&visitor_mock_); } void TestEmptyHeaderKeyHelper(const std::string& message) { InSequence s; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET / HTTP/1.1", "GET", "/", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, OnHeaderInput(_)); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_FORMAT)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); Mock::VerifyAndClearExpectations(&visitor_mock_); } void TestInvalidTrailerFormat(const std::string& trailer, bool invalid_name_char) { balsa_frame_.set_is_request(false); balsa_frame_.EnableTrailers(); std::string headers = "HTTP/1.0 200 ok\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; InSequence s; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput); EXPECT_CALL(visitor_mock_, OnHeaderInput); EXPECT_CALL(visitor_mock_, ProcessHeaders); EXPECT_CALL(visitor_mock_, HeaderDone); EXPECT_CALL(visitor_mock_, OnChunkLength(3)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput); EXPECT_CALL(visitor_mock_, OnRawBodyInput); EXPECT_CALL(visitor_mock_, OnBodyChunkInput); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnChunkExtensionInput); EXPECT_CALL(visitor_mock_, OnRawBodyInput); EXPECT_CALL(visitor_mock_, OnRawBodyInput); const auto expected_error = invalid_name_char ? BalsaFrameEnums::INVALID_TRAILER_NAME_CHARACTER : BalsaFrameEnums::INVALID_TRAILER_FORMAT; EXPECT_CALL(visitor_mock_, HandleError(expected_error)).Times(1); EXPECT_CALL(visitor_mock_, OnTrailers(_)).Times(0); EXPECT_CALL(visitor_mock_, MessageDone()).Times(0); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(expected_error, balsa_frame_.ErrorCode()); Mock::VerifyAndClearExpectations(&visitor_mock_); } BalsaHeaders headers_; BalsaFrame balsa_frame_; StrictMock<BalsaVisitorMock> visitor_mock_; }; TEST_F(BalsaFrameParsingTest, AppropriateActionTakenWhenHeaderColonsAreFunny) { std::string message = "GET / HTTP/1.1\r\n" "a\r\n" "b\r\n" "c\r\n" "d\r\n" "e\r\n" "f\r\n" "g\r\n" "h\r\n" "i:\r\n" "j\r\n" "k\r\n" "l\r\n" "m\r\n" "n\r\n" "o\r\n" "p\r\n" "q\r\n" "r\r\n" "s\r\n" "t\r\n" "u\r\n" "v\r\n" "w\r\n" "x\r\n" "y\r\n" "z\r\n" "A\r\n" "B\r\n" ": val\r\n" "\r\n"; EXPECT_CALL(visitor_mock_, OnRequestFirstLineInput("GET / HTTP/1.1", "GET", "/", "HTTP/1.1")); EXPECT_CALL(visitor_mock_, OnHeaderInput(_)); EXPECT_CALL(visitor_mock_, HandleWarning(BalsaFrameEnums::HEADER_MISSING_COLON)) .Times(27); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_FORMAT)); ASSERT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(BalsaFrameParsingTest, ErrorWhenHeaderKeyIsEmpty) { std::string firstKeyIsEmpty = "GET / HTTP/1.1\r\n" ": \r\n" "a:b\r\n" "c:d\r\n" "\r\n"; TestEmptyHeaderKeyHelper(firstKeyIsEmpty); balsa_frame_.Reset(); std::string laterKeyIsEmpty = "GET / HTTP/1.1\r\n" "a:b\r\n" ": \r\n" "c:d\r\n" "\r\n"; TestEmptyHeaderKeyHelper(laterKeyIsEmpty); } TEST_F(BalsaFrameParsingTest, InvalidTrailerFormat) { std::string trailer = ":monkeys\n" "\r\n"; TestInvalidTrailerFormat(trailer, false); balsa_frame_.Reset(); std::string trailer2 = " \r\n" "test: test\r\n" "\r\n"; TestInvalidTrailerFormat(trailer2, true); balsa_frame_.Reset(); std::string trailer3 = "a: b\r\n" ": test\r\n" "\r\n"; TestInvalidTrailerFormat(trailer3, false); } TEST_F(HTTPBalsaFrameTest, EnsureHeaderFramingFoundWithVariousCombinationsOfRN_RN) { const std::string message = "GET / HTTP/1.1\r\n" "content-length: 0\r\n" "a\r\n" "b\r\n" "c\r\n" "d\r\n" "e\r\n" "f\r\n" "g\r\n" "h\r\n" "i\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, EnsureHeaderFramingFoundWithVariousCombinationsOfRN_N) { const std::string message = "GET / HTTP/1.1\n" "content-length: 0\n" "a\n" "b\n" "c\n" "d\n" "e\n" "f\n" "g\n" "h\n" "i\n" "\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, EnsureHeaderFramingFoundWithVariousCombinationsOfRN_RN_N) { const std::string message = "GET / HTTP/1.1\n" "content-length: 0\r\n" "a\r\n" "b\n" "c\r\n" "d\n" "e\r\n" "f\n" "g\r\n" "h\n" "i\r\n" "\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, EnsureHeaderFramingFoundWithVariousCombinationsOfRN_N_RN) { const std::string message = "GET / HTTP/1.1\n" "content-length: 0\r\n" "a\n" "b\r\n" "c\n" "d\r\n" "e\n" "f\r\n" "g\n" "h\r\n" "i\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, ReadUntilCloseStateEnteredAsExpectedAndNotExited) { std::string message = "HTTP/1.1 200 OK\r\n" "\r\n"; balsa_frame_.set_is_request(false); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); EXPECT_EQ(BalsaFrameEnums::READING_UNTIL_CLOSE, balsa_frame_.ParseState()); std::string gobldygook = "-198324-9182-43981-23498-98342-jasldfn-1294hj"; for (int i = 0; i < 1000; ++i) { EXPECT_EQ(gobldygook.size(), balsa_frame_.ProcessInput(gobldygook.data(), gobldygook.size())); EXPECT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()); EXPECT_EQ(BalsaFrameEnums::READING_UNTIL_CLOSE, balsa_frame_.ParseState()); } } TEST_F(HTTPBalsaFrameTest, BytesSafeToSpliceAndBytesSplicedWorksWithContentLength) { std::string header = "HTTP/1.1 200 OK\r\n" "content-length: 1000\r\n" "\r\n"; balsa_frame_.set_is_request(false); size_t bytes_safe_to_splice = 1000; EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ(header.size(), balsa_frame_.ProcessInput(header.data(), header.size())); EXPECT_EQ(bytes_safe_to_splice, balsa_frame_.BytesSafeToSplice()); while (bytes_safe_to_splice > 0) { balsa_frame_.BytesSpliced(1); bytes_safe_to_splice -= 1; ASSERT_FALSE(balsa_frame_.Error()) << BalsaFrameEnums::ParseStateToString(balsa_frame_.ParseState()) << " " << BalsaFrameEnums::ErrorCodeToString(balsa_frame_.ErrorCode()) << " with bytes_safe_to_splice: " << bytes_safe_to_splice << " and BytesSafeToSplice(): " << balsa_frame_.BytesSafeToSplice(); } EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, BytesSplicedFlagsErrorsWhenNotInProperState) { balsa_frame_.set_is_request(false); balsa_frame_.BytesSpliced(1); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::CALLED_BYTES_SPLICED_WHEN_UNSAFE_TO_DO_SO, balsa_frame_.ErrorCode()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, BytesSplicedFlagsErrorsWhenTooMuchSplicedForContentLen) { std::string header = "HTTP/1.1 200 OK\r\n" "content-length: 1000\r\n" "\r\n"; balsa_frame_.set_is_request(false); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ(header.size(), balsa_frame_.ProcessInput(header.data(), header.size())); EXPECT_EQ(1000u, balsa_frame_.BytesSafeToSplice()); balsa_frame_.BytesSpliced(1001); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ( BalsaFrameEnums::CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT, balsa_frame_.ErrorCode()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, BytesSplicedWorksAsExpectedForReadUntilClose) { std::string header = "HTTP/1.1 200 OK\r\n" "\r\n"; balsa_frame_.set_is_request(false); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ(header.size(), balsa_frame_.ProcessInput(header.data(), header.size())); EXPECT_EQ(BalsaFrameEnums::READING_UNTIL_CLOSE, balsa_frame_.ParseState()); EXPECT_EQ(std::numeric_limits<size_t>::max(), balsa_frame_.BytesSafeToSplice()); for (int i = 0; i < 1000; ++i) { EXPECT_EQ(std::numeric_limits<size_t>::max(), balsa_frame_.BytesSafeToSplice()); balsa_frame_.BytesSpliced(12312312); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } EXPECT_EQ(std::numeric_limits<size_t>::max(), balsa_frame_.BytesSafeToSplice()); } TEST_F(HTTPBalsaFrameTest, BytesSplicedFlagsErrorsWhenTooMuchSplicedForChunked) { std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string body_fragment = "a\r\n"; balsa_frame_.set_is_request(false); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ(header.size(), balsa_frame_.ProcessInput(header.data(), header.size())); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ( body_fragment.size(), balsa_frame_.ProcessInput(body_fragment.data(), body_fragment.size())); EXPECT_EQ(10u, balsa_frame_.BytesSafeToSplice()); balsa_frame_.BytesSpliced(11); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ( BalsaFrameEnums::CALLED_BYTES_SPLICED_AND_EXCEEDED_SAFE_SPLICE_AMOUNT, balsa_frame_.ErrorCode()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, BytesSafeToSpliceAndBytesSplicedWorksWithChunks) { std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "\r\n"; balsa_frame_.set_is_request(false); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ(header.size(), balsa_frame_.ProcessInput(header.data(), header.size())); { std::string body_fragment = "3e8\r\n"; EXPECT_FALSE(balsa_frame_.MessageFullyRead()); size_t bytes_safe_to_splice = 1000; EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ( body_fragment.size(), balsa_frame_.ProcessInput(body_fragment.data(), body_fragment.size())); EXPECT_EQ(bytes_safe_to_splice, balsa_frame_.BytesSafeToSplice()); while (bytes_safe_to_splice > 0) { balsa_frame_.BytesSpliced(1); bytes_safe_to_splice -= 1; ASSERT_FALSE(balsa_frame_.Error()); } EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_FALSE(balsa_frame_.Error()); } { std::string body_fragment = "\r\n7d0\r\n"; EXPECT_FALSE(balsa_frame_.MessageFullyRead()); size_t bytes_safe_to_splice = 2000; EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ( body_fragment.size(), balsa_frame_.ProcessInput(body_fragment.data(), body_fragment.size())); EXPECT_EQ(bytes_safe_to_splice, balsa_frame_.BytesSafeToSplice()); while (bytes_safe_to_splice > 0) { balsa_frame_.BytesSpliced(1); bytes_safe_to_splice -= 1; ASSERT_FALSE(balsa_frame_.Error()); } EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_FALSE(balsa_frame_.Error()); } { std::string body_fragment = "\r\n1\r\n"; EXPECT_FALSE(balsa_frame_.MessageFullyRead()); size_t bytes_safe_to_splice = 1; EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ( body_fragment.size(), balsa_frame_.ProcessInput(body_fragment.data(), body_fragment.size())); EXPECT_EQ(bytes_safe_to_splice, balsa_frame_.BytesSafeToSplice()); while (bytes_safe_to_splice > 0) { balsa_frame_.BytesSpliced(1); bytes_safe_to_splice -= 1; ASSERT_FALSE(balsa_frame_.Error()); } EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_FALSE(balsa_frame_.Error()); } { std::string body_fragment = "\r\n0\r\n\r\n"; EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_EQ( body_fragment.size(), balsa_frame_.ProcessInput(body_fragment.data(), body_fragment.size())); EXPECT_EQ(0u, balsa_frame_.BytesSafeToSplice()); EXPECT_FALSE(balsa_frame_.Error()); } EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, TwoDifferentContentLengthHeadersIsAnError) { std::string header = "HTTP/1.1 200 OK\r\n" "content-length: 12\r\n" "content-length: 14\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::MULTIPLE_CONTENT_LENGTH_KEYS, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TwoSameContentLengthHeadersIsNotAnError) { std::string header = "POST / HTTP/1.1\r\n" "content-length: 1\r\n" "content-length: 1\r\n" "\r\n" "1"; balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_FALSE(balsa_frame_.Error()); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, TwoSameContentLengthHeadersIsAnError) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_multiple_content_length = true; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string header = "POST / HTTP/1.1\r\n" "content-length: 1\r\n" "content-length: 1\r\n" "\r\n" "1"; balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::MULTIPLE_CONTENT_LENGTH_KEYS, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TwoTransferEncodingHeadersIsAnError) { std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "transfer-encoding: identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::MULTIPLE_TRANSFER_ENCODING_KEYS, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AcceptTwoTransferEncodingHeaders) { HttpValidationPolicy http_validation_policy; http_validation_policy.validate_transfer_encoding = false; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "transfer-encoding: identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TwoTransferEncodingTokensIsAnError) { std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked, identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNKNOWN_TRANSFER_ENCODING, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AcceptTwoTransferEncodingTokens) { HttpValidationPolicy http_validation_policy; http_validation_policy.validate_transfer_encoding = false; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked, identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, UnknownTransferEncodingTokenIsAnError) { std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked-identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::UNKNOWN_TRANSFER_ENCODING, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, AcceptUnknownTransferEncodingToken) { HttpValidationPolicy http_validation_policy; http_validation_policy.validate_transfer_encoding = false; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked-identity\r\n" "content-length: 3\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, MissingContentLength) { std::string header = "HTTP/1.1 200 OK\r\n\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::MAYBE_BODY_BUT_NO_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, MultipleTransferEncodingsWithMissingContentLength) { HttpValidationPolicy http_validation_policy; http_validation_policy.validate_transfer_encoding = false; balsa_frame_.set_http_validation_policy(http_validation_policy); std::string header = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "transfer-encoding: identity\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.ProcessInput(header.data(), header.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::MAYBE_BODY_BUT_NO_CONTENT_LENGTH, balsa_frame_.ErrorCode()); } class DetachOnDoneFramer : public NoOpBalsaVisitor { public: DetachOnDoneFramer() { framer_.set_balsa_headers(&headers_); framer_.set_balsa_visitor(this); } void MessageDone() override { framer_.set_balsa_headers(nullptr); } BalsaFrame* framer() { return &framer_; } protected: BalsaFrame framer_; BalsaHeaders headers_; }; TEST(HTTPBalsaFrame, TestDetachOnDone) { DetachOnDoneFramer framer; const char* message = "GET HTTP/1.1\r\n\r\n"; framer.framer()->ProcessInput(message, strlen(message)); EXPECT_TRUE(framer.framer()->MessageFullyRead()); EXPECT_FALSE(framer.framer()->Error()); } class ModifyMaxHeaderLengthFramerInFirstLine : public DetachOnDoneFramer { public: void MessageDone() override {} void OnRequestFirstLineInput(absl::string_view , absl::string_view , absl::string_view , absl::string_view ) override { framer_.set_max_header_length(1); } }; class ModifyMaxHeaderLengthFramerInHeaderDone : public DetachOnDoneFramer { public: void MessageDone() override {} void HeaderDone() override { framer_.set_max_header_length(1); } }; TEST(HTTPBalsaFrame, ChangeMaxHeadersLengthOnFirstLine) { std::string message = "PUT /foo HTTP/1.1\r\n" "Content-Length: 2\r\n" "header: xxxxxxxxx\r\n\r\n" "B"; ModifyMaxHeaderLengthFramerInFirstLine balsa_frame; balsa_frame.framer()->set_is_request(true); balsa_frame.framer()->set_max_header_length(message.size() - 1); balsa_frame.framer()->ProcessInput(message.data(), message.size()); EXPECT_EQ(BalsaFrameEnums::HEADERS_TOO_LONG, balsa_frame.framer()->ErrorCode()); } TEST(HTTPBalsaFrame, ChangeMaxHeadersLengthOnHeaderDone) { std::string message = "PUT /foo HTTP/1.1\r\n" "Content-Length: 2\r\n" "header: xxxxxxxxx\r\n\r\n" "B"; ModifyMaxHeaderLengthFramerInHeaderDone balsa_frame; balsa_frame.framer()->set_is_request(true); balsa_frame.framer()->set_max_header_length(message.size() - 1); balsa_frame.framer()->ProcessInput(message.data(), message.size()); EXPECT_EQ(0, balsa_frame.framer()->ErrorCode()); } TEST(HTTPBalsaFrame, HeadersSizeSameAsMaxLengthIsAccepted) { std::string message = "GET /foo HTTP/1.1\r\n" "header: xxxxxxxxx\r\n\r\n"; ModifyMaxHeaderLengthFramerInHeaderDone balsa_frame; balsa_frame.framer()->set_is_request(true); balsa_frame.framer()->set_max_header_length(message.size()); balsa_frame.framer()->ProcessInput(message.data(), message.size()); EXPECT_EQ(0, balsa_frame.framer()->ErrorCode()); } TEST_F(HTTPBalsaFrameTest, KeyHasSpaces) { const std::string message = "GET / HTTP/1.1\r\n" "key has spaces: lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, SpaceBeforeColon) { const std::string message = "GET / HTTP/1.1\r\n" "key : lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, SpaceBeforeColonNotAfter) { const std::string message = "GET / HTTP/1.1\r\n" "key :lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, KeyHasTabs) { const std::string message = "GET / HTTP/1.1\r\n" "key\thas\ttabs: lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TabBeforeColon) { const std::string message = "GET / HTTP/1.1\r\n" "key\t: lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, KeyHasContinuation) { const std::string message = "GET / HTTP/1.1\r\n" "key\n includes continuation: but not value\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, KeyHasMultipleContinuations) { const std::string message = "GET / HTTP/1.1\r\n" "key\n includes\r\n multiple\n continuations: but not value\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, KeyHasDoubleQuote) { const std::string message = "GET / HTTP/1.1\r\n" "key\"hasquote: lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_TRUE(headers_.HasHeader("key\"hasquote")); } TEST_F(HTTPBalsaFrameTest, KeyHasDisallowedDoubleQuote) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_double_quote_in_header_name = true; balsa_frame_.set_http_validation_policy(http_validation_policy); const std::string message = "GET / HTTP/1.1\r\n" "key\"hasquote: lock\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, TrailerMissingColon) { std::string headers = "HTTP/1.0 302 Redirect\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass_monkeys\n" "\r\n"; balsa_frame_.set_is_request(false); EXPECT_CALL(visitor_mock_, HandleWarning(BalsaFrameEnums::TRAILER_MISSING_COLON)); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); FakeHeaders fake_trailers; fake_trailers.AddKeyValue("crass_monkeys", ""); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); EXPECT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::TRAILER_MISSING_COLON, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, MultipleHeadersInTrailer) { std::string headers = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\n" "0\n"; std::map<std::string, std::string> trailer; trailer["X-Trace"] = "http: "foobar.example.com&start=2012-06-03_15:59:06&rpc_duration=0.243349"; trailer["Date"] = "Sun, 03 Jun 2012 22:59:06 GMT"; trailer["Content-Type"] = "text/html"; trailer["X-Backends"] = "127.0.0.1_0,foo.example.com:39359"; trailer["X-Request-Trace"] = "foo.example.com:39359,127.0.0.1_1," "foo.example.com:39359,127.0.0.1_0," "foo.example.com:39359"; trailer["X-Service-Trace"] = "default"; trailer["X-Service"] = "default"; std::map<std::string, std::string>::const_iterator iter; std::string trailer_data; TestSeed seed; seed.Initialize(GetQuicheCommandLineFlag(FLAGS_randseed)); RandomEngine rng; rng.seed(seed.GetSeed()); FakeHeaders fake_headers_in_trailer; for (iter = trailer.begin(); iter != trailer.end(); ++iter) { trailer_data += iter->first; trailer_data += ":"; std::stringstream leading_whitespace_for_value; AppendRandomWhitespace(rng, &leading_whitespace_for_value); trailer_data += leading_whitespace_for_value.str(); trailer_data += iter->second; std::stringstream trailing_whitespace_for_value; AppendRandomWhitespace(rng, &trailing_whitespace_for_value); trailer_data += trailing_whitespace_for_value.str(); trailer_data += random_line_term(rng); fake_headers_in_trailer.AddKeyValue(iter->first, iter->second); } trailer_data += random_line_term(rng); FakeHeaders fake_headers; fake_headers.AddKeyValue("transfer-encoding", "chunked"); { InSequence s1; EXPECT_CALL(visitor_mock_, OnResponseFirstLineInput( "HTTP/1.1 200 OK", "HTTP/1.1", "200", "OK")); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, OnChunkLength(3)); EXPECT_CALL(visitor_mock_, OnChunkLength(0)); EXPECT_CALL(visitor_mock_, OnTrailers(fake_headers_in_trailer)); EXPECT_CALL(visitor_mock_, OnTrailerInput(trailer_data)); EXPECT_CALL(visitor_mock_, MessageDone()); } EXPECT_CALL(visitor_mock_, OnHeaderInput(headers)); std::string body_input; EXPECT_CALL(visitor_mock_, OnRawBodyInput(_)) .WillRepeatedly([&body_input](absl::string_view input) { absl::StrAppend(&body_input, input); }); EXPECT_CALL(visitor_mock_, OnBodyChunkInput("123")); balsa_frame_.set_is_request(false); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_EQ(trailer_data.size(), balsa_frame_.ProcessInput( trailer_data.data(), trailer_data.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_EQ(chunks, body_input); } TEST_F(HTTPBalsaFrameTest, NothingBadHappensWithNULLTrailer) { std::string headers = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "crass: monkeys\r\n" "funky: monkeys\r\n" "\n"; BalsaFrame balsa_frame; balsa_frame.set_balsa_headers(&headers_); balsa_frame.set_is_request(false); balsa_frame.set_balsa_visitor(nullptr); ASSERT_EQ(headers.size(), balsa_frame.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame.ProcessInput(chunks.data(), chunks.size())); ASSERT_EQ(trailer.size(), balsa_frame.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame.MessageFullyRead()); EXPECT_FALSE(balsa_frame.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, FrameAndResetAndFrameAgain) { std::string headers = "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "k: v\n" "\n"; balsa_frame_.set_is_request(false); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); { FakeHeaders fake_trailers; fake_trailers.AddKeyValue("k", "v"); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); } ASSERT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); balsa_frame_.Reset(); headers = "HTTP/1.1 404 Error\r\n" "transfer-encoding: chunked\r\n" "\r\n"; chunks = "4\r\n" "1234\r\n" "0\r\n"; trailer = "nk: nv\n" "\n"; ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); { FakeHeaders fake_trailers; fake_trailers.AddKeyValue("nk", "nv"); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); } ASSERT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, InvalidCharsInHeaderValueError) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string kEscapedInvalid1 = "GET /foo HTTP/1.1\r\n" "Bogus-Head: val\\x00\r\n" "More-Invalid: \\x00\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x0E\x0F\r\n" "And-More: \x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D" "\x1E\x1F\r\n\r\n"; std::string message; absl::CUnescape(kEscapedInvalid1, &message); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, InvalidCharsInHeaderNameError) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kOff); const std::string kEscapedInvalid1 = "GET /foo HTTP/1.1\r\n" "Bogus\\x00-Head: val\r\n\r\n"; std::string message; absl::CUnescape(kEscapedInvalid1, &message); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, InvalidCharsInRequestHeaderError) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string kEscapedInvalid = "GET /foo HTTP/1.1\r\n" "Smuggle-Me: \\x00GET /bar HTTP/1.1\r\n" "Another-Header: value\r\n\r\n"; std::string message; absl::CUnescape(kEscapedInvalid, &message); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, InvalidCharsInResponseHeaderAllowed) { balsa_frame_.set_is_request(false); balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kOff); const absl::string_view headers = "HTTP/1.1 200 OK\r\n" "Content-Length: 5\r\n" "foo: a\022b\r\n" "\r\n"; EXPECT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, InvalidCharsInResponseHeaderError) { balsa_frame_.set_is_request(false); balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const absl::string_view headers = "HTTP/1.1 200 OK\r\n" "Content-Length: 5\r\n" "foo: a\022b\r\n" "\r\n"; EXPECT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_CHARACTER, balsa_frame_.ErrorCode()); } class HTTPBalsaFrameTestOneChar : public HTTPBalsaFrameTest, public testing::WithParamInterface<char> { public: char GetCharUnderTest() { return GetParam(); } }; TEST_P(HTTPBalsaFrameTestOneChar, InvalidCharsErrorSet) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string kRequest = "GET /foo HTTP/1.1\r\n" "Bogus-Char-Goes-Here: "; const std::string kEnding = "\r\n\r\n"; std::string message = kRequest; const char c = GetCharUnderTest(); message.append(1, c); message.append(kEnding); if (c == 9 || c == 10 || c == 13) { EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)) .Times(0); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } else { EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } } INSTANTIATE_TEST_SUITE_P(TestInvalidCharSet, HTTPBalsaFrameTestOneChar, Range<char>(0, 32)); TEST_F(HTTPBalsaFrameTest, InvalidCharEndOfLine) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string kInvalid1 = "GET /foo HTTP/1.1\r\n" "Header-Key: headervalue\\x00\r\n" "Legit-Header: legitvalue\r\n\r\n"; std::string message; absl::CUnescape(kInvalid1, &message); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, InvalidCharInFirstLine) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string kInvalid1 = "GET /foo \\x00HTTP/1.1\r\n" "Legit-Header: legitvalue\r\n\r\n"; std::string message; absl::CUnescape(kInvalid1, &message); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); balsa_frame_.ProcessInput(message.data(), message.size()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, GibberishInHeadersAndTrailer) { const char kGibberish1[] = {static_cast<char>(138), static_cast<char>(175), static_cast<char>(233), 0}; const char kGibberish2[] = {'?', '?', static_cast<char>(128), static_cast<char>(255), static_cast<char>(129), static_cast<char>(254), 0}; const char kGibberish3[] = "foo: bar : eeep : baz"; std::string gibberish_headers = absl::StrCat(kGibberish1, ":", kGibberish2, "\r\n", kGibberish3, "\r\n"); std::string headers = absl::StrCat( "HTTP/1.1 200 OK\r\n" "transfer-encoding: chunked\r\n", gibberish_headers, "\r\n"); std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = absl::StrCat("k: v\n", gibberish_headers, "\n"); balsa_frame_.set_is_request(false); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); FakeHeaders fake_trailers; fake_trailers.AddKeyValue("k", "v"); fake_trailers.AddKeyValue(kGibberish1, kGibberish2); fake_trailers.AddKeyValue("foo", "bar : eeep : baz"); EXPECT_CALL(visitor_mock_, OnTrailers(fake_trailers)); ASSERT_EQ(trailer.size(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); EXPECT_TRUE(headers_.transfer_encoding_is_chunked()); absl::string_view field_value = headers_.GetHeader(kGibberish1); EXPECT_EQ(kGibberish2, field_value); field_value = headers_.GetHeader("foo"); EXPECT_EQ("bar : eeep : baz", field_value); } TEST_F(HTTPBalsaFrameTest, TrailerTooLong) { std::string headers = "HTTP/1.0 200 ok\r\n" "transfer-encoding: chunked\r\n" "\r\n"; std::string chunks = "3\r\n" "123\r\n" "0\r\n"; std::string trailer = "very : long trailer\n" "should:cause\r\n" "trailer :too long error\n" "\r\n"; balsa_frame_.set_is_request(false); ASSERT_LT(headers.size(), trailer.size()); balsa_frame_.set_max_header_length(headers.size()); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::TRAILER_TOO_LONG)); EXPECT_CALL(visitor_mock_, OnTrailers(_)).Times(0); EXPECT_CALL(visitor_mock_, MessageDone()).Times(0); ASSERT_EQ(headers.size(), balsa_frame_.ProcessInput(headers.data(), headers.size())); ASSERT_EQ(chunks.size(), balsa_frame_.ProcessInput(chunks.data(), chunks.size())); EXPECT_EQ(balsa_frame_.max_header_length(), balsa_frame_.ProcessInput(trailer.data(), trailer.size())); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::TRAILER_TOO_LONG, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, Parse100ContinueNoContinueHeadersNoCallback) { std::string continue_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(false); InSequence s; EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(continue_headers.data(), continue_headers.size()), continue_headers.size()) << balsa_frame_.ErrorCode(); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(headers_.parsed_response_code(), 100); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, Parse100Continue) { std::string continue_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); EXPECT_CALL(visitor_mock_, HeaderDone()).Times(0); EXPECT_CALL(visitor_mock_, MessageDone()).Times(0); ASSERT_EQ(balsa_frame_.ProcessInput(continue_headers.data(), continue_headers.size()), continue_headers.size()) << balsa_frame_.ErrorCode(); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(headers_.parsed_response_code(), 0u); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); } TEST_F(HTTPBalsaFrameTest, Support100ContinueNoCallback) { std::string initial_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; std::string real_headers = "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); BalsaHeaders continue_headers; balsa_frame_.set_continue_headers(&continue_headers); balsa_frame_.set_use_interim_headers_callback(false); ASSERT_EQ(initial_headers.size(), balsa_frame_.ProcessInput(initial_headers.data(), initial_headers.size())); ASSERT_EQ(real_headers.size(), balsa_frame_.ProcessInput(real_headers.data(), real_headers.size())) << balsa_frame_.ErrorCode(); ASSERT_EQ(body.size(), balsa_frame_.ProcessInput(body.data(), body.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, Support100Continue) { std::string initial_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; std::string real_headers = "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); ASSERT_EQ( balsa_frame_.ProcessInput(initial_headers.data(), initial_headers.size()), initial_headers.size()); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(real_headers.data(), real_headers.size()), real_headers.size()) << balsa_frame_.ErrorCode(); EXPECT_EQ(headers_.parsed_response_code(), 200); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, InterimHeadersCallbackTakesPrecedence) { std::string initial_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; std::string real_headers = "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); BalsaHeaders continue_headers; balsa_frame_.set_continue_headers(&continue_headers); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); EXPECT_CALL(visitor_mock_, ContinueHeaderDone).Times(0); ASSERT_EQ( balsa_frame_.ProcessInput(initial_headers.data(), initial_headers.size()), initial_headers.size()); EXPECT_EQ(continue_headers.parsed_response_code(), 0u); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(real_headers.data(), real_headers.size()), real_headers.size()) << balsa_frame_.ErrorCode(); EXPECT_EQ(headers_.parsed_response_code(), 200); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, Support100Continue401UnauthorizedNoCallback) { std::string initial_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; std::string real_headers = "HTTP/1.1 401 Unauthorized\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); BalsaHeaders continue_headers; balsa_frame_.set_continue_headers(&continue_headers); balsa_frame_.set_use_interim_headers_callback(false); ASSERT_EQ(initial_headers.size(), balsa_frame_.ProcessInput(initial_headers.data(), initial_headers.size())); ASSERT_EQ(real_headers.size(), balsa_frame_.ProcessInput(real_headers.data(), real_headers.size())) << balsa_frame_.ErrorCode(); ASSERT_EQ(body.size(), balsa_frame_.ProcessInput(body.data(), body.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, Support100Continue401Unauthorized) { std::string initial_headers = "HTTP/1.1 100 Continue\r\n" "\r\n"; std::string real_headers = "HTTP/1.1 401 Unauthorized\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); ASSERT_EQ( balsa_frame_.ProcessInput(initial_headers.data(), initial_headers.size()), initial_headers.size()); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(real_headers.data(), real_headers.size()), real_headers.size()) << balsa_frame_.ErrorCode(); EXPECT_EQ(headers_.parsed_response_code(), 401); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, Support100ContinueRunTogetherNoCallback) { std::string both_headers = "HTTP/1.1 100 Continue\r\n" "\r\n" "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; { InSequence s; EXPECT_CALL(visitor_mock_, ContinueHeaderDone()); EXPECT_CALL(visitor_mock_, HeaderDone()); EXPECT_CALL(visitor_mock_, MessageDone()); } balsa_frame_.set_is_request(false); BalsaHeaders continue_headers; balsa_frame_.set_continue_headers(&continue_headers); balsa_frame_.set_use_interim_headers_callback(false); ASSERT_EQ(both_headers.size(), balsa_frame_.ProcessInput(both_headers.data(), both_headers.size())) << balsa_frame_.ErrorCode(); ASSERT_EQ(body.size(), balsa_frame_.ProcessInput(body.data(), body.size())); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, Support100ContinueRunTogether) { std::string both_headers = "HTTP/1.1 100 Continue\r\n" "\r\n" "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(both_headers.data(), both_headers.size()), both_headers.size()) << balsa_frame_.ErrorCode(); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_EQ(headers_.parsed_response_code(), 200); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, MultipleInterimHeaders) { std::string all_headers = "HTTP/1.1 100 Continue\r\n" "\r\n" "HTTP/1.1 103 Early Hints\r\n" "\r\n" "HTTP/1.1 200 OK\r\n" "content-length: 3\r\n" "\r\n"; std::string body = "foo"; balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 100)))); EXPECT_CALL(visitor_mock_, OnInterimHeaders(Pointee(Property( &BalsaHeaders::parsed_response_code, 103)))); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(all_headers.data(), all_headers.size()), all_headers.size()) << balsa_frame_.ErrorCode(); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_EQ(headers_.parsed_response_code(), 200); EXPECT_CALL(visitor_mock_, MessageDone()); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_TRUE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, SwitchingProtocols) { const std::string headers = "HTTP/1.1 101 Switching Protocols\r\n" "\r\n"; const std::string body = "Bytes for the new protocol"; const std::string message = absl::StrCat(headers, body); balsa_frame_.set_is_request(false); balsa_frame_.set_use_interim_headers_callback(true); InSequence s; EXPECT_CALL(visitor_mock_, ProcessHeaders); EXPECT_CALL(visitor_mock_, HeaderDone()); ASSERT_EQ(balsa_frame_.ProcessInput(message.data(), message.size()), headers.size()) << balsa_frame_.ErrorCode(); ASSERT_FALSE(balsa_frame_.Error()); EXPECT_EQ(headers_.parsed_response_code(), 101); balsa_frame_.AllowArbitraryBody(); EXPECT_CALL(visitor_mock_, OnRawBodyInput("Bytes for the new protocol")); EXPECT_CALL(visitor_mock_, OnBodyChunkInput("Bytes for the new protocol")); EXPECT_CALL(visitor_mock_, MessageDone()).Times(0); ASSERT_EQ(balsa_frame_.ProcessInput(body.data(), body.size()), body.size()); EXPECT_FALSE(balsa_frame_.MessageFullyRead()); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(balsa_frame_.ErrorCode(), BalsaFrameEnums::BALSA_NO_ERROR); } TEST_F(HTTPBalsaFrameTest, Http09) { constexpr absl::string_view request = "GET /\r\n"; InSequence s; StrictMock<BalsaVisitorMock> visitor_mock; balsa_frame_.set_balsa_visitor(&visitor_mock); EXPECT_CALL( visitor_mock, HandleWarning( BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI)); EXPECT_CALL(visitor_mock, OnRequestFirstLineInput("GET /", "GET", "/", "")); EXPECT_CALL(visitor_mock, OnHeaderInput(request)); EXPECT_CALL(visitor_mock, ProcessHeaders(FakeHeaders{})); EXPECT_CALL(visitor_mock, HeaderDone()); EXPECT_CALL(visitor_mock, MessageDone()); EXPECT_EQ(request.size(), balsa_frame_.ProcessInput(request.data(), request.size())); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::FAILED_TO_FIND_WS_AFTER_REQUEST_REQUEST_URI, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, ContinuationAllowed) { const std::string message = "GET / HTTP/1.1\r\n" "key1: \n value starts with obs-fold\r\n" "key2: value\n includes obs-fold\r\n" "key3: value ends in obs-fold \n \r\n" "\r\n"; FakeHeaders fake_headers; fake_headers.AddKeyValue("key1", "value starts with obs-fold"); fake_headers.AddKeyValue("key2", "value\n includes obs-fold"); fake_headers.AddKeyValue("key3", "value ends in obs-fold"); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, ContinuationDisallowed) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_header_continuation_lines = true; balsa_frame_.set_http_validation_policy(http_validation_policy); const std::string message = "GET / HTTP/1.1\r\n" "key: value\n includes obs-fold\r\n" "\r\n"; EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::INVALID_HEADER_FORMAT, balsa_frame_.ErrorCode()); } TEST_F(HTTPBalsaFrameTest, NullAtBeginningOrEndOfValue) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); constexpr absl::string_view null_string("\0", 1); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "key1: ", null_string, "value starts with null\r\n", "key2: value ends in null", null_string, "\r\n", "\r\n"); FakeHeaders fake_headers; fake_headers.AddKeyValue("key1", "value starts with null"); fake_headers.AddKeyValue("key2", "value ends in null"); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, NullInMiddleOfValue) { balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); constexpr absl::string_view null_string("\0", 1); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "key: value ", null_string, "includes null\r\n", "\r\n"); FakeHeaders fake_headers; fake_headers.AddKeyValue( "key", absl::StrCat("value ", null_string, "includes null")); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_CHARACTER)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, ObsTextNotFoundIfNotPresent) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = true; balsa_frame_.set_http_validation_policy(http_validation_policy); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "key1: key does not contain obs-text\r\n", "\r\n"); FakeHeaders fake_headers; fake_headers.AddKeyValue("key1", "key does not contain obs-text"); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, HeaderFieldNameWithObsTextButPolicyDisabled) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = false; balsa_frame_.set_http_validation_policy(http_validation_policy); balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "\x80key1: key starts with obs-text\r\n", "\r\n"); FakeHeaders fake_headers; fake_headers.AddKeyValue("\x80key1", "key starts with obs-text"); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, HeaderFieldNameWithObsTextAndPolicyEnabled) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = true; balsa_frame_.set_http_validation_policy(http_validation_policy); balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kOff); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "\x80key1: key starts with obs-text\r\n", "\r\n"); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, HeaderFieldNameWithObsTextAtEndRejected) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = true; balsa_frame_.set_http_validation_policy(http_validation_policy); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "key1\x93: key ends with obs-text\r\n", "\r\n"); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, HeaderFieldNameWithObsTextInMiddleRejected) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = true; balsa_frame_.set_http_validation_policy(http_validation_policy); const std::string message = absl::StrCat("GET / HTTP/1.1\r\n", "ke\xffy1: key contains obs-text in middle\r\n", "\r\n"); EXPECT_CALL(visitor_mock_, HandleError(BalsaFrameEnums::INVALID_HEADER_NAME_CHARACTER)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_TRUE(balsa_frame_.Error()); } TEST_F(HTTPBalsaFrameTest, ObsTextInReasonPhraseAllowed) { HttpValidationPolicy http_validation_policy; http_validation_policy.disallow_obs_text_in_field_names = true; balsa_frame_.set_http_validation_policy(http_validation_policy); balsa_frame_.set_invalid_chars_level(BalsaFrame::InvalidCharsLevel::kError); balsa_frame_.set_is_request(false); const std::string message = absl::StrCat("HTTP/1.1 200 O\x90K\r\n", "surprising: obs-text allowed in reason phrase\r\n", "content-length: 0\r\n" "\r\n"); FakeHeaders fake_headers; fake_headers.AddKeyValue("surprising", "obs-text allowed in reason phrase"); fake_headers.AddKeyValue("content-length", "0"); EXPECT_CALL(visitor_mock_, ProcessHeaders(fake_headers)); EXPECT_EQ(message.size(), balsa_frame_.ProcessInput(message.data(), message.size())); EXPECT_FALSE(balsa_frame_.Error()); EXPECT_EQ(BalsaFrameEnums::BALSA_NO_ERROR, balsa_frame_.ErrorCode()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_frame.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_frame_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
baa990a7-f3e5-4cf9-98a9-9ce6ba0b324b
cpp
google/cel-cpp
testing_descriptor_pool
internal/testing_descriptor_pool.cc
internal/testing_descriptor_pool_test.cc
#include "internal/testing_descriptor_pool.h" #include <cstdint> #include "google/protobuf/descriptor.pb.h" #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "google/protobuf/descriptor.h" namespace cel::internal { namespace { ABSL_CONST_INIT const uint8_t kTestingDescriptorSet[] = { #include "internal/testing_descriptor_set_embed.inc" }; } absl::Nonnull<const google::protobuf::DescriptorPool*> GetTestingDescriptorPool() { static absl::Nonnull<const google::protobuf::DescriptorPool* const> pool = []() { google::protobuf::FileDescriptorSet file_desc_set; ABSL_CHECK(file_desc_set.ParseFromArray( kTestingDescriptorSet, ABSL_ARRAYSIZE(kTestingDescriptorSet))); auto* pool = new google::protobuf::DescriptorPool(); for (const auto& file_desc : file_desc_set.file()) { ABSL_CHECK(pool->BuildFile(file_desc) != nullptr); } return pool; }(); return pool; } }
#include "internal/testing_descriptor_pool.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" namespace cel::internal { namespace { using ::testing::NotNull; TEST(TestingDescriptorPool, NullValue) { ASSERT_THAT(GetTestingDescriptorPool()->FindEnumTypeByName( "google.protobuf.NullValue"), NotNull()); } TEST(TestingDescriptorPool, BoolValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.BoolValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_BOOLVALUE); } TEST(TestingDescriptorPool, Int32Value) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Int32Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_INT32VALUE); } TEST(TestingDescriptorPool, Int64Value) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Int64Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_INT64VALUE); } TEST(TestingDescriptorPool, UInt32Value) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.UInt32Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_UINT32VALUE); } TEST(TestingDescriptorPool, UInt64Value) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.UInt64Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_UINT64VALUE); } TEST(TestingDescriptorPool, FloatValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.FloatValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_FLOATVALUE); } TEST(TestingDescriptorPool, DoubleValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.DoubleValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_DOUBLEVALUE); } TEST(TestingDescriptorPool, BytesValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.BytesValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_BYTESVALUE); } TEST(TestingDescriptorPool, StringValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.StringValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_STRINGVALUE); } TEST(TestingDescriptorPool, Any) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName("google.protobuf.Any"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_ANY); } TEST(TestingDescriptorPool, Duration) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Duration"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_DURATION); } TEST(TestingDescriptorPool, Timestamp) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Timestamp"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_TIMESTAMP); } TEST(TestingDescriptorPool, Value) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_VALUE); } TEST(TestingDescriptorPool, ListValue) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.ListValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_LISTVALUE); } TEST(TestingDescriptorPool, Struct) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Struct"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_STRUCT); } TEST(TestingDescriptorPool, FieldMask) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.FieldMask"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_FIELDMASK); } TEST(TestingDescriptorPool, Empty) { const auto* desc = GetTestingDescriptorPool()->FindMessageTypeByName( "google.protobuf.Empty"); ASSERT_THAT(desc, NotNull()); } TEST(TestingDescriptorPool, TestAllTypesProto2) { EXPECT_THAT(GetTestingDescriptorPool()->FindMessageTypeByName( "google.api.expr.test.v1.proto2.TestAllTypes"), NotNull()); } TEST(TestingDescriptorPool, TestAllTypesProto3) { EXPECT_THAT(GetTestingDescriptorPool()->FindMessageTypeByName( "google.api.expr.test.v1.proto3.TestAllTypes"), NotNull()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/testing_descriptor_pool.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/testing_descriptor_pool_test.cc
4552db5798fb0853b131b783d8875794334fae7f
392aa368-f3b4-4624-abe5-8318bc62bf19
cpp
tensorflow/tensorflow
test_utils
tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.cc
tensorflow/core/lib/monitoring/test_utils_test.cc
#include "tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.h" #include <algorithm> #include <cstring> #include <functional> #include <numeric> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/tfrt/mlrt/attribute/attribute.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/kernel.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/interpreter_testutil.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace mlrt { namespace testing { absl::StatusOr<std::string> EncodeAttribute(const tensorflow::AttrValue& attr) { if (attr.has_b()) { std::string result; result.resize(sizeof(uint8_t)); uint8_t v = attr.b(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_i()) { std::string result; result.resize(sizeof(int64_t)); int64_t v = attr.i(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_f()) { std::string result; result.resize(sizeof(float)); float v = attr.f(); std::memcpy(result.data(), &v, sizeof(v)); return result; } if (attr.has_s()) { return attr.s(); } if (attr.has_list()) { if (attr.list().s_size() > 0) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto ctor = mlrt::bc::New<mlrt::bc::Vector<mlrt::bc::String>>( &allocator, attr.list().s_size()); for (int i = 0; i < attr.list().s_size(); ++i) { ctor.ConstructAt(i, attr.list().s(i)); } return std::string(buffer.data(), buffer.size()); } } if (attr.has_tensor()) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); tensorflow::Tensor tensor; if (!tensor.FromProto(attr.tensor())) { return absl::InvalidArgumentError("Invalid tensor proto."); } auto tensor_attr_ctor = mlrt::bc::New<tensorflow::tf_mlrt::TensorAttr>( &allocator, tensor.dtype()); auto shape = tensor.shape().dim_sizes(); tensor_attr_ctor.construct_shape(shape.size()) .Assign(shape.begin(), shape.end()); auto tensor_data = tensor.tensor_data(); tensor_attr_ctor.construct_data(tensor_data.size()) .Place(tensor_data.data(), tensor_data.size()); return std::string(buffer.data(), buffer.size()); } return absl::InvalidArgumentError("Unsupported attribute."); } namespace { bool CanBeInlined(const tensorflow::AttrValue& attr) { return attr.has_b() || attr.has_f(); } } absl::Status EncodeAttributes(AttributeTable& attributes, const tensorflow::AttrValueMap& attr_map) { std::vector<std::pair<std::string, tensorflow::AttrValue>> attrs( attr_map.begin(), attr_map.end()); std::sort(attrs.begin(), attrs.end(), [](const auto& x, const auto& y) { return x.first < y.first; }); for (int i = 0; i < attrs.size(); ++i) { const tensorflow::AttrValue& attr = attrs[i].second; TF_ASSIGN_OR_RETURN(auto attr_str, EncodeAttribute(attr)); if (CanBeInlined(attr)) { attributes.AddInline(absl::StrCat(i), attr_str); } else { attributes.Add(absl::StrCat(i), attr_str); } } return absl::OkStatus(); } absl::StatusOr<std::pair<mlrt::bc::Kernel, mlrt::bc::Vector<mlrt::bc::String>>> CreateKernelAndAttrs(int num_inputs, int num_outputs, mlrt::ExecutionContext& exec_ctx, mlrt::bc::Buffer* buffer, const tensorflow::AttrValueMap& attrs) { mlrt::bc::Allocator allocator(buffer); auto attributes_ctor = mlrt::bc::New<mlrt::bc::Vector<mlrt::bc::String>>( &allocator, attrs.size()); AttributeTable attribute_table(attributes_ctor); TF_RETURN_IF_ERROR(EncodeAttributes(attribute_table, attrs)); auto kernel_ctor = mlrt::bc::New<mlrt::bc::Kernel>(&allocator); kernel_ctor.set_code(0); std::vector<int> input_indices(num_inputs); std::iota(input_indices.begin(), input_indices.end(), 0); kernel_ctor.construct_arguments(input_indices.size()) .Assign(input_indices.begin(), input_indices.end()); std::vector<int> output_indices(num_outputs); std::iota(output_indices.begin(), output_indices.end(), num_inputs); kernel_ctor.construct_results(output_indices.size()) .Assign(output_indices.begin(), output_indices.end()); std::vector<uint32_t> attr_indices; attr_indices.reserve(attrs.size()); for (int i = 0; i < attrs.size(); ++i) { attr_indices.push_back(attribute_table.GetHandle(absl::StrCat(i))); } kernel_ctor.construct_attributes(attr_indices.size()) .Assign(attr_indices.begin(), attr_indices.end()); mlrt::bc::Vector<mlrt::bc::String> attributes( buffer->Get(attributes_ctor.address())); mlrt::bc::Kernel kernel(buffer->Get(kernel_ctor.address())); return std::make_pair(kernel, attributes); } } }
#include "tensorflow/core/lib/monitoring/test_utils.h" #include <string> #include "tensorflow/core/lib/monitoring/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace monitoring { namespace testing { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; template <typename MessageType> StatusOr<MessageType> ParseTextProto(const std::string& text_proto) { protobuf::TextFormat::Parser parser; MessageType parsed_proto; protobuf::io::ArrayInputStream input_stream(text_proto.data(), text_proto.size()); if (!parser.Parse(&input_stream, &parsed_proto)) { return errors::InvalidArgument("Could not parse text proto: ", text_proto); } return parsed_proto; } TEST(HistogramTest, Subtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 5.0 num: 1.0 sum: 5.0 sum_squares: 25.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 2.0); EXPECT_FLOAT_EQ(delta.sum(), 550.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 252500.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 1.0); EXPECT_FLOAT_EQ(delta.num(3), 1.0); } TEST(HistogramTest, ReverseSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 5.0 num: 1.0 sum: 5.0 sum_squares: 25.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 0 bucket: 0 )pb")); EXPECT_THAT( Histogram(histogram2).Subtract(Histogram(histogram1)), StatusIs( error::INVALID_ARGUMENT, HasSubstr("Failed to subtract a histogram by a larger histogram."))); } TEST(HistogramTest, NegativeSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: -100.0 max: 0.0 num: 5.0 sum: -500.0 sum_squares: 50000.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 5 bucket: 0 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: -100.0 max: 0.0 num: 2.0 sum: -200.0 sum_squares: 20000.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 2 bucket: 0 bucket: 0 bucket: 0 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 3.0); EXPECT_FLOAT_EQ(delta.sum(), -300.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 30000.0); EXPECT_FLOAT_EQ(delta.num(0), 3.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, SingleBucketSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 1.0 num: 100.0 sum: 100.0 sum_squares: 100.0 bucket: 100 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 1.0 num: 50.0 sum: 50.0 sum_squares: 50.0 bucket: 50 )pb")); TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 50.0); EXPECT_FLOAT_EQ(delta.sum(), 50.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 50.0); EXPECT_FLOAT_EQ(delta.num(0), 50.0); } TEST(HistogramTest, SelfSubtract) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(Histogram delta, Histogram(histogram).Subtract(Histogram(histogram))); EXPECT_FLOAT_EQ(delta.num(), 0.0); EXPECT_FLOAT_EQ(delta.sum(), 0.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 0.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, SubtractEmptyHistogram) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); const HistogramProto empty; TF_ASSERT_OK_AND_ASSIGN(Histogram delta, Histogram(histogram).Subtract(Histogram(empty))); EXPECT_FLOAT_EQ(delta.num(), 3.0); EXPECT_FLOAT_EQ(delta.sum(), 555.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 252525.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 1.0); EXPECT_FLOAT_EQ(delta.num(2), 1.0); EXPECT_FLOAT_EQ(delta.num(3), 1.0); } TEST(HistogramTest, SubtractTwoEmptyHistograms) { const HistogramProto histogram1; const HistogramProto histogram2; TF_ASSERT_OK_AND_ASSIGN( Histogram delta, Histogram(histogram1).Subtract(Histogram(histogram2))); EXPECT_FLOAT_EQ(delta.num(), 0.0); EXPECT_FLOAT_EQ(delta.sum(), 0.0); EXPECT_FLOAT_EQ(delta.sum_squares(), 0.0); EXPECT_FLOAT_EQ(delta.num(0), 0.0); EXPECT_FLOAT_EQ(delta.num(1), 0.0); EXPECT_FLOAT_EQ(delta.num(2), 0.0); EXPECT_FLOAT_EQ(delta.num(3), 0.0); } TEST(HistogramTest, DifferentBuckets) { TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram1, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 500.0 num: 3.0 sum: 555.0 sum_squares: 252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 )pb")); TF_ASSERT_OK_AND_ASSIGN(HistogramProto histogram2, ParseTextProto<HistogramProto>(R"pb( min: 0.0 max: 50000.0 num: 5.0 sum: 55555.0 sum_squares: 2525252525.0 bucket_limit: 0.0 bucket_limit: 10.0 bucket_limit: 100.0 bucket_limit: 1000.0 bucket: 0 bucket: 1 bucket: 1 bucket: 1 bucket: 2 )pb")); EXPECT_THAT( Histogram(histogram1).Subtract(Histogram(histogram2)), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Subtracting a histogram with different buckets."))); } TEST(PercentilesTest, Percentiles) { tensorflow::monitoring::Percentiles percentiles_value; percentiles_value.total_samples = 100; percentiles_value.accumulator = -100; Percentiles percentiles(percentiles_value); EXPECT_EQ(percentiles.num(), 100); EXPECT_FLOAT_EQ(percentiles.sum(), -100); Percentiles delta = percentiles.Subtract(percentiles); EXPECT_EQ(delta.num(), 0); EXPECT_FLOAT_EQ(delta.sum(), 0); delta = delta.Subtract(percentiles); EXPECT_EQ(delta.num(), -100); EXPECT_FLOAT_EQ(delta.sum(), 100); } TEST(PercentilesTest, Subtract) { tensorflow::monitoring::Percentiles percentiles_value1; percentiles_value1.total_samples = 100; percentiles_value1.accumulator = 100; Percentiles percentiles1(percentiles_value1); EXPECT_EQ(percentiles1.num(), 100); EXPECT_FLOAT_EQ(percentiles1.sum(), 100); tensorflow::monitoring::Percentiles percentiles_value2; percentiles_value2.total_samples = 90; percentiles_value2.accumulator = 90; Percentiles percentiles2(percentiles_value2); EXPECT_EQ(percentiles2.num(), 90); EXPECT_FLOAT_EQ(percentiles2.sum(), 90); Percentiles delta = percentiles1.Subtract(percentiles2); EXPECT_EQ(delta.num(), 10); EXPECT_FLOAT_EQ(delta.sum(), 10); } TEST(PercentilesTest, ReverseSubtract) { tensorflow::monitoring::Percentiles percentiles_value1; percentiles_value1.total_samples = 100; percentiles_value1.accumulator = 100; Percentiles percentiles1(percentiles_value1); EXPECT_EQ(percentiles1.num(), 100); EXPECT_FLOAT_EQ(percentiles1.sum(), 100); tensorflow::monitoring::Percentiles percentiles_value2; percentiles_value2.total_samples = 90; percentiles_value2.accumulator = 90; Percentiles percentiles2(percentiles_value2); EXPECT_EQ(percentiles2.num(), 90); EXPECT_FLOAT_EQ(percentiles2.sum(), 90); Percentiles delta = percentiles2.Subtract(percentiles1); EXPECT_EQ(delta.num(), -10); EXPECT_FLOAT_EQ(delta.sum(), -10); } TEST(PercentilesTest, SubtractEmptyPercentile) { tensorflow::monitoring::Percentiles percentiles_value; percentiles_value.total_samples = 1; percentiles_value.accumulator = 1; Percentiles percentiles(percentiles_value); EXPECT_EQ(percentiles.num(), 1); EXPECT_FLOAT_EQ(percentiles.sum(), 1); Percentiles empty_percentile((tensorflow::monitoring::Percentiles())); EXPECT_EQ(empty_percentile.num(), 0); EXPECT_FLOAT_EQ(empty_percentile.sum(), 0); Percentiles delta = percentiles.Subtract(empty_percentile); EXPECT_EQ(delta.num(), 1); EXPECT_FLOAT_EQ(delta.sum(), 1); } TEST(PercentilesTest, EmptyPercentiles) { Percentiles empty_percentile((tensorflow::monitoring::Percentiles())); EXPECT_EQ(empty_percentile.num(), 0); EXPECT_FLOAT_EQ(empty_percentile.sum(), 0); Percentiles delta = empty_percentile.Subtract(empty_percentile); EXPECT_EQ(delta.num(), 0); EXPECT_FLOAT_EQ(delta.sum(), 0); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/translate/mlrt/test_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/monitoring/test_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
22b80074-28d5-4dc2-b4e0-e438581af639
cpp
google/cel-cpp
duration
extensions/protobuf/internal/duration.cc
extensions/protobuf/internal/duration_test.cc
#include "extensions/protobuf/internal/duration.h" #include <cstdint> #include "google/protobuf/duration.pb.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/duration_lite.h" #include "extensions/protobuf/internal/is_generated_message.h" #include "extensions/protobuf/internal/is_message_lite.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel::extensions::protobuf_internal { absl::StatusOr<absl::Duration> UnwrapDynamicDurationProto( const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Duration"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if constexpr (NotMessageLite<google::protobuf::Duration>) { if (IsGeneratedMessage(message)) { return UnwrapGeneratedDurationProto( google::protobuf::DownCastMessage<google::protobuf::Duration>(message)); } } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Duration::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Duration::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } return absl::Seconds(reflect->GetInt64(message, seconds_field)) + absl::Nanoseconds(reflect->GetInt32(message, nanos_field)); } absl::Status WrapDynamicDurationProto(absl::Duration value, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Duration"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if constexpr (NotMessageLite<google::protobuf::Duration>) { if (IsGeneratedMessage(message)) { return WrapGeneratedDurationProto( value, google::protobuf::DownCastMessage<google::protobuf::Duration>(message)); } } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Duration::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Duration::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } reflect->SetInt64(&message, seconds_field, absl::IDivDuration(value, absl::Seconds(1), &value)); reflect->SetInt32(&message, nanos_field, static_cast<int32_t>(absl::IDivDuration( value, absl::Nanoseconds(1), &value))); return absl::OkStatus(); } }
#include "extensions/protobuf/internal/duration.h" #include <memory> #include "google/protobuf/duration.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/memory/memory.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/duration_lite.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/descriptor_database.h" #include "google/protobuf/dynamic_message.h" namespace cel::extensions::protobuf_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::Eq; TEST(Duration, GeneratedFromProto) { EXPECT_THAT(UnwrapGeneratedDurationProto(google::protobuf::Duration()), IsOkAndHolds(Eq(absl::ZeroDuration()))); } TEST(Duration, CustomFromProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Duration::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); EXPECT_THAT(UnwrapDynamicDurationProto(*factory.GetPrototype( pool.FindMessageTypeByName("google.protobuf.Duration"))), IsOkAndHolds(Eq(absl::ZeroDuration()))); } TEST(Duration, GeneratedToProto) { google::protobuf::Duration proto; ASSERT_OK(WrapGeneratedDurationProto(absl::Seconds(1) + absl::Nanoseconds(2), proto)); EXPECT_EQ(proto.seconds(), 1); EXPECT_EQ(proto.nanos(), 2); } TEST(Duration, CustomToProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Duration::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); std::unique_ptr<google::protobuf::Message> proto = absl::WrapUnique( factory .GetPrototype(pool.FindMessageTypeByName("google.protobuf.Duration")) ->New()); const auto* descriptor = proto->GetDescriptor(); const auto* reflection = proto->GetReflection(); const auto* seconds_field = descriptor->FindFieldByName("seconds"); ASSERT_NE(seconds_field, nullptr); const auto* nanos_field = descriptor->FindFieldByName("nanos"); ASSERT_NE(nanos_field, nullptr); ASSERT_OK(WrapDynamicDurationProto(absl::Seconds(1) + absl::Nanoseconds(2), *proto)); EXPECT_EQ(reflection->GetInt64(*proto, seconds_field), 1); EXPECT_EQ(reflection->GetInt32(*proto, nanos_field), 2); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/duration.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/duration_test.cc
4552db5798fb0853b131b783d8875794334fae7f
7c39691e-fb22-41a1-8231-568386ff230a
cpp
tensorflow/tensorflow
debug_events_writer
tensorflow/core/util/debug_events_writer.cc
tensorflow/core/util/debug_events_writer_test.cc
#include "tensorflow/core/util/debug_events_writer.h" #include <deque> #include <memory> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace tfdbg { namespace { void MaybeSetDebugEventTimestamp(DebugEvent* debug_event, Env* env) { if (debug_event->wall_time() == 0) { debug_event->set_wall_time(env->NowMicros() / 1e6); } } } SingleDebugEventFileWriter::SingleDebugEventFileWriter(const string& file_path) : env_(Env::Default()), file_path_(file_path), num_outstanding_events_(0), writer_mu_() {} Status SingleDebugEventFileWriter::Init() { if (record_writer_ != nullptr) { return absl::OkStatus(); } record_writer_.reset(); TF_RETURN_WITH_CONTEXT_IF_ERROR( env_->NewWritableFile(file_path_, &writable_file_), "Creating writable file ", file_path_); record_writer_ = std::make_unique<io::RecordWriter>(writable_file_.get()); if (record_writer_ == nullptr) { return errors::Unknown("Could not create record writer at path: ", file_path_); } num_outstanding_events_.store(0); VLOG(1) << "Successfully opened debug events file: " << file_path_; return absl::OkStatus(); } void SingleDebugEventFileWriter::WriteSerializedDebugEvent( StringPiece debug_event_str) { if (record_writer_ == nullptr) { if (!Init().ok()) { LOG(ERROR) << "Write failed because file could not be opened."; return; } } num_outstanding_events_.fetch_add(1); { mutex_lock l(writer_mu_); record_writer_->WriteRecord(debug_event_str).IgnoreError(); } } Status SingleDebugEventFileWriter::Flush() { const int num_outstanding = num_outstanding_events_.load(); if (num_outstanding == 0) { return absl::OkStatus(); } if (writable_file_ == nullptr) { return errors::Unknown("Unexpected NULL file for path: ", file_path_); } { mutex_lock l(writer_mu_); TF_RETURN_WITH_CONTEXT_IF_ERROR(record_writer_->Flush(), "Failed to flush ", num_outstanding, " debug events to ", file_path_); } TF_RETURN_WITH_CONTEXT_IF_ERROR(writable_file_->Sync(), "Failed to sync ", num_outstanding, " debug events to ", file_path_); num_outstanding_events_.store(0); return absl::OkStatus(); } Status SingleDebugEventFileWriter::Close() { Status status = Flush(); if (writable_file_ != nullptr) { Status close_status = writable_file_->Close(); if (!close_status.ok()) { status = close_status; } record_writer_.reset(nullptr); writable_file_.reset(nullptr); } num_outstanding_events_ = 0; return status; } const string SingleDebugEventFileWriter::FileName() { return file_path_; } mutex DebugEventsWriter::factory_mu_(LINKER_INITIALIZED); DebugEventsWriter::~DebugEventsWriter() { Close().IgnoreError(); } DebugEventsWriter* DebugEventsWriter::GetDebugEventsWriter( const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size) { mutex_lock l(DebugEventsWriter::factory_mu_); std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = DebugEventsWriter::GetDebugEventsWriterMap(); if (writer_pool->find(dump_root) == writer_pool->end()) { std::unique_ptr<DebugEventsWriter> writer( new DebugEventsWriter(dump_root, tfdbg_run_id, circular_buffer_size)); writer_pool->insert(std::make_pair(dump_root, std::move(writer))); } return (*writer_pool)[dump_root].get(); } Status DebugEventsWriter::LookUpDebugEventsWriter( const string& dump_root, DebugEventsWriter** debug_events_writer) { mutex_lock l(DebugEventsWriter::factory_mu_); std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = DebugEventsWriter::GetDebugEventsWriterMap(); if (writer_pool->find(dump_root) == writer_pool->end()) { return errors::FailedPrecondition( "No DebugEventsWriter has been created at dump root ", dump_root); } *debug_events_writer = (*writer_pool)[dump_root].get(); return absl::OkStatus(); } Status DebugEventsWriter::Init() { mutex_lock l(initialization_mu_); if (is_initialized_) { return absl::OkStatus(); } if (!env_->IsDirectory(dump_root_).ok()) { TF_RETURN_WITH_CONTEXT_IF_ERROR(env_->RecursivelyCreateDir(dump_root_), "Failed to create directory ", dump_root_); } int64_t time_in_seconds = env_->NowMicros() / 1e6; file_prefix_ = io::JoinPath( dump_root_, strings::Printf("%s.%010lld.%s", kFileNamePrefix, static_cast<long long>(time_in_seconds), port::Hostname().c_str())); TF_RETURN_IF_ERROR(InitNonMetadataFile(SOURCE_FILES)); TF_RETURN_IF_ERROR(InitNonMetadataFile(STACK_FRAMES)); TF_RETURN_IF_ERROR(InitNonMetadataFile(GRAPHS)); metadata_writer_.reset(); string metadata_filename = GetFileNameInternal(METADATA); metadata_writer_ = std::make_unique<SingleDebugEventFileWriter>(metadata_filename); if (metadata_writer_ == nullptr) { return errors::Unknown("Could not create debug event metadata file writer"); } DebugEvent debug_event; DebugMetadata* metadata = debug_event.mutable_debug_metadata(); metadata->set_tensorflow_version(TF_VERSION_STRING); metadata->set_file_version( strings::Printf("%s%d", kVersionPrefix, kCurrentFormatVersion)); metadata->set_tfdbg_run_id(tfdbg_run_id_); TF_RETURN_IF_ERROR(SerializeAndWriteDebugEvent(&debug_event, METADATA)); TF_RETURN_WITH_CONTEXT_IF_ERROR( metadata_writer_->Flush(), "Failed to flush debug event metadata writer"); TF_RETURN_IF_ERROR(InitNonMetadataFile(EXECUTION)); TF_RETURN_IF_ERROR(InitNonMetadataFile(GRAPH_EXECUTION_TRACES)); is_initialized_ = true; return absl::OkStatus(); } Status DebugEventsWriter::WriteSourceFile(SourceFile* source_file) { DebugEvent debug_event; debug_event.set_allocated_source_file(source_file); return SerializeAndWriteDebugEvent(&debug_event, SOURCE_FILES); } Status DebugEventsWriter::WriteStackFrameWithId( StackFrameWithId* stack_frame_with_id) { DebugEvent debug_event; debug_event.set_allocated_stack_frame_with_id(stack_frame_with_id); return SerializeAndWriteDebugEvent(&debug_event, STACK_FRAMES); } Status DebugEventsWriter::WriteGraphOpCreation( GraphOpCreation* graph_op_creation) { DebugEvent debug_event; debug_event.set_allocated_graph_op_creation(graph_op_creation); return SerializeAndWriteDebugEvent(&debug_event, GRAPHS); } Status DebugEventsWriter::WriteDebuggedGraph(DebuggedGraph* debugged_graph) { DebugEvent debug_event; debug_event.set_allocated_debugged_graph(debugged_graph); return SerializeAndWriteDebugEvent(&debug_event, GRAPHS); } Status DebugEventsWriter::WriteExecution(Execution* execution) { if (circular_buffer_size_ <= 0) { DebugEvent debug_event; debug_event.set_allocated_execution(execution); return SerializeAndWriteDebugEvent(&debug_event, EXECUTION); } else { DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); debug_event.set_allocated_execution(execution); string serialized; debug_event.SerializeToString(&serialized); mutex_lock l(execution_buffer_mu_); execution_buffer_.emplace_back(std::move(serialized)); if (execution_buffer_.size() > circular_buffer_size_) { execution_buffer_.pop_front(); } return absl::OkStatus(); } } Status DebugEventsWriter::WriteGraphExecutionTrace( GraphExecutionTrace* graph_execution_trace) { TF_RETURN_IF_ERROR(Init()); if (circular_buffer_size_ <= 0) { DebugEvent debug_event; debug_event.set_allocated_graph_execution_trace(graph_execution_trace); return SerializeAndWriteDebugEvent(&debug_event, GRAPH_EXECUTION_TRACES); } else { DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); debug_event.set_allocated_graph_execution_trace(graph_execution_trace); string serialized; debug_event.SerializeToString(&serialized); mutex_lock l(graph_execution_trace_buffer_mu_); graph_execution_trace_buffer_.emplace_back(std::move(serialized)); if (graph_execution_trace_buffer_.size() > circular_buffer_size_) { graph_execution_trace_buffer_.pop_front(); } return absl::OkStatus(); } } Status DebugEventsWriter::WriteGraphExecutionTrace( const string& tfdbg_context_id, const string& device_name, const string& op_name, int32_t output_slot, int32_t tensor_debug_mode, const Tensor& tensor_value) { std::unique_ptr<GraphExecutionTrace> trace(new GraphExecutionTrace()); trace->set_tfdbg_context_id(tfdbg_context_id); if (!op_name.empty()) { trace->set_op_name(op_name); } if (output_slot > 0) { trace->set_output_slot(output_slot); } if (tensor_debug_mode > 0) { trace->set_tensor_debug_mode(TensorDebugMode(tensor_debug_mode)); } trace->set_device_name(device_name); tensor_value.AsProtoTensorContent(trace->mutable_tensor_proto()); return WriteGraphExecutionTrace(trace.release()); } void DebugEventsWriter::WriteSerializedNonExecutionDebugEvent( const string& debug_event_str, DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); (*writer)->WriteSerializedDebugEvent(debug_event_str); } void DebugEventsWriter::WriteSerializedExecutionDebugEvent( const string& debug_event_str, DebugEventFileType type) { const std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; std::deque<string>* buffer = nullptr; mutex* mu = nullptr; switch (type) { case EXECUTION: writer = &execution_writer_; buffer = &execution_buffer_; mu = &execution_buffer_mu_; break; case GRAPH_EXECUTION_TRACES: writer = &graph_execution_traces_writer_; buffer = &graph_execution_trace_buffer_; mu = &graph_execution_trace_buffer_mu_; break; default: return; } if (circular_buffer_size_ <= 0) { (*writer)->WriteSerializedDebugEvent(debug_event_str); } else { mutex_lock l(*mu); buffer->push_back(debug_event_str); if (buffer->size() > circular_buffer_size_) { buffer->pop_front(); } } } int DebugEventsWriter::RegisterDeviceAndGetId(const string& device_name) { mutex_lock l(device_mu_); int& device_id = device_name_to_id_[device_name]; if (device_id == 0) { device_id = device_name_to_id_.size(); DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); DebuggedDevice* debugged_device = debug_event.mutable_debugged_device(); debugged_device->set_device_name(device_name); debugged_device->set_device_id(device_id); string serialized; debug_event.SerializeToString(&serialized); graphs_writer_->WriteSerializedDebugEvent(serialized); } return device_id; } Status DebugEventsWriter::FlushNonExecutionFiles() { TF_RETURN_IF_ERROR(Init()); if (source_files_writer_ != nullptr) { TF_RETURN_IF_ERROR(source_files_writer_->Flush()); } if (stack_frames_writer_ != nullptr) { TF_RETURN_IF_ERROR(stack_frames_writer_->Flush()); } if (graphs_writer_ != nullptr) { TF_RETURN_IF_ERROR(graphs_writer_->Flush()); } return absl::OkStatus(); } Status DebugEventsWriter::FlushExecutionFiles() { TF_RETURN_IF_ERROR(Init()); if (execution_writer_ != nullptr) { if (circular_buffer_size_ > 0) { mutex_lock l(execution_buffer_mu_); while (!execution_buffer_.empty()) { execution_writer_->WriteSerializedDebugEvent(execution_buffer_.front()); execution_buffer_.pop_front(); } } TF_RETURN_IF_ERROR(execution_writer_->Flush()); } if (graph_execution_traces_writer_ != nullptr) { if (circular_buffer_size_ > 0) { mutex_lock l(graph_execution_trace_buffer_mu_); while (!graph_execution_trace_buffer_.empty()) { graph_execution_traces_writer_->WriteSerializedDebugEvent( graph_execution_trace_buffer_.front()); graph_execution_trace_buffer_.pop_front(); } } TF_RETURN_IF_ERROR(graph_execution_traces_writer_->Flush()); } return absl::OkStatus(); } string DebugEventsWriter::FileName(DebugEventFileType type) { if (file_prefix_.empty()) { Init().IgnoreError(); } return GetFileNameInternal(type); } Status DebugEventsWriter::Close() { { mutex_lock l(initialization_mu_); if (!is_initialized_) { return absl::OkStatus(); } } std::vector<string> failed_to_close_files; if (metadata_writer_ != nullptr) { if (!metadata_writer_->Close().ok()) { failed_to_close_files.push_back(metadata_writer_->FileName()); } metadata_writer_.reset(nullptr); } TF_RETURN_IF_ERROR(FlushNonExecutionFiles()); if (source_files_writer_ != nullptr) { if (!source_files_writer_->Close().ok()) { failed_to_close_files.push_back(source_files_writer_->FileName()); } source_files_writer_.reset(nullptr); } if (stack_frames_writer_ != nullptr) { if (!stack_frames_writer_->Close().ok()) { failed_to_close_files.push_back(stack_frames_writer_->FileName()); } stack_frames_writer_.reset(nullptr); } if (graphs_writer_ != nullptr) { if (!graphs_writer_->Close().ok()) { failed_to_close_files.push_back(graphs_writer_->FileName()); } graphs_writer_.reset(nullptr); } TF_RETURN_IF_ERROR(FlushExecutionFiles()); if (execution_writer_ != nullptr) { if (!execution_writer_->Close().ok()) { failed_to_close_files.push_back(execution_writer_->FileName()); } execution_writer_.reset(nullptr); } if (graph_execution_traces_writer_ != nullptr) { if (!graph_execution_traces_writer_->Close().ok()) { failed_to_close_files.push_back( graph_execution_traces_writer_->FileName()); } graph_execution_traces_writer_.reset(nullptr); } if (failed_to_close_files.empty()) { return absl::OkStatus(); } else { return errors::FailedPrecondition( "Failed to close %d debug-events files associated with tfdbg", failed_to_close_files.size()); } } std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* DebugEventsWriter::GetDebugEventsWriterMap() { static std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = new std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>(); return writer_pool; } DebugEventsWriter::DebugEventsWriter(const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size) : env_(Env::Default()), dump_root_(dump_root), tfdbg_run_id_(tfdbg_run_id), is_initialized_(false), initialization_mu_(), circular_buffer_size_(circular_buffer_size), execution_buffer_(), execution_buffer_mu_(), graph_execution_trace_buffer_(), graph_execution_trace_buffer_mu_(), device_name_to_id_(), device_mu_() {} Status DebugEventsWriter::InitNonMetadataFile(DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); const string filename = GetFileNameInternal(type); writer->reset(); *writer = std::make_unique<SingleDebugEventFileWriter>(filename); if (*writer == nullptr) { return errors::Unknown("Could not create debug event file writer for ", filename); } TF_RETURN_WITH_CONTEXT_IF_ERROR( (*writer)->Init(), "Initializing debug event writer at path ", filename); VLOG(1) << "Successfully opened debug event file: " << filename; return absl::OkStatus(); } Status DebugEventsWriter::SerializeAndWriteDebugEvent(DebugEvent* debug_event, DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); if (writer != nullptr) { MaybeSetDebugEventTimestamp(debug_event, env_); string str; debug_event->AppendToString(&str); (*writer)->WriteSerializedDebugEvent(str); return absl::OkStatus(); } else { return errors::Internal( "Unable to find debug events file writer for DebugEventsFileType ", type); } } void DebugEventsWriter::SelectWriter( DebugEventFileType type, std::unique_ptr<SingleDebugEventFileWriter>** writer) { switch (type) { case METADATA: *writer = &metadata_writer_; break; case SOURCE_FILES: *writer = &source_files_writer_; break; case STACK_FRAMES: *writer = &stack_frames_writer_; break; case GRAPHS: *writer = &graphs_writer_; break; case EXECUTION: *writer = &execution_writer_; break; case GRAPH_EXECUTION_TRACES: *writer = &graph_execution_traces_writer_; break; } } const string DebugEventsWriter::GetSuffix(DebugEventFileType type) { switch (type) { case METADATA: return kMetadataSuffix; case SOURCE_FILES: return kSourceFilesSuffix; case STACK_FRAMES: return kStackFramesSuffix; case GRAPHS: return kGraphsSuffix; case EXECUTION: return kExecutionSuffix; case GRAPH_EXECUTION_TRACES: return kGraphExecutionTracesSuffix; default: string suffix; return suffix; } } string DebugEventsWriter::GetFileNameInternal(DebugEventFileType type) { const string suffix = GetSuffix(type); return strings::StrCat(file_prefix_, ".", suffix); } } }
#include "tensorflow/core/util/debug_events_writer.h" #include <algorithm> #include <atomic> #include <memory> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfdbg { Env* env() { return Env::Default(); } class DebugEventsWriterTest : public ::testing::Test { public: static string GetDebugEventFileName(DebugEventsWriter* writer, DebugEventFileType type) { return writer->FileName(type); } static void ReadDebugEventProtos(DebugEventsWriter* writer, DebugEventFileType type, std::vector<DebugEvent>* protos) { protos->clear(); const string filename = writer->FileName(type); std::unique_ptr<RandomAccessFile> debug_events_file; TF_CHECK_OK(env()->NewRandomAccessFile(filename, &debug_events_file)); io::RecordReader* reader = new io::RecordReader(debug_events_file.get()); uint64 offset = 0; DebugEvent actual; while (ReadDebugEventProto(reader, &offset, &actual)) { protos->push_back(actual); } delete reader; } static bool ReadDebugEventProto(io::RecordReader* reader, uint64* offset, DebugEvent* proto) { tstring record; Status s = reader->ReadRecord(offset, &record); if (!s.ok()) { return false; } return ParseProtoUnlimited(proto, record); } void SetUp() override { dump_root_ = io::JoinPath( testing::TmpDir(), strings::Printf("%010lld", static_cast<long long>(env()->NowMicros()))); tfdbg_run_id_ = "test_tfdbg_run_id"; } void TearDown() override { if (env()->IsDirectory(dump_root_).ok()) { int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; TF_ASSERT_OK(env()->DeleteRecursively(dump_root_, &undeleted_files, &undeleted_dirs)); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } } string dump_root_; string tfdbg_run_id_; }; TEST_F(DebugEventsWriterTest, GetDebugEventsWriterSameRootGivesSameObject) { DebugEventsWriter* writer_1 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); DebugEventsWriter* writer_2 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); EXPECT_EQ(writer_1, writer_2); } TEST_F(DebugEventsWriterTest, ConcurrentGetDebugEventsWriterSameDumpRoot) { thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 4); std::vector<DebugEventsWriter*> writers; mutex mu; auto fn = [this, &writers, &mu]() { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); { mutex_lock l(mu); writers.push_back(writer); } }; for (size_t i = 0; i < 4; ++i) { thread_pool->Schedule(fn); } delete thread_pool; EXPECT_EQ(writers.size(), 4); EXPECT_EQ(writers[0], writers[1]); EXPECT_EQ(writers[1], writers[2]); EXPECT_EQ(writers[2], writers[3]); } TEST_F(DebugEventsWriterTest, ConcurrentGetDebugEventsWriterDiffDumpRoots) { thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 3); std::atomic_int_fast64_t counter(0); std::vector<DebugEventsWriter*> writers; mutex mu; auto fn = [this, &counter, &writers, &mu]() { const string new_dump_root = io::JoinPath(dump_root_, strings::Printf("%ld", counter.fetch_add(1))); DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( new_dump_root, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); { mutex_lock l(mu); writers.push_back(writer); } }; for (size_t i = 0; i < 3; ++i) { thread_pool->Schedule(fn); } delete thread_pool; EXPECT_EQ(writers.size(), 3); EXPECT_NE(writers[0], writers[1]); EXPECT_NE(writers[0], writers[2]); EXPECT_NE(writers[1], writers[2]); } TEST_F(DebugEventsWriterTest, GetDebugEventsWriterDifferentRoots) { DebugEventsWriter* writer_1 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); const string dump_root_2 = io::JoinPath(dump_root_, "subdirectory"); DebugEventsWriter* writer_2 = DebugEventsWriter::GetDebugEventsWriter( dump_root_2, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); EXPECT_NE(writer_1, writer_2); } TEST_F(DebugEventsWriterTest, GetAndInitDebugEventsWriter) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); const string file_version = actuals[0].debug_metadata().file_version(); EXPECT_EQ(file_version.find(DebugEventsWriter::kVersionPrefix), 0); EXPECT_GT(file_version.size(), strlen(DebugEventsWriter::kVersionPrefix)); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); } TEST_F(DebugEventsWriterTest, CallingCloseWithoutInitIsOkay) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, CallingCloseTwiceIsOkay) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Close()); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, ConcurrentInitCalls) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 4); auto fn = [&writer]() { TF_ASSERT_OK(writer->Init()); }; for (size_t i = 0; i < 3; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); const string file_version = actuals[0].debug_metadata().file_version(); EXPECT_EQ(file_version.find(DebugEventsWriter::kVersionPrefix), 0); EXPECT_GT(file_version.size(), strlen(DebugEventsWriter::kVersionPrefix)); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); } TEST_F(DebugEventsWriterTest, InitTwiceDoesNotCreateNewMetadataFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); EXPECT_GE(actuals[0].debug_metadata().file_version().size(), 0); string metadata_path_1 = GetDebugEventFileName(writer, DebugEventFileType::METADATA); TF_ASSERT_OK(writer->Init()); EXPECT_EQ(GetDebugEventFileName(writer, DebugEventFileType::METADATA), metadata_path_1); TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); EXPECT_GE(actuals[0].debug_metadata().file_version().size(), 0); } TEST_F(DebugEventsWriterTest, WriteSourceFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); SourceFile* source_file_1 = new SourceFile(); source_file_1->set_file_path("/home/tf_programs/main.py"); source_file_1->set_host_name("localhost.localdomain"); source_file_1->add_lines("import tensorflow as tf"); source_file_1->add_lines(""); source_file_1->add_lines("print(tf.constant([42.0]))"); source_file_1->add_lines(""); TF_ASSERT_OK(writer->WriteSourceFile(source_file_1)); SourceFile* source_file_2 = new SourceFile(); source_file_2->set_file_path("/home/tf_programs/train.py"); source_file_2->set_host_name("localhost.localdomain"); source_file_2->add_lines("import tensorflow.keras as keras"); source_file_2->add_lines(""); source_file_2->add_lines("model = keras.Sequential()"); TF_ASSERT_OK(writer->WriteSourceFile(source_file_2)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); SourceFile actual_source_file_1 = actuals[0].source_file(); EXPECT_EQ(actual_source_file_1.file_path(), "/home/tf_programs/main.py"); EXPECT_EQ(actual_source_file_1.host_name(), "localhost.localdomain"); EXPECT_EQ(actual_source_file_1.lines().size(), 4); EXPECT_EQ(actual_source_file_1.lines()[0], "import tensorflow as tf"); EXPECT_EQ(actual_source_file_1.lines()[1], ""); EXPECT_EQ(actual_source_file_1.lines()[2], "print(tf.constant([42.0]))"); EXPECT_EQ(actual_source_file_1.lines()[3], ""); SourceFile actual_source_file_2 = actuals[1].source_file(); EXPECT_EQ(actual_source_file_2.file_path(), "/home/tf_programs/train.py"); EXPECT_EQ(actual_source_file_2.host_name(), "localhost.localdomain"); EXPECT_EQ(actual_source_file_2.lines().size(), 3); EXPECT_EQ(actual_source_file_2.lines()[0], "import tensorflow.keras as keras"); EXPECT_EQ(actual_source_file_2.lines()[1], ""); EXPECT_EQ(actual_source_file_2.lines()[2], "model = keras.Sequential()"); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteStackFramesFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); StackFrameWithId* stack_frame_1 = new StackFrameWithId(); stack_frame_1->set_id("deadbeaf"); GraphDebugInfo::FileLineCol* file_line_col = stack_frame_1->mutable_file_line_col(); file_line_col->set_file_index(12); file_line_col->set_line(20); file_line_col->set_col(2); file_line_col->set_func("my_func"); file_line_col->set_code(" x = y + z"); StackFrameWithId* stack_frame_2 = new StackFrameWithId(); stack_frame_2->set_id("eeeeeeec"); file_line_col = stack_frame_2->mutable_file_line_col(); file_line_col->set_file_index(12); file_line_col->set_line(21); file_line_col->set_col(4); file_line_col->set_func("my_func"); file_line_col->set_code(" x = x ** 2.0"); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame_1)); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame_2)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); StackFrameWithId actual_stack_frame_1 = actuals[0].stack_frame_with_id(); EXPECT_EQ(actual_stack_frame_1.id(), "deadbeaf"); GraphDebugInfo::FileLineCol file_line_col_1 = actual_stack_frame_1.file_line_col(); EXPECT_EQ(file_line_col_1.file_index(), 12); EXPECT_EQ(file_line_col_1.line(), 20); EXPECT_EQ(file_line_col_1.col(), 2); EXPECT_EQ(file_line_col_1.func(), "my_func"); EXPECT_EQ(file_line_col_1.code(), " x = y + z"); StackFrameWithId actual_stack_frame_2 = actuals[1].stack_frame_with_id(); EXPECT_EQ(actual_stack_frame_2.id(), "eeeeeeec"); GraphDebugInfo::FileLineCol file_line_col_2 = actual_stack_frame_2.file_line_col(); EXPECT_EQ(file_line_col_2.file_index(), 12); EXPECT_EQ(file_line_col_2.line(), 21); EXPECT_EQ(file_line_col_2.col(), 4); EXPECT_EQ(file_line_col_2.func(), "my_func"); EXPECT_EQ(file_line_col_2.code(), " x = x ** 2.0"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteGraphOpCreationAndDebuggedGraph) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); GraphOpCreation* graph_op_creation = new GraphOpCreation(); graph_op_creation->set_op_type("MatMul"); graph_op_creation->set_op_name("Dense_1/MatMul"); TF_ASSERT_OK(writer->WriteGraphOpCreation(graph_op_creation)); DebuggedGraph* debugged_graph = new DebuggedGraph(); debugged_graph->set_graph_id("deadbeaf"); debugged_graph->set_graph_name("my_func_graph"); TF_ASSERT_OK(writer->WriteDebuggedGraph(debugged_graph)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); GraphOpCreation actual_op_creation = actuals[0].graph_op_creation(); EXPECT_EQ(actual_op_creation.op_type(), "MatMul"); EXPECT_EQ(actual_op_creation.op_name(), "Dense_1/MatMul"); DebuggedGraph actual_debugged_graph = actuals[1].debugged_graph(); EXPECT_EQ(actual_debugged_graph.graph_id(), "deadbeaf"); EXPECT_EQ(actual_debugged_graph.graph_name(), "my_func_graph"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, ConcurrentWriteCallsToTheSameFile) { const size_t kConcurrentWrites = 100; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { const string file_path = strings::Printf( "/home/tf_programs/program_%.3ld.py", counter.fetch_add(1)); SourceFile* source_file = new SourceFile(); source_file->set_file_path(file_path); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites); std::vector<string> file_paths; std::vector<string> host_names; for (size_t i = 0; i < kConcurrentWrites; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (size_t i = 0; i < kConcurrentWrites; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.3ld.py", i)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } } TEST_F(DebugEventsWriterTest, ConcurrentWriteAndFlushCallsToTheSameFile) { const size_t kConcurrentWrites = 100; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { const string file_path = strings::Printf( "/home/tf_programs/program_%.3ld.py", counter.fetch_add(1)); SourceFile* source_file = new SourceFile(); source_file->set_file_path(file_path); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites); std::vector<string> file_paths; std::vector<string> host_names; for (size_t i = 0; i < kConcurrentWrites; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (size_t i = 0; i < kConcurrentWrites; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.3ld.py", i)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } } TEST_F(DebugEventsWriterTest, ConcurrentWriteCallsToTheDifferentFiles) { const int32_t kConcurrentWrites = 30; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 10); std::atomic_int_fast32_t counter(0); auto fn = [&writer, &counter]() { const int32_t index = counter.fetch_add(1); if (index % 3 == 0) { SourceFile* source_file = new SourceFile(); source_file->set_file_path( strings::Printf("/home/tf_programs/program_%.2d.py", index)); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); } else if (index % 3 == 1) { StackFrameWithId* stack_frame = new StackFrameWithId(); stack_frame->set_id(strings::Printf("e%.2d", index)); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame)); } else { GraphOpCreation* op_creation = new GraphOpCreation(); op_creation->set_op_type("Log"); op_creation->set_op_name(strings::Printf("Log_%.2d", index)); TF_ASSERT_OK(writer->WriteGraphOpCreation(op_creation)); } }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> file_paths; std::vector<string> host_names; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.2d.py", i * 3)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> stack_frame_ids; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { stack_frame_ids.push_back(actuals[i].stack_frame_with_id().id()); } std::sort(stack_frame_ids.begin(), stack_frame_ids.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(stack_frame_ids[i], strings::Printf("e%.2d", i * 3 + 1)); } ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> op_types; std::vector<string> op_names; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { op_types.push_back(actuals[i].graph_op_creation().op_type()); op_names.push_back(actuals[i].graph_op_creation().op_name()); } std::sort(op_names.begin(), op_names.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(op_types[i], "Log"); EXPECT_EQ(op_names[i], strings::Printf("Log_%.2d", i * 3 + 2)); } } TEST_F(DebugEventsWriterTest, WriteExecutionWithCyclicBufferNoFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { Execution* execution = new Execution(); execution->set_op_type("Log"); execution->add_input_tensor_ids(i); TF_ASSERT_OK(writer->WriteExecution(execution)); } std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), 0); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteExecutionWithCyclicBufferFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { Execution* execution = new Execution(); execution->set_op_type("Log"); execution->add_input_tensor_ids(i); TF_ASSERT_OK(writer->WriteExecution(execution)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize); for (size_t i = 0; i < kCyclicBufferSize; ++i) { EXPECT_EQ(actuals[i].execution().op_type(), "Log"); EXPECT_EQ(actuals[i].execution().input_tensor_ids().size(), 1); EXPECT_EQ(actuals[i].execution().input_tensor_ids()[0], kCyclicBufferSize + i); } thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { Execution* execution = new Execution(); execution->set_op_type("Abs"); execution->add_input_tensor_ids(counter.fetch_add(1)); TF_ASSERT_OK(writer->WriteExecution(execution)); }; for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize * 2); for (size_t i = 0; i < kCyclicBufferSize; ++i) { const size_t index = i + kCyclicBufferSize; EXPECT_EQ(actuals[index].execution().op_type(), "Abs"); EXPECT_EQ(actuals[index].execution().input_tensor_ids().size(), 1); EXPECT_GE(actuals[index].execution().input_tensor_ids()[0], 0); EXPECT_LE(actuals[index].execution().input_tensor_ids()[0], kCyclicBufferSize * 2); } ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithCyclicBufferNoFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_%.2ld", i)); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); } std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithoutPreviousInitCall) { const size_t kCyclicBufferSize = -1; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_0")); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_EQ(actuals[0].graph_execution_trace().tfdbg_context_id(), "graph_0"); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithCyclicBufferFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_%.2ld", i)); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize); for (size_t i = 0; i < kCyclicBufferSize; ++i) { EXPECT_EQ(actuals[i].graph_execution_trace().tfdbg_context_id(), strings::Printf("graph_%.2ld", i + kCyclicBufferSize)); } thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id( strings::Printf("new_graph_%.2ld", counter.fetch_add(1))); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); }; for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize * 2); for (size_t i = 0; i < kCyclicBufferSize; ++i) { const size_t index = i + kCyclicBufferSize; EXPECT_EQ(actuals[index].graph_execution_trace().tfdbg_context_id().find( "new_graph_"), 0); } ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, RegisterDeviceAndGetIdTrace) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); int device_ids[8]; for (int i = 0; i < 8; ++i) { thread_pool->Schedule([i, &writer, &device_ids]() { const string device_name = strings::Printf( "/job:localhost/replica:0/task:0/device:GPU:%d", i % 4); device_ids[i] = writer->RegisterDeviceAndGetId(device_name); }); } delete thread_pool; TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); EXPECT_EQ(device_ids[0], device_ids[4]); EXPECT_EQ(device_ids[1], device_ids[5]); EXPECT_EQ(device_ids[2], device_ids[6]); EXPECT_EQ(device_ids[3], device_ids[7]); EXPECT_EQ(absl::flat_hash_set<int>(device_ids, device_ids + 8).size(), 4); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 4); for (const DebugEvent& actual : actuals) { const string& device_name = actual.debugged_device().device_name(); int device_index = -1; CHECK(absl::SimpleAtoi(device_name.substr(strlen( "/job:localhost/replica:0/task:0/device:GPU:")), &device_index)); EXPECT_EQ(actual.debugged_device().device_id(), device_ids[device_index]); } } TEST_F(DebugEventsWriterTest, DisableCyclicBufferBehavior) { const size_t kCyclicBufferSize = 0; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); const size_t kNumEvents = 20; for (size_t i = 0; i < kNumEvents; ++i) { Execution* execution = new Execution(); execution->set_op_type("Log"); execution->add_input_tensor_ids(i); TF_ASSERT_OK(writer->WriteExecution(execution)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), kNumEvents); for (size_t i = 0; i < kNumEvents; ++i) { EXPECT_EQ(actuals[i].execution().op_type(), "Log"); EXPECT_EQ(actuals[i].execution().input_tensor_ids().size(), 1); EXPECT_EQ(actuals[i].execution().input_tensor_ids()[0], i); } for (size_t i = 0; i < kNumEvents; ++i) { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_%.2ld", i)); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), kNumEvents); for (size_t i = 0; i < kNumEvents; ++i) { EXPECT_EQ(actuals[i].graph_execution_trace().tfdbg_context_id(), strings::Printf("graph_%.2ld", i)); } TF_ASSERT_OK(writer->Close()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/debug_events_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/debug_events_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94631c1a-afbc-4275-be7c-6ef151723962
cpp
tensorflow/tensorflow
sign
tensorflow/lite/experimental/shlo/ops/sign.cc
tensorflow/lite/experimental/shlo/ops/sign_test.cc
#include "tensorflow/lite/experimental/shlo/ops/sign.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Sign { template <class T> T operator()(T v) const { constexpr T one = static_cast<T>(1); constexpr T minus_one = static_cast<T>(-1); constexpr T zero = static_cast<T>(0); return v < zero ? minus_one : (v > zero ? one : v); } }; template <> F16 Sign::operator()(F16 v) const { return static_cast<F16>(operator()(static_cast<float>(v))); } template <> BF16 Sign::operator()(BF16 v) const { return static_cast<BF16>(operator()(static_cast<float>(v))); } SignOp Create(SignOp::Attributes) { return {}; } absl::Status Prepare(SignOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes(CheckCtx("sign"), input, IsSignedIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("sign"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(SignOp& op, const Tensor& input, Tensor& output) { Sign sign; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), sign, input, output) } else if (IsSignedIntTensor(input) || IsFloatTensor(input)) { DISPATCH_INT_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), sign, input, output); } return absl::FailedPreconditionError( "stablehlo.sign: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/sign.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<SignOp> { static std::string Get() { return "Sign"; } }; namespace { struct Sign { template <class T> T operator()(T v) const { constexpr T one = static_cast<T>(1); constexpr T minus_one = static_cast<T>(-1); constexpr T zero = static_cast<T>(0); return v < zero ? minus_one : (v > zero ? one : v); } } sign_ref; template <> F16 Sign::operator()(F16 v) const { return static_cast<F16>(operator()(static_cast<float>(v))); } template <> BF16 Sign::operator()(BF16 v) const { return static_cast<BF16>(operator()(static_cast<float>(v))); } INSTANTIATE_TYPED_TEST_SUITE_P(Sign, UnaryElementwiseOpShapePropagationTest, SignOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Sign, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<SignOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<SignOp, ConcatTypes<BoolTestType, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Sign, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct SignTest : ::testing::Test {}; TYPED_TEST_SUITE(SignTest, ArithmeticTestTypes, TestParamNames); TYPED_TEST(SignTest, ArithmeticTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), sign_ref); auto op = Create(SignOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedSignTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedSignTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedSignTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = sign_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(SignOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sign.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/sign_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4319d63b-c78f-484c-8fe8-e6acfcb63ac0
cpp
google/glog
demangle
src/demangle.cc
src/demangle_unittest.cc
#include "demangle.h" #include <algorithm> #include <cstdlib> #include <limits> #include "utilities.h" #if defined(HAVE___CXA_DEMANGLE) # include <cxxabi.h> #endif #if defined(GLOG_OS_WINDOWS) # include <dbghelp.h> #endif namespace google { inline namespace glog_internal_namespace_ { #if !defined(GLOG_OS_WINDOWS) && !defined(HAVE___CXA_DEMANGLE) namespace { struct AbbrevPair { const char* const abbrev; const char* const real_name; }; const AbbrevPair kOperatorList[] = { {"nw", "new"}, {"na", "new[]"}, {"dl", "delete"}, {"da", "delete[]"}, {"ps", "+"}, {"ng", "-"}, {"ad", "&"}, {"de", "*"}, {"co", "~"}, {"pl", "+"}, {"mi", "-"}, {"ml", "*"}, {"dv", "/"}, {"rm", "%"}, {"an", "&"}, {"or", "|"}, {"eo", "^"}, {"aS", "="}, {"pL", "+="}, {"mI", "-="}, {"mL", "*="}, {"dV", "/="}, {"rM", "%="}, {"aN", "&="}, {"oR", "|="}, {"eO", "^="}, {"ls", "<<"}, {"rs", ">>"}, {"lS", "<<="}, {"rS", ">>="}, {"eq", "=="}, {"ne", "!="}, {"lt", "<"}, {"gt", ">"}, {"le", "<="}, {"ge", ">="}, {"nt", "!"}, {"aa", "&&"}, {"oo", "||"}, {"pp", "++"}, {"mm", "--"}, {"cm", ","}, {"pm", "->*"}, {"pt", "->"}, {"cl", "()"}, {"ix", "[]"}, {"qu", "?"}, {"st", "sizeof"}, {"sz", "sizeof"}, {nullptr, nullptr}, }; const AbbrevPair kBuiltinTypeList[] = { {"v", "void"}, {"w", "wchar_t"}, {"b", "bool"}, {"c", "char"}, {"a", "signed char"}, {"h", "unsigned char"}, {"s", "short"}, {"t", "unsigned short"}, {"i", "int"}, {"j", "unsigned int"}, {"l", "long"}, {"m", "unsigned long"}, {"x", "long long"}, {"y", "unsigned long long"}, {"n", "__int128"}, {"o", "unsigned __int128"}, {"f", "float"}, {"d", "double"}, {"e", "long double"}, {"g", "__float128"}, {"z", "ellipsis"}, {"Dn", "decltype(nullptr)"}, {nullptr, nullptr}}; const AbbrevPair kSubstitutionList[] = { {"St", ""}, {"Sa", "allocator"}, {"Sb", "basic_string"}, {"Ss", "string"}, {"Si", "istream"}, {"So", "ostream"}, {"Sd", "iostream"}, {nullptr, nullptr}}; struct State { const char* mangled_cur; char* out_cur; const char* out_begin; const char* out_end; const char* prev_name; ssize_t prev_name_length; short nest_level; bool append; bool overflowed; uint32 local_level; uint32 expr_level; uint32 arg_level; }; size_t StrLen(const char* str) { size_t len = 0; while (*str != '\0') { ++str; ++len; } return len; } bool AtLeastNumCharsRemaining(const char* str, ssize_t n) { for (ssize_t i = 0; i < n; ++i) { if (str[i] == '\0') { return false; } } return true; } bool StrPrefix(const char* str, const char* prefix) { size_t i = 0; while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { ++i; } return prefix[i] == '\0'; } void InitState(State* state, const char* mangled, char* out, size_t out_size) { state->mangled_cur = mangled; state->out_cur = out; state->out_begin = out; state->out_end = out + out_size; state->prev_name = nullptr; state->prev_name_length = -1; state->nest_level = -1; state->append = true; state->overflowed = false; state->local_level = 0; state->expr_level = 0; state->arg_level = 0; } bool ParseOneCharToken(State* state, const char one_char_token) { if (state->mangled_cur[0] == one_char_token) { ++state->mangled_cur; return true; } return false; } bool ParseTwoCharToken(State* state, const char* two_char_token) { if (state->mangled_cur[0] == two_char_token[0] && state->mangled_cur[1] == two_char_token[1]) { state->mangled_cur += 2; return true; } return false; } bool ParseCharClass(State* state, const char* char_class) { const char* p = char_class; for (; *p != '\0'; ++p) { if (state->mangled_cur[0] == *p) { ++state->mangled_cur; return true; } } return false; } bool Optional(bool) { return true; } using ParseFunc = bool (*)(State*); bool OneOrMore(ParseFunc parse_func, State* state) { if (parse_func(state)) { while (parse_func(state)) { } return true; } return false; } bool ZeroOrMore(ParseFunc parse_func, State* state) { while (parse_func(state)) { } return true; } void Append(State* state, const char* const str, ssize_t length) { if (state->out_cur == nullptr) { state->overflowed = true; return; } for (ssize_t i = 0; i < length; ++i) { if (state->out_cur + 1 < state->out_end) { *state->out_cur = str[i]; ++state->out_cur; } else { state->overflowed = true; break; } } if (!state->overflowed) { *state->out_cur = '\0'; } } bool IsLower(char c) { return c >= 'a' && c <= 'z'; } bool IsAlpha(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } bool IsDigit(char c) { return c >= '0' && c <= '9'; } bool IsFunctionCloneSuffix(const char* str) { size_t i = 0; while (str[i] != '\0') { if (str[i] != '.' || !IsAlpha(str[i + 1])) { return false; } i += 2; while (IsAlpha(str[i])) { ++i; } if (str[i] != '.' || !IsDigit(str[i + 1])) { return false; } i += 2; while (IsDigit(str[i])) { ++i; } } return true; } void MaybeAppendWithLength(State* state, const char* const str, ssize_t length) { if (state->append && length > 0) { if (str[0] == '<' && state->out_begin < state->out_cur && state->out_cur[-1] == '<') { Append(state, " ", 1); } if (IsAlpha(str[0]) || str[0] == '_') { state->prev_name = state->out_cur; state->prev_name_length = length; } Append(state, str, length); } } bool MaybeAppend(State* state, const char* const str) { if (state->append) { size_t length = StrLen(str); MaybeAppendWithLength(state, str, static_cast<ssize_t>(length)); } return true; } bool EnterNestedName(State* state) { state->nest_level = 0; return true; } bool LeaveNestedName(State* state, short prev_value) { state->nest_level = prev_value; return true; } bool DisableAppend(State* state) { state->append = false; return true; } bool RestoreAppend(State* state, bool prev_value) { state->append = prev_value; return true; } void MaybeIncreaseNestLevel(State* state) { if (state->nest_level > -1) { ++state->nest_level; } } void MaybeAppendSeparator(State* state) { if (state->nest_level >= 1) { MaybeAppend(state, "::"); } } void MaybeCancelLastSeparator(State* state) { if (state->nest_level >= 1 && state->append && state->out_begin <= state->out_cur - 2) { state->out_cur -= 2; *state->out_cur = '\0'; } } bool IdentifierIsAnonymousNamespace(State* state, ssize_t length) { const char anon_prefix[] = "_GLOBAL__N_"; return (length > static_cast<ssize_t>(sizeof(anon_prefix)) - 1 && StrPrefix(state->mangled_cur, anon_prefix)); } bool ParseMangledName(State* state); bool ParseEncoding(State* state); bool ParseName(State* state); bool ParseUnscopedName(State* state); bool ParseUnscopedTemplateName(State* state); bool ParseNestedName(State* state); bool ParsePrefix(State* state); bool ParseUnqualifiedName(State* state); bool ParseSourceName(State* state); bool ParseLocalSourceName(State* state); bool ParseNumber(State* state, int* number_out); bool ParseFloatNumber(State* state); bool ParseSeqId(State* state); bool ParseIdentifier(State* state, ssize_t length); bool ParseAbiTags(State* state); bool ParseAbiTag(State* state); bool ParseOperatorName(State* state); bool ParseSpecialName(State* state); bool ParseCallOffset(State* state); bool ParseNVOffset(State* state); bool ParseVOffset(State* state); bool ParseCtorDtorName(State* state); bool ParseType(State* state); bool ParseCVQualifiers(State* state); bool ParseBuiltinType(State* state); bool ParseFunctionType(State* state); bool ParseBareFunctionType(State* state); bool ParseClassEnumType(State* state); bool ParseArrayType(State* state); bool ParsePointerToMemberType(State* state); bool ParseTemplateParam(State* state); bool ParseTemplateTemplateParam(State* state); bool ParseTemplateArgs(State* state); bool ParseTemplateArg(State* state); bool ParseExpression(State* state); bool ParseExprPrimary(State* state); bool ParseLocalName(State* state); bool ParseDiscriminator(State* state); bool ParseSubstitution(State* state); bool ParseMangledName(State* state) { return ParseTwoCharToken(state, "_Z") && ParseEncoding(state); } bool ParseEncoding(State* state) { State copy = *state; if (ParseName(state) && ParseBareFunctionType(state)) { return true; } *state = copy; if (ParseName(state) || ParseSpecialName(state)) { return true; } return false; } bool ParseName(State* state) { if (ParseNestedName(state) || ParseLocalName(state)) { return true; } State copy = *state; if (ParseUnscopedTemplateName(state) && ParseTemplateArgs(state)) { return true; } *state = copy; if (ParseUnscopedName(state)) { return true; } return false; } bool ParseUnscopedName(State* state) { if (ParseUnqualifiedName(state)) { return true; } State copy = *state; if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") && ParseUnqualifiedName(state)) { return true; } *state = copy; return false; } bool ParseUnscopedTemplateName(State* state) { return ParseUnscopedName(state) || ParseSubstitution(state); } bool ParseNestedName(State* state) { State copy = *state; if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && Optional(ParseCVQualifiers(state)) && ParsePrefix(state) && LeaveNestedName(state, copy.nest_level) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; return false; } bool ParsePrefix(State* state) { bool has_something = false; while (true) { MaybeAppendSeparator(state); if (ParseTemplateParam(state) || ParseSubstitution(state) || ParseUnscopedName(state)) { has_something = true; MaybeIncreaseNestLevel(state); continue; } MaybeCancelLastSeparator(state); if (has_something && ParseTemplateArgs(state)) { return ParsePrefix(state); } else { break; } } return true; } bool ParseUnqualifiedName(State* state) { return (ParseOperatorName(state) || ParseCtorDtorName(state) || (ParseSourceName(state) && Optional(ParseAbiTags(state))) || (ParseLocalSourceName(state) && Optional(ParseAbiTags(state)))); } bool ParseSourceName(State* state) { State copy = *state; int length = -1; if (ParseNumber(state, &length) && ParseIdentifier(state, length)) { return true; } *state = copy; return false; } bool ParseLocalSourceName(State* state) { State copy = *state; if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && Optional(ParseDiscriminator(state))) { return true; } *state = copy; return false; } bool ParseNumber(State* state, int* number_out) { int sign = 1; if (ParseOneCharToken(state, 'n')) { sign = -1; } const char* p = state->mangled_cur; int number = 0; constexpr int int_max_by_10 = std::numeric_limits<int>::max() / 10; for (; *p != '\0'; ++p) { if (IsDigit(*p)) { if (number > int_max_by_10) { return false; } const int digit = *p - '0'; const int shifted = number * 10; if (digit > std::numeric_limits<int>::max() - shifted) { return false; } number = shifted + digit; } else { break; } } if (p != state->mangled_cur) { state->mangled_cur = p; if (number_out != nullptr) { *number_out = number * sign; } return true; } return false; } bool ParseFloatNumber(State* state) { const char* p = state->mangled_cur; for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { break; } } if (p != state->mangled_cur) { state->mangled_cur = p; return true; } return false; } bool ParseSeqId(State* state) { const char* p = state->mangled_cur; for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { break; } } if (p != state->mangled_cur) { state->mangled_cur = p; return true; } return false; } bool ParseIdentifier(State* state, ssize_t length) { if (length == -1 || !AtLeastNumCharsRemaining(state->mangled_cur, length)) { return false; } if (IdentifierIsAnonymousNamespace(state, length)) { MaybeAppend(state, "(anonymous namespace)"); } else { MaybeAppendWithLength(state, state->mangled_cur, length); } if (length < 0 || static_cast<std::size_t>(length) > StrLen(state->mangled_cur)) { return false; } state->mangled_cur += length; return true; } bool ParseAbiTags(State* state) { State copy = *state; DisableAppend(state); if (OneOrMore(ParseAbiTag, state)) { RestoreAppend(state, copy.append); return true; } *state = copy; return false; } bool ParseAbiTag(State* state) { return ParseOneCharToken(state, 'B') && ParseSourceName(state); } bool ParseOperatorName(State* state) { if (!AtLeastNumCharsRemaining(state->mangled_cur, 2)) { return false; } State copy = *state; if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") && EnterNestedName(state) && ParseType(state) && LeaveNestedName(state, copy.nest_level)) { return true; } *state = copy; if (ParseOneCharToken(state, 'v') && ParseCharClass(state, "0123456789") && ParseSourceName(state)) { return true; } *state = copy; if (!(IsLower(state->mangled_cur[0]) && IsAlpha(state->mangled_cur[1]))) { return false; } const AbbrevPair* p; for (p = kOperatorList; p->abbrev != nullptr; ++p) { if (state->mangled_cur[0] == p->abbrev[0] && state->mangled_cur[1] == p->abbrev[1]) { MaybeAppend(state, "operator"); if (IsLower(*p->real_name)) { MaybeAppend(state, " "); } MaybeAppend(state, p->real_name); state->mangled_cur += 2; return true; } } return false; } bool ParseSpecialName(State* state) { State copy = *state; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") && ParseType(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) && ParseCallOffset(state) && ParseEncoding(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "GV") && ParseName(state)) { return true; } *state = copy; if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && ParseEncoding(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "TC") && ParseType(state) && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && DisableAppend(state) && ParseType(state)) { RestoreAppend(state, copy.append); return true; } *state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") && ParseType(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "GR") && ParseName(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) { return true; } *state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") && ParseCallOffset(state) && ParseEncoding(state)) { return true; } *state = copy; return false; } bool ParseCallOffset(State* state) { State copy = *state; if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && ParseOneCharToken(state, '_')) { return true; } *state = copy; if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && ParseOneCharToken(state, '_')) { return true; } *state = copy; return false; } bool ParseNVOffset(State* state) { return ParseNumber(state, nullptr); } bool ParseVOffset(State* state) { State copy = *state; if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { return true; } *state = copy; return false; } bool ParseCtorDtorName(State* state) { State copy = *state; if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "123")) { const char* const prev_name = state->prev_name; const ssize_t prev_name_length = state->prev_name_length; MaybeAppendWithLength(state, prev_name, prev_name_length); return true; } *state = copy; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "012")) { const char* const prev_name = state->prev_name; const ssize_t prev_name_length = state->prev_name_length; MaybeAppend(state, "~"); MaybeAppendWithLength(state, prev_name, prev_name_length); return true; } *state = copy; return false; } bool ParseType(State* state) { State copy = *state; if (ParseCVQualifiers(state) && ParseType(state)) { return true; } *state = copy; if (ParseCharClass(state, "OPRCG") && ParseType(state)) { return true; } *state = copy; if (ParseTwoCharToken(state, "Dp") && ParseType(state)) { return true; } *state = copy; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; if (ParseOneCharToken(state, 'U') && ParseSourceName(state) && ParseType(state)) { return true; } *state = copy; if (ParseBuiltinType(state) || ParseFunctionType(state) || ParseClassEnumType(state) || ParseArrayType(state) || ParsePointerToMemberType(state) || ParseSubstitution(state)) { return true; } if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { return true; } *state = copy; if (ParseTemplateParam(state)) { return true; } return false; } bool ParseCVQualifiers(State* state) { int num_cv_qualifiers = 0; num_cv_qualifiers += ParseOneCharToken(state, 'r'); num_cv_qualifiers += ParseOneCharToken(state, 'V'); num_cv_qualifiers += ParseOneCharToken(state, 'K'); return num_cv_qualifiers > 0; } bool ParseBuiltinType(State* state) { const AbbrevPair* p; for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { if (state->mangled_cur[0] == p->abbrev[0]) { MaybeAppend(state, p->real_name); ++state->mangled_cur; return true; } } State copy = *state; if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) { return true; } *state = copy; return false; } bool ParseFunctionType(State* state) { State copy = *state; if (ParseOneCharToken(state, 'F') && Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; return false; } bool ParseBareFunctionType(State* state) { State copy = *state; DisableAppend(state); if (OneOrMore(ParseType, state)) { RestoreAppend(state, copy.append); MaybeAppend(state, "()"); return true; } *state = copy; return false; } bool ParseClassEnumType(State* state) { return ParseName(state); } bool ParseArrayType(State* state) { State copy = *state; if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } *state = copy; if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } *state = copy; return false; } bool ParsePointerToMemberType(State* state) { State copy = *state; if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { return true; } *state = copy; return false; } bool ParseTemplateParam(State* state) { if (ParseTwoCharToken(state, "T_")) { MaybeAppend(state, "?"); return true; } State copy = *state; if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); return true; } *state = copy; return false; } bool ParseTemplateTemplateParam(State* state) { return (ParseTemplateParam(state) || ParseSubstitution(state)); } bool ParseTemplateArgs(State* state) { State copy = *state; DisableAppend(state); if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { RestoreAppend(state, copy.append); MaybeAppend(state, "<>"); return true; } *state = copy; return false; } bool ParseTemplateArg(State* state) { constexpr uint32 max_levels = 6; if (state->arg_level > max_levels) { return false; } ++state->arg_level; State copy = *state; if ((ParseOneCharToken(state, 'I') || ParseOneCharToken(state, 'J')) && ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { --state->arg_level; return true; } *state = copy; if (ParseType(state) || ParseExprPrimary(state)) { --state->arg_level; return true; } *state = copy; if (ParseOneCharToken(state, 'X') && ParseExpression(state) && ParseOneCharToken(state, 'E')) { --state->arg_level; return true; } *state = copy; return false; } bool ParseExpression(State* state) { if (ParseTemplateParam(state) || ParseExprPrimary(state)) { return true; } constexpr uint32 max_levels = 5; if (state->expr_level > max_levels) { return false; } ++state->expr_level; State copy = *state; if (ParseOperatorName(state) && ParseExpression(state) && ParseExpression(state) && ParseExpression(state)) { --state->expr_level; return true; } *state = copy; if (ParseOperatorName(state) && ParseExpression(state) && ParseExpression(state)) { --state->expr_level; return true; } *state = copy; if (ParseOperatorName(state) && ParseExpression(state)) { --state->expr_level; return true; } *state = copy; if (ParseTwoCharToken(state, "st") && ParseType(state)) { return true; --state->expr_level; } *state = copy; if (ParseTwoCharToken(state, "sr") && ParseType(state) && ParseUnqualifiedName(state) && ParseTemplateArgs(state)) { --state->expr_level; return true; } *state = copy; if (ParseTwoCharToken(state, "sr") && ParseType(state) && ParseUnqualifiedName(state)) { --state->expr_level; return true; } *state = copy; if (ParseTwoCharToken(state, "sp") && ParseType(state)) { --state->expr_level; return true; } *state = copy; return false; } bool ParseExprPrimary(State* state) { State copy = *state; if (ParseOneCharToken(state, 'L') && ParseType(state) && ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; if (ParseOneCharToken(state, 'L') && ParseType(state) && ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; if (ParseTwoCharToken(state, "LZ") && ParseEncoding(state) && ParseOneCharToken(state, 'E')) { return true; } *state = copy; return false; } bool ParseLocalName(State* state) { constexpr uint32 max_levels = 5; if (state->local_level > max_levels) { return false; } ++state->local_level; State copy = *state; if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && ParseOneCharToken(state, 'E') && MaybeAppend(state, "::") && ParseName(state) && Optional(ParseDiscriminator(state))) { --state->local_level; return true; } *state = copy; if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && ParseTwoCharToken(state, "Es") && Optional(ParseDiscriminator(state))) { --state->local_level; return true; } *state = copy; return false; } bool ParseDiscriminator(State* state) { State copy = *state; if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { return true; } *state = copy; return false; } bool ParseSubstitution(State* state) { if (ParseTwoCharToken(state, "S_")) { MaybeAppend(state, "?"); return true; } State copy = *state; if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); return true; } *state = copy; if (ParseOneCharToken(state, 'S')) { const AbbrevPair* p; for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { if (state->mangled_cur[0] == p->abbrev[1]) { MaybeAppend(state, "std"); if (p->real_name[0] != '\0') { MaybeAppend(state, "::"); MaybeAppend(state, p->real_name); } ++state->mangled_cur; return true; } } } *state = copy; return false; } bool ParseTopLevelMangledName(State* state) { if (ParseMangledName(state)) { if (state->mangled_cur[0] != '\0') { if (IsFunctionCloneSuffix(state->mangled_cur)) { return true; } if (state->mangled_cur[0] == '@') { MaybeAppend(state, state->mangled_cur); return true; } return ParseName(state); } return true; } return false; } } #endif bool Demangle(const char* mangled, char* out, size_t out_size) { #if defined(GLOG_OS_WINDOWS) # if defined(HAVE_DBGHELP) char buffer[1024]; const char* lparen = strchr(mangled, '('); if (lparen) { const char* rparen = strchr(lparen, ')'); size_t length = static_cast<size_t>(rparen - lparen) - 1; strncpy(buffer, lparen + 1, length); buffer[length] = '\0'; mangled = buffer; } return UnDecorateSymbolName(mangled, out, out_size, UNDNAME_COMPLETE); # else (void)mangled; (void)out; (void)out_size; return false; # endif #elif defined(HAVE___CXA_DEMANGLE) int status = -1; std::size_t n = 0; std::unique_ptr<char, decltype(&std::free)> unmangled{ abi::__cxa_demangle(mangled, nullptr, &n, &status), &std::free}; if (!unmangled) { return false; } std::copy_n(unmangled.get(), std::min(n, out_size), out); return status == 0; #else State state; InitState(&state, mangled, out, out_size); return ParseTopLevelMangledName(&state) && !state.overflowed; #endif } } }
#include "demangle.h" #include <fstream> #include <iostream> #include <string> #include "config.h" #include "glog/logging.h" #include "googletest.h" #include "utilities.h" #ifdef GLOG_USE_GFLAGS # include <gflags/gflags.h> using namespace GFLAGS_NAMESPACE; #endif GLOG_DEFINE_bool(demangle_filter, false, "Run demangle_unittest in filter mode"); using namespace std; using namespace google; static const char* DemangleIt(const char* const mangled) { static char demangled[4096]; if (Demangle(mangled, demangled, sizeof(demangled))) { return demangled; } else { return mangled; } } #if defined(GLOG_OS_WINDOWS) # if defined(HAVE_DBGHELP) && !defined(NDEBUG) TEST(Demangle, Windows) { EXPECT_STREQ("public: static void __cdecl Foo::func(int)", DemangleIt("?func@Foo@@SAXH@Z")); EXPECT_STREQ("public: static void __cdecl Foo::func(int)", DemangleIt("@ILT+1105(?func@Foo@@SAXH@Z)")); EXPECT_STREQ("int __cdecl foobarArray(int * const)", DemangleIt("?foobarArray@@YAHQAH@Z")); } # endif #else TEST(Demangle, CornerCases) { const size_t size = 10; char tmp[size] = {0}; const char* demangled = "foobar()"; const char* mangled = "_Z6foobarv"; EXPECT_TRUE(Demangle(mangled, tmp, sizeof(tmp))); EXPECT_STREQ(demangled, tmp); EXPECT_TRUE(Demangle(mangled, tmp, size - 1)); EXPECT_STREQ(demangled, tmp); EXPECT_FALSE(Demangle(mangled, tmp, size - 2)); EXPECT_FALSE(Demangle(mangled, tmp, 1)); EXPECT_FALSE(Demangle(mangled, tmp, 0)); EXPECT_FALSE(Demangle(mangled, nullptr, 0)); } TEST(Demangle, Clones) { char tmp[20]; EXPECT_TRUE(Demangle("_ZL3Foov", tmp, sizeof(tmp))); EXPECT_STREQ("Foo()", tmp); EXPECT_TRUE(Demangle("_ZL3Foov.clone.3", tmp, sizeof(tmp))); EXPECT_STREQ("Foo()", tmp); EXPECT_TRUE(Demangle("_ZL3Foov.constprop.80", tmp, sizeof(tmp))); EXPECT_STREQ("Foo()", tmp); EXPECT_TRUE(Demangle("_ZL3Foov.isra.18", tmp, sizeof(tmp))); EXPECT_STREQ("Foo()", tmp); EXPECT_TRUE(Demangle("_ZL3Foov.isra.2.constprop.18", tmp, sizeof(tmp))); EXPECT_STREQ("Foo()", tmp); EXPECT_FALSE(Demangle("_ZL3Foov.clo", tmp, sizeof(tmp))); EXPECT_FALSE(Demangle("_ZL3Foov.clone.", tmp, sizeof(tmp))); EXPECT_FALSE(Demangle("_ZL3Foov.clone.foo", tmp, sizeof(tmp))); EXPECT_FALSE(Demangle("_ZL3Foov.isra.2.constprop.", tmp, sizeof(tmp))); } TEST(Demangle, FromFile) { string test_file = FLAGS_test_srcdir + "/src/demangle_unittest.txt"; ifstream f(test_file.c_str()); EXPECT_FALSE(f.fail()); string line; while (getline(f, line)) { if (line.empty() || line[0] == '#') { continue; } string::size_type tab_pos = line.find('\t'); EXPECT_NE(string::npos, tab_pos); string mangled = line.substr(0, tab_pos); string demangled = line.substr(tab_pos + 1); EXPECT_EQ(demangled, DemangleIt(mangled.c_str())); } } #endif int main(int argc, char** argv) { InitGoogleTest(&argc, argv); #ifdef GLOG_USE_GFLAGS ParseCommandLineFlags(&argc, &argv, true); #endif FLAGS_logtostderr = true; InitGoogleLogging(argv[0]); if (FLAGS_demangle_filter) { string line; while (getline(cin, line, '\n')) { cout << DemangleIt(line.c_str()) << endl; } return 0; } else if (argc > 1) { cout << DemangleIt(argv[1]) << endl; return 0; } else { return RUN_ALL_TESTS(); } }
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/demangle.cc
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/demangle_unittest.cc
de309c08c05382fee0792380de7df1bd65332da2
b34100b3-f345-49db-a7b0-5d4f8ad618ea
cpp
google/quiche
http2_frame_decoder
quiche/http2/decoder/http2_frame_decoder.cc
quiche/http2/decoder/http2_frame_decoder_test.cc
#include "quiche/http2/decoder/http2_frame_decoder.h" #include <ostream> #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/hpack/varint/hpack_varint_decoder.h" #include "quiche/http2/http2_constants.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::ostream& operator<<(std::ostream& out, Http2FrameDecoder::State v) { switch (v) { case Http2FrameDecoder::State::kStartDecodingHeader: return out << "kStartDecodingHeader"; case Http2FrameDecoder::State::kResumeDecodingHeader: return out << "kResumeDecodingHeader"; case Http2FrameDecoder::State::kResumeDecodingPayload: return out << "kResumeDecodingPayload"; case Http2FrameDecoder::State::kDiscardPayload: return out << "kDiscardPayload"; } int unknown = static_cast<int>(v); QUICHE_BUG(http2_bug_155_1) << "Http2FrameDecoder::State " << unknown; return out << "Http2FrameDecoder::State(" << unknown << ")"; } Http2FrameDecoder::Http2FrameDecoder(Http2FrameDecoderListener* listener) : state_(State::kStartDecodingHeader), maximum_payload_size_(Http2SettingsInfo::DefaultMaxFrameSize()) { set_listener(listener); } void Http2FrameDecoder::set_listener(Http2FrameDecoderListener* listener) { if (listener == nullptr) { listener = &no_op_listener_; } frame_decoder_state_.set_listener(listener); } Http2FrameDecoderListener* Http2FrameDecoder::listener() const { return frame_decoder_state_.listener(); } DecodeStatus Http2FrameDecoder::DecodeFrame(DecodeBuffer* db) { QUICHE_DVLOG(2) << "Http2FrameDecoder::DecodeFrame state=" << state_; switch (state_) { case State::kStartDecodingHeader: if (frame_decoder_state_.StartDecodingFrameHeader(db)) { return StartDecodingPayload(db); } state_ = State::kResumeDecodingHeader; return DecodeStatus::kDecodeInProgress; case State::kResumeDecodingHeader: if (frame_decoder_state_.ResumeDecodingFrameHeader(db)) { return StartDecodingPayload(db); } return DecodeStatus::kDecodeInProgress; case State::kResumeDecodingPayload: return ResumeDecodingPayload(db); case State::kDiscardPayload: return DiscardPayload(db); } QUICHE_NOTREACHED(); return DecodeStatus::kDecodeError; } size_t Http2FrameDecoder::remaining_payload() const { return frame_decoder_state_.remaining_payload(); } uint32_t Http2FrameDecoder::remaining_padding() const { return frame_decoder_state_.remaining_padding(); } DecodeStatus Http2FrameDecoder::StartDecodingPayload(DecodeBuffer* db) { const Http2FrameHeader& header = frame_header(); if (!listener()->OnFrameHeader(header)) { QUICHE_DVLOG(2) << "OnFrameHeader rejected the frame, will discard; header: " << header; state_ = State::kDiscardPayload; frame_decoder_state_.InitializeRemainders(); return DecodeStatus::kDecodeError; } if (header.payload_length > maximum_payload_size_) { QUICHE_DVLOG(2) << "Payload length is greater than allowed: " << header.payload_length << " > " << maximum_payload_size_ << "\n header: " << header; state_ = State::kDiscardPayload; frame_decoder_state_.InitializeRemainders(); listener()->OnFrameSizeError(header); return DecodeStatus::kDecodeError; } DecodeBufferSubset subset(db, header.payload_length); DecodeStatus status; switch (header.type) { case Http2FrameType::DATA: status = StartDecodingDataPayload(&subset); break; case Http2FrameType::HEADERS: status = StartDecodingHeadersPayload(&subset); break; case Http2FrameType::PRIORITY: status = StartDecodingPriorityPayload(&subset); break; case Http2FrameType::RST_STREAM: status = StartDecodingRstStreamPayload(&subset); break; case Http2FrameType::SETTINGS: status = StartDecodingSettingsPayload(&subset); break; case Http2FrameType::PUSH_PROMISE: status = StartDecodingPushPromisePayload(&subset); break; case Http2FrameType::PING: status = StartDecodingPingPayload(&subset); break; case Http2FrameType::GOAWAY: status = StartDecodingGoAwayPayload(&subset); break; case Http2FrameType::WINDOW_UPDATE: status = StartDecodingWindowUpdatePayload(&subset); break; case Http2FrameType::CONTINUATION: status = StartDecodingContinuationPayload(&subset); break; case Http2FrameType::ALTSVC: status = StartDecodingAltSvcPayload(&subset); break; case Http2FrameType::PRIORITY_UPDATE: status = StartDecodingPriorityUpdatePayload(&subset); break; default: status = StartDecodingUnknownPayload(&subset); break; } if (status == DecodeStatus::kDecodeDone) { state_ = State::kStartDecodingHeader; return status; } else if (status == DecodeStatus::kDecodeInProgress) { state_ = State::kResumeDecodingPayload; return status; } else { state_ = State::kDiscardPayload; return status; } } DecodeStatus Http2FrameDecoder::ResumeDecodingPayload(DecodeBuffer* db) { size_t remaining = frame_decoder_state_.remaining_total_payload(); QUICHE_DCHECK_LE(remaining, frame_header().payload_length); DecodeBufferSubset subset(db, remaining); DecodeStatus status; switch (frame_header().type) { case Http2FrameType::DATA: status = ResumeDecodingDataPayload(&subset); break; case Http2FrameType::HEADERS: status = ResumeDecodingHeadersPayload(&subset); break; case Http2FrameType::PRIORITY: status = ResumeDecodingPriorityPayload(&subset); break; case Http2FrameType::RST_STREAM: status = ResumeDecodingRstStreamPayload(&subset); break; case Http2FrameType::SETTINGS: status = ResumeDecodingSettingsPayload(&subset); break; case Http2FrameType::PUSH_PROMISE: status = ResumeDecodingPushPromisePayload(&subset); break; case Http2FrameType::PING: status = ResumeDecodingPingPayload(&subset); break; case Http2FrameType::GOAWAY: status = ResumeDecodingGoAwayPayload(&subset); break; case Http2FrameType::WINDOW_UPDATE: status = ResumeDecodingWindowUpdatePayload(&subset); break; case Http2FrameType::CONTINUATION: status = ResumeDecodingContinuationPayload(&subset); break; case Http2FrameType::ALTSVC: status = ResumeDecodingAltSvcPayload(&subset); break; case Http2FrameType::PRIORITY_UPDATE: status = ResumeDecodingPriorityUpdatePayload(&subset); break; default: status = ResumeDecodingUnknownPayload(&subset); break; } if (status == DecodeStatus::kDecodeDone) { state_ = State::kStartDecodingHeader; return status; } else if (status == DecodeStatus::kDecodeInProgress) { return status; } else { state_ = State::kDiscardPayload; return status; } } void Http2FrameDecoder::RetainFlags(uint8_t valid_flags) { frame_decoder_state_.RetainFlags(valid_flags); } void Http2FrameDecoder::ClearFlags() { frame_decoder_state_.ClearFlags(); } DecodeStatus Http2FrameDecoder::StartDecodingAltSvcPayload(DecodeBuffer* db) { ClearFlags(); return altsvc_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingAltSvcPayload(DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return altsvc_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingContinuationPayload( DecodeBuffer* db) { RetainFlags(Http2FrameFlag::END_HEADERS); return continuation_payload_decoder_.StartDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingContinuationPayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return continuation_payload_decoder_.ResumeDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingDataPayload(DecodeBuffer* db) { RetainFlags(Http2FrameFlag::END_STREAM | Http2FrameFlag::PADDED); return data_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingDataPayload(DecodeBuffer* db) { return data_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingGoAwayPayload(DecodeBuffer* db) { ClearFlags(); return goaway_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingGoAwayPayload(DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return goaway_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingHeadersPayload(DecodeBuffer* db) { RetainFlags(Http2FrameFlag::END_STREAM | Http2FrameFlag::END_HEADERS | Http2FrameFlag::PADDED | Http2FrameFlag::PRIORITY); return headers_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingHeadersPayload(DecodeBuffer* db) { QUICHE_DCHECK_LE(frame_decoder_state_.remaining_payload_and_padding(), frame_header().payload_length); return headers_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingPingPayload(DecodeBuffer* db) { RetainFlags(Http2FrameFlag::ACK); return ping_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingPingPayload(DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return ping_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingPriorityPayload(DecodeBuffer* db) { ClearFlags(); return priority_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingPriorityPayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return priority_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingPriorityUpdatePayload( DecodeBuffer* db) { ClearFlags(); return priority_payload_update_decoder_.StartDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingPriorityUpdatePayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return priority_payload_update_decoder_.ResumeDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingPushPromisePayload( DecodeBuffer* db) { RetainFlags(Http2FrameFlag::END_HEADERS | Http2FrameFlag::PADDED); return push_promise_payload_decoder_.StartDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingPushPromisePayload( DecodeBuffer* db) { QUICHE_DCHECK_LE(frame_decoder_state_.remaining_payload_and_padding(), frame_header().payload_length); return push_promise_payload_decoder_.ResumeDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingRstStreamPayload( DecodeBuffer* db) { ClearFlags(); return rst_stream_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingRstStreamPayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return rst_stream_payload_decoder_.ResumeDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingSettingsPayload(DecodeBuffer* db) { RetainFlags(Http2FrameFlag::ACK); return settings_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingSettingsPayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return settings_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingUnknownPayload(DecodeBuffer* db) { return unknown_payload_decoder_.StartDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingUnknownPayload(DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return unknown_payload_decoder_.ResumeDecodingPayload(&frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::StartDecodingWindowUpdatePayload( DecodeBuffer* db) { ClearFlags(); return window_update_payload_decoder_.StartDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::ResumeDecodingWindowUpdatePayload( DecodeBuffer* db) { QUICHE_DCHECK_EQ(frame_decoder_state_.remaining_total_payload(), frame_decoder_state_.remaining_payload()); return window_update_payload_decoder_.ResumeDecodingPayload( &frame_decoder_state_, db); } DecodeStatus Http2FrameDecoder::DiscardPayload(DecodeBuffer* db) { QUICHE_DVLOG(2) << "remaining_payload=" << frame_decoder_state_.remaining_payload_ << "; remaining_padding=" << frame_decoder_state_.remaining_padding_; frame_decoder_state_.remaining_payload_ += frame_decoder_state_.remaining_padding_; frame_decoder_state_.remaining_padding_ = 0; const size_t avail = frame_decoder_state_.AvailablePayload(db); QUICHE_DVLOG(2) << "avail=" << avail; if (avail > 0) { frame_decoder_state_.ConsumePayload(avail); db->AdvanceCursor(avail); } if (frame_decoder_state_.remaining_payload_ == 0) { state_ = State::kStartDecodingHeader; return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; } }
#include "quiche/http2/decoder/http2_frame_decoder.h" #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/frame_parts.h" #include "quiche/http2/test_tools/frame_parts_collector_listener.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" using ::testing::AssertionSuccess; namespace http2 { namespace test { class Http2FrameDecoderPeer { public: static size_t remaining_total_payload(Http2FrameDecoder* decoder) { return decoder->frame_decoder_state_.remaining_total_payload(); } }; namespace { class Http2FrameDecoderTest : public RandomDecoderTest { protected: DecodeStatus StartDecoding(DecodeBuffer* db) override { QUICHE_DVLOG(2) << "StartDecoding, db->Remaining=" << db->Remaining(); collector_.Reset(); PrepareDecoder(); DecodeStatus status = decoder_->DecodeFrame(db); if (status != DecodeStatus::kDecodeInProgress) { ++fast_decode_count_; if (status == DecodeStatus::kDecodeError) { ConfirmDiscardsRemainingPayload(); } } return status; } DecodeStatus ResumeDecoding(DecodeBuffer* db) override { QUICHE_DVLOG(2) << "ResumeDecoding, db->Remaining=" << db->Remaining(); DecodeStatus status = decoder_->DecodeFrame(db); if (status != DecodeStatus::kDecodeInProgress) { ++slow_decode_count_; if (status == DecodeStatus::kDecodeError) { ConfirmDiscardsRemainingPayload(); } } return status; } void ConfirmDiscardsRemainingPayload() { ASSERT_TRUE(decoder_->IsDiscardingPayload()); size_t remaining = Http2FrameDecoderPeer::remaining_total_payload(decoder_.get()); size_t extra = 10; std::string junk(remaining + extra, '0'); DecodeBuffer tmp(junk); EXPECT_EQ(DecodeStatus::kDecodeDone, decoder_->DecodeFrame(&tmp)); EXPECT_EQ(remaining, tmp.Offset()); EXPECT_EQ(extra, tmp.Remaining()); EXPECT_FALSE(decoder_->IsDiscardingPayload()); } void PrepareDecoder() { decoder_ = std::make_unique<Http2FrameDecoder>(&collector_); decoder_->set_maximum_payload_size(maximum_payload_size_); } void ResetDecodeSpeedCounters() { fast_decode_count_ = 0; slow_decode_count_ = 0; } AssertionResult VerifyCollected(const FrameParts& expected) { HTTP2_VERIFY_FALSE(collector_.IsInProgress()); HTTP2_VERIFY_EQ(1u, collector_.size()); return expected.VerifyEquals(*collector_.frame(0)); } AssertionResult DecodePayloadAndValidateSeveralWays(absl::string_view payload, Validator validator) { DecodeBuffer db(payload); bool start_decoding_requires_non_empty = false; return DecodeAndValidateSeveralWays(&db, start_decoding_requires_non_empty, validator); } AssertionResult DecodePayloadAndValidateSeveralWays( absl::string_view payload, const FrameParts& expected) { auto validator = [&expected, this](const DecodeBuffer& , DecodeStatus status) -> AssertionResult { HTTP2_VERIFY_EQ(status, DecodeStatus::kDecodeDone); return VerifyCollected(expected); }; ResetDecodeSpeedCounters(); HTTP2_VERIFY_SUCCESS(DecodePayloadAndValidateSeveralWays( payload, ValidateDoneAndEmpty(validator))); HTTP2_VERIFY_GT(fast_decode_count_, 0u); HTTP2_VERIFY_GT(slow_decode_count_, 0u); std::string next_frame = Random().RandString(10); std::string input(payload.data(), payload.size()); input += next_frame; ResetDecodeSpeedCounters(); HTTP2_VERIFY_SUCCESS(DecodePayloadAndValidateSeveralWays( payload, ValidateDoneAndOffset(payload.size(), validator))); HTTP2_VERIFY_GT(fast_decode_count_, 0u); HTTP2_VERIFY_GT(slow_decode_count_, 0u); return AssertionSuccess(); } template <size_t N> AssertionResult DecodePayloadAndValidateSeveralWays( const char (&buf)[N], const FrameParts& expected) { return DecodePayloadAndValidateSeveralWays(absl::string_view(buf, N), expected); } template <size_t N> AssertionResult DecodePayloadAndValidateSeveralWays( const char (&buf)[N], const Http2FrameHeader& header) { return DecodePayloadAndValidateSeveralWays(absl::string_view(buf, N), FrameParts(header)); } template <size_t N> AssertionResult DecodePayloadExpectingError(const char (&buf)[N], const FrameParts& expected) { auto validator = [&expected, this](const DecodeBuffer& , DecodeStatus status) -> AssertionResult { HTTP2_VERIFY_EQ(status, DecodeStatus::kDecodeError); return VerifyCollected(expected); }; ResetDecodeSpeedCounters(); EXPECT_TRUE( DecodePayloadAndValidateSeveralWays(ToStringPiece(buf), validator)); EXPECT_GT(fast_decode_count_, 0u); EXPECT_GT(slow_decode_count_, 0u); return AssertionSuccess(); } template <size_t N> AssertionResult DecodePayloadExpectingFrameSizeError(const char (&buf)[N], FrameParts expected) { expected.SetHasFrameSizeError(true); return DecodePayloadExpectingError(buf, expected); } template <size_t N> AssertionResult DecodePayloadExpectingFrameSizeError( const char (&buf)[N], const Http2FrameHeader& header) { return DecodePayloadExpectingFrameSizeError(buf, FrameParts(header)); } size_t fast_decode_count_ = 0; size_t slow_decode_count_ = 0; uint32_t maximum_payload_size_ = Http2SettingsInfo::DefaultMaxFrameSize(); FramePartsCollectorListener collector_; std::unique_ptr<Http2FrameDecoder> decoder_; }; TEST_F(Http2FrameDecoderTest, DataEmpty) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(0, Http2FrameType::DATA, 0, 0); FrameParts expected(header, ""); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeadersEmpty) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x00', '\x01', }; Http2FrameHeader header(0, Http2FrameType::HEADERS, 0, 1); FrameParts expected(header, ""); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, Priority) { const char kFrameData[] = { '\x00', '\x00', '\x05', '\x02', '\x00', '\x00', '\x00', '\x00', '\x02', '\x80', '\x00', '\x00', '\x01', '\x10', }; Http2FrameHeader header(5, Http2FrameType::PRIORITY, 0, 2); FrameParts expected(header); expected.SetOptPriority(Http2PriorityFields(1, 17, true)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, RstStream) { const char kFrameData[] = { '\x00', '\x00', '\x04', '\x03', '\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x01', }; Http2FrameHeader header(4, Http2FrameType::RST_STREAM, 0, 1); FrameParts expected(header); expected.SetOptRstStreamErrorCode(Http2ErrorCode::PROTOCOL_ERROR); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, SettingsEmpty) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x04', '\x00', '\x00', '\x00', '\x00', '\x01', }; Http2FrameHeader header(0, Http2FrameType::SETTINGS, 0, 1); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, SettingsAck) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x04', '\x01', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(0, Http2FrameType::SETTINGS, Http2FrameFlag::ACK, 0); FrameParts expected(header); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PushPromiseMinimal) { const char kFrameData[] = { '\x00', '\x00', '\x04', '\x05', '\x04', '\x00', '\x00', '\x00', '\x02', '\x00', '\x00', '\x00', '\x01', }; Http2FrameHeader header(4, Http2FrameType::PUSH_PROMISE, Http2FrameFlag::END_HEADERS, 2); FrameParts expected(header, ""); expected.SetOptPushPromise(Http2PushPromiseFields{1}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, Ping) { const char kFrameData[] = { '\x00', '\x00', '\x08', '\x06', '\xfe', '\x00', '\x00', '\x00', '\x00', 's', 'o', 'm', 'e', 'd', 'a', 't', 'a', }; Http2FrameHeader header(8, Http2FrameType::PING, 0, 0); FrameParts expected(header); expected.SetOptPing( Http2PingFields{{'s', 'o', 'm', 'e', 'd', 'a', 't', 'a'}}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PingAck) { const char kFrameData[] = { '\x00', '\x00', '\x08', '\x06', '\xff', '\x00', '\x00', '\x00', '\x00', 's', 'o', 'm', 'e', 'd', 'a', 't', 'a', }; Http2FrameHeader header(8, Http2FrameType::PING, Http2FrameFlag::ACK, 0); FrameParts expected(header); expected.SetOptPing( Http2PingFields{{'s', 'o', 'm', 'e', 'd', 'a', 't', 'a'}}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, GoAwayMinimal) { const char kFrameData[] = { '\x00', '\x00', '\x08', '\x07', '\xff', '\x00', '\x00', '\x00', '\x01', '\x80', '\x00', '\x00', '\xff', '\x00', '\x00', '\x00', '\x09', }; Http2FrameHeader header(8, Http2FrameType::GOAWAY, 0, 1); FrameParts expected(header); expected.SetOptGoaway( Http2GoAwayFields(255, Http2ErrorCode::COMPRESSION_ERROR)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, WindowUpdate) { const char kFrameData[] = { '\x00', '\x00', '\x04', '\x08', '\x0f', '\x00', '\x00', '\x00', '\x01', '\x80', '\x00', '\x04', '\x00', }; Http2FrameHeader header(4, Http2FrameType::WINDOW_UPDATE, 0, 1); FrameParts expected(header); expected.SetOptWindowUpdateIncrement(1024); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, ContinuationEmpty) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x09', '\x00', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(0, Http2FrameType::CONTINUATION, 0, 0); FrameParts expected(header); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, AltSvcMinimal) { const char kFrameData[] = { '\x00', '\x00', '\x02', '\x0a', '\xff', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(2, Http2FrameType::ALTSVC, 0, 0); FrameParts expected(header); expected.SetOptAltsvcOriginLength(0); expected.SetOptAltsvcValueLength(0); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, UnknownEmpty) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x20', '\xff', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(0, static_cast<Http2FrameType>(32), 0xff, 0); FrameParts expected(header); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, DataPayload) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x00', '\x80', '\x00', '\x00', '\x02', '\x02', 'a', 'b', 'c', }; Http2FrameHeader header(3, Http2FrameType::DATA, 0, 514); FrameParts expected(header, "abc"); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeadersPayload) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x01', '\x05', '\x00', '\x00', '\x00', '\x02', 'a', 'b', 'c', }; Http2FrameHeader header( 3, Http2FrameType::HEADERS, Http2FrameFlag::END_STREAM | Http2FrameFlag::END_HEADERS, 2); FrameParts expected(header, "abc"); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeadersPriority) { const char kFrameData[] = { '\x00', '\x00', '\x05', '\x01', '\x20', '\x00', '\x00', '\x00', '\x02', '\x00', '\x00', '\x00', '\x01', '\xff', }; Http2FrameHeader header(5, Http2FrameType::HEADERS, Http2FrameFlag::PRIORITY, 2); FrameParts expected(header); expected.SetOptPriority(Http2PriorityFields(1, 256, false)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, Settings) { const char kFrameData[] = { '\x00', '\x00', '\x0c', '\x04', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x04', '\x0a', '\x0b', '\x0c', '\x0d', '\x00', '\x02', '\x00', '\x00', '\x00', '\x03', }; Http2FrameHeader header(12, Http2FrameType::SETTINGS, 0, 0); FrameParts expected(header); expected.AppendSetting(Http2SettingFields( Http2SettingsParameter::INITIAL_WINDOW_SIZE, 168496141)); expected.AppendSetting( Http2SettingFields(Http2SettingsParameter::ENABLE_PUSH, 3)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PushPromisePayload) { const char kFrameData[] = { '\x00', '\x00', 7, '\x05', '\x04', '\x00', '\x00', '\x00', '\xff', '\x00', '\x00', '\x01', '\x00', 'a', 'b', 'c', }; Http2FrameHeader header(7, Http2FrameType::PUSH_PROMISE, Http2FrameFlag::END_HEADERS, 255); FrameParts expected(header, "abc"); expected.SetOptPushPromise(Http2PushPromiseFields{256}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, GoAwayOpaqueData) { const char kFrameData[] = { '\x00', '\x00', '\x0e', '\x07', '\xff', '\x80', '\x00', '\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x00', '\x03', 'o', 'p', 'a', 'q', 'u', 'e', }; Http2FrameHeader header(14, Http2FrameType::GOAWAY, 0, 0); FrameParts expected(header, "opaque"); expected.SetOptGoaway( Http2GoAwayFields(256, Http2ErrorCode::FLOW_CONTROL_ERROR)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, ContinuationPayload) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x09', '\xff', '\x00', '\x00', '\x00', '\x02', 'a', 'b', 'c', }; Http2FrameHeader header(3, Http2FrameType::CONTINUATION, Http2FrameFlag::END_HEADERS, 2); FrameParts expected(header, "abc"); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, AltSvcPayload) { const char kFrameData[] = { '\x00', '\x00', '\x08', '\x0a', '\x00', '\x00', '\x00', '\x00', '\x02', '\x00', '\x03', 'a', 'b', 'c', 'd', 'e', 'f', }; Http2FrameHeader header(8, Http2FrameType::ALTSVC, 0, 2); FrameParts expected(header); expected.SetAltSvcExpected("abc", "def"); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PriorityUpdatePayload) { const char kFrameData[] = { '\x00', '\x00', '\x07', '\x10', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x05', 'a', 'b', 'c', }; Http2FrameHeader header(7, Http2FrameType::PRIORITY_UPDATE, 0, 0); FrameParts expected(header, "abc"); expected.SetOptPriorityUpdate(Http2PriorityUpdateFields{5}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, UnknownPayload) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x30', '\x00', '\x00', '\x00', '\x00', '\x02', 'a', 'b', 'c', }; Http2FrameHeader header(3, static_cast<Http2FrameType>(48), 0, 2); FrameParts expected(header, "abc"); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, DataPayloadAndPadding) { const char kFrameData[] = { '\x00', '\x00', '\x07', '\x00', '\x09', '\x00', '\x00', '\x00', '\x02', '\x03', 'a', 'b', 'c', '\x00', '\x00', '\x00', }; Http2FrameHeader header(7, Http2FrameType::DATA, Http2FrameFlag::END_STREAM | Http2FrameFlag::PADDED, 2); size_t total_pad_length = 4; FrameParts expected(header, "abc", total_pad_length); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeadersPayloadAndPadding) { const char kFrameData[] = { '\x00', '\x00', '\x07', '\x01', '\x08', '\x00', '\x00', '\x00', '\x02', '\x03', 'a', 'b', 'c', '\x00', '\x00', '\x00', }; Http2FrameHeader header(7, Http2FrameType::HEADERS, Http2FrameFlag::PADDED, 2); size_t total_pad_length = 4; FrameParts expected(header, "abc", total_pad_length); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeadersPayloadPriorityAndPadding) { const char kFrameData[] = { '\x00', '\x00', '\x0c', '\x01', '\xff', '\x00', '\x00', '\x00', '\x02', '\x03', '\x80', '\x00', '\x00', '\x01', '\x10', 'a', 'b', 'c', '\x00', '\x00', '\x00', }; Http2FrameHeader header(12, Http2FrameType::HEADERS, Http2FrameFlag::END_STREAM | Http2FrameFlag::END_HEADERS | Http2FrameFlag::PADDED | Http2FrameFlag::PRIORITY, 2); size_t total_pad_length = 4; FrameParts expected(header, "abc", total_pad_length); expected.SetOptPriority(Http2PriorityFields(1, 17, true)); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PushPromisePayloadAndPadding) { const char kFrameData[] = { '\x00', '\x00', 11, '\x05', '\xff', '\x00', '\x00', '\x00', '\x01', '\x03', '\x00', '\x00', '\x00', '\x02', 'a', 'b', 'c', '\x00', '\x00', '\x00', }; Http2FrameHeader header(11, Http2FrameType::PUSH_PROMISE, Http2FrameFlag::END_HEADERS | Http2FrameFlag::PADDED, 1); size_t total_pad_length = 4; FrameParts expected(header, "abc", total_pad_length); expected.SetOptPushPromise(Http2PushPromiseFields{2}); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, DataMissingPadLengthField) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x00', '\x08', '\x00', '\x00', '\x00', '\x01', }; Http2FrameHeader header(0, Http2FrameType::DATA, Http2FrameFlag::PADDED, 1); FrameParts expected(header); expected.SetOptMissingLength(1); EXPECT_TRUE(DecodePayloadExpectingError(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeaderPaddingTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x02', '\x01', '\x08', '\x00', '\x01', '\x00', '\x00', '\xff', '\x00', }; Http2FrameHeader header(2, Http2FrameType::HEADERS, Http2FrameFlag::PADDED, 65536); FrameParts expected(header); expected.SetOptMissingLength(254); EXPECT_TRUE(DecodePayloadExpectingError(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, HeaderMissingPriority) { const char kFrameData[] = { '\x00', '\x00', '\x04', '\x01', '\x20', '\x00', '\x01', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(4, Http2FrameType::HEADERS, Http2FrameFlag::PRIORITY, 65536); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, PriorityTooShort) { const char kFrameData[] = { '\x00', '\x00', '\x04', '\x02', '\x00', '\x00', '\x00', '\x00', '\x02', '\x80', '\x00', '\x00', '\x01', }; Http2FrameHeader header(4, Http2FrameType::PRIORITY, 0, 2); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, RstStreamTooShort) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x03', '\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', }; Http2FrameHeader header(3, Http2FrameType::RST_STREAM, 0, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, SettingsWrongSize) { const char kFrameData[] = { '\x00', '\x00', '\x09', '\x04', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x02', '\x00', '\x00', '\x00', '\x03', '\x00', '\x04', '\x00', }; Http2FrameHeader header(9, Http2FrameType::SETTINGS, 0, 0); FrameParts expected(header); expected.AppendSetting( Http2SettingFields(Http2SettingsParameter::ENABLE_PUSH, 3)); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, expected)); } TEST_F(Http2FrameDecoderTest, PushPromiseTooShort) { const char kFrameData[] = { '\x00', '\x00', 3, '\x05', '\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', }; Http2FrameHeader header(3, Http2FrameType::PUSH_PROMISE, 0, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, PushPromisePaddedTruncatedPromise) { const char kFrameData[] = { '\x00', '\x00', 4, '\x05', '\x08', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(4, Http2FrameType::PUSH_PROMISE, Http2FrameFlag::PADDED, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, PingTooShort) { const char kFrameData[] = { '\x00', '\x00', '\x07', '\x06', '\xfe', '\x00', '\x00', '\x00', '\x00', 's', 'o', 'm', 'e', 'd', 'a', 't', }; Http2FrameHeader header(7, Http2FrameType::PING, 0, 0); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, GoAwayTooShort) { const char kFrameData[] = { '\x00', '\x00', '\x00', '\x07', '\xff', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(0, Http2FrameType::GOAWAY, 0, 0); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, WindowUpdateTooShort) { const char kFrameData[] = { '\x00', '\x00', '\x03', '\x08', '\x0f', '\x00', '\x00', '\x00', '\x01', '\x80', '\x00', '\x04', }; Http2FrameHeader header(3, Http2FrameType::WINDOW_UPDATE, 0, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, AltSvcTruncatedOriginLength) { const char kFrameData[] = { '\x00', '\x00', '\x01', '\x0a', '\x00', '\x00', '\x00', '\x00', '\x02', '\x00', }; Http2FrameHeader header(1, Http2FrameType::ALTSVC, 0, 2); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, AltSvcTruncatedOrigin) { const char kFrameData[] = { '\x00', '\x00', '\x05', '\x0a', '\x00', '\x00', '\x00', '\x00', '\x02', '\x00', '\x04', 'a', 'b', 'c', }; Http2FrameHeader header(5, Http2FrameType::ALTSVC, 0, 2); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, BeyondMaximum) { maximum_payload_size_ = 2; const char kFrameData[] = { '\x00', '\x00', '\x07', '\x00', '\x09', '\x00', '\x00', '\x00', '\x02', '\x03', 'a', 'b', 'c', '\x00', '\x00', '\x00', }; Http2FrameHeader header(7, Http2FrameType::DATA, Http2FrameFlag::END_STREAM | Http2FrameFlag::PADDED, 2); FrameParts expected(header); expected.SetHasFrameSizeError(true); auto validator = [&expected, this](const DecodeBuffer& input, DecodeStatus status) -> AssertionResult { HTTP2_VERIFY_EQ(status, DecodeStatus::kDecodeError); HTTP2_VERIFY_EQ(input.Offset(), Http2FrameHeader::EncodedSize()); return VerifyCollected(expected); }; ResetDecodeSpeedCounters(); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(ToStringPiece(kFrameData), validator)); EXPECT_GT(fast_decode_count_, 0u); EXPECT_GT(slow_decode_count_, 0u); } TEST_F(Http2FrameDecoderTest, PriorityTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x06', '\x02', '\x00', '\x00', '\x00', '\x00', '\x02', '\x80', '\x00', '\x00', '\x01', '\x10', '\x00', }; Http2FrameHeader header(6, Http2FrameType::PRIORITY, 0, 2); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, RstStreamTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x05', '\x03', '\x00', '\x00', '\x00', '\x00', '\x01', '\x00', '\x00', '\x00', '\x01', '\x00', }; Http2FrameHeader header(5, Http2FrameType::RST_STREAM, 0, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, SettingsAckTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x06', '\x04', '\x01', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00', }; Http2FrameHeader header(6, Http2FrameType::SETTINGS, Http2FrameFlag::ACK, 0); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, PingAckTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x09', '\x06', '\xff', '\x00', '\x00', '\x00', '\x00', 's', 'o', 'm', 'e', 'd', 'a', 't', 'a', '\x00', }; Http2FrameHeader header(9, Http2FrameType::PING, Http2FrameFlag::ACK, 0); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } TEST_F(Http2FrameDecoderTest, WindowUpdateTooLong) { const char kFrameData[] = { '\x00', '\x00', '\x05', '\x08', '\x0f', '\x00', '\x00', '\x00', '\x01', '\x80', '\x00', '\x04', '\x00', '\x00', }; Http2FrameHeader header(5, Http2FrameType::WINDOW_UPDATE, 0, 1); EXPECT_TRUE(DecodePayloadExpectingFrameSizeError(kFrameData, header)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/http2_frame_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/http2_frame_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
23e3a29e-ec56-4902-a008-341d667cbec3
cpp
google/quiche
connect_udp_tunnel
quiche/quic/tools/connect_udp_tunnel.cc
quiche/quic/tools/connect_udp_tunnel_test.cc
#include "quiche/quic/tools/connect_udp_tunnel.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/core/socket_factory.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/tools/quic_backend_response.h" #include "quiche/quic/tools/quic_name_lookup.h" #include "quiche/quic/tools/quic_simple_server_backend.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/masque/connect_udp_datagram_payload.h" #include "quiche/common/platform/api/quiche_googleurl.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_mem_slice.h" #include "quiche/common/platform/api/quiche_url_utils.h" #include "quiche/common/structured_headers.h" namespace quic { namespace structured_headers = quiche::structured_headers; namespace { constexpr size_t kReadSize = 4 * 1024; std::optional<QuicServerId> ValidateAndParseTargetFromPath( absl::string_view path) { std::string canonicalized_path_str; url::StdStringCanonOutput canon_output(&canonicalized_path_str); url::Component path_component; url::CanonicalizePath(path.data(), url::Component(0, path.size()), &canon_output, &path_component); if (!path_component.is_nonempty()) { QUICHE_DVLOG(1) << "CONNECT-UDP request with non-canonicalizable path: " << path; return std::nullopt; } canon_output.Complete(); absl::string_view canonicalized_path = absl::string_view(canonicalized_path_str) .substr(path_component.begin, path_component.len); std::vector<absl::string_view> path_split = absl::StrSplit(canonicalized_path, '/'); if (path_split.size() != 7 || !path_split[0].empty() || path_split[1] != ".well-known" || path_split[2] != "masque" || path_split[3] != "udp" || path_split[4].empty() || path_split[5].empty() || !path_split[6].empty()) { QUICHE_DVLOG(1) << "CONNECT-UDP request with bad path: " << canonicalized_path; return std::nullopt; } std::optional<std::string> decoded_host = quiche::AsciiUrlDecode(path_split[4]); if (!decoded_host.has_value()) { QUICHE_DVLOG(1) << "CONNECT-UDP request with undecodable host: " << path_split[4]; return std::nullopt; } QUICHE_DCHECK(!decoded_host->empty()); std::optional<std::string> decoded_port = quiche::AsciiUrlDecode(path_split[5]); if (!decoded_port.has_value()) { QUICHE_DVLOG(1) << "CONNECT-UDP request with undecodable port: " << path_split[5]; return std::nullopt; } QUICHE_DCHECK(!decoded_port->empty()); int parsed_port_number = url::ParsePort( decoded_port->data(), url::Component(0, decoded_port->size())); if (parsed_port_number <= 0) { QUICHE_DVLOG(1) << "CONNECT-UDP request with bad port: " << *decoded_port; return std::nullopt; } QUICHE_DCHECK_LE(parsed_port_number, std::numeric_limits<uint16_t>::max()); return QuicServerId(*decoded_host, static_cast<uint16_t>(parsed_port_number)); } std::optional<QuicServerId> ValidateHeadersAndGetTarget( const quiche::HttpHeaderBlock& request_headers) { QUICHE_DCHECK(request_headers.contains(":method")); QUICHE_DCHECK(request_headers.find(":method")->second == "CONNECT"); QUICHE_DCHECK(request_headers.contains(":protocol")); QUICHE_DCHECK(request_headers.find(":protocol")->second == "connect-udp"); auto authority_it = request_headers.find(":authority"); if (authority_it == request_headers.end() || authority_it->second.empty()) { QUICHE_DVLOG(1) << "CONNECT-UDP request missing authority"; return std::nullopt; } auto scheme_it = request_headers.find(":scheme"); if (scheme_it == request_headers.end() || scheme_it->second.empty()) { QUICHE_DVLOG(1) << "CONNECT-UDP request missing scheme"; return std::nullopt; } else if (scheme_it->second != "https") { QUICHE_DVLOG(1) << "CONNECT-UDP request contains unexpected scheme: " << scheme_it->second; return std::nullopt; } auto path_it = request_headers.find(":path"); if (path_it == request_headers.end() || path_it->second.empty()) { QUICHE_DVLOG(1) << "CONNECT-UDP request missing path"; return std::nullopt; } std::optional<QuicServerId> target_server_id = ValidateAndParseTargetFromPath(path_it->second); return target_server_id; } bool ValidateTarget( const QuicServerId& target, const absl::flat_hash_set<QuicServerId>& acceptable_targets) { if (acceptable_targets.contains(target)) { return true; } QUICHE_DVLOG(1) << "CONNECT-UDP request target is not an acceptable allow-listed target: " << target.ToHostPortString(); return false; } } ConnectUdpTunnel::ConnectUdpTunnel( QuicSimpleServerBackend::RequestHandler* client_stream_request_handler, SocketFactory* socket_factory, std::string server_label, absl::flat_hash_set<QuicServerId> acceptable_targets) : acceptable_targets_(std::move(acceptable_targets)), socket_factory_(socket_factory), server_label_(std::move(server_label)), client_stream_request_handler_(client_stream_request_handler) { QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DCHECK(socket_factory_); QUICHE_DCHECK(!server_label_.empty()); } ConnectUdpTunnel::~ConnectUdpTunnel() { QUICHE_DCHECK(!IsTunnelOpenToTarget()); QUICHE_DCHECK(!receive_started_); QUICHE_DCHECK(!datagram_visitor_registered_); } void ConnectUdpTunnel::OpenTunnel( const quiche::HttpHeaderBlock& request_headers) { QUICHE_DCHECK(!IsTunnelOpenToTarget()); std::optional<QuicServerId> target = ValidateHeadersAndGetTarget(request_headers); if (!target.has_value()) { TerminateClientStream( "invalid request headers", QuicResetStreamError::FromIetf(QuicHttp3ErrorCode::MESSAGE_ERROR)); return; } if (!ValidateTarget(*target, acceptable_targets_)) { SendErrorResponse("403", "destination_ip_prohibited", "disallowed proxy target"); return; } QuicSocketAddress address = tools::LookupAddress(AF_UNSPEC, *target); if (!address.IsInitialized()) { SendErrorResponse("500", "dns_error", "host resolution error"); return; } target_socket_ = socket_factory_->CreateConnectingUdpClientSocket( address, 0, 0, this); QUICHE_DCHECK(target_socket_); absl::Status connect_result = target_socket_->ConnectBlocking(); if (!connect_result.ok()) { SendErrorResponse( "502", "destination_ip_unroutable", absl::StrCat("UDP socket error: ", connect_result.ToString())); return; } QUICHE_DVLOG(1) << "CONNECT-UDP tunnel opened from stream " << client_stream_request_handler_->stream_id() << " to " << target->ToHostPortString(); client_stream_request_handler_->GetStream()->RegisterHttp3DatagramVisitor( this); datagram_visitor_registered_ = true; SendConnectResponse(); BeginAsyncReadFromTarget(); } bool ConnectUdpTunnel::IsTunnelOpenToTarget() const { return !!target_socket_; } void ConnectUdpTunnel::OnClientStreamClose() { QUICHE_CHECK(client_stream_request_handler_); QUICHE_DVLOG(1) << "CONNECT-UDP stream " << client_stream_request_handler_->stream_id() << " closed"; if (datagram_visitor_registered_) { client_stream_request_handler_->GetStream() ->UnregisterHttp3DatagramVisitor(); datagram_visitor_registered_ = false; } client_stream_request_handler_ = nullptr; if (IsTunnelOpenToTarget()) { target_socket_->Disconnect(); } target_socket_.reset(); } void ConnectUdpTunnel::ConnectComplete(absl::Status ) { QUICHE_NOTREACHED(); } void ConnectUdpTunnel::ReceiveComplete( absl::StatusOr<quiche::QuicheMemSlice> data) { QUICHE_DCHECK(IsTunnelOpenToTarget()); QUICHE_DCHECK(receive_started_); receive_started_ = false; if (!data.ok()) { if (client_stream_request_handler_) { QUICHE_LOG(WARNING) << "Error receiving CONNECT-UDP data from target: " << data.status(); } else { QUICHE_DVLOG(1) << "Error receiving CONNECT-UDP data from target after " "stream already closed."; } return; } QUICHE_DCHECK(client_stream_request_handler_); quiche::ConnectUdpDatagramUdpPacketPayload payload(data->AsStringView()); client_stream_request_handler_->GetStream()->SendHttp3Datagram( payload.Serialize()); BeginAsyncReadFromTarget(); } void ConnectUdpTunnel::SendComplete(absl::Status ) { QUICHE_NOTREACHED(); } void ConnectUdpTunnel::OnHttp3Datagram(QuicStreamId stream_id, absl::string_view payload) { QUICHE_DCHECK(IsTunnelOpenToTarget()); QUICHE_DCHECK_EQ(stream_id, client_stream_request_handler_->stream_id()); QUICHE_DCHECK(!payload.empty()); std::unique_ptr<quiche::ConnectUdpDatagramPayload> parsed_payload = quiche::ConnectUdpDatagramPayload::Parse(payload); if (!parsed_payload) { QUICHE_DVLOG(1) << "Ignoring HTTP Datagram payload, due to inability to " "parse as CONNECT-UDP payload."; return; } switch (parsed_payload->GetType()) { case quiche::ConnectUdpDatagramPayload::Type::kUdpPacket: SendUdpPacketToTarget(parsed_payload->GetUdpProxyingPayload()); break; case quiche::ConnectUdpDatagramPayload::Type::kUnknown: QUICHE_DVLOG(1) << "Ignoring HTTP Datagram payload with unrecognized context ID."; } } void ConnectUdpTunnel::BeginAsyncReadFromTarget() { QUICHE_DCHECK(IsTunnelOpenToTarget()); QUICHE_DCHECK(client_stream_request_handler_); QUICHE_DCHECK(!receive_started_); receive_started_ = true; target_socket_->ReceiveAsync(kReadSize); } void ConnectUdpTunnel::SendUdpPacketToTarget(absl::string_view packet) { absl::Status send_result = target_socket_->SendBlocking(std::string(packet)); if (!send_result.ok()) { QUICHE_LOG(WARNING) << "Error sending CONNECT-UDP datagram to target: " << send_result; } } void ConnectUdpTunnel::SendConnectResponse() { QUICHE_DCHECK(IsTunnelOpenToTarget()); QUICHE_DCHECK(client_stream_request_handler_); quiche::HttpHeaderBlock response_headers; response_headers[":status"] = "200"; std::optional<std::string> capsule_protocol_value = structured_headers::SerializeItem(structured_headers::Item(true)); QUICHE_CHECK(capsule_protocol_value.has_value()); response_headers["Capsule-Protocol"] = *capsule_protocol_value; QuicBackendResponse response; response.set_headers(std::move(response_headers)); response.set_response_type(QuicBackendResponse::INCOMPLETE_RESPONSE); client_stream_request_handler_->OnResponseBackendComplete(&response); } void ConnectUdpTunnel::SendErrorResponse(absl::string_view status, absl::string_view proxy_status_error, absl::string_view error_details) { QUICHE_DCHECK(!status.empty()); QUICHE_DCHECK(!proxy_status_error.empty()); QUICHE_DCHECK(!error_details.empty()); QUICHE_DCHECK(client_stream_request_handler_); #ifndef NDEBUG int status_num = 0; bool is_num = absl::SimpleAtoi(status, &status_num); QUICHE_DCHECK(is_num); QUICHE_DCHECK_GE(status_num, 100); QUICHE_DCHECK_LT(status_num, 600); QUICHE_DCHECK(status_num < 200 || status_num >= 300); #endif quiche::HttpHeaderBlock headers; headers[":status"] = status; structured_headers::Item proxy_status_item(server_label_); structured_headers::Item proxy_status_error_item( std::string{proxy_status_error}); structured_headers::Item proxy_status_details_item( std::string{error_details}); structured_headers::ParameterizedMember proxy_status_member( std::move(proxy_status_item), {{"error", std::move(proxy_status_error_item)}, {"details", std::move(proxy_status_details_item)}}); std::optional<std::string> proxy_status_value = structured_headers::SerializeList({proxy_status_member}); QUICHE_CHECK(proxy_status_value.has_value()); headers["Proxy-Status"] = *proxy_status_value; QuicBackendResponse response; response.set_headers(std::move(headers)); client_stream_request_handler_->OnResponseBackendComplete(&response); } void ConnectUdpTunnel::TerminateClientStream( absl::string_view error_description, QuicResetStreamError error_code) { QUICHE_DCHECK(client_stream_request_handler_); std::string error_description_str = error_description.empty() ? "" : absl::StrCat(" due to ", error_description); QUICHE_DVLOG(1) << "Terminating CONNECT stream " << client_stream_request_handler_->stream_id() << " with error code " << error_code.ietf_application_code() << error_description_str; client_stream_request_handler_->TerminateStreamWithError(error_code); } }
#include "quiche/quic/tools/connect_udp_tunnel.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/connecting_client_socket.h" #include "quiche/quic/core/http/quic_spdy_stream.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/socket_factory.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/tools/quic_simple_server_backend.h" #include "quiche/common/masque/connect_udp_datagram_payload.h" #include "quiche/common/platform/api/quiche_googleurl.h" #include "quiche/common/platform/api/quiche_mem_slice.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/platform/api/quiche_url_utils.h" namespace quic::test { namespace { using ::testing::_; using ::testing::AnyOf; using ::testing::Eq; using ::testing::Ge; using ::testing::Gt; using ::testing::HasSubstr; using ::testing::InvokeWithoutArgs; using ::testing::IsEmpty; using ::testing::Matcher; using ::testing::NiceMock; using ::testing::Pair; using ::testing::Property; using ::testing::Return; using ::testing::StrictMock; using ::testing::UnorderedElementsAre; constexpr QuicStreamId kStreamId = 100; class MockStream : public QuicSpdyStream { public: explicit MockStream(QuicSpdySession* spdy_session) : QuicSpdyStream(kStreamId, spdy_session, BIDIRECTIONAL) {} void OnBodyAvailable() override {} MOCK_METHOD(MessageStatus, SendHttp3Datagram, (absl::string_view data), (override)); }; class MockRequestHandler : public QuicSimpleServerBackend::RequestHandler { public: QuicConnectionId connection_id() const override { return TestConnectionId(41212); } QuicStreamId stream_id() const override { return kStreamId; } std::string peer_host() const override { return "127.0.0.1"; } MOCK_METHOD(QuicSpdyStream*, GetStream, (), (override)); MOCK_METHOD(void, OnResponseBackendComplete, (const QuicBackendResponse* response), (override)); MOCK_METHOD(void, SendStreamData, (absl::string_view data, bool close_stream), (override)); MOCK_METHOD(void, TerminateStreamWithError, (QuicResetStreamError error), (override)); }; class MockSocketFactory : public SocketFactory { public: MOCK_METHOD(std::unique_ptr<ConnectingClientSocket>, CreateTcpClientSocket, (const QuicSocketAddress& peer_address, QuicByteCount receive_buffer_size, QuicByteCount send_buffer_size, ConnectingClientSocket::AsyncVisitor* async_visitor), (override)); MOCK_METHOD(std::unique_ptr<ConnectingClientSocket>, CreateConnectingUdpClientSocket, (const QuicSocketAddress& peer_address, QuicByteCount receive_buffer_size, QuicByteCount send_buffer_size, ConnectingClientSocket::AsyncVisitor* async_visitor), (override)); }; class MockSocket : public ConnectingClientSocket { public: MOCK_METHOD(absl::Status, ConnectBlocking, (), (override)); MOCK_METHOD(void, ConnectAsync, (), (override)); MOCK_METHOD(void, Disconnect, (), (override)); MOCK_METHOD(absl::StatusOr<QuicSocketAddress>, GetLocalAddress, (), (override)); MOCK_METHOD(absl::StatusOr<quiche::QuicheMemSlice>, ReceiveBlocking, (QuicByteCount max_size), (override)); MOCK_METHOD(void, ReceiveAsync, (QuicByteCount max_size), (override)); MOCK_METHOD(absl::Status, SendBlocking, (std::string data), (override)); MOCK_METHOD(absl::Status, SendBlocking, (quiche::QuicheMemSlice data), (override)); MOCK_METHOD(void, SendAsync, (std::string data), (override)); MOCK_METHOD(void, SendAsync, (quiche::QuicheMemSlice data), (override)); }; class ConnectUdpTunnelTest : public quiche::test::QuicheTest { public: void SetUp() override { #if defined(_WIN32) WSADATA wsa_data; const WORD version_required = MAKEWORD(2, 2); ASSERT_EQ(WSAStartup(version_required, &wsa_data), 0); #endif auto socket = std::make_unique<StrictMock<MockSocket>>(); socket_ = socket.get(); ON_CALL(socket_factory_, CreateConnectingUdpClientSocket( AnyOf(QuicSocketAddress(TestLoopback4(), kAcceptablePort), QuicSocketAddress(TestLoopback6(), kAcceptablePort)), _, _, &tunnel_)) .WillByDefault(Return(ByMove(std::move(socket)))); EXPECT_CALL(request_handler_, GetStream()).WillRepeatedly(Return(&stream_)); } protected: static constexpr absl::string_view kAcceptableTarget = "localhost"; static constexpr uint16_t kAcceptablePort = 977; NiceMock<MockQuicConnectionHelper> connection_helper_; NiceMock<MockAlarmFactory> alarm_factory_; NiceMock<MockQuicSpdySession> session_{new NiceMock<MockQuicConnection>( &connection_helper_, &alarm_factory_, Perspective::IS_SERVER)}; StrictMock<MockStream> stream_{&session_}; StrictMock<MockRequestHandler> request_handler_; NiceMock<MockSocketFactory> socket_factory_; StrictMock<MockSocket>* socket_; ConnectUdpTunnel tunnel_{ &request_handler_, &socket_factory_, "server_label", {{std::string(kAcceptableTarget), kAcceptablePort}, {TestLoopback4().ToString(), kAcceptablePort}, {absl::StrCat("[", TestLoopback6().ToString(), "]"), kAcceptablePort}}}; }; TEST_F(ConnectUdpTunnelTest, OpenTunnel) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL( request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, UnorderedElementsAre(Pair(":status", "200"), Pair("Capsule-Protocol", "?1"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = absl::StrCat( "/.well-known/masque/udp/", kAcceptableTarget, "/", kAcceptablePort, "/"); tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsTunnelOpenToTarget()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsTunnelOpenToTarget()); } TEST_F(ConnectUdpTunnelTest, OpenTunnelToIpv4LiteralTarget) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL( request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, UnorderedElementsAre(Pair(":status", "200"), Pair("Capsule-Protocol", "?1"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = absl::StrCat("/.well-known/masque/udp/", TestLoopback4().ToString(), "/", kAcceptablePort, "/"); tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsTunnelOpenToTarget()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsTunnelOpenToTarget()); } TEST_F(ConnectUdpTunnelTest, OpenTunnelToIpv6LiteralTarget) { EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL( request_handler_, OnResponseBackendComplete( AllOf(Property(&QuicBackendResponse::response_type, QuicBackendResponse::INCOMPLETE_RESPONSE), Property(&QuicBackendResponse::headers, UnorderedElementsAre(Pair(":status", "200"), Pair("Capsule-Protocol", "?1"))), Property(&QuicBackendResponse::trailers, IsEmpty()), Property(&QuicBackendResponse::body, IsEmpty())))); std::string path; ASSERT_TRUE(quiche::ExpandURITemplate( "/.well-known/masque/udp/{target_host}/{target_port}/", {{"target_host", absl::StrCat("[", TestLoopback6().ToString(), "]")}, {"target_port", absl::StrCat(kAcceptablePort)}}, &path)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = path; tunnel_.OpenTunnel(request_headers); EXPECT_TRUE(tunnel_.IsTunnelOpenToTarget()); tunnel_.OnClientStreamClose(); EXPECT_FALSE(tunnel_.IsTunnelOpenToTarget()); } TEST_F(ConnectUdpTunnelTest, OpenTunnelWithMalformedRequest) { EXPECT_CALL(request_handler_, TerminateStreamWithError(Property( &QuicResetStreamError::ietf_application_code, static_cast<uint64_t>(QuicHttp3ErrorCode::MESSAGE_ERROR)))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; tunnel_.OpenTunnel(request_headers); EXPECT_FALSE(tunnel_.IsTunnelOpenToTarget()); tunnel_.OnClientStreamClose(); } TEST_F(ConnectUdpTunnelTest, OpenTunnelWithUnacceptableTarget) { EXPECT_CALL(request_handler_, OnResponseBackendComplete(AllOf( Property(&QuicBackendResponse::response_type, QuicBackendResponse::REGULAR_RESPONSE), Property(&QuicBackendResponse::headers, UnorderedElementsAre( Pair(":status", "403"), Pair("Proxy-Status", HasSubstr("destination_ip_prohibited")))), Property(&QuicBackendResponse::trailers, IsEmpty())))); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = "/.well-known/masque/udp/unacceptable.test/100/"; tunnel_.OpenTunnel(request_headers); EXPECT_FALSE(tunnel_.IsTunnelOpenToTarget()); tunnel_.OnClientStreamClose(); } TEST_F(ConnectUdpTunnelTest, ReceiveFromTarget) { static constexpr absl::string_view kData = "\x11\x22\x33\x44\x55"; EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Ge(kData.size()))).Times(2); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); EXPECT_CALL( stream_, SendHttp3Datagram( quiche::ConnectUdpDatagramUdpPacketPayload(kData).Serialize())) .WillOnce(Return(MESSAGE_STATUS_SUCCESS)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = absl::StrCat( "/.well-known/masque/udp/", kAcceptableTarget, "/", kAcceptablePort, "/"); tunnel_.OpenTunnel(request_headers); tunnel_.ReceiveComplete(MemSliceFromString(kData)); tunnel_.OnClientStreamClose(); } TEST_F(ConnectUdpTunnelTest, SendToTarget) { static constexpr absl::string_view kData = "\x11\x22\x33\x44\x55"; EXPECT_CALL(*socket_, ConnectBlocking()).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, ReceiveAsync(Gt(0))); EXPECT_CALL(*socket_, SendBlocking(Matcher<std::string>(Eq(kData)))) .WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*socket_, Disconnect()).WillOnce(InvokeWithoutArgs([this]() { tunnel_.ReceiveComplete(absl::CancelledError()); })); EXPECT_CALL(request_handler_, OnResponseBackendComplete(_)); quiche::HttpHeaderBlock request_headers; request_headers[":method"] = "CONNECT"; request_headers[":protocol"] = "connect-udp"; request_headers[":authority"] = "proxy.test"; request_headers[":scheme"] = "https"; request_headers[":path"] = absl::StrCat( "/.well-known/masque/udp/", kAcceptableTarget, "/", kAcceptablePort, "/"); tunnel_.OpenTunnel(request_headers); tunnel_.OnHttp3Datagram( kStreamId, quiche::ConnectUdpDatagramUdpPacketPayload(kData).Serialize()); tunnel_.OnClientStreamClose(); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/tools/connect_udp_tunnel.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/tools/connect_udp_tunnel_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
79d42034-7362-4f03-af6b-9524fcede270
cpp
tensorflow/tensorflow
evaluation_delegate_provider
tensorflow/lite/tools/evaluation/evaluation_delegate_provider.cc
tensorflow/lite/tools/evaluation/evaluation_delegate_provider_test.cc
#include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <string> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { constexpr char kNnapiDelegate[] = "nnapi"; constexpr char kGpuDelegate[] = "gpu"; constexpr char kHexagonDelegate[] = "hexagon"; constexpr char kXnnpackDelegate[] = "xnnpack"; constexpr char kCoremlDelegate[] = "coreml"; } TfliteInferenceParams::Delegate ParseStringToDelegateType( const std::string& val) { if (val == kNnapiDelegate) return TfliteInferenceParams::NNAPI; if (val == kGpuDelegate) return TfliteInferenceParams::GPU; if (val == kHexagonDelegate) return TfliteInferenceParams::HEXAGON; if (val == kXnnpackDelegate) return TfliteInferenceParams::XNNPACK; if (val == kCoremlDelegate) return TfliteInferenceParams::COREML; return TfliteInferenceParams::NONE; } TfLiteDelegatePtr CreateTfLiteDelegate(const TfliteInferenceParams& params, std::string* error_msg) { const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: { auto p = CreateNNAPIDelegate(); if (!p && error_msg) *error_msg = "NNAPI not supported"; return p; } case TfliteInferenceParams::GPU: { auto p = CreateGPUDelegate(); if (!p && error_msg) *error_msg = "GPU delegate not supported."; return p; } case TfliteInferenceParams::HEXAGON: { auto p = CreateHexagonDelegate("", false); if (!p && error_msg) { *error_msg = "Hexagon delegate is not supported on the platform or required " "libraries are missing."; } return p; } case TfliteInferenceParams::XNNPACK: { auto p = CreateXNNPACKDelegate(params.num_threads(), false); if (!p && error_msg) *error_msg = "XNNPACK delegate not supported."; return p; } case TfliteInferenceParams::COREML: { auto p = CreateCoreMlDelegate(); if (!p && error_msg) *error_msg = "CoreML delegate not supported."; return p; } case TfliteInferenceParams::NONE: return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); default: if (error_msg) { *error_msg = "Creation of delegate type: " + TfliteInferenceParams::Delegate_Name(type) + " not supported yet."; } return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } } DelegateProviders::DelegateProviders() : delegate_list_util_(&params_), delegates_map_([=]() -> std::unordered_map<std::string, int> { std::unordered_map<std::string, int> delegates_map; const auto& providers = delegate_list_util_.providers(); for (int i = 0; i < providers.size(); ++i) { delegates_map[providers[i]->GetName()] = i; } return delegates_map; }()) { delegate_list_util_.AddAllDelegateParams(); } std::vector<Flag> DelegateProviders::GetFlags() { std::vector<Flag> flags; delegate_list_util_.AppendCmdlineFlags(flags); return flags; } bool DelegateProviders::InitFromCmdlineArgs(int* argc, const char** argv) { std::vector<Flag> flags = GetFlags(); bool parse_result = Flags::Parse(argc, argv, flags); if (!parse_result || params_.Get<bool>("help")) { std::string usage = Flags::Usage(argv[0], flags); TFLITE_LOG(ERROR) << usage; parse_result = false; } return parse_result; } TfLiteDelegatePtr DelegateProviders::CreateDelegate( const std::string& name) const { const auto it = delegates_map_.find(name); if (it == delegates_map_.end()) { return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } const auto& providers = delegate_list_util_.providers(); return providers[it->second]->CreateTfLiteDelegate(params_); } tools::ToolParams DelegateProviders::GetAllParams( const TfliteInferenceParams& params) const { tools::ToolParams tool_params; tool_params.Merge(params_, false); if (params.has_num_threads()) { tool_params.Set<int32_t>("num_threads", params.num_threads()); } const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: if (tool_params.HasParam("use_nnapi")) { tool_params.Set<bool>("use_nnapi", true); } break; case TfliteInferenceParams::GPU: if (tool_params.HasParam("use_gpu")) { tool_params.Set<bool>("use_gpu", true); } break; case TfliteInferenceParams::HEXAGON: if (tool_params.HasParam("use_hexagon")) { tool_params.Set<bool>("use_hexagon", true); } break; case TfliteInferenceParams::XNNPACK: if (tool_params.HasParam("use_xnnpack")) { tool_params.Set<bool>("use_xnnpack", true); } if (tool_params.HasParam("xnnpack_force_fp16")) { tool_params.Set<bool>("xnnpack_force_fp16", true); } break; case TfliteInferenceParams::COREML: if (tool_params.HasParam("use_coreml")) { tool_params.Set<bool>("use_coreml", true); } break; default: break; } return tool_params; } } }
#include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { TEST(EvaluationDelegateProviderTest, ParseStringToDelegateType) { EXPECT_EQ(TfliteInferenceParams::NNAPI, ParseStringToDelegateType("nnapi")); EXPECT_EQ(TfliteInferenceParams::GPU, ParseStringToDelegateType("gpu")); EXPECT_EQ(TfliteInferenceParams::HEXAGON, ParseStringToDelegateType("hexagon")); EXPECT_EQ(TfliteInferenceParams::XNNPACK, ParseStringToDelegateType("xnnpack")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Gpu")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Testing")); } TEST(EvaluationDelegateProviderTest, CreateTfLiteDelegate) { TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); EXPECT_TRUE(!CreateTfLiteDelegate(params)); } TEST(EvaluationDelegateProviderTest, DelegateProvidersParams) { DelegateProviders providers; const auto& params = providers.GetAllParams(); EXPECT_TRUE(params.HasParam("use_nnapi")); EXPECT_TRUE(params.HasParam("use_gpu")); int argc = 3; const char* argv[] = {"program_name", "--use_gpu=true", "--other_undefined_flag=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); EXPECT_TRUE(params.Get<bool>("use_gpu")); EXPECT_EQ(2, argc); EXPECT_EQ("--other_undefined_flag=1", argv[1]); } TEST(EvaluationDelegateProviderTest, GetAllParamsWithTfliteInferenceParams) { DelegateProviders providers; int argc = 2; const char* argv[] = {"program_name", "--num_threads=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); const auto& default_params = providers.GetAllParams(); EXPECT_EQ(1, default_params.Get<int>("num_threads")); TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); params.set_num_threads(4); tools::ToolParams tool_params = providers.GetAllParams(params); EXPECT_EQ(4, tool_params.Get<int>("num_threads")); EXPECT_EQ(1, argc); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/evaluation_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/evaluation_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9133bc2a-1e12-41ac-bfc8-f5cd94adb14d
cpp
google/arolla
annotation_expr_operators
arolla/expr/annotation_expr_operators.cc
arolla/expr/annotation_expr_operators_test.cc
#include "arolla/expr/annotation_expr_operators.h" #include <memory> #include <string> #include <utility> #include "absl/base/no_destructor.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/fingerprint.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { ExprOperatorPtr QTypeAnnotation::Make() { static const absl::NoDestructor<ExprOperatorPtr> result( std::make_shared<QTypeAnnotation>("")); return *result; } QTypeAnnotation::QTypeAnnotation(std::string aux_policy) : ExprOperatorWithFixedSignature( "annotation.qtype", ExprOperatorSignature( {{"expr"}, {"qtype"}}, std::move(aux_policy)), "QType annotation.", FingerprintHasher("::arolla::expr::QTypeAnnotation").Finish()) {} absl::StatusOr<ExprAttributes> QTypeAnnotation::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); if (!inputs[1].qtype()) { return inputs[0]; } if (inputs[1].qtype() != GetQTypeQType()) { return absl::InvalidArgumentError(absl::StrFormat( "expected QTYPE, got qtype: %s", inputs[1].qtype()->name())); } if (!inputs[1].qvalue()) { return absl::InvalidArgumentError("`qtype` must be a literal"); } const QTypePtr output_qtype = inputs[1].qvalue()->UnsafeAs<QTypePtr>(); if (inputs[0].qtype() && inputs[0].qtype() != output_qtype) { return absl::InvalidArgumentError( absl::StrFormat("inconsistent annotation.qtype(expr: %s, qtype=%s)", inputs[0].qtype()->name(), output_qtype->name())); } return ExprAttributes(output_qtype, inputs[0].qvalue()); } ExprOperatorPtr NameAnnotation::Make() { static const absl::NoDestructor result(std::make_shared<NameAnnotation>("")); return *result; } NameAnnotation::NameAnnotation(std::string aux_policy) : ExprOperatorWithFixedSignature( "annotation.name", ExprOperatorSignature( {{"expr"}, {"name"}}, std::move(aux_policy)), "Name annotation.", FingerprintHasher("::arolla::expr::NameAnnotation").Finish()) {} absl::StatusOr<ExprAttributes> NameAnnotation::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); if (inputs[1].qtype() && inputs[1].qtype() != GetQType<Text>()) { return absl::InvalidArgumentError(absl::StrFormat( "expected a TEXT literal, got name: %s", inputs[1].qtype()->name())); } if (!inputs[1].qvalue()) { return absl::InvalidArgumentError("`name` must be a TEXT literal"); } return inputs[0]; } ExprOperatorPtr ExportAnnotation::Make() { static const absl::NoDestructor result(std::make_shared<ExportAnnotation>()); return *result; } ExportAnnotation::ExportAnnotation() : ExprOperatorWithFixedSignature( "annotation.export", ExprOperatorSignature{{"expr"}, {"export_tag"}}, "Side-channel output annotation.", FingerprintHasher("::arolla::expr::ExportAnnotation").Finish()) {} absl::StatusOr<ExprAttributes> ExportAnnotation::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); if (inputs[1].qtype() && inputs[1].qtype() != GetQType<Text>()) { return absl::InvalidArgumentError(absl::StrFormat( "expected TEXT, got export_tag: %s", inputs[1].qtype()->name())); } if (!inputs[1].qvalue()) { return absl::InvalidArgumentError("`export_tag` must be a TEXT literal"); } if (inputs[1].qvalue()->UnsafeAs<Text>().view().empty()) { return absl::InvalidArgumentError("`export_tag` must be non-empty"); } return inputs[0]; } ExprOperatorPtr ExportValueAnnotation::Make() { static const absl::NoDestructor result( std::make_shared<ExportValueAnnotation>()); return *result; } ExportValueAnnotation::ExportValueAnnotation() : ExprOperatorWithFixedSignature( "annotation.export_value", ExprOperatorSignature{{"expr"}, {"export_tag"}, {"value"}}, "Side-channel output annotation.", FingerprintHasher("::arolla::expr::ExportValueAnnotation").Finish()) { } absl::StatusOr<ExprAttributes> ExportValueAnnotation::InferAttributes( absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateOpInputsCount(inputs)); if (inputs[1].qtype() && inputs[1].qtype() != GetQType<Text>()) { return absl::InvalidArgumentError(absl::StrFormat( "expected TEXT, got export_tag: %s", inputs[1].qtype()->name())); } if (!inputs[1].qvalue()) { return absl::InvalidArgumentError("`export_tag` must be a TEXT literal"); } if (inputs[1].qvalue()->UnsafeAs<Text>().view().empty()) { return absl::InvalidArgumentError("`export_tag` must be non-empty"); } return inputs[0]; } }
#include "arolla/expr/annotation_expr_operators.h" #include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/text.h" namespace arolla::expr { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::EqualsAttr; TEST(AnnotationExprOperatorsTest, QTypeAnnotation) { auto annotation_qtype = QTypeAnnotation::Make(); EXPECT_THAT(annotation_qtype->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an operator " "node: expected 2 but got 0")); EXPECT_THAT( annotation_qtype->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "expected QTYPE, got qtype: INT64")); EXPECT_THAT( annotation_qtype->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<QTypePtr>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`qtype` must be a literal")); EXPECT_THAT(annotation_qtype->InferAttributes( {ExprAttributes{}, ExprAttributes{TypedValue::FromValue(GetQType<int64_t>())}}), IsOkAndHolds(EqualsAttr(GetQType<int64_t>()))); EXPECT_THAT(annotation_qtype->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(GetQType<int64_t>())}}), IsOkAndHolds(EqualsAttr(GetQType<int64_t>()))); EXPECT_THAT( annotation_qtype->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(GetQType<Text>())}}), StatusIs(absl::StatusCode::kInvalidArgument, "inconsistent annotation.qtype(expr: INT64, qtype=TEXT)")); } TEST(AnnotationExprOperatorsTest, NameAnnotation) { auto annotation_name = NameAnnotation::Make(); EXPECT_THAT(annotation_name->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an operator " "node: expected 2 but got 0")); EXPECT_THAT( annotation_name->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "expected a TEXT literal, got name: INT64")); EXPECT_THAT(annotation_name->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{}}), StatusIs(absl::StatusCode::kInvalidArgument, "`name` must be a TEXT literal")); EXPECT_THAT( annotation_name->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<Text>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`name` must be a TEXT literal")); EXPECT_THAT(annotation_name->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(Text("foo"))}}), IsOkAndHolds(EqualsAttr(GetQType<int64_t>()))); } TEST(AnnotationExprOperatorsTest, ExportAnnotation) { auto annotation_export = ExportAnnotation::Make(); EXPECT_THAT(annotation_export->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an operator " "node: expected 2 but got 0")); EXPECT_THAT( annotation_export->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "expected TEXT, got export_tag: INT64")); EXPECT_THAT( annotation_export->InferAttributes({ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<Text>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be a TEXT literal")); EXPECT_THAT(annotation_export->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be a TEXT literal")); EXPECT_THAT(annotation_export->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(Text(""))}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be non-empty")); EXPECT_THAT(annotation_export->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(Text("foo"))}}), IsOkAndHolds(EqualsAttr(GetQType<int64_t>()))); } TEST(AnnotationExprOperatorsTest, ExportValueAnnotation) { auto annotation_export_value = ExportValueAnnotation::Make(); EXPECT_THAT(annotation_export_value->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an operator " "node: expected 3 but got 0")); EXPECT_THAT(annotation_export_value->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "expected TEXT, got export_tag: INT64")); EXPECT_THAT(annotation_export_value->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be a TEXT literal")); EXPECT_THAT(annotation_export_value->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{GetQType<Text>()}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be a TEXT literal")); EXPECT_THAT(annotation_export_value->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(Text(""))}, ExprAttributes{GetQType<int64_t>()}}), StatusIs(absl::StatusCode::kInvalidArgument, "`export_tag` must be non-empty")); EXPECT_THAT(annotation_export_value->InferAttributes( {ExprAttributes{GetQType<int64_t>()}, ExprAttributes{TypedValue::FromValue(Text("foo"))}, ExprAttributes{GetQType<int64_t>()}}), IsOkAndHolds(EqualsAttr(GetQType<int64_t>()))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/annotation_expr_operators.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/annotation_expr_operators_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
9660c787-ae03-4bd7-9c11-73f07e914f24
cpp
tensorflow/tensorflow
unbounded_work_queue
third_party/xla/third_party/tsl/tsl/platform/default/unbounded_work_queue.cc
third_party/xla/third_party/tsl/tsl/platform/unbounded_work_queue_test.cc
#include "tsl/platform/default/unbounded_work_queue.h" #include "absl/memory/memory.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numa.h" namespace tsl { UnboundedWorkQueue::UnboundedWorkQueue(Env* env, const string& thread_name, const ThreadOptions& thread_options) : env_(env), thread_name_(thread_name), thread_options_(thread_options) {} UnboundedWorkQueue::~UnboundedWorkQueue() { { mutex_lock l(work_queue_mu_); cancelled_ = true; work_queue_cv_.notify_all(); if (!work_queue_.empty()) { LOG(ERROR) << "UnboundedWorkQueue named \"" << thread_name_ << "\" was " << "deleted with pending work in its queue. This may indicate " << "a potential use-after-free bug."; } } { mutex_lock l(thread_pool_mu_); thread_pool_.clear(); } } void UnboundedWorkQueue::Schedule(WorkFunction fn) { mutex_lock l(work_queue_mu_); work_queue_.push_back(std::move(fn)); work_queue_cv_.notify_one(); if (work_queue_.size() > num_idle_threads_) { Thread* new_thread = env_->StartThread({}, thread_name_, [this]() { PooledThreadFunc(); }); mutex_lock l(thread_pool_mu_); thread_pool_.emplace_back(new_thread); } } void UnboundedWorkQueue::PooledThreadFunc() { if (thread_options_.numa_node != tsl::port::kNUMANoAffinity) { tsl::port::NUMASetThreadNodeAffinity(thread_options_.numa_node); } while (true) { WorkFunction fn; { mutex_lock l(work_queue_mu_); ++num_idle_threads_; while (!cancelled_ && work_queue_.empty()) { work_queue_cv_.wait(l); } if (cancelled_) { return; } fn = std::move(work_queue_.front()); work_queue_.pop_front(); --num_idle_threads_; } fn(); } } }
#include "tsl/platform/unbounded_work_queue.h" #include "absl/memory/memory.h" #include "tsl/platform/random.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { namespace { class UnboundedWorkQueueTest : public ::testing::Test { protected: UnboundedWorkQueueTest() : work_queue_( absl::make_unique<UnboundedWorkQueue>(Env::Default(), "test")) {} ~UnboundedWorkQueueTest() override = default; void RunMultipleCopiesOfClosure(const int num_closures, std::function<void()> fn) { for (int i = 0; i < num_closures; ++i) { work_queue_->Schedule([this, fn]() { fn(); mutex_lock l(mu_); ++closure_count_; cond_var_.notify_all(); }); } } void BlockUntilClosuresDone(const int num_closures) { mutex_lock l(mu_); while (closure_count_ < num_closures) { cond_var_.wait(l); } } void ResetQueue() { work_queue_.reset(); } int NumClosuresExecuted() { mutex_lock l(mu_); return closure_count_; } private: mutex mu_; int closure_count_ TF_GUARDED_BY(mu_) = 0; condition_variable cond_var_; std::unique_ptr<UnboundedWorkQueue> work_queue_; }; TEST_F(UnboundedWorkQueueTest, SingleClosure) { constexpr int num_closures = 1; RunMultipleCopiesOfClosure(num_closures, []() {}); BlockUntilClosuresDone(num_closures); } TEST_F(UnboundedWorkQueueTest, MultipleClosures) { constexpr int num_closures = 10; RunMultipleCopiesOfClosure(num_closures, []() {}); BlockUntilClosuresDone(num_closures); } TEST_F(UnboundedWorkQueueTest, MultipleClosuresSleepingRandomly) { constexpr int num_closures = 1000; RunMultipleCopiesOfClosure(num_closures, []() { Env::Default()->SleepForMicroseconds(random::New64() % 10); }); BlockUntilClosuresDone(num_closures); } TEST_F(UnboundedWorkQueueTest, NestedClosures) { constexpr int num_closures = 10; RunMultipleCopiesOfClosure(num_closures, [=]() { RunMultipleCopiesOfClosure(num_closures, []() {}); }); BlockUntilClosuresDone(num_closures * num_closures + num_closures); } TEST_F(UnboundedWorkQueueTest, RacyDestructor) { constexpr int num_closures = 100; RunMultipleCopiesOfClosure(num_closures, []() {}); ResetQueue(); EXPECT_LE(NumClosuresExecuted(), num_closures); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/default/unbounded_work_queue.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/unbounded_work_queue_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8113d2ce-c1e9-467e-9112-386cd6cca64a
cpp
google/quiche
quiche_intrusive_list
quiche/common/quiche_intrusive_list.h
quiche/common/quiche_intrusive_list_test.cc
#ifndef QUICHE_COMMON_QUICHE_INTRUSIVE_LIST_H_ #define QUICHE_COMMON_QUICHE_INTRUSIVE_LIST_H_ #include <stddef.h> #include <cstddef> #include <iterator> #include "quiche/common/platform/api/quiche_export.h" namespace quiche { template <typename T, typename ListID> class QuicheIntrusiveList; template <typename T, typename ListID = void> class QUICHE_EXPORT QuicheIntrusiveLink { protected: QuicheIntrusiveLink() : next_(nullptr), prev_(nullptr) {} #ifndef SWIG QuicheIntrusiveLink(const QuicheIntrusiveLink&) = delete; QuicheIntrusiveLink& operator=(const QuicheIntrusiveLink&) = delete; #endif private: friend class QuicheIntrusiveList<T, ListID>; T* cast_to_derived() { return static_cast<T*>(this); } const T* cast_to_derived() const { return static_cast<const T*>(this); } QuicheIntrusiveLink* next_; QuicheIntrusiveLink* prev_; }; template <typename T, typename ListID = void> class QUICHE_EXPORT QuicheIntrusiveList { template <typename QualifiedT, typename QualifiedLinkT> class iterator_impl; public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef QuicheIntrusiveLink<T, ListID> link_type; typedef iterator_impl<T, link_type> iterator; typedef iterator_impl<const T, const link_type> const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; QuicheIntrusiveList() { clear(); } #ifndef SWIG QuicheIntrusiveList(QuicheIntrusiveList&& src) noexcept { clear(); if (src.empty()) return; sentinel_link_.next_ = src.sentinel_link_.next_; sentinel_link_.prev_ = src.sentinel_link_.prev_; sentinel_link_.prev_->next_ = &sentinel_link_; sentinel_link_.next_->prev_ = &sentinel_link_; src.clear(); } #endif iterator begin() { return iterator(sentinel_link_.next_); } const_iterator begin() const { return const_iterator(sentinel_link_.next_); } iterator end() { return iterator(&sentinel_link_); } const_iterator end() const { return const_iterator(&sentinel_link_); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return (sentinel_link_.next_ == &sentinel_link_); } size_type size() const { return std::distance(begin(), end()); } size_type max_size() const { return size_type(-1); } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(--end()); } const_reference back() const { return *(--end()); } static iterator insert(iterator position, T* obj) { return insert_link(position.link(), obj); } void push_front(T* obj) { insert(begin(), obj); } void push_back(T* obj) { insert(end(), obj); } static iterator erase(T* obj) { link_type* obj_link = obj; obj_link->next_->prev_ = obj_link->prev_; obj_link->prev_->next_ = obj_link->next_; link_type* next_link = obj_link->next_; obj_link->next_ = nullptr; obj_link->prev_ = nullptr; return iterator(next_link); } static iterator erase(iterator position) { return erase(position.operator->()); } void pop_front() { erase(begin()); } void pop_back() { erase(--end()); } static bool is_linked(const T* obj) { return obj->link_type::next_ != nullptr; } void clear() { sentinel_link_.next_ = sentinel_link_.prev_ = &sentinel_link_; } void swap(QuicheIntrusiveList& x) { QuicheIntrusiveList tmp; tmp.splice(tmp.begin(), *this); this->splice(this->begin(), x); x.splice(x.begin(), tmp); } void splice(iterator pos, QuicheIntrusiveList& src) { splice(pos, src.begin(), src.end()); } void splice(iterator pos, iterator i) { splice(pos, i, std::next(i)); } void splice(iterator pos, iterator first, iterator last) { if (first == last) return; link_type* const last_prev = last.link()->prev_; first.link()->prev_->next_ = last.operator->(); last.link()->prev_ = first.link()->prev_; first.link()->prev_ = pos.link()->prev_; pos.link()->prev_->next_ = first.operator->(); last_prev->next_ = pos.operator->(); pos.link()->prev_ = last_prev; } private: static iterator insert_link(link_type* next_link, T* obj) { link_type* obj_link = obj; obj_link->next_ = next_link; link_type* const initial_next_prev = next_link->prev_; obj_link->prev_ = initial_next_prev; initial_next_prev->next_ = obj_link; next_link->prev_ = obj_link; return iterator(obj_link); } template <typename QualifiedT, typename QualifiedLinkT> class QUICHE_EXPORT iterator_impl { public: using iterator_category = std::bidirectional_iterator_tag; using value_type = QualifiedT; using difference_type = std::ptrdiff_t; using pointer = QualifiedT*; using reference = QualifiedT&; iterator_impl() = default; iterator_impl(QualifiedLinkT* link) : link_(link) {} iterator_impl(const iterator_impl& x) = default; iterator_impl& operator=(const iterator_impl& x) = default; template <typename U, typename V> iterator_impl(const iterator_impl<U, V>& x) : link_(x.link_) {} template <typename U, typename V> bool operator==(const iterator_impl<U, V>& x) const { return link_ == x.link_; } template <typename U, typename V> bool operator!=(const iterator_impl<U, V>& x) const { return link_ != x.link_; } reference operator*() const { return *operator->(); } pointer operator->() const { return link_->cast_to_derived(); } QualifiedLinkT* link() const { return link_; } #ifndef SWIG iterator_impl& operator++() { link_ = link_->next_; return *this; } iterator_impl operator++(int ) { iterator_impl tmp = *this; ++*this; return tmp; } iterator_impl& operator--() { link_ = link_->prev_; return *this; } iterator_impl operator--(int ) { iterator_impl tmp = *this; --*this; return tmp; } #endif private: template <typename U, typename V> friend class iterator_impl; QualifiedLinkT* link_ = nullptr; }; link_type sentinel_link_; QuicheIntrusiveList(const QuicheIntrusiveList&); void operator=(const QuicheIntrusiveList&); }; } #endif
#include "quiche/common/quiche_intrusive_list.h" #include <algorithm> #include <iterator> #include <list> #include <string> #include <utility> #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace test { struct ListId2 {}; struct TestItem : public QuicheIntrusiveLink<TestItem>, public QuicheIntrusiveLink<TestItem, ListId2> { int n; }; typedef QuicheIntrusiveList<TestItem> TestList; typedef std::list<TestItem *> CanonicalList; void swap(TestItem &a, TestItem &b) { using std::swap; swap(a.n, b.n); } class IntrusiveListTest : public quiche::test::QuicheTest { protected: void CheckLists() { CheckLists(l1, ll1); if (quiche::test::QuicheTest::HasFailure()) return; CheckLists(l2, ll2); } void CheckLists(const TestList &list_a, const CanonicalList &list_b) { ASSERT_EQ(list_a.size(), list_b.size()); TestList::const_iterator it_a = list_a.begin(); CanonicalList::const_iterator it_b = list_b.begin(); while (it_a != list_a.end()) { EXPECT_EQ(&*it_a++, *it_b++); } EXPECT_EQ(list_a.end(), it_a); EXPECT_EQ(list_b.end(), it_b); } void PrepareLists(int num_elems_1, int num_elems_2 = 0) { FillLists(&l1, &ll1, e, num_elems_1); FillLists(&l2, &ll2, e + num_elems_1, num_elems_2); } void FillLists(TestList *list_a, CanonicalList *list_b, TestItem *elems, int num_elems) { list_a->clear(); list_b->clear(); for (int i = 0; i < num_elems; ++i) { list_a->push_back(elems + i); list_b->push_back(elems + i); } CheckLists(*list_a, *list_b); } TestItem e[10]; TestList l1, l2; CanonicalList ll1, ll2; }; TEST(NewIntrusiveListTest, Basic) { TestList list1; EXPECT_EQ(sizeof(QuicheIntrusiveLink<TestItem>), sizeof(void *) * 2); for (int i = 0; i < 10; ++i) { TestItem *e = new TestItem; e->n = i; list1.push_front(e); } EXPECT_EQ(list1.size(), 10u); std::reverse(list1.begin(), list1.end()); EXPECT_EQ(list1.size(), 10u); const TestList &clist1 = list1; int i = 0; TestList::iterator iter = list1.begin(); for (; iter != list1.end(); ++iter, ++i) { EXPECT_EQ(iter->n, i); } EXPECT_EQ(iter, clist1.end()); EXPECT_NE(iter, clist1.begin()); i = 0; iter = list1.begin(); for (; iter != list1.end(); ++iter, ++i) { EXPECT_EQ(iter->n, i); } EXPECT_EQ(iter, clist1.end()); EXPECT_NE(iter, clist1.begin()); EXPECT_EQ(list1.front().n, 0); EXPECT_EQ(list1.back().n, 9); TestList list2; list2.swap(list1); EXPECT_EQ(list1.size(), 0u); EXPECT_EQ(list2.size(), 10u); const TestList &clist2 = list2; TestList::reverse_iterator riter = list2.rbegin(); i = 9; for (; riter != list2.rend(); ++riter, --i) { EXPECT_EQ(riter->n, i); } EXPECT_EQ(riter, clist2.rend()); EXPECT_NE(riter, clist2.rbegin()); riter = list2.rbegin(); i = 9; for (; riter != list2.rend(); ++riter, --i) { EXPECT_EQ(riter->n, i); } EXPECT_EQ(riter, clist2.rend()); EXPECT_NE(riter, clist2.rbegin()); while (!list2.empty()) { TestItem *e = &list2.front(); list2.pop_front(); delete e; } } TEST(NewIntrusiveListTest, Erase) { TestList l; TestItem *e[10]; for (int i = 0; i < 10; ++i) { e[i] = new TestItem; l.push_front(e[i]); } for (int i = 0; i < 10; ++i) { EXPECT_EQ(l.size(), (10u - i)); TestList::iterator iter = l.erase(e[i]); EXPECT_NE(iter, TestList::iterator(e[i])); EXPECT_EQ(l.size(), (10u - i - 1)); delete e[i]; } } TEST(NewIntrusiveListTest, Insert) { TestList l; TestList::iterator iter = l.end(); TestItem *e[10]; for (int i = 9; i >= 0; --i) { e[i] = new TestItem; iter = l.insert(iter, e[i]); EXPECT_EQ(&(*iter), e[i]); } EXPECT_EQ(l.size(), 10u); iter = l.begin(); for (TestItem *item : e) { EXPECT_EQ(&(*iter), item); iter = l.erase(item); delete item; } } TEST(NewIntrusiveListTest, Move) { { TestList src; TestList dest(std::move(src)); EXPECT_TRUE(dest.empty()); } { TestItem e; TestList src; src.push_front(&e); TestList dest(std::move(src)); EXPECT_TRUE(src.empty()); ASSERT_THAT(dest.size(), 1); EXPECT_THAT(&dest.front(), &e); EXPECT_THAT(&dest.back(), &e); } { TestItem items[10]; TestList src; for (TestItem &e : items) src.push_back(&e); TestList dest(std::move(src)); EXPECT_TRUE(src.empty()); ASSERT_THAT(dest.size(), 10); int i = 0; for (TestItem &e : dest) { EXPECT_THAT(&e, &items[i++]) << " for index " << i; } } } TEST(NewIntrusiveListTest, StaticInsertErase) { TestList l; TestItem e[2]; TestList::iterator i = l.begin(); TestList::insert(i, &e[0]); TestList::insert(&e[0], &e[1]); TestList::erase(&e[0]); TestList::erase(TestList::iterator(&e[1])); EXPECT_TRUE(l.empty()); } TEST_F(IntrusiveListTest, Splice) { QuicheIntrusiveList<TestItem, ListId2> secondary_list; for (int i = 0; i < 3; ++i) { secondary_list.push_back(&e[i]); } for (int l1_count = 0; l1_count < 3; ++l1_count) { for (int l2_count = 0; l2_count < 3; ++l2_count) { for (int pos = 0; pos <= l1_count; ++pos) { for (int first = 0; first <= l2_count; ++first) { for (int last = first; last <= l2_count; ++last) { PrepareLists(l1_count, l2_count); l1.splice(std::next(l1.begin(), pos), std::next(l2.begin(), first), std::next(l2.begin(), last)); ll1.splice(std::next(ll1.begin(), pos), ll2, std::next(ll2.begin(), first), std::next(ll2.begin(), last)); CheckLists(); ASSERT_EQ(3u, secondary_list.size()); for (int i = 0; i < 3; ++i) { EXPECT_EQ(&e[i], &*std::next(secondary_list.begin(), i)); } } } } } } } struct BaseLinkId {}; struct DerivedLinkId {}; struct AbstractBase : public QuicheIntrusiveLink<AbstractBase, BaseLinkId> { virtual ~AbstractBase() = 0; virtual std::string name() { return "AbstractBase"; } }; AbstractBase::~AbstractBase() {} struct DerivedClass : public QuicheIntrusiveLink<DerivedClass, DerivedLinkId>, public AbstractBase { ~DerivedClass() override {} std::string name() override { return "DerivedClass"; } }; struct VirtuallyDerivedBaseClass : public virtual AbstractBase { ~VirtuallyDerivedBaseClass() override = 0; std::string name() override { return "VirtuallyDerivedBaseClass"; } }; VirtuallyDerivedBaseClass::~VirtuallyDerivedBaseClass() {} struct VirtuallyDerivedClassA : public QuicheIntrusiveLink<VirtuallyDerivedClassA, DerivedLinkId>, public virtual VirtuallyDerivedBaseClass { ~VirtuallyDerivedClassA() override {} std::string name() override { return "VirtuallyDerivedClassA"; } }; struct NonceClass { virtual ~NonceClass() {} int data_; }; struct VirtuallyDerivedClassB : public QuicheIntrusiveLink<VirtuallyDerivedClassB, DerivedLinkId>, public virtual NonceClass, public virtual VirtuallyDerivedBaseClass { ~VirtuallyDerivedClassB() override {} std::string name() override { return "VirtuallyDerivedClassB"; } }; struct VirtuallyDerivedClassC : public QuicheIntrusiveLink<VirtuallyDerivedClassC, DerivedLinkId>, public virtual AbstractBase, public virtual NonceClass, public virtual VirtuallyDerivedBaseClass { ~VirtuallyDerivedClassC() override {} std::string name() override { return "VirtuallyDerivedClassC"; } }; namespace templated_base_link { template <typename T> struct AbstractBase : public QuicheIntrusiveLink<T> { virtual ~AbstractBase() = 0; }; template <typename T> AbstractBase<T>::~AbstractBase() {} struct DerivedClass : public AbstractBase<DerivedClass> { int n; }; } TEST(NewIntrusiveListTest, HandleInheritanceHierarchies) { { QuicheIntrusiveList<DerivedClass, DerivedLinkId> list; DerivedClass elements[2]; EXPECT_TRUE(list.empty()); list.push_back(&elements[0]); EXPECT_EQ(1u, list.size()); list.push_back(&elements[1]); EXPECT_EQ(2u, list.size()); list.pop_back(); EXPECT_EQ(1u, list.size()); list.pop_back(); EXPECT_TRUE(list.empty()); } { QuicheIntrusiveList<VirtuallyDerivedClassA, DerivedLinkId> list; VirtuallyDerivedClassA elements[2]; EXPECT_TRUE(list.empty()); list.push_back(&elements[0]); EXPECT_EQ(1u, list.size()); list.push_back(&elements[1]); EXPECT_EQ(2u, list.size()); list.pop_back(); EXPECT_EQ(1u, list.size()); list.pop_back(); EXPECT_TRUE(list.empty()); } { QuicheIntrusiveList<VirtuallyDerivedClassC, DerivedLinkId> list; VirtuallyDerivedClassC elements[2]; EXPECT_TRUE(list.empty()); list.push_back(&elements[0]); EXPECT_EQ(1u, list.size()); list.push_back(&elements[1]); EXPECT_EQ(2u, list.size()); list.pop_back(); EXPECT_EQ(1u, list.size()); list.pop_back(); EXPECT_TRUE(list.empty()); } { QuicheIntrusiveList<AbstractBase, BaseLinkId> list; DerivedClass d1; VirtuallyDerivedClassA d2; VirtuallyDerivedClassB d3; VirtuallyDerivedClassC d4; EXPECT_TRUE(list.empty()); list.push_back(&d1); EXPECT_EQ(1u, list.size()); list.push_back(&d2); EXPECT_EQ(2u, list.size()); list.push_back(&d3); EXPECT_EQ(3u, list.size()); list.push_back(&d4); EXPECT_EQ(4u, list.size()); QuicheIntrusiveList<AbstractBase, BaseLinkId>::iterator it = list.begin(); EXPECT_EQ("DerivedClass", (it++)->name()); EXPECT_EQ("VirtuallyDerivedClassA", (it++)->name()); EXPECT_EQ("VirtuallyDerivedClassB", (it++)->name()); EXPECT_EQ("VirtuallyDerivedClassC", (it++)->name()); } { QuicheIntrusiveList<templated_base_link::DerivedClass> list; templated_base_link::DerivedClass elements[2]; EXPECT_TRUE(list.empty()); list.push_back(&elements[0]); EXPECT_EQ(1u, list.size()); list.push_back(&elements[1]); EXPECT_EQ(2u, list.size()); list.pop_back(); EXPECT_EQ(1u, list.size()); list.pop_back(); EXPECT_TRUE(list.empty()); } } class IntrusiveListTagTypeTest : public quiche::test::QuicheTest { protected: struct Tag {}; class Element : public QuicheIntrusiveLink<Element, Tag> {}; }; TEST_F(IntrusiveListTagTypeTest, TagTypeListID) { QuicheIntrusiveList<Element, Tag> list; { Element e; list.push_back(&e); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_intrusive_list.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_intrusive_list_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
12d35529-f1f7-471b-bef8-c74ef2f32ec8
cpp
google/quiche
quic_config
quiche/quic/core/quic_config.cc
quiche/quic/core/quic_config_test.cc
#include "quiche/quic/core/quic_config.h" #include <algorithm> #include <cstring> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_socket_address_coder.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_socket_address.h" namespace quic { QuicErrorCode ReadUint32(const CryptoHandshakeMessage& msg, QuicTag tag, QuicConfigPresence presence, uint32_t default_value, uint32_t* out, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); QuicErrorCode error = msg.GetUint32(tag, out); switch (error) { case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: if (presence == PRESENCE_REQUIRED) { *error_details = "Missing " + QuicTagToString(tag); break; } error = QUIC_NO_ERROR; *out = default_value; break; case QUIC_NO_ERROR: break; default: *error_details = "Bad " + QuicTagToString(tag); break; } return error; } QuicConfigValue::QuicConfigValue(QuicTag tag, QuicConfigPresence presence) : tag_(tag), presence_(presence) {} QuicConfigValue::~QuicConfigValue() {} QuicFixedUint32::QuicFixedUint32(QuicTag tag, QuicConfigPresence presence) : QuicConfigValue(tag, presence), has_send_value_(false), has_receive_value_(false) {} QuicFixedUint32::~QuicFixedUint32() {} bool QuicFixedUint32::HasSendValue() const { return has_send_value_; } uint32_t QuicFixedUint32::GetSendValue() const { QUIC_BUG_IF(quic_bug_12743_1, !has_send_value_) << "No send value to get for tag:" << QuicTagToString(tag_); return send_value_; } void QuicFixedUint32::SetSendValue(uint32_t value) { has_send_value_ = true; send_value_ = value; } bool QuicFixedUint32::HasReceivedValue() const { return has_receive_value_; } uint32_t QuicFixedUint32::GetReceivedValue() const { QUIC_BUG_IF(quic_bug_12743_2, !has_receive_value_) << "No receive value to get for tag:" << QuicTagToString(tag_); return receive_value_; } void QuicFixedUint32::SetReceivedValue(uint32_t value) { has_receive_value_ = true; receive_value_ = value; } void QuicFixedUint32::ToHandshakeMessage(CryptoHandshakeMessage* out) const { if (tag_ == 0) { QUIC_BUG(quic_bug_12743_3) << "This parameter does not support writing to CryptoHandshakeMessage"; return; } if (has_send_value_) { out->SetValue(tag_, send_value_); } } QuicErrorCode QuicFixedUint32::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType , std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); if (tag_ == 0) { *error_details = "This parameter does not support reading from CryptoHandshakeMessage"; QUIC_BUG(quic_bug_10575_1) << *error_details; return QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND; } QuicErrorCode error = peer_hello.GetUint32(tag_, &receive_value_); switch (error) { case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: if (presence_ == PRESENCE_OPTIONAL) { return QUIC_NO_ERROR; } *error_details = "Missing " + QuicTagToString(tag_); break; case QUIC_NO_ERROR: has_receive_value_ = true; break; default: *error_details = "Bad " + QuicTagToString(tag_); break; } return error; } QuicFixedUint62::QuicFixedUint62(QuicTag name, QuicConfigPresence presence) : QuicConfigValue(name, presence), has_send_value_(false), has_receive_value_(false) {} QuicFixedUint62::~QuicFixedUint62() {} bool QuicFixedUint62::HasSendValue() const { return has_send_value_; } uint64_t QuicFixedUint62::GetSendValue() const { if (!has_send_value_) { QUIC_BUG(quic_bug_10575_2) << "No send value to get for tag:" << QuicTagToString(tag_); return 0; } return send_value_; } void QuicFixedUint62::SetSendValue(uint64_t value) { if (value > quiche::kVarInt62MaxValue) { QUIC_BUG(quic_bug_10575_3) << "QuicFixedUint62 invalid value " << value; value = quiche::kVarInt62MaxValue; } has_send_value_ = true; send_value_ = value; } bool QuicFixedUint62::HasReceivedValue() const { return has_receive_value_; } uint64_t QuicFixedUint62::GetReceivedValue() const { if (!has_receive_value_) { QUIC_BUG(quic_bug_10575_4) << "No receive value to get for tag:" << QuicTagToString(tag_); return 0; } return receive_value_; } void QuicFixedUint62::SetReceivedValue(uint64_t value) { has_receive_value_ = true; receive_value_ = value; } void QuicFixedUint62::ToHandshakeMessage(CryptoHandshakeMessage* out) const { if (!has_send_value_) { return; } uint32_t send_value32; if (send_value_ > std::numeric_limits<uint32_t>::max()) { QUIC_BUG(quic_bug_10575_5) << "Attempting to send " << send_value_ << " for tag:" << QuicTagToString(tag_); send_value32 = std::numeric_limits<uint32_t>::max(); } else { send_value32 = static_cast<uint32_t>(send_value_); } out->SetValue(tag_, send_value32); } QuicErrorCode QuicFixedUint62::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType , std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); uint32_t receive_value32; QuicErrorCode error = peer_hello.GetUint32(tag_, &receive_value32); receive_value_ = receive_value32; switch (error) { case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: if (presence_ == PRESENCE_OPTIONAL) { return QUIC_NO_ERROR; } *error_details = "Missing " + QuicTagToString(tag_); break; case QUIC_NO_ERROR: has_receive_value_ = true; break; default: *error_details = "Bad " + QuicTagToString(tag_); break; } return error; } QuicFixedStatelessResetToken::QuicFixedStatelessResetToken( QuicTag tag, QuicConfigPresence presence) : QuicConfigValue(tag, presence), has_send_value_(false), has_receive_value_(false) {} QuicFixedStatelessResetToken::~QuicFixedStatelessResetToken() {} bool QuicFixedStatelessResetToken::HasSendValue() const { return has_send_value_; } const StatelessResetToken& QuicFixedStatelessResetToken::GetSendValue() const { QUIC_BUG_IF(quic_bug_12743_4, !has_send_value_) << "No send value to get for tag:" << QuicTagToString(tag_); return send_value_; } void QuicFixedStatelessResetToken::SetSendValue( const StatelessResetToken& value) { has_send_value_ = true; send_value_ = value; } bool QuicFixedStatelessResetToken::HasReceivedValue() const { return has_receive_value_; } const StatelessResetToken& QuicFixedStatelessResetToken::GetReceivedValue() const { QUIC_BUG_IF(quic_bug_12743_5, !has_receive_value_) << "No receive value to get for tag:" << QuicTagToString(tag_); return receive_value_; } void QuicFixedStatelessResetToken::SetReceivedValue( const StatelessResetToken& value) { has_receive_value_ = true; receive_value_ = value; } void QuicFixedStatelessResetToken::ToHandshakeMessage( CryptoHandshakeMessage* out) const { if (has_send_value_) { out->SetValue(tag_, send_value_); } } QuicErrorCode QuicFixedStatelessResetToken::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType , std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); QuicErrorCode error = peer_hello.GetStatelessResetToken(tag_, &receive_value_); switch (error) { case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: if (presence_ == PRESENCE_OPTIONAL) { return QUIC_NO_ERROR; } *error_details = "Missing " + QuicTagToString(tag_); break; case QUIC_NO_ERROR: has_receive_value_ = true; break; default: *error_details = "Bad " + QuicTagToString(tag_); break; } return error; } QuicFixedTagVector::QuicFixedTagVector(QuicTag name, QuicConfigPresence presence) : QuicConfigValue(name, presence), has_send_values_(false), has_receive_values_(false) {} QuicFixedTagVector::QuicFixedTagVector(const QuicFixedTagVector& other) = default; QuicFixedTagVector::~QuicFixedTagVector() {} bool QuicFixedTagVector::HasSendValues() const { return has_send_values_; } const QuicTagVector& QuicFixedTagVector::GetSendValues() const { QUIC_BUG_IF(quic_bug_12743_6, !has_send_values_) << "No send values to get for tag:" << QuicTagToString(tag_); return send_values_; } void QuicFixedTagVector::SetSendValues(const QuicTagVector& values) { has_send_values_ = true; send_values_ = values; } bool QuicFixedTagVector::HasReceivedValues() const { return has_receive_values_; } const QuicTagVector& QuicFixedTagVector::GetReceivedValues() const { QUIC_BUG_IF(quic_bug_12743_7, !has_receive_values_) << "No receive value to get for tag:" << QuicTagToString(tag_); return receive_values_; } void QuicFixedTagVector::SetReceivedValues(const QuicTagVector& values) { has_receive_values_ = true; receive_values_ = values; } void QuicFixedTagVector::ToHandshakeMessage(CryptoHandshakeMessage* out) const { if (has_send_values_) { out->SetVector(tag_, send_values_); } } QuicErrorCode QuicFixedTagVector::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType , std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); QuicTagVector values; QuicErrorCode error = peer_hello.GetTaglist(tag_, &values); switch (error) { case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND: if (presence_ == PRESENCE_OPTIONAL) { return QUIC_NO_ERROR; } *error_details = "Missing " + QuicTagToString(tag_); break; case QUIC_NO_ERROR: QUIC_DVLOG(1) << "Received Connection Option tags from receiver."; has_receive_values_ = true; receive_values_.insert(receive_values_.end(), values.begin(), values.end()); break; default: *error_details = "Bad " + QuicTagToString(tag_); break; } return error; } QuicFixedSocketAddress::QuicFixedSocketAddress(QuicTag tag, QuicConfigPresence presence) : QuicConfigValue(tag, presence), has_send_value_(false), has_receive_value_(false) {} QuicFixedSocketAddress::~QuicFixedSocketAddress() {} bool QuicFixedSocketAddress::HasSendValue() const { return has_send_value_; } const QuicSocketAddress& QuicFixedSocketAddress::GetSendValue() const { QUIC_BUG_IF(quic_bug_12743_8, !has_send_value_) << "No send value to get for tag:" << QuicTagToString(tag_); return send_value_; } void QuicFixedSocketAddress::SetSendValue(const QuicSocketAddress& value) { has_send_value_ = true; send_value_ = value; } void QuicFixedSocketAddress::ClearSendValue() { has_send_value_ = false; send_value_ = QuicSocketAddress(); } bool QuicFixedSocketAddress::HasReceivedValue() const { return has_receive_value_; } const QuicSocketAddress& QuicFixedSocketAddress::GetReceivedValue() const { QUIC_BUG_IF(quic_bug_12743_9, !has_receive_value_) << "No receive value to get for tag:" << QuicTagToString(tag_); return receive_value_; } void QuicFixedSocketAddress::SetReceivedValue(const QuicSocketAddress& value) { has_receive_value_ = true; receive_value_ = value; } void QuicFixedSocketAddress::ToHandshakeMessage( CryptoHandshakeMessage* out) const { if (has_send_value_) { QuicSocketAddressCoder address_coder(send_value_); out->SetStringPiece(tag_, address_coder.Encode()); } } QuicErrorCode QuicFixedSocketAddress::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType , std::string* error_details) { absl::string_view address; if (!peer_hello.GetStringPiece(tag_, &address)) { if (presence_ == PRESENCE_REQUIRED) { *error_details = "Missing " + QuicTagToString(tag_); return QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND; } } else { QuicSocketAddressCoder address_coder; if (address_coder.Decode(address.data(), address.length())) { SetReceivedValue( QuicSocketAddress(address_coder.ip(), address_coder.port())); } } return QUIC_NO_ERROR; } QuicConfig::QuicConfig() : negotiated_(false), max_time_before_crypto_handshake_(QuicTime::Delta::Zero()), max_idle_time_before_crypto_handshake_(QuicTime::Delta::Zero()), max_undecryptable_packets_(0), connection_options_(kCOPT, PRESENCE_OPTIONAL), client_connection_options_(kCLOP, PRESENCE_OPTIONAL), max_idle_timeout_to_send_(QuicTime::Delta::Infinite()), max_bidirectional_streams_(kMIBS, PRESENCE_REQUIRED), max_unidirectional_streams_(kMIUS, PRESENCE_OPTIONAL), bytes_for_connection_id_(kTCID, PRESENCE_OPTIONAL), initial_round_trip_time_us_(kIRTT, PRESENCE_OPTIONAL), initial_max_stream_data_bytes_incoming_bidirectional_(0, PRESENCE_OPTIONAL), initial_max_stream_data_bytes_outgoing_bidirectional_(0, PRESENCE_OPTIONAL), initial_max_stream_data_bytes_unidirectional_(0, PRESENCE_OPTIONAL), initial_stream_flow_control_window_bytes_(kSFCW, PRESENCE_OPTIONAL), initial_session_flow_control_window_bytes_(kCFCW, PRESENCE_OPTIONAL), connection_migration_disabled_(kNCMR, PRESENCE_OPTIONAL), alternate_server_address_ipv6_(kASAD, PRESENCE_OPTIONAL), alternate_server_address_ipv4_(kASAD, PRESENCE_OPTIONAL), stateless_reset_token_(kSRST, PRESENCE_OPTIONAL), max_ack_delay_ms_(kMAD, PRESENCE_OPTIONAL), min_ack_delay_ms_(0, PRESENCE_OPTIONAL), ack_delay_exponent_(kADE, PRESENCE_OPTIONAL), max_udp_payload_size_(0, PRESENCE_OPTIONAL), max_datagram_frame_size_(0, PRESENCE_OPTIONAL), active_connection_id_limit_(0, PRESENCE_OPTIONAL) { SetDefaults(); } QuicConfig::QuicConfig(const QuicConfig& other) = default; QuicConfig::~QuicConfig() {} bool QuicConfig::SetInitialReceivedConnectionOptions( const QuicTagVector& tags) { if (HasReceivedConnectionOptions()) { return false; } connection_options_.SetReceivedValues(tags); return true; } void QuicConfig::SetConnectionOptionsToSend( const QuicTagVector& connection_options) { connection_options_.SetSendValues(connection_options); } void QuicConfig::AddConnectionOptionsToSend( const QuicTagVector& connection_options) { if (!connection_options_.HasSendValues()) { SetConnectionOptionsToSend(connection_options); return; } const QuicTagVector& existing_connection_options = SendConnectionOptions(); QuicTagVector connection_options_to_send; connection_options_to_send.reserve(existing_connection_options.size() + connection_options.size()); connection_options_to_send.assign(existing_connection_options.begin(), existing_connection_options.end()); connection_options_to_send.insert(connection_options_to_send.end(), connection_options.begin(), connection_options.end()); SetConnectionOptionsToSend(connection_options_to_send); } void QuicConfig::SetGoogleHandshakeMessageToSend(std::string message) { google_handshake_message_to_send_ = std::move(message); } const std::optional<std::string>& QuicConfig::GetReceivedGoogleHandshakeMessage() const { return received_google_handshake_message_; } bool QuicConfig::HasReceivedConnectionOptions() const { return connection_options_.HasReceivedValues(); } const QuicTagVector& QuicConfig::ReceivedConnectionOptions() const { return connection_options_.GetReceivedValues(); } bool QuicConfig::HasSendConnectionOptions() const { return connection_options_.HasSendValues(); } const QuicTagVector& QuicConfig::SendConnectionOptions() const { return connection_options_.GetSendValues(); } bool QuicConfig::HasClientSentConnectionOption(QuicTag tag, Perspective perspective) const { if (perspective == Perspective::IS_SERVER) { if (HasReceivedConnectionOptions() && ContainsQuicTag(ReceivedConnectionOptions(), tag)) { return true; } } else if (HasSendConnectionOptions() && ContainsQuicTag(SendConnectionOptions(), tag)) { return true; } return false; } void QuicConfig::SetClientConnectionOptions( const QuicTagVector& client_connection_options) { client_connection_options_.SetSendValues(client_connection_options); } bool QuicConfig::HasClientRequestedIndependentOption( QuicTag tag, Perspective perspective) const { if (perspective == Perspective::IS_SERVER) { return (HasReceivedConnectionOptions() && ContainsQuicTag(ReceivedConnectionOptions(), tag)); } return (client_connection_options_.HasSendValues() && ContainsQuicTag(client_connection_options_.GetSendValues(), tag)); } const QuicTagVector& QuicConfig::ClientRequestedIndependentOptions( Perspective perspective) const { static const QuicTagVector* no_options = new QuicTagVector; if (perspective == Perspective::IS_SERVER) { return HasReceivedConnectionOptions() ? ReceivedConnectionOptions() : *no_options; } return client_connection_options_.HasSendValues() ? client_connection_options_.GetSendValues() : *no_options; } void QuicConfig::SetIdleNetworkTimeout(QuicTime::Delta idle_network_timeout) { if (idle_network_timeout.ToMicroseconds() <= 0) { QUIC_BUG(quic_bug_10575_6) << "Invalid idle network timeout " << idle_network_timeout; return; } max_idle_timeout_to_send_ = idle_network_timeout; } QuicTime::Delta QuicConfig::IdleNetworkTimeout() const { if (!received_max_idle_timeout_.has_value()) { return max_idle_timeout_to_send_; } return *received_max_idle_timeout_; } void QuicConfig::SetMaxBidirectionalStreamsToSend(uint32_t max_streams) { max_bidirectional_streams_.SetSendValue(max_streams); } uint32_t QuicConfig::GetMaxBidirectionalStreamsToSend() const { return max_bidirectional_streams_.GetSendValue(); } bool QuicConfig::HasReceivedMaxBidirectionalStreams() const { return max_bidirectional_streams_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedMaxBidirectionalStreams() const { return max_bidirectional_streams_.GetReceivedValue(); } void QuicConfig::SetMaxUnidirectionalStreamsToSend(uint32_t max_streams) { max_unidirectional_streams_.SetSendValue(max_streams); } uint32_t QuicConfig::GetMaxUnidirectionalStreamsToSend() const { return max_unidirectional_streams_.GetSendValue(); } bool QuicConfig::HasReceivedMaxUnidirectionalStreams() const { return max_unidirectional_streams_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedMaxUnidirectionalStreams() const { return max_unidirectional_streams_.GetReceivedValue(); } void QuicConfig::SetMaxAckDelayToSendMs(uint32_t max_ack_delay_ms) { max_ack_delay_ms_.SetSendValue(max_ack_delay_ms); } uint32_t QuicConfig::GetMaxAckDelayToSendMs() const { return max_ack_delay_ms_.GetSendValue(); } bool QuicConfig::HasReceivedMaxAckDelayMs() const { return max_ack_delay_ms_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedMaxAckDelayMs() const { return max_ack_delay_ms_.GetReceivedValue(); } void QuicConfig::SetMinAckDelayMs(uint32_t min_ack_delay_ms) { min_ack_delay_ms_.SetSendValue(min_ack_delay_ms); } uint32_t QuicConfig::GetMinAckDelayToSendMs() const { return min_ack_delay_ms_.GetSendValue(); } bool QuicConfig::HasReceivedMinAckDelayMs() const { return min_ack_delay_ms_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedMinAckDelayMs() const { return min_ack_delay_ms_.GetReceivedValue(); } void QuicConfig::SetAckDelayExponentToSend(uint32_t exponent) { ack_delay_exponent_.SetSendValue(exponent); } uint32_t QuicConfig::GetAckDelayExponentToSend() const { return ack_delay_exponent_.GetSendValue(); } bool QuicConfig::HasReceivedAckDelayExponent() const { return ack_delay_exponent_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedAckDelayExponent() const { return ack_delay_exponent_.GetReceivedValue(); } void QuicConfig::SetMaxPacketSizeToSend(uint64_t max_udp_payload_size) { max_udp_payload_size_.SetSendValue(max_udp_payload_size); } uint64_t QuicConfig::GetMaxPacketSizeToSend() const { return max_udp_payload_size_.GetSendValue(); } bool QuicConfig::HasReceivedMaxPacketSize() const { return max_udp_payload_size_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedMaxPacketSize() const { return max_udp_payload_size_.GetReceivedValue(); } void QuicConfig::SetMaxDatagramFrameSizeToSend( uint64_t max_datagram_frame_size) { max_datagram_frame_size_.SetSendValue(max_datagram_frame_size); } uint64_t QuicConfig::GetMaxDatagramFrameSizeToSend() const { return max_datagram_frame_size_.GetSendValue(); } bool QuicConfig::HasReceivedMaxDatagramFrameSize() const { return max_datagram_frame_size_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedMaxDatagramFrameSize() const { return max_datagram_frame_size_.GetReceivedValue(); } void QuicConfig::SetActiveConnectionIdLimitToSend( uint64_t active_connection_id_limit) { active_connection_id_limit_.SetSendValue(active_connection_id_limit); } uint64_t QuicConfig::GetActiveConnectionIdLimitToSend() const { return active_connection_id_limit_.GetSendValue(); } bool QuicConfig::HasReceivedActiveConnectionIdLimit() const { return active_connection_id_limit_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedActiveConnectionIdLimit() const { return active_connection_id_limit_.GetReceivedValue(); } bool QuicConfig::HasSetBytesForConnectionIdToSend() const { return bytes_for_connection_id_.HasSendValue(); } void QuicConfig::SetBytesForConnectionIdToSend(uint32_t bytes) { bytes_for_connection_id_.SetSendValue(bytes); } bool QuicConfig::HasReceivedBytesForConnectionId() const { return bytes_for_connection_id_.HasReceivedValue(); } uint32_t QuicConfig::ReceivedBytesForConnectionId() const { return bytes_for_connection_id_.GetReceivedValue(); } void QuicConfig::SetInitialRoundTripTimeUsToSend(uint64_t rtt) { initial_round_trip_time_us_.SetSendValue(rtt); } bool QuicConfig::HasReceivedInitialRoundTripTimeUs() const { return initial_round_trip_time_us_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialRoundTripTimeUs() const { return initial_round_trip_time_us_.GetReceivedValue(); } bool QuicConfig::HasInitialRoundTripTimeUsToSend() const { return initial_round_trip_time_us_.HasSendValue(); } uint64_t QuicConfig::GetInitialRoundTripTimeUsToSend() const { return initial_round_trip_time_us_.GetSendValue(); } void QuicConfig::SetInitialStreamFlowControlWindowToSend( uint64_t window_bytes) { if (window_bytes < kMinimumFlowControlSendWindow) { QUIC_BUG(quic_bug_10575_7) << "Initial stream flow control receive window (" << window_bytes << ") cannot be set lower than minimum (" << kMinimumFlowControlSendWindow << ")."; window_bytes = kMinimumFlowControlSendWindow; } initial_stream_flow_control_window_bytes_.SetSendValue(window_bytes); } uint64_t QuicConfig::GetInitialStreamFlowControlWindowToSend() const { return initial_stream_flow_control_window_bytes_.GetSendValue(); } bool QuicConfig::HasReceivedInitialStreamFlowControlWindowBytes() const { return initial_stream_flow_control_window_bytes_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialStreamFlowControlWindowBytes() const { return initial_stream_flow_control_window_bytes_.GetReceivedValue(); } void QuicConfig::SetInitialMaxStreamDataBytesIncomingBidirectionalToSend( uint64_t window_bytes) { initial_max_stream_data_bytes_incoming_bidirectional_.SetSendValue( window_bytes); } uint64_t QuicConfig::GetInitialMaxStreamDataBytesIncomingBidirectionalToSend() const { if (initial_max_stream_data_bytes_incoming_bidirectional_.HasSendValue()) { return initial_max_stream_data_bytes_incoming_bidirectional_.GetSendValue(); } return initial_stream_flow_control_window_bytes_.GetSendValue(); } bool QuicConfig::HasReceivedInitialMaxStreamDataBytesIncomingBidirectional() const { return initial_max_stream_data_bytes_incoming_bidirectional_ .HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialMaxStreamDataBytesIncomingBidirectional() const { return initial_max_stream_data_bytes_incoming_bidirectional_ .GetReceivedValue(); } void QuicConfig::SetInitialMaxStreamDataBytesOutgoingBidirectionalToSend( uint64_t window_bytes) { initial_max_stream_data_bytes_outgoing_bidirectional_.SetSendValue( window_bytes); } uint64_t QuicConfig::GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend() const { if (initial_max_stream_data_bytes_outgoing_bidirectional_.HasSendValue()) { return initial_max_stream_data_bytes_outgoing_bidirectional_.GetSendValue(); } return initial_stream_flow_control_window_bytes_.GetSendValue(); } bool QuicConfig::HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional() const { return initial_max_stream_data_bytes_outgoing_bidirectional_ .HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialMaxStreamDataBytesOutgoingBidirectional() const { return initial_max_stream_data_bytes_outgoing_bidirectional_ .GetReceivedValue(); } void QuicConfig::SetInitialMaxStreamDataBytesUnidirectionalToSend( uint64_t window_bytes) { initial_max_stream_data_bytes_unidirectional_.SetSendValue(window_bytes); } uint64_t QuicConfig::GetInitialMaxStreamDataBytesUnidirectionalToSend() const { if (initial_max_stream_data_bytes_unidirectional_.HasSendValue()) { return initial_max_stream_data_bytes_unidirectional_.GetSendValue(); } return initial_stream_flow_control_window_bytes_.GetSendValue(); } bool QuicConfig::HasReceivedInitialMaxStreamDataBytesUnidirectional() const { return initial_max_stream_data_bytes_unidirectional_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialMaxStreamDataBytesUnidirectional() const { return initial_max_stream_data_bytes_unidirectional_.GetReceivedValue(); } void QuicConfig::SetInitialSessionFlowControlWindowToSend( uint64_t window_bytes) { if (window_bytes < kMinimumFlowControlSendWindow) { QUIC_BUG(quic_bug_10575_8) << "Initial session flow control receive window (" << window_bytes << ") cannot be set lower than default (" << kMinimumFlowControlSendWindow << ")."; window_bytes = kMinimumFlowControlSendWindow; } initial_session_flow_control_window_bytes_.SetSendValue(window_bytes); } uint64_t QuicConfig::GetInitialSessionFlowControlWindowToSend() const { return initial_session_flow_control_window_bytes_.GetSendValue(); } bool QuicConfig::HasReceivedInitialSessionFlowControlWindowBytes() const { return initial_session_flow_control_window_bytes_.HasReceivedValue(); } uint64_t QuicConfig::ReceivedInitialSessionFlowControlWindowBytes() const { return initial_session_flow_control_window_bytes_.GetReceivedValue(); } void QuicConfig::SetDisableConnectionMigration() { connection_migration_disabled_.SetSendValue(1); } bool QuicConfig::DisableConnectionMigration() const { return connection_migration_disabled_.HasReceivedValue(); } void QuicConfig::SetIPv6AlternateServerAddressToSend( const QuicSocketAddress& alternate_server_address_ipv6) { if (!alternate_server_address_ipv6.Normalized().host().IsIPv6()) { QUIC_BUG(quic_bug_10575_9) << "Cannot use SetIPv6AlternateServerAddressToSend with " << alternate_server_address_ipv6; return; } alternate_server_address_ipv6_.SetSendValue(alternate_server_address_ipv6); } bool QuicConfig::HasReceivedIPv6AlternateServerAddress() const { return alternate_server_address_ipv6_.HasReceivedValue(); } const QuicSocketAddress& QuicConfig::ReceivedIPv6AlternateServerAddress() const { return alternate_server_address_ipv6_.GetReceivedValue(); } void QuicConfig::SetIPv4AlternateServerAddressToSend( const QuicSocketAddress& alternate_server_address_ipv4) { if (!alternate_server_address_ipv4.host().IsIPv4()) { QUIC_BUG(quic_bug_10575_11) << "Cannot use SetIPv4AlternateServerAddressToSend with " << alternate_server_address_ipv4; return; } alternate_server_address_ipv4_.SetSendValue(alternate_server_address_ipv4); } bool QuicConfig::HasReceivedIPv4AlternateServerAddress() const { return alternate_server_address_ipv4_.HasReceivedValue(); } const QuicSocketAddress& QuicConfig::ReceivedIPv4AlternateServerAddress() const { return alternate_server_address_ipv4_.GetReceivedValue(); } void QuicConfig::SetPreferredAddressConnectionIdAndTokenToSend( const QuicConnectionId& connection_id, const StatelessResetToken& stateless_reset_token) { if ((!alternate_server_address_ipv4_.HasSendValue() && !alternate_server_address_ipv6_.HasSendValue()) || preferred_address_connection_id_and_token_.has_value()) { QUIC_BUG(quic_bug_10575_17) << "Can not send connection ID and token for preferred address"; return; } preferred_address_connection_id_and_token_ = std::make_pair(connection_id, stateless_reset_token); } bool QuicConfig::HasReceivedPreferredAddressConnectionIdAndToken() const { return (HasReceivedIPv6AlternateServerAddress() || HasReceivedIPv4AlternateServerAddress()) && preferred_address_connection_id_and_token_.has_value(); } const std::pair<QuicConnectionId, StatelessResetToken>& QuicConfig::ReceivedPreferredAddressConnectionIdAndToken() const { QUICHE_DCHECK(HasReceivedPreferredAddressConnectionIdAndToken()); return *preferred_address_connection_id_and_token_; } void QuicConfig::SetOriginalConnectionIdToSend( const QuicConnectionId& original_destination_connection_id) { original_destination_connection_id_to_send_ = original_destination_connection_id; } bool QuicConfig::HasReceivedOriginalConnectionId() const { return received_original_destination_connection_id_.has_value(); } QuicConnectionId QuicConfig::ReceivedOriginalConnectionId() const { if (!HasReceivedOriginalConnectionId()) { QUIC_BUG(quic_bug_10575_13) << "No received original connection ID"; return EmptyQuicConnectionId(); } return *received_original_destination_connection_id_; } void QuicConfig::SetInitialSourceConnectionIdToSend( const QuicConnectionId& initial_source_connection_id) { initial_source_connection_id_to_send_ = initial_source_connection_id; } bool QuicConfig::HasReceivedInitialSourceConnectionId() const { return received_initial_source_connection_id_.has_value(); } QuicConnectionId QuicConfig::ReceivedInitialSourceConnectionId() const { if (!HasReceivedInitialSourceConnectionId()) { QUIC_BUG(quic_bug_10575_14) << "No received initial source connection ID"; return EmptyQuicConnectionId(); } return *received_initial_source_connection_id_; } void QuicConfig::SetRetrySourceConnectionIdToSend( const QuicConnectionId& retry_source_connection_id) { retry_source_connection_id_to_send_ = retry_source_connection_id; } bool QuicConfig::HasReceivedRetrySourceConnectionId() const { return received_retry_source_connection_id_.has_value(); } QuicConnectionId QuicConfig::ReceivedRetrySourceConnectionId() const { if (!HasReceivedRetrySourceConnectionId()) { QUIC_BUG(quic_bug_10575_15) << "No received retry source connection ID"; return EmptyQuicConnectionId(); } return *received_retry_source_connection_id_; } void QuicConfig::SetStatelessResetTokenToSend( const StatelessResetToken& stateless_reset_token) { stateless_reset_token_.SetSendValue(stateless_reset_token); } bool QuicConfig::HasStatelessResetTokenToSend() const { return stateless_reset_token_.HasSendValue(); } bool QuicConfig::HasReceivedStatelessResetToken() const { return stateless_reset_token_.HasReceivedValue(); } const StatelessResetToken& QuicConfig::ReceivedStatelessResetToken() const { return stateless_reset_token_.GetReceivedValue(); } bool QuicConfig::negotiated() const { return negotiated_; } void QuicConfig::SetCreateSessionTagIndicators(QuicTagVector tags) { create_session_tag_indicators_ = std::move(tags); } const QuicTagVector& QuicConfig::create_session_tag_indicators() const { return create_session_tag_indicators_; } void QuicConfig::SetDefaults() { SetIdleNetworkTimeout(QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); SetMaxBidirectionalStreamsToSend(kDefaultMaxStreamsPerConnection); SetMaxUnidirectionalStreamsToSend(kDefaultMaxStreamsPerConnection); max_time_before_crypto_handshake_ = QuicTime::Delta::FromSeconds(kMaxTimeForCryptoHandshakeSecs); max_idle_time_before_crypto_handshake_ = QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs); max_undecryptable_packets_ = kDefaultMaxUndecryptablePackets; SetInitialStreamFlowControlWindowToSend(kMinimumFlowControlSendWindow); SetInitialSessionFlowControlWindowToSend(kMinimumFlowControlSendWindow); SetMaxAckDelayToSendMs(GetDefaultDelayedAckTimeMs()); SetAckDelayExponentToSend(kDefaultAckDelayExponent); SetMaxPacketSizeToSend(kMaxIncomingPacketSize); SetMaxDatagramFrameSizeToSend(kMaxAcceptedDatagramFrameSize); SetReliableStreamReset(false); } void QuicConfig::ToHandshakeMessage( CryptoHandshakeMessage* out, QuicTransportVersion transport_version) const { QuicFixedUint32 max_idle_timeout_seconds(kICSL, PRESENCE_REQUIRED); uint32_t max_idle_timeout_to_send_seconds = max_idle_timeout_to_send_.ToSeconds(); if (received_max_idle_timeout_.has_value() && received_max_idle_timeout_->ToSeconds() < max_idle_timeout_to_send_seconds) { max_idle_timeout_to_send_seconds = received_max_idle_timeout_->ToSeconds(); } max_idle_timeout_seconds.SetSendValue(max_idle_timeout_to_send_seconds); max_idle_timeout_seconds.ToHandshakeMessage(out); max_bidirectional_streams_.ToHandshakeMessage(out); if (VersionHasIetfQuicFrames(transport_version)) { max_unidirectional_streams_.ToHandshakeMessage(out); ack_delay_exponent_.ToHandshakeMessage(out); } if (max_ack_delay_ms_.GetSendValue() != GetDefaultDelayedAckTimeMs()) { max_ack_delay_ms_.ToHandshakeMessage(out); } bytes_for_connection_id_.ToHandshakeMessage(out); initial_round_trip_time_us_.ToHandshakeMessage(out); initial_stream_flow_control_window_bytes_.ToHandshakeMessage(out); initial_session_flow_control_window_bytes_.ToHandshakeMessage(out); connection_migration_disabled_.ToHandshakeMessage(out); connection_options_.ToHandshakeMessage(out); if (alternate_server_address_ipv6_.HasSendValue()) { alternate_server_address_ipv6_.ToHandshakeMessage(out); } else { alternate_server_address_ipv4_.ToHandshakeMessage(out); } stateless_reset_token_.ToHandshakeMessage(out); } QuicErrorCode QuicConfig::ProcessPeerHello( const CryptoHandshakeMessage& peer_hello, HelloType hello_type, std::string* error_details) { QUICHE_DCHECK(error_details != nullptr); QuicErrorCode error = QUIC_NO_ERROR; if (error == QUIC_NO_ERROR) { QuicFixedUint32 max_idle_timeout_seconds(kICSL, PRESENCE_REQUIRED); error = max_idle_timeout_seconds.ProcessPeerHello(peer_hello, hello_type, error_details); if (error == QUIC_NO_ERROR) { if (max_idle_timeout_seconds.GetReceivedValue() > max_idle_timeout_to_send_.ToSeconds()) { if (hello_type == SERVER) { error = QUIC_INVALID_NEGOTIATED_VALUE; *error_details = "Invalid value received for " + QuicTagToString(kICSL); } } else { received_max_idle_timeout_ = QuicTime::Delta::FromSeconds( max_idle_timeout_seconds.GetReceivedValue()); } } } if (error == QUIC_NO_ERROR) { error = max_bidirectional_streams_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = max_unidirectional_streams_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = bytes_for_connection_id_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = initial_round_trip_time_us_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = initial_stream_flow_control_window_bytes_.ProcessPeerHello( peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = initial_session_flow_control_window_bytes_.ProcessPeerHello( peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = connection_migration_disabled_.ProcessPeerHello( peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = connection_options_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { QuicFixedSocketAddress alternate_server_address(kASAD, PRESENCE_OPTIONAL); error = alternate_server_address.ProcessPeerHello(peer_hello, hello_type, error_details); if (error == QUIC_NO_ERROR && alternate_server_address.HasReceivedValue()) { const QuicSocketAddress& received_address = alternate_server_address.GetReceivedValue(); if (received_address.host().IsIPv6()) { alternate_server_address_ipv6_.SetReceivedValue(received_address); } else if (received_address.host().IsIPv4()) { alternate_server_address_ipv4_.SetReceivedValue(received_address); } } } if (error == QUIC_NO_ERROR) { error = stateless_reset_token_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = max_ack_delay_ms_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { error = ack_delay_exponent_.ProcessPeerHello(peer_hello, hello_type, error_details); } if (error == QUIC_NO_ERROR) { negotiated_ = true; } return error; } bool QuicConfig::FillTransportParameters(TransportParameters* params) const { if (original_destination_connection_id_to_send_.has_value()) { params->original_destination_connection_id = *original_destination_connection_id_to_send_; } params->max_idle_timeout_ms.set_value( max_idle_timeout_to_send_.ToMilliseconds()); if (stateless_reset_token_.HasSendValue()) { StatelessResetToken stateless_reset_token = stateless_reset_token_.GetSendValue(); params->stateless_reset_token.assign( reinterpret_cast<const char*>(&stateless_reset_token), reinterpret_cast<const char*>(&stateless_reset_token) + sizeof(stateless_reset_token)); } params->max_udp_payload_size.set_value(GetMaxPacketSizeToSend()); params->max_datagram_frame_size.set_value(GetMaxDatagramFrameSizeToSend()); params->initial_max_data.set_value( GetInitialSessionFlowControlWindowToSend()); params->initial_max_stream_data_bidi_local.set_value( GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend()); params->initial_max_stream_data_bidi_remote.set_value( GetInitialMaxStreamDataBytesIncomingBidirectionalToSend()); params->initial_max_stream_data_uni.set_value( GetInitialMaxStreamDataBytesUnidirectionalToSend()); params->initial_max_streams_bidi.set_value( GetMaxBidirectionalStreamsToSend()); params->initial_max_streams_uni.set_value( GetMaxUnidirectionalStreamsToSend()); params->max_ack_delay.set_value(GetMaxAckDelayToSendMs()); if (min_ack_delay_ms_.HasSendValue()) { params->min_ack_delay_us.set_value(min_ack_delay_ms_.GetSendValue() * kNumMicrosPerMilli); } params->ack_delay_exponent.set_value(GetAckDelayExponentToSend()); params->disable_active_migration = connection_migration_disabled_.HasSendValue() && connection_migration_disabled_.GetSendValue() != 0; if (alternate_server_address_ipv6_.HasSendValue() || alternate_server_address_ipv4_.HasSendValue()) { TransportParameters::PreferredAddress preferred_address; if (alternate_server_address_ipv6_.HasSendValue()) { preferred_address.ipv6_socket_address = alternate_server_address_ipv6_.GetSendValue(); } if (alternate_server_address_ipv4_.HasSendValue()) { preferred_address.ipv4_socket_address = alternate_server_address_ipv4_.GetSendValue(); } if (preferred_address_connection_id_and_token_) { preferred_address.connection_id = preferred_address_connection_id_and_token_->first; auto* begin = reinterpret_cast<const char*>( &preferred_address_connection_id_and_token_->second); auto* end = begin + sizeof(preferred_address_connection_id_and_token_->second); preferred_address.stateless_reset_token.assign(begin, end); } params->preferred_address = std::make_unique<TransportParameters::PreferredAddress>( preferred_address); } if (active_connection_id_limit_.HasSendValue()) { params->active_connection_id_limit.set_value( active_connection_id_limit_.GetSendValue()); } if (initial_source_connection_id_to_send_.has_value()) { params->initial_source_connection_id = *initial_source_connection_id_to_send_; } if (retry_source_connection_id_to_send_.has_value()) { params->retry_source_connection_id = *retry_source_connection_id_to_send_; } if (initial_round_trip_time_us_.HasSendValue()) { params->initial_round_trip_time_us.set_value( initial_round_trip_time_us_.GetSendValue()); } if (connection_options_.HasSendValues() && !connection_options_.GetSendValues().empty()) { params->google_connection_options = connection_options_.GetSendValues(); } if (google_handshake_message_to_send_.has_value()) { params->google_handshake_message = google_handshake_message_to_send_; } params->reliable_stream_reset = reliable_stream_reset_; params->custom_parameters = custom_transport_parameters_to_send_; return true; } QuicErrorCode QuicConfig::ProcessTransportParameters( const TransportParameters& params, bool is_resumption, std::string* error_details) { if (!is_resumption && params.original_destination_connection_id.has_value()) { received_original_destination_connection_id_ = *params.original_destination_connection_id; } if (params.max_idle_timeout_ms.value() > 0 && params.max_idle_timeout_ms.value() < static_cast<uint64_t>(max_idle_timeout_to_send_.ToMilliseconds())) { received_max_idle_timeout_ = QuicTime::Delta::FromMilliseconds(params.max_idle_timeout_ms.value()); } if (!is_resumption && !params.stateless_reset_token.empty()) { StatelessResetToken stateless_reset_token; if (params.stateless_reset_token.size() != sizeof(stateless_reset_token)) { QUIC_BUG(quic_bug_10575_16) << "Bad stateless reset token length " << params.stateless_reset_token.size(); *error_details = "Bad stateless reset token length"; return QUIC_INTERNAL_ERROR; } memcpy(&stateless_reset_token, params.stateless_reset_token.data(), params.stateless_reset_token.size()); stateless_reset_token_.SetReceivedValue(stateless_reset_token); } if (params.max_udp_payload_size.IsValid()) { max_udp_payload_size_.SetReceivedValue(params.max_udp_payload_size.value()); } if (params.max_datagram_frame_size.IsValid()) { max_datagram_frame_size_.SetReceivedValue( params.max_datagram_frame_size.value()); } initial_session_flow_control_window_bytes_.SetReceivedValue( params.initial_max_data.value()); max_bidirectional_streams_.SetReceivedValue( std::min<uint64_t>(params.initial_max_streams_bidi.value(), std::numeric_limits<uint32_t>::max())); max_unidirectional_streams_.SetReceivedValue( std::min<uint64_t>(params.initial_max_streams_uni.value(), std::numeric_limits<uint32_t>::max())); initial_max_stream_data_bytes_incoming_bidirectional_.SetReceivedValue( params.initial_max_stream_data_bidi_local.value()); initial_max_stream_data_bytes_outgoing_bidirectional_.SetReceivedValue( params.initial_max_stream_data_bidi_remote.value()); initial_max_stream_data_bytes_unidirectional_.SetReceivedValue( params.initial_max_stream_data_uni.value()); if (!is_resumption) { max_ack_delay_ms_.SetReceivedValue(params.max_ack_delay.value()); if (params.ack_delay_exponent.IsValid()) { ack_delay_exponent_.SetReceivedValue(params.ack_delay_exponent.value()); } if (params.preferred_address != nullptr) { if (params.preferred_address->ipv6_socket_address.port() != 0) { alternate_server_address_ipv6_.SetReceivedValue( params.preferred_address->ipv6_socket_address); } if (params.preferred_address->ipv4_socket_address.port() != 0) { alternate_server_address_ipv4_.SetReceivedValue( params.preferred_address->ipv4_socket_address); } if (!params.preferred_address->connection_id.IsEmpty()) { preferred_address_connection_id_and_token_ = std::make_pair( params.preferred_address->connection_id, *reinterpret_cast<const StatelessResetToken*>( &params.preferred_address->stateless_reset_token.front())); } } if (params.min_ack_delay_us.value() != 0) { if (params.min_ack_delay_us.value() > params.max_ack_delay.value() * kNumMicrosPerMilli) { *error_details = "MinAckDelay is greater than MaxAckDelay."; return IETF_QUIC_PROTOCOL_VIOLATION; } min_ack_delay_ms_.SetReceivedValue(params.min_ack_delay_us.value() / kNumMicrosPerMilli); } } if (params.disable_active_migration) { connection_migration_disabled_.SetReceivedValue(1u); } active_connection_id_limit_.SetReceivedValue( params.active_connection_id_limit.value()); if (!is_resumption) { if (params.initial_source_connection_id.has_value()) { received_initial_source_connection_id_ = *params.initial_source_connection_id; } if (params.retry_source_connection_id.has_value()) { received_retry_source_connection_id_ = *params.retry_source_connection_id; } } if (params.initial_round_trip_time_us.value() > 0) { initial_round_trip_time_us_.SetReceivedValue( params.initial_round_trip_time_us.value()); } if (params.google_connection_options.has_value()) { connection_options_.SetReceivedValues(*params.google_connection_options); } if (params.google_handshake_message.has_value()) { received_google_handshake_message_ = params.google_handshake_message; } received_custom_transport_parameters_ = params.custom_parameters; if (reliable_stream_reset_) { reliable_stream_reset_ = params.reliable_stream_reset; } if (!is_resumption) { negotiated_ = true; } *error_details = ""; return QUIC_NO_ERROR; } void QuicConfig::ClearGoogleHandshakeMessage() { google_handshake_message_to_send_.reset(); received_google_handshake_message_.reset(); } std::optional<QuicSocketAddress> QuicConfig::GetPreferredAddressToSend( quiche::IpAddressFamily address_family) const { if (alternate_server_address_ipv6_.HasSendValue() && address_family == quiche::IpAddressFamily::IP_V6) { return alternate_server_address_ipv6_.GetSendValue(); } if (alternate_server_address_ipv4_.HasSendValue() && address_family == quiche::IpAddressFamily::IP_V4) { return alternate_server_address_ipv4_.GetSendValue(); } return std::nullopt; } void QuicConfig::SetIPv4AlternateServerAddressForDNat( const QuicSocketAddress& alternate_server_address_ipv4_to_send, const QuicSocketAddress& mapped_alternate_server_address_ipv4) { SetIPv4AlternateServerAddressToSend(alternate_server_address_ipv4_to_send); mapped_alternate_server_address_ipv4_ = mapped_alternate_server_address_ipv4; } void QuicConfig::SetIPv6AlternateServerAddressForDNat( const QuicSocketAddress& alternate_server_address_ipv6_to_send, const QuicSocketAddress& mapped_alternate_server_address_ipv6) { SetIPv6AlternateServerAddressToSend(alternate_server_address_ipv6_to_send); mapped_alternate_server_address_ipv6_ = mapped_alternate_server_address_ipv6; } std::optional<QuicSocketAddress> QuicConfig::GetMappedAlternativeServerAddress( quiche::IpAddressFamily address_family) const { if (mapped_alternate_server_address_ipv6_.has_value() && address_family == quiche::IpAddressFamily::IP_V6) { return *mapped_alternate_server_address_ipv6_; } if (mapped_alternate_server_address_ipv4_.has_value() && address_family == quiche::IpAddressFamily::IP_V4) { return *mapped_alternate_server_address_ipv4_; } return GetPreferredAddressToSend(address_family); } void QuicConfig::ClearAlternateServerAddressToSend( quiche::IpAddressFamily address_family) { if (address_family == quiche::IpAddressFamily::IP_V4) { alternate_server_address_ipv4_.ClearSendValue(); } else if (address_family == quiche::IpAddressFamily::IP_V6) { alternate_server_address_ipv6_.ClearSendValue(); } } bool QuicConfig::SupportsServerPreferredAddress(Perspective perspective) const { return HasClientSentConnectionOption(kSPAD, perspective) || GetQuicFlag(quic_always_support_server_preferred_address); } void QuicConfig::SetReliableStreamReset(bool reliable_stream_reset) { reliable_stream_reset_ = reliable_stream_reset; } bool QuicConfig::SupportsReliableStreamReset() const { return reliable_stream_reset_; } }
#include "quiche/quic/core/quic_config.h" #include <memory> #include <string> #include <utility> #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/transport_parameters.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { class QuicConfigTest : public QuicTestWithParam<ParsedQuicVersion> { public: QuicConfigTest() : version_(GetParam()) {} protected: ParsedQuicVersion version_; QuicConfig config_; }; INSTANTIATE_TEST_SUITE_P(QuicConfigTests, QuicConfigTest, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicConfigTest, SetDefaults) { EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialStreamFlowControlWindowToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesIncomingBidirectionalToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesUnidirectionalToSend()); EXPECT_FALSE(config_.HasReceivedInitialStreamFlowControlWindowBytes()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesIncomingBidirectional()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); EXPECT_FALSE(config_.HasReceivedInitialMaxStreamDataBytesUnidirectional()); EXPECT_EQ(kMaxIncomingPacketSize, config_.GetMaxPacketSizeToSend()); EXPECT_FALSE(config_.HasReceivedMaxPacketSize()); } TEST_P(QuicConfigTest, AutoSetIetfFlowControl) { EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialStreamFlowControlWindowToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesIncomingBidirectionalToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend()); EXPECT_EQ(kMinimumFlowControlSendWindow, config_.GetInitialMaxStreamDataBytesUnidirectionalToSend()); static const uint32_t kTestWindowSize = 1234567; config_.SetInitialStreamFlowControlWindowToSend(kTestWindowSize); EXPECT_EQ(kTestWindowSize, config_.GetInitialStreamFlowControlWindowToSend()); EXPECT_EQ(kTestWindowSize, config_.GetInitialMaxStreamDataBytesIncomingBidirectionalToSend()); EXPECT_EQ(kTestWindowSize, config_.GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend()); EXPECT_EQ(kTestWindowSize, config_.GetInitialMaxStreamDataBytesUnidirectionalToSend()); static const uint32_t kTestWindowSizeTwo = 2345678; config_.SetInitialMaxStreamDataBytesIncomingBidirectionalToSend( kTestWindowSizeTwo); EXPECT_EQ(kTestWindowSize, config_.GetInitialStreamFlowControlWindowToSend()); EXPECT_EQ(kTestWindowSizeTwo, config_.GetInitialMaxStreamDataBytesIncomingBidirectionalToSend()); EXPECT_EQ(kTestWindowSize, config_.GetInitialMaxStreamDataBytesOutgoingBidirectionalToSend()); EXPECT_EQ(kTestWindowSize, config_.GetInitialMaxStreamDataBytesUnidirectionalToSend()); } TEST_P(QuicConfigTest, ToHandshakeMessage) { if (version_.UsesTls()) { return; } config_.SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); config_.SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); config_.SetIdleNetworkTimeout(QuicTime::Delta::FromSeconds(5)); CryptoHandshakeMessage msg; config_.ToHandshakeMessage(&msg, version_.transport_version); uint32_t value; QuicErrorCode error = msg.GetUint32(kICSL, &value); EXPECT_THAT(error, IsQuicNoError()); EXPECT_EQ(5u, value); error = msg.GetUint32(kSFCW, &value); EXPECT_THAT(error, IsQuicNoError()); EXPECT_EQ(kInitialStreamFlowControlWindowForTest, value); error = msg.GetUint32(kCFCW, &value); EXPECT_THAT(error, IsQuicNoError()); EXPECT_EQ(kInitialSessionFlowControlWindowForTest, value); } TEST_P(QuicConfigTest, ProcessClientHello) { if (version_.UsesTls()) { return; } const uint32_t kTestMaxAckDelayMs = static_cast<uint32_t>(GetDefaultDelayedAckTimeMs() + 1); QuicConfig client_config; QuicTagVector cgst; cgst.push_back(kQBIC); client_config.SetIdleNetworkTimeout( QuicTime::Delta::FromSeconds(2 * kMaximumIdleTimeoutSecs)); client_config.SetInitialRoundTripTimeUsToSend(10 * kNumMicrosPerMilli); client_config.SetInitialStreamFlowControlWindowToSend( 2 * kInitialStreamFlowControlWindowForTest); client_config.SetInitialSessionFlowControlWindowToSend( 2 * kInitialSessionFlowControlWindowForTest); QuicTagVector copt; copt.push_back(kTBBR); client_config.SetConnectionOptionsToSend(copt); client_config.SetMaxAckDelayToSendMs(kTestMaxAckDelayMs); CryptoHandshakeMessage msg; client_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; QuicTagVector initial_received_options; initial_received_options.push_back(kIW50); EXPECT_TRUE( config_.SetInitialReceivedConnectionOptions(initial_received_options)); EXPECT_FALSE( config_.SetInitialReceivedConnectionOptions(initial_received_options)) << "You can only set initial options once."; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_FALSE( config_.SetInitialReceivedConnectionOptions(initial_received_options)) << "You cannot set initial options after the hello."; EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs), config_.IdleNetworkTimeout()); EXPECT_EQ(10 * kNumMicrosPerMilli, config_.ReceivedInitialRoundTripTimeUs()); EXPECT_TRUE(config_.HasReceivedConnectionOptions()); EXPECT_EQ(2u, config_.ReceivedConnectionOptions().size()); EXPECT_EQ(config_.ReceivedConnectionOptions()[0], kIW50); EXPECT_EQ(config_.ReceivedConnectionOptions()[1], kTBBR); EXPECT_EQ(config_.ReceivedInitialStreamFlowControlWindowBytes(), 2 * kInitialStreamFlowControlWindowForTest); EXPECT_EQ(config_.ReceivedInitialSessionFlowControlWindowBytes(), 2 * kInitialSessionFlowControlWindowForTest); EXPECT_TRUE(config_.HasReceivedMaxAckDelayMs()); EXPECT_EQ(kTestMaxAckDelayMs, config_.ReceivedMaxAckDelayMs()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesIncomingBidirectional()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); EXPECT_FALSE(config_.HasReceivedInitialMaxStreamDataBytesUnidirectional()); } TEST_P(QuicConfigTest, ProcessServerHello) { if (version_.UsesTls()) { return; } QuicIpAddress host; host.FromString("127.0.3.1"); const QuicSocketAddress kTestServerAddress = QuicSocketAddress(host, 1234); const StatelessResetToken kTestStatelessResetToken{ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f}; const uint32_t kTestMaxAckDelayMs = static_cast<uint32_t>(GetDefaultDelayedAckTimeMs() + 1); QuicConfig server_config; QuicTagVector cgst; cgst.push_back(kQBIC); server_config.SetIdleNetworkTimeout( QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs / 2)); server_config.SetInitialRoundTripTimeUsToSend(10 * kNumMicrosPerMilli); server_config.SetInitialStreamFlowControlWindowToSend( 2 * kInitialStreamFlowControlWindowForTest); server_config.SetInitialSessionFlowControlWindowToSend( 2 * kInitialSessionFlowControlWindowForTest); server_config.SetIPv4AlternateServerAddressToSend(kTestServerAddress); server_config.SetStatelessResetTokenToSend(kTestStatelessResetToken); server_config.SetMaxAckDelayToSendMs(kTestMaxAckDelayMs); CryptoHandshakeMessage msg; server_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, SERVER, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); EXPECT_EQ(QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs / 2), config_.IdleNetworkTimeout()); EXPECT_EQ(10 * kNumMicrosPerMilli, config_.ReceivedInitialRoundTripTimeUs()); EXPECT_EQ(config_.ReceivedInitialStreamFlowControlWindowBytes(), 2 * kInitialStreamFlowControlWindowForTest); EXPECT_EQ(config_.ReceivedInitialSessionFlowControlWindowBytes(), 2 * kInitialSessionFlowControlWindowForTest); EXPECT_TRUE(config_.HasReceivedIPv4AlternateServerAddress()); EXPECT_EQ(kTestServerAddress, config_.ReceivedIPv4AlternateServerAddress()); EXPECT_FALSE(config_.HasReceivedIPv6AlternateServerAddress()); EXPECT_TRUE(config_.HasReceivedStatelessResetToken()); EXPECT_EQ(kTestStatelessResetToken, config_.ReceivedStatelessResetToken()); EXPECT_TRUE(config_.HasReceivedMaxAckDelayMs()); EXPECT_EQ(kTestMaxAckDelayMs, config_.ReceivedMaxAckDelayMs()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesIncomingBidirectional()); EXPECT_FALSE( config_.HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); EXPECT_FALSE(config_.HasReceivedInitialMaxStreamDataBytesUnidirectional()); } TEST_P(QuicConfigTest, MissingOptionalValuesInCHLO) { if (version_.UsesTls()) { return; } CryptoHandshakeMessage msg; msg.SetValue(kICSL, 1); msg.SetValue(kICSL, 1); msg.SetValue(kMIBS, 1); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); } TEST_P(QuicConfigTest, MissingOptionalValuesInSHLO) { if (version_.UsesTls()) { return; } CryptoHandshakeMessage msg; msg.SetValue(kICSL, 1); msg.SetValue(kMIBS, 1); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, SERVER, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); } TEST_P(QuicConfigTest, MissingValueInCHLO) { if (version_.UsesTls()) { return; } CryptoHandshakeMessage msg; std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_THAT(error, IsError(QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND)); } TEST_P(QuicConfigTest, MissingValueInSHLO) { if (version_.UsesTls()) { return; } CryptoHandshakeMessage msg; std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, SERVER, &error_details); EXPECT_THAT(error, IsError(QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND)); } TEST_P(QuicConfigTest, OutOfBoundSHLO) { if (version_.UsesTls()) { return; } QuicConfig server_config; server_config.SetIdleNetworkTimeout( QuicTime::Delta::FromSeconds(2 * kMaximumIdleTimeoutSecs)); CryptoHandshakeMessage msg; server_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, SERVER, &error_details); EXPECT_THAT(error, IsError(QUIC_INVALID_NEGOTIATED_VALUE)); } TEST_P(QuicConfigTest, InvalidFlowControlWindow) { QuicConfig config; const uint64_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; EXPECT_QUIC_BUG( config.SetInitialStreamFlowControlWindowToSend(kInvalidWindow), "Initial stream flow control receive window"); EXPECT_EQ(kMinimumFlowControlSendWindow, config.GetInitialStreamFlowControlWindowToSend()); } TEST_P(QuicConfigTest, HasClientSentConnectionOption) { if (version_.UsesTls()) { return; } QuicConfig client_config; QuicTagVector copt; copt.push_back(kTBBR); client_config.SetConnectionOptionsToSend(copt); EXPECT_TRUE(client_config.HasClientSentConnectionOption( kTBBR, Perspective::IS_CLIENT)); CryptoHandshakeMessage msg; client_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); EXPECT_TRUE(config_.HasReceivedConnectionOptions()); EXPECT_EQ(1u, config_.ReceivedConnectionOptions().size()); EXPECT_TRUE( config_.HasClientSentConnectionOption(kTBBR, Perspective::IS_SERVER)); } TEST_P(QuicConfigTest, DontSendClientConnectionOptions) { if (version_.UsesTls()) { return; } QuicConfig client_config; QuicTagVector copt; copt.push_back(kTBBR); client_config.SetClientConnectionOptions(copt); CryptoHandshakeMessage msg; client_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); EXPECT_FALSE(config_.HasReceivedConnectionOptions()); } TEST_P(QuicConfigTest, HasClientRequestedIndependentOption) { if (version_.UsesTls()) { return; } QuicConfig client_config; QuicTagVector client_opt; client_opt.push_back(kRENO); QuicTagVector copt; copt.push_back(kTBBR); client_config.SetClientConnectionOptions(client_opt); client_config.SetConnectionOptionsToSend(copt); EXPECT_TRUE(client_config.HasClientSentConnectionOption( kTBBR, Perspective::IS_CLIENT)); EXPECT_TRUE(client_config.HasClientRequestedIndependentOption( kRENO, Perspective::IS_CLIENT)); EXPECT_FALSE(client_config.HasClientRequestedIndependentOption( kTBBR, Perspective::IS_CLIENT)); CryptoHandshakeMessage msg; client_config.ToHandshakeMessage(&msg, version_.transport_version); std::string error_details; const QuicErrorCode error = config_.ProcessPeerHello(msg, CLIENT, &error_details); EXPECT_THAT(error, IsQuicNoError()); EXPECT_TRUE(config_.negotiated()); EXPECT_TRUE(config_.HasReceivedConnectionOptions()); EXPECT_EQ(1u, config_.ReceivedConnectionOptions().size()); EXPECT_FALSE(config_.HasClientRequestedIndependentOption( kRENO, Perspective::IS_SERVER)); EXPECT_TRUE(config_.HasClientRequestedIndependentOption( kTBBR, Perspective::IS_SERVER)); } TEST_P(QuicConfigTest, IncomingLargeIdleTimeoutTransportParameter) { if (!version_.UsesTls()) { return; } config_.SetIdleNetworkTimeout(quic::QuicTime::Delta::FromSeconds(60)); TransportParameters params; params.max_idle_timeout_ms.set_value(120000); std::string error_details = "foobar"; EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsQuicNoError()); EXPECT_EQ("", error_details); EXPECT_EQ(quic::QuicTime::Delta::FromSeconds(60), config_.IdleNetworkTimeout()); } TEST_P(QuicConfigTest, ReceivedInvalidMinAckDelayInTransportParameter) { if (!version_.UsesTls()) { return; } TransportParameters params; params.max_ack_delay.set_value(25 ); params.min_ack_delay_us.set_value(25 * kNumMicrosPerMilli + 1); std::string error_details = "foobar"; EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsError(IETF_QUIC_PROTOCOL_VIOLATION)); EXPECT_EQ("MinAckDelay is greater than MaxAckDelay.", error_details); params.max_ack_delay.set_value(25 ); params.min_ack_delay_us.set_value(25 * kNumMicrosPerMilli); EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsQuicNoError()); EXPECT_TRUE(error_details.empty()); } TEST_P(QuicConfigTest, FillTransportParams) { if (!version_.UsesTls()) { return; } const std::string kFakeGoogleHandshakeMessage = "Fake handshake message"; config_.SetInitialMaxStreamDataBytesIncomingBidirectionalToSend( 2 * kMinimumFlowControlSendWindow); config_.SetInitialMaxStreamDataBytesOutgoingBidirectionalToSend( 3 * kMinimumFlowControlSendWindow); config_.SetInitialMaxStreamDataBytesUnidirectionalToSend( 4 * kMinimumFlowControlSendWindow); config_.SetMaxPacketSizeToSend(kMaxPacketSizeForTest); config_.SetMaxDatagramFrameSizeToSend(kMaxDatagramFrameSizeForTest); config_.SetActiveConnectionIdLimitToSend(kActiveConnectionIdLimitForTest); config_.SetOriginalConnectionIdToSend(TestConnectionId(0x1111)); config_.SetInitialSourceConnectionIdToSend(TestConnectionId(0x2222)); config_.SetRetrySourceConnectionIdToSend(TestConnectionId(0x3333)); config_.SetMinAckDelayMs(kDefaultMinAckDelayTimeMs); config_.SetGoogleHandshakeMessageToSend(kFakeGoogleHandshakeMessage); config_.SetReliableStreamReset(true); QuicIpAddress host; host.FromString("127.0.3.1"); QuicSocketAddress kTestServerAddress = QuicSocketAddress(host, 1234); QuicConnectionId new_connection_id = TestConnectionId(5); StatelessResetToken new_stateless_reset_token = QuicUtils::GenerateStatelessResetToken(new_connection_id); config_.SetIPv4AlternateServerAddressToSend(kTestServerAddress); QuicSocketAddress kTestServerAddressV6 = QuicSocketAddress(QuicIpAddress::Any6(), 1234); config_.SetIPv6AlternateServerAddressToSend(kTestServerAddressV6); config_.SetPreferredAddressConnectionIdAndTokenToSend( new_connection_id, new_stateless_reset_token); config_.ClearAlternateServerAddressToSend(quiche::IpAddressFamily::IP_V6); EXPECT_TRUE(config_.GetPreferredAddressToSend(quiche::IpAddressFamily::IP_V4) .has_value()); EXPECT_FALSE(config_.GetPreferredAddressToSend(quiche::IpAddressFamily::IP_V6) .has_value()); TransportParameters params; config_.FillTransportParameters(&params); EXPECT_EQ(2 * kMinimumFlowControlSendWindow, params.initial_max_stream_data_bidi_remote.value()); EXPECT_EQ(3 * kMinimumFlowControlSendWindow, params.initial_max_stream_data_bidi_local.value()); EXPECT_EQ(4 * kMinimumFlowControlSendWindow, params.initial_max_stream_data_uni.value()); EXPECT_EQ(static_cast<uint64_t>(kMaximumIdleTimeoutSecs * 1000), params.max_idle_timeout_ms.value()); EXPECT_EQ(kMaxPacketSizeForTest, params.max_udp_payload_size.value()); EXPECT_EQ(kMaxDatagramFrameSizeForTest, params.max_datagram_frame_size.value()); EXPECT_EQ(kActiveConnectionIdLimitForTest, params.active_connection_id_limit.value()); ASSERT_TRUE(params.original_destination_connection_id.has_value()); EXPECT_EQ(TestConnectionId(0x1111), params.original_destination_connection_id.value()); ASSERT_TRUE(params.initial_source_connection_id.has_value()); EXPECT_EQ(TestConnectionId(0x2222), params.initial_source_connection_id.value()); ASSERT_TRUE(params.retry_source_connection_id.has_value()); EXPECT_EQ(TestConnectionId(0x3333), params.retry_source_connection_id.value()); EXPECT_EQ( static_cast<uint64_t>(kDefaultMinAckDelayTimeMs) * kNumMicrosPerMilli, params.min_ack_delay_us.value()); EXPECT_EQ(params.preferred_address->ipv4_socket_address, kTestServerAddress); EXPECT_EQ(params.preferred_address->ipv6_socket_address, QuicSocketAddress(QuicIpAddress::Any6(), 0)); EXPECT_EQ(*reinterpret_cast<StatelessResetToken*>( &params.preferred_address->stateless_reset_token.front()), new_stateless_reset_token); EXPECT_EQ(kFakeGoogleHandshakeMessage, params.google_handshake_message); EXPECT_TRUE(params.reliable_stream_reset); } TEST_P(QuicConfigTest, DNATPreferredAddress) { QuicIpAddress host_v4; host_v4.FromString("127.0.3.1"); QuicSocketAddress server_address_v4 = QuicSocketAddress(host_v4, 1234); QuicSocketAddress expected_server_address_v4 = QuicSocketAddress(host_v4, 1235); QuicIpAddress host_v6; host_v6.FromString("2001:db8:0::1"); QuicSocketAddress server_address_v6 = QuicSocketAddress(host_v6, 1234); QuicSocketAddress expected_server_address_v6 = QuicSocketAddress(host_v6, 1235); config_.SetIPv4AlternateServerAddressForDNat(server_address_v4, expected_server_address_v4); config_.SetIPv6AlternateServerAddressForDNat(server_address_v6, expected_server_address_v6); EXPECT_EQ(server_address_v4, config_.GetPreferredAddressToSend(quiche::IpAddressFamily::IP_V4)); EXPECT_EQ(server_address_v6, config_.GetPreferredAddressToSend(quiche::IpAddressFamily::IP_V6)); EXPECT_EQ(expected_server_address_v4, config_.GetMappedAlternativeServerAddress( quiche::IpAddressFamily::IP_V4)); EXPECT_EQ(expected_server_address_v6, config_.GetMappedAlternativeServerAddress( quiche::IpAddressFamily::IP_V6)); } TEST_P(QuicConfigTest, FillTransportParamsNoV4PreferredAddress) { if (!version_.UsesTls()) { return; } QuicIpAddress host; host.FromString("127.0.3.1"); QuicSocketAddress kTestServerAddress = QuicSocketAddress(host, 1234); QuicConnectionId new_connection_id = TestConnectionId(5); StatelessResetToken new_stateless_reset_token = QuicUtils::GenerateStatelessResetToken(new_connection_id); config_.SetIPv4AlternateServerAddressToSend(kTestServerAddress); QuicSocketAddress kTestServerAddressV6 = QuicSocketAddress(QuicIpAddress::Any6(), 1234); config_.SetIPv6AlternateServerAddressToSend(kTestServerAddressV6); config_.SetPreferredAddressConnectionIdAndTokenToSend( new_connection_id, new_stateless_reset_token); config_.ClearAlternateServerAddressToSend(quiche::IpAddressFamily::IP_V4); EXPECT_FALSE(config_.GetPreferredAddressToSend(quiche::IpAddressFamily::IP_V4) .has_value()); config_.ClearAlternateServerAddressToSend(quiche::IpAddressFamily::IP_V4); TransportParameters params; config_.FillTransportParameters(&params); EXPECT_EQ(params.preferred_address->ipv4_socket_address, QuicSocketAddress(QuicIpAddress::Any4(), 0)); EXPECT_EQ(params.preferred_address->ipv6_socket_address, kTestServerAddressV6); } TEST_P(QuicConfigTest, SupportsServerPreferredAddress) { SetQuicFlag(quic_always_support_server_preferred_address, true); EXPECT_TRUE(config_.SupportsServerPreferredAddress(Perspective::IS_CLIENT)); EXPECT_TRUE(config_.SupportsServerPreferredAddress(Perspective::IS_SERVER)); SetQuicFlag(quic_always_support_server_preferred_address, false); EXPECT_FALSE(config_.SupportsServerPreferredAddress(Perspective::IS_CLIENT)); EXPECT_FALSE(config_.SupportsServerPreferredAddress(Perspective::IS_SERVER)); QuicTagVector copt; copt.push_back(kSPAD); config_.SetConnectionOptionsToSend(copt); EXPECT_TRUE(config_.SupportsServerPreferredAddress(Perspective::IS_CLIENT)); EXPECT_FALSE(config_.SupportsServerPreferredAddress(Perspective::IS_SERVER)); config_.SetInitialReceivedConnectionOptions(copt); EXPECT_TRUE(config_.SupportsServerPreferredAddress(Perspective::IS_CLIENT)); EXPECT_TRUE(config_.SupportsServerPreferredAddress(Perspective::IS_SERVER)); } TEST_P(QuicConfigTest, AddConnectionOptionsToSend) { QuicTagVector copt; copt.push_back(kNOIP); copt.push_back(kFPPE); config_.AddConnectionOptionsToSend(copt); ASSERT_TRUE(config_.HasSendConnectionOptions()); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kNOIP)); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kFPPE)); copt.clear(); copt.push_back(kSPAD); copt.push_back(kSPA2); config_.AddConnectionOptionsToSend(copt); ASSERT_EQ(4, config_.SendConnectionOptions().size()); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kNOIP)); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kFPPE)); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kSPAD)); EXPECT_TRUE(quic::ContainsQuicTag(config_.SendConnectionOptions(), kSPA2)); } TEST_P(QuicConfigTest, ProcessTransportParametersServer) { if (!version_.UsesTls()) { return; } const std::string kFakeGoogleHandshakeMessage = "Fake handshake message"; TransportParameters params; params.initial_max_stream_data_bidi_local.set_value( 2 * kMinimumFlowControlSendWindow); params.initial_max_stream_data_bidi_remote.set_value( 3 * kMinimumFlowControlSendWindow); params.initial_max_stream_data_uni.set_value(4 * kMinimumFlowControlSendWindow); params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); params.max_datagram_frame_size.set_value(kMaxDatagramFrameSizeForTest); params.initial_max_streams_bidi.set_value(kDefaultMaxStreamsPerConnection); params.stateless_reset_token = CreateStatelessResetTokenForTest(); params.max_ack_delay.set_value(kMaxAckDelayForTest); params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); params.ack_delay_exponent.set_value(kAckDelayExponentForTest); params.active_connection_id_limit.set_value(kActiveConnectionIdLimitForTest); params.original_destination_connection_id = TestConnectionId(0x1111); params.initial_source_connection_id = TestConnectionId(0x2222); params.retry_source_connection_id = TestConnectionId(0x3333); params.google_handshake_message = kFakeGoogleHandshakeMessage; std::string error_details; EXPECT_THAT(config_.ProcessTransportParameters( params, true, &error_details), IsQuicNoError()) << error_details; EXPECT_FALSE(config_.negotiated()); ASSERT_TRUE( config_.HasReceivedInitialMaxStreamDataBytesIncomingBidirectional()); EXPECT_EQ(2 * kMinimumFlowControlSendWindow, config_.ReceivedInitialMaxStreamDataBytesIncomingBidirectional()); ASSERT_TRUE( config_.HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); EXPECT_EQ(3 * kMinimumFlowControlSendWindow, config_.ReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); ASSERT_TRUE(config_.HasReceivedInitialMaxStreamDataBytesUnidirectional()); EXPECT_EQ(4 * kMinimumFlowControlSendWindow, config_.ReceivedInitialMaxStreamDataBytesUnidirectional()); ASSERT_TRUE(config_.HasReceivedMaxPacketSize()); EXPECT_EQ(kMaxPacketSizeForTest, config_.ReceivedMaxPacketSize()); ASSERT_TRUE(config_.HasReceivedMaxDatagramFrameSize()); EXPECT_EQ(kMaxDatagramFrameSizeForTest, config_.ReceivedMaxDatagramFrameSize()); ASSERT_TRUE(config_.HasReceivedMaxBidirectionalStreams()); EXPECT_EQ(kDefaultMaxStreamsPerConnection, config_.ReceivedMaxBidirectionalStreams()); EXPECT_FALSE(config_.DisableConnectionMigration()); EXPECT_FALSE(config_.HasReceivedStatelessResetToken()); EXPECT_FALSE(config_.HasReceivedMaxAckDelayMs()); EXPECT_FALSE(config_.HasReceivedAckDelayExponent()); EXPECT_FALSE(config_.HasReceivedMinAckDelayMs()); EXPECT_FALSE(config_.HasReceivedOriginalConnectionId()); EXPECT_FALSE(config_.HasReceivedInitialSourceConnectionId()); EXPECT_FALSE(config_.HasReceivedRetrySourceConnectionId()); params.initial_max_stream_data_bidi_local.set_value( 2 * kMinimumFlowControlSendWindow + 1); params.initial_max_stream_data_bidi_remote.set_value( 4 * kMinimumFlowControlSendWindow); params.initial_max_stream_data_uni.set_value(5 * kMinimumFlowControlSendWindow); params.max_udp_payload_size.set_value(2 * kMaxPacketSizeForTest); params.max_datagram_frame_size.set_value(2 * kMaxDatagramFrameSizeForTest); params.initial_max_streams_bidi.set_value(2 * kDefaultMaxStreamsPerConnection); params.disable_active_migration = true; EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsQuicNoError()) << error_details; EXPECT_TRUE(config_.negotiated()); ASSERT_TRUE( config_.HasReceivedInitialMaxStreamDataBytesIncomingBidirectional()); EXPECT_EQ(2 * kMinimumFlowControlSendWindow + 1, config_.ReceivedInitialMaxStreamDataBytesIncomingBidirectional()); ASSERT_TRUE( config_.HasReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); EXPECT_EQ(4 * kMinimumFlowControlSendWindow, config_.ReceivedInitialMaxStreamDataBytesOutgoingBidirectional()); ASSERT_TRUE(config_.HasReceivedInitialMaxStreamDataBytesUnidirectional()); EXPECT_EQ(5 * kMinimumFlowControlSendWindow, config_.ReceivedInitialMaxStreamDataBytesUnidirectional()); ASSERT_TRUE(config_.HasReceivedMaxPacketSize()); EXPECT_EQ(2 * kMaxPacketSizeForTest, config_.ReceivedMaxPacketSize()); ASSERT_TRUE(config_.HasReceivedMaxDatagramFrameSize()); EXPECT_EQ(2 * kMaxDatagramFrameSizeForTest, config_.ReceivedMaxDatagramFrameSize()); ASSERT_TRUE(config_.HasReceivedMaxBidirectionalStreams()); EXPECT_EQ(2 * kDefaultMaxStreamsPerConnection, config_.ReceivedMaxBidirectionalStreams()); EXPECT_TRUE(config_.DisableConnectionMigration()); ASSERT_TRUE(config_.HasReceivedStatelessResetToken()); ASSERT_TRUE(config_.HasReceivedMaxAckDelayMs()); EXPECT_EQ(config_.ReceivedMaxAckDelayMs(), kMaxAckDelayForTest); ASSERT_TRUE(config_.HasReceivedMinAckDelayMs()); EXPECT_EQ(config_.ReceivedMinAckDelayMs(), kMinAckDelayUsForTest / kNumMicrosPerMilli); ASSERT_TRUE(config_.HasReceivedAckDelayExponent()); EXPECT_EQ(config_.ReceivedAckDelayExponent(), kAckDelayExponentForTest); ASSERT_TRUE(config_.HasReceivedActiveConnectionIdLimit()); EXPECT_EQ(config_.ReceivedActiveConnectionIdLimit(), kActiveConnectionIdLimitForTest); ASSERT_TRUE(config_.HasReceivedOriginalConnectionId()); EXPECT_EQ(config_.ReceivedOriginalConnectionId(), TestConnectionId(0x1111)); ASSERT_TRUE(config_.HasReceivedInitialSourceConnectionId()); EXPECT_EQ(config_.ReceivedInitialSourceConnectionId(), TestConnectionId(0x2222)); ASSERT_TRUE(config_.HasReceivedRetrySourceConnectionId()); EXPECT_EQ(config_.ReceivedRetrySourceConnectionId(), TestConnectionId(0x3333)); EXPECT_EQ(kFakeGoogleHandshakeMessage, config_.GetReceivedGoogleHandshakeMessage()); } TEST_P(QuicConfigTest, DisableMigrationTransportParameter) { if (!version_.UsesTls()) { return; } TransportParameters params; params.disable_active_migration = true; std::string error_details; EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsQuicNoError()); EXPECT_TRUE(config_.DisableConnectionMigration()); } TEST_P(QuicConfigTest, SendPreferredIPv4Address) { if (!version_.UsesTls()) { return; } EXPECT_FALSE(config_.HasReceivedPreferredAddressConnectionIdAndToken()); TransportParameters params; QuicIpAddress host; host.FromString("::ffff:192.0.2.128"); QuicSocketAddress kTestServerAddress = QuicSocketAddress(host, 1234); QuicConnectionId new_connection_id = TestConnectionId(5); StatelessResetToken new_stateless_reset_token = QuicUtils::GenerateStatelessResetToken(new_connection_id); auto preferred_address = std::make_unique<TransportParameters::PreferredAddress>(); preferred_address->ipv6_socket_address = kTestServerAddress; preferred_address->connection_id = new_connection_id; preferred_address->stateless_reset_token.assign( reinterpret_cast<const char*>(&new_stateless_reset_token), reinterpret_cast<const char*>(&new_stateless_reset_token) + sizeof(new_stateless_reset_token)); params.preferred_address = std::move(preferred_address); std::string error_details; EXPECT_THAT(config_.ProcessTransportParameters( params, false, &error_details), IsQuicNoError()); EXPECT_TRUE(config_.HasReceivedIPv6AlternateServerAddress()); EXPECT_EQ(config_.ReceivedIPv6AlternateServerAddress(), kTestServerAddress); EXPECT_TRUE(config_.HasReceivedPreferredAddressConnectionIdAndToken()); const std::pair<QuicConnectionId, StatelessResetToken>& preferred_address_connection_id_and_token = config_.ReceivedPreferredAddressConnectionIdAndToken(); EXPECT_EQ(preferred_address_connection_id_and_token.first, new_connection_id); EXPECT_EQ(preferred_address_connection_id_and_token.second, new_stateless_reset_token); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_config.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_config_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
cf56abb7-7215-4d48-bfa7-541690f4acc7
cpp
abseil/abseil-cpp
exception_safety_testing
absl/base/internal/exception_safety_testing.cc
absl/base/exception_safety_testing_test.cc
#include "absl/base/internal/exception_safety_testing.h" #ifdef ABSL_HAVE_EXCEPTIONS #include "gtest/gtest.h" #include "absl/meta/type_traits.h" namespace testing { exceptions_internal::NoThrowTag nothrow_ctor; exceptions_internal::StrongGuaranteeTagType strong_guarantee; exceptions_internal::ExceptionSafetyTestBuilder<> MakeExceptionSafetyTester() { return {}; } namespace exceptions_internal { int countdown = -1; ConstructorTracker* ConstructorTracker::current_tracker_instance_ = nullptr; void MaybeThrow(absl::string_view msg, bool throw_bad_alloc) { if (countdown-- == 0) { if (throw_bad_alloc) throw TestBadAllocException(msg); throw TestException(msg); } } testing::AssertionResult FailureMessage(const TestException& e, int countdown) noexcept { return testing::AssertionFailure() << "Exception thrown from " << e.what(); } std::string GetSpecString(TypeSpec spec) { std::string out; absl::string_view sep; const auto append = [&](absl::string_view s) { absl::StrAppend(&out, sep, s); sep = " | "; }; if (static_cast<bool>(TypeSpec::kNoThrowCopy & spec)) { append("kNoThrowCopy"); } if (static_cast<bool>(TypeSpec::kNoThrowMove & spec)) { append("kNoThrowMove"); } if (static_cast<bool>(TypeSpec::kNoThrowNew & spec)) { append("kNoThrowNew"); } return out; } std::string GetSpecString(AllocSpec spec) { return static_cast<bool>(AllocSpec::kNoThrowAllocate & spec) ? "kNoThrowAllocate" : ""; } } } #endif
#include "absl/base/internal/exception_safety_testing.h" #ifdef ABSL_HAVE_EXCEPTIONS #include <cstddef> #include <exception> #include <iostream> #include <list> #include <type_traits> #include <vector> #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #include "absl/memory/memory.h" namespace testing { namespace { using ::testing::exceptions_internal::SetCountdown; using ::testing::exceptions_internal::TestException; using ::testing::exceptions_internal::UnsetCountdown; template <typename F> void ExpectNoThrow(const F& f) { try { f(); } catch (const TestException& e) { ADD_FAILURE() << "Unexpected exception thrown from " << e.what(); } } TEST(ThrowingValueTest, Throws) { SetCountdown(); EXPECT_THROW(ThrowingValue<> bomb, TestException); SetCountdown(2); ExpectNoThrow([]() { ThrowingValue<> bomb; }); ExpectNoThrow([]() { ThrowingValue<> bomb; }); EXPECT_THROW(ThrowingValue<> bomb, TestException); UnsetCountdown(); } template <typename F> void TestOp(const F& f) { ExpectNoThrow(f); SetCountdown(); EXPECT_THROW(f(), TestException); UnsetCountdown(); } TEST(ThrowingValueTest, ThrowingCtors) { ThrowingValue<> bomb; TestOp([]() { ThrowingValue<> bomb(1); }); TestOp([&]() { ThrowingValue<> bomb1 = bomb; }); TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); }); } TEST(ThrowingValueTest, ThrowingAssignment) { ThrowingValue<> bomb, bomb1; TestOp([&]() { bomb = bomb1; }); TestOp([&]() { bomb = std::move(bomb1); }); { ThrowingValue<> lhs(39), rhs(42); ThrowingValue<> lhs_copy(lhs); SetCountdown(); EXPECT_THROW(lhs = rhs, TestException); UnsetCountdown(); EXPECT_NE(lhs, rhs); EXPECT_NE(lhs_copy, lhs); } { ThrowingValue<> lhs(39), rhs(42); ThrowingValue<> lhs_copy(lhs), rhs_copy(rhs); SetCountdown(); EXPECT_THROW(lhs = std::move(rhs), TestException); UnsetCountdown(); EXPECT_NE(lhs, rhs_copy); EXPECT_NE(lhs_copy, lhs); } } TEST(ThrowingValueTest, ThrowingComparisons) { ThrowingValue<> bomb1, bomb2; TestOp([&]() { return bomb1 == bomb2; }); TestOp([&]() { return bomb1 != bomb2; }); TestOp([&]() { return bomb1 < bomb2; }); TestOp([&]() { return bomb1 <= bomb2; }); TestOp([&]() { return bomb1 > bomb2; }); TestOp([&]() { return bomb1 >= bomb2; }); } TEST(ThrowingValueTest, ThrowingArithmeticOps) { ThrowingValue<> bomb1(1), bomb2(2); TestOp([&bomb1]() { +bomb1; }); TestOp([&bomb1]() { -bomb1; }); TestOp([&bomb1]() { ++bomb1; }); TestOp([&bomb1]() { bomb1++; }); TestOp([&bomb1]() { --bomb1; }); TestOp([&bomb1]() { bomb1--; }); TestOp([&]() { bomb1 + bomb2; }); TestOp([&]() { bomb1 - bomb2; }); TestOp([&]() { bomb1* bomb2; }); TestOp([&]() { bomb1 / bomb2; }); TestOp([&]() { bomb1 << 1; }); TestOp([&]() { bomb1 >> 1; }); } TEST(ThrowingValueTest, ThrowingLogicalOps) { ThrowingValue<> bomb1, bomb2; TestOp([&bomb1]() { !bomb1; }); TestOp([&]() { bomb1&& bomb2; }); TestOp([&]() { bomb1 || bomb2; }); } TEST(ThrowingValueTest, ThrowingBitwiseOps) { ThrowingValue<> bomb1, bomb2; TestOp([&bomb1]() { ~bomb1; }); TestOp([&]() { bomb1 & bomb2; }); TestOp([&]() { bomb1 | bomb2; }); TestOp([&]() { bomb1 ^ bomb2; }); } TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) { ThrowingValue<> bomb1(1), bomb2(2); TestOp([&]() { bomb1 += bomb2; }); TestOp([&]() { bomb1 -= bomb2; }); TestOp([&]() { bomb1 *= bomb2; }); TestOp([&]() { bomb1 /= bomb2; }); TestOp([&]() { bomb1 %= bomb2; }); TestOp([&]() { bomb1 &= bomb2; }); TestOp([&]() { bomb1 |= bomb2; }); TestOp([&]() { bomb1 ^= bomb2; }); TestOp([&]() { bomb1 *= bomb2; }); } TEST(ThrowingValueTest, ThrowingStreamOps) { ThrowingValue<> bomb; TestOp([&]() { std::istringstream stream; stream >> bomb; }); TestOp([&]() { std::stringstream stream; stream << bomb; }); } TEST(ThrowingValueTest, StreamOpsOutput) { using ::testing::TypeSpec; exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); EXPECT_NONFATAL_FAILURE( { using Thrower = ThrowingValue<TypeSpec{}>; auto thrower = Thrower(123); thrower.~Thrower(); }, "ThrowingValue<>(123)"); EXPECT_NONFATAL_FAILURE( { using Thrower = ThrowingValue<TypeSpec::kNoThrowCopy>; auto thrower = Thrower(234); thrower.~Thrower(); }, "ThrowingValue<kNoThrowCopy>(234)"); EXPECT_NONFATAL_FAILURE( { using Thrower = ThrowingValue<TypeSpec::kNoThrowMove | TypeSpec::kNoThrowNew>; auto thrower = Thrower(345); thrower.~Thrower(); }, "ThrowingValue<kNoThrowMove | kNoThrowNew>(345)"); EXPECT_NONFATAL_FAILURE( { using Thrower = ThrowingValue<static_cast<TypeSpec>(-1)>; auto thrower = Thrower(456); thrower.~Thrower(); }, "ThrowingValue<kNoThrowCopy | kNoThrowMove | kNoThrowNew>(456)"); } template <typename F> void TestAllocatingOp(const F& f) { ExpectNoThrow(f); SetCountdown(); EXPECT_THROW(f(), exceptions_internal::TestBadAllocException); UnsetCountdown(); } TEST(ThrowingValueTest, ThrowingAllocatingOps) { TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); }); TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); }); } TEST(ThrowingValueTest, NonThrowingMoveCtor) { ThrowingValue<TypeSpec::kNoThrowMove> nothrow_ctor; SetCountdown(); ExpectNoThrow([&nothrow_ctor]() { ThrowingValue<TypeSpec::kNoThrowMove> nothrow1 = std::move(nothrow_ctor); }); UnsetCountdown(); } TEST(ThrowingValueTest, NonThrowingMoveAssign) { ThrowingValue<TypeSpec::kNoThrowMove> nothrow_assign1, nothrow_assign2; SetCountdown(); ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() { nothrow_assign1 = std::move(nothrow_assign2); }); UnsetCountdown(); } TEST(ThrowingValueTest, ThrowingCopyCtor) { ThrowingValue<> tv; TestOp([&]() { ThrowingValue<> tv_copy(tv); }); } TEST(ThrowingValueTest, ThrowingCopyAssign) { ThrowingValue<> tv1, tv2; TestOp([&]() { tv1 = tv2; }); } TEST(ThrowingValueTest, NonThrowingCopyCtor) { ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_ctor; SetCountdown(); ExpectNoThrow([&nothrow_ctor]() { ThrowingValue<TypeSpec::kNoThrowCopy> nothrow1(nothrow_ctor); }); UnsetCountdown(); } TEST(ThrowingValueTest, NonThrowingCopyAssign) { ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_assign1, nothrow_assign2; SetCountdown(); ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() { nothrow_assign1 = nothrow_assign2; }); UnsetCountdown(); } TEST(ThrowingValueTest, ThrowingSwap) { ThrowingValue<> bomb1, bomb2; TestOp([&]() { std::swap(bomb1, bomb2); }); } TEST(ThrowingValueTest, NonThrowingSwap) { ThrowingValue<TypeSpec::kNoThrowMove> bomb1, bomb2; ExpectNoThrow([&]() { std::swap(bomb1, bomb2); }); } TEST(ThrowingValueTest, NonThrowingAllocation) { ThrowingValue<TypeSpec::kNoThrowNew>* allocated; ThrowingValue<TypeSpec::kNoThrowNew>* array; ExpectNoThrow([&allocated]() { allocated = new ThrowingValue<TypeSpec::kNoThrowNew>(1); delete allocated; }); ExpectNoThrow([&array]() { array = new ThrowingValue<TypeSpec::kNoThrowNew>[2]; delete[] array; }); } TEST(ThrowingValueTest, NonThrowingDelete) { auto* allocated = new ThrowingValue<>(1); auto* array = new ThrowingValue<>[2]; SetCountdown(); ExpectNoThrow([allocated]() { delete allocated; }); SetCountdown(); ExpectNoThrow([array]() { delete[] array; }); UnsetCountdown(); } TEST(ThrowingValueTest, NonThrowingPlacementDelete) { constexpr int kArrayLen = 2; constexpr size_t kExtraSpaceLen = sizeof(size_t) * 2; alignas(ThrowingValue<>) unsigned char buf[sizeof(ThrowingValue<>)]; alignas(ThrowingValue<>) unsigned char array_buf[kExtraSpaceLen + sizeof(ThrowingValue<>[kArrayLen])]; auto* placed = new (&buf) ThrowingValue<>(1); auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen]; auto* placed_array_end = reinterpret_cast<unsigned char*>(placed_array) + sizeof(ThrowingValue<>[kArrayLen]); EXPECT_LE(placed_array_end, array_buf + sizeof(array_buf)); SetCountdown(); ExpectNoThrow([placed, &buf]() { placed->~ThrowingValue<>(); ThrowingValue<>::operator delete(placed, &buf); }); SetCountdown(); ExpectNoThrow([&, placed_array]() { for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>(); ThrowingValue<>::operator delete[](placed_array, &array_buf); }); UnsetCountdown(); } TEST(ThrowingValueTest, NonThrowingDestructor) { auto* allocated = new ThrowingValue<>(); SetCountdown(); ExpectNoThrow([allocated]() { delete allocated; }); UnsetCountdown(); } TEST(ThrowingBoolTest, ThrowingBool) { ThrowingBool t = true; if (t) { } EXPECT_TRUE(t); TestOp([&]() { (void)!t; }); } TEST(ThrowingAllocatorTest, MemoryManagement) { ThrowingAllocator<int> int_alloc; int* ip = int_alloc.allocate(1); int_alloc.deallocate(ip, 1); int* i_array = int_alloc.allocate(2); int_alloc.deallocate(i_array, 2); ThrowingAllocator<ThrowingValue<>> tv_alloc; ThrowingValue<>* ptr = tv_alloc.allocate(1); tv_alloc.deallocate(ptr, 1); ThrowingValue<>* tv_array = tv_alloc.allocate(2); tv_alloc.deallocate(tv_array, 2); } TEST(ThrowingAllocatorTest, CallsGlobalNew) { ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> nothrow_alloc; ThrowingValue<>* ptr; SetCountdown(); ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); nothrow_alloc.deallocate(ptr, 1); UnsetCountdown(); } TEST(ThrowingAllocatorTest, ThrowingConstructors) { ThrowingAllocator<int> int_alloc; int* ip = nullptr; SetCountdown(); EXPECT_THROW(ip = int_alloc.allocate(1), TestException); ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); *ip = 1; SetCountdown(); EXPECT_THROW(int_alloc.construct(ip, 2), TestException); EXPECT_EQ(*ip, 1); int_alloc.deallocate(ip, 1); UnsetCountdown(); } TEST(ThrowingAllocatorTest, NonThrowingConstruction) { { ThrowingAllocator<int, AllocSpec::kNoThrowAllocate> int_alloc; int* ip = nullptr; SetCountdown(); ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); SetCountdown(); ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); EXPECT_EQ(*ip, 2); int_alloc.deallocate(ip, 1); UnsetCountdown(); } { ThrowingAllocator<int> int_alloc; int* ip = nullptr; ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); EXPECT_EQ(*ip, 2); int_alloc.deallocate(ip, 1); } { ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> nothrow_alloc; ThrowingValue<>* ptr; SetCountdown(); ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); SetCountdown(); ExpectNoThrow( [&]() { nothrow_alloc.construct(ptr, 2, testing::nothrow_ctor); }); EXPECT_EQ(ptr->Get(), 2); nothrow_alloc.destroy(ptr); nothrow_alloc.deallocate(ptr, 1); UnsetCountdown(); } { ThrowingAllocator<int> a; SetCountdown(); ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; }); SetCountdown(); ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); }); UnsetCountdown(); } } TEST(ThrowingAllocatorTest, ThrowingAllocatorConstruction) { ThrowingAllocator<int> a; TestOp([]() { ThrowingAllocator<int> a; }); TestOp([&]() { a.select_on_container_copy_construction(); }); } TEST(ThrowingAllocatorTest, State) { ThrowingAllocator<int> a1, a2; EXPECT_NE(a1, a2); auto a3 = a1; EXPECT_EQ(a3, a1); int* ip = a1.allocate(1); EXPECT_EQ(a3, a1); a3.deallocate(ip, 1); EXPECT_EQ(a3, a1); } TEST(ThrowingAllocatorTest, InVector) { std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v; for (int i = 0; i < 20; ++i) v.push_back({}); for (int i = 0; i < 20; ++i) v.pop_back(); } TEST(ThrowingAllocatorTest, InList) { std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l; for (int i = 0; i < 20; ++i) l.push_back({}); for (int i = 0; i < 20; ++i) l.pop_back(); for (int i = 0; i < 20; ++i) l.push_front({}); for (int i = 0; i < 20; ++i) l.pop_front(); } template <typename TesterInstance, typename = void> struct NullaryTestValidator : public std::false_type {}; template <typename TesterInstance> struct NullaryTestValidator< TesterInstance, absl::void_t<decltype(std::declval<TesterInstance>().Test())>> : public std::true_type {}; template <typename TesterInstance> bool HasNullaryTest(const TesterInstance&) { return NullaryTestValidator<TesterInstance>::value; } void DummyOp(void*) {} template <typename TesterInstance, typename = void> struct UnaryTestValidator : public std::false_type {}; template <typename TesterInstance> struct UnaryTestValidator< TesterInstance, absl::void_t<decltype(std::declval<TesterInstance>().Test(DummyOp))>> : public std::true_type {}; template <typename TesterInstance> bool HasUnaryTest(const TesterInstance&) { return UnaryTestValidator<TesterInstance>::value; } TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) { using T = exceptions_internal::UninitializedT; auto op = [](T* t) {}; auto inv = [](T*) { return testing::AssertionSuccess(); }; auto fac = []() { return absl::make_unique<T>(); }; auto without_fac = testing::MakeExceptionSafetyTester().WithOperation(op).WithContracts( inv, testing::strong_guarantee); EXPECT_FALSE(HasNullaryTest(without_fac)); EXPECT_FALSE(HasUnaryTest(without_fac)); auto without_op = testing::MakeExceptionSafetyTester() .WithContracts(inv, testing::strong_guarantee) .WithFactory(fac); EXPECT_FALSE(HasNullaryTest(without_op)); EXPECT_TRUE(HasUnaryTest(without_op)); auto without_inv = testing::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac); EXPECT_FALSE(HasNullaryTest(without_inv)); EXPECT_FALSE(HasUnaryTest(without_inv)); } struct ExampleStruct {}; std::unique_ptr<ExampleStruct> ExampleFunctionFactory() { return absl::make_unique<ExampleStruct>(); } void ExampleFunctionOperation(ExampleStruct*) {} testing::AssertionResult ExampleFunctionContract(ExampleStruct*) { return testing::AssertionSuccess(); } struct { std::unique_ptr<ExampleStruct> operator()() const { return ExampleFunctionFactory(); } } example_struct_factory; struct { void operator()(ExampleStruct*) const {} } example_struct_operation; struct { testing::AssertionResult operator()(ExampleStruct* example_struct) const { return ExampleFunctionContract(example_struct); } } example_struct_contract; auto example_lambda_factory = []() { return ExampleFunctionFactory(); }; auto example_lambda_operation = [](ExampleStruct*) {}; auto example_lambda_contract = [](ExampleStruct* example_struct) { return ExampleFunctionContract(example_struct); }; TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) { EXPECT_TRUE(testing::MakeExceptionSafetyTester() .WithFactory(ExampleFunctionFactory) .WithOperation(ExampleFunctionOperation) .WithContracts(ExampleFunctionContract) .Test()); EXPECT_TRUE(testing::MakeExceptionSafetyTester() .WithFactory(&ExampleFunctionFactory) .WithOperation(&ExampleFunctionOperation) .WithContracts(&ExampleFunctionContract) .Test()); EXPECT_TRUE(testing::MakeExceptionSafetyTester() .WithFactory(example_struct_factory) .WithOperation(example_struct_operation) .WithContracts(example_struct_contract) .Test()); EXPECT_TRUE(testing::MakeExceptionSafetyTester() .WithFactory(example_lambda_factory) .WithOperation(example_lambda_operation) .WithContracts(example_lambda_contract) .Test()); } struct NonNegative { bool operator==(const NonNegative& other) const { return i == other.i; } int i; }; testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) { if (g->i >= 0) { return testing::AssertionSuccess(); } return testing::AssertionFailure() << "i should be non-negative but is " << g->i; } struct { template <typename T> void operator()(T* t) const { (*t)(); } } invoker; auto tester = testing::MakeExceptionSafetyTester().WithOperation(invoker).WithContracts( CheckNonNegativeInvariants); auto strong_tester = tester.WithContracts(testing::strong_guarantee); struct FailsBasicGuarantee : public NonNegative { void operator()() { --i; ThrowingValue<> bomb; ++i; } }; TEST(ExceptionCheckTest, BasicGuaranteeFailure) { EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test()); } struct FollowsBasicGuarantee : public NonNegative { void operator()() { ++i; ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, BasicGuarantee) { EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); } TEST(ExceptionCheckTest, StrongGuaranteeFailure) { EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test()); EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); } struct BasicGuaranteeWithExtraContracts : public NonNegative { void operator()() { int old_i = i; i = kExceptionSentinel; ThrowingValue<> bomb; i = ++old_i; } static constexpr int kExceptionSentinel = 9999; }; #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr int BasicGuaranteeWithExtraContracts::kExceptionSentinel; #endif TEST(ExceptionCheckTest, BasicGuaranteeWithExtraContracts) { auto tester_with_val = tester.WithInitialValue(BasicGuaranteeWithExtraContracts{}); EXPECT_TRUE(tester_with_val.Test()); EXPECT_TRUE( tester_with_val .WithContracts([](BasicGuaranteeWithExtraContracts* o) { if (o->i == BasicGuaranteeWithExtraContracts::kExceptionSentinel) { return testing::AssertionSuccess(); } return testing::AssertionFailure() << "i should be " << BasicGuaranteeWithExtraContracts::kExceptionSentinel << ", but is " << o->i; }) .Test()); } struct FollowsStrongGuarantee : public NonNegative { void operator()() { ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, StrongGuarantee) { EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); } struct HasReset : public NonNegative { void operator()() { i = -1; ThrowingValue<> bomb; i = 1; } void reset() { i = 0; } }; testing::AssertionResult CheckHasResetContracts(HasReset* h) { h->reset(); return testing::AssertionResult(h->i == 0); } TEST(ExceptionCheckTest, ModifyingChecker) { auto set_to_1000 = [](FollowsBasicGuarantee* g) { g->i = 1000; return testing::AssertionSuccess(); }; auto is_1000 = [](FollowsBasicGuarantee* g) { return testing::AssertionResult(g->i == 1000); }; auto increment = [](FollowsStrongGuarantee* g) { ++g->i; return testing::AssertionSuccess(); }; EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{}) .WithContracts(set_to_1000, is_1000) .Test()); EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}) .WithContracts(increment) .Test()); EXPECT_TRUE(testing::MakeExceptionSafetyTester() .WithInitialValue(HasReset{}) .WithContracts(CheckHasResetContracts) .Test(invoker)); } TEST(ExceptionSafetyTesterTest, ResetsCountdown) { auto test = testing::MakeExceptionSafetyTester() .WithInitialValue(ThrowingValue<>()) .WithContracts([](ThrowingValue<>*) { return AssertionSuccess(); }) .WithOperation([](ThrowingValue<>*) {}); ASSERT_TRUE(test.Test()); EXPECT_TRUE(test.Test()); } struct NonCopyable : public NonNegative { NonCopyable(const NonCopyable&) = delete; NonCopyable() : NonNegative{0} {} void operator()() { ThrowingValue<> bomb; } }; TEST(ExceptionCheckTest, NonCopyable) { auto factory = []() { return absl::make_unique<NonCopyable>(); }; EXPECT_TRUE(tester.WithFactory(factory).Test()); EXPECT_TRUE(strong_tester.WithFactory(factory).Test()); } struct NonEqualityComparable : public NonNegative { void operator()() { ThrowingValue<> bomb; } void ModifyOnThrow() { ++i; ThrowingValue<> bomb; static_cast<void>(bomb); --i; } }; TEST(ExceptionCheckTest, NonEqualityComparable) { auto nec_is_strong = [](NonEqualityComparable* nec) { return testing::AssertionResult(nec->i == NonEqualityComparable().i); }; auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{}) .WithContracts(nec_is_strong); EXPECT_TRUE(strong_nec_tester.Test()); EXPECT_FALSE(strong_nec_tester.Test( [](NonEqualityComparable* n) { n->ModifyOnThrow(); })); } template <typename T> struct ExhaustivenessTester { void operator()() { successes |= 1; T b1; static_cast<void>(b1); successes |= (1 << 1); T b2; static_cast<void>(b2); successes |= (1 << 2); T b3; static_cast<void>(b3); successes |= (1 << 3); } bool operator==(const ExhaustivenessTester<ThrowingValue<>>&) const { return true; } static unsigned char successes; }; struct { template <typename T> testing::AssertionResult operator()(ExhaustivenessTester<T>*) const { return testing::AssertionSuccess(); } } CheckExhaustivenessTesterContracts; template <typename T> unsigned char ExhaustivenessTester<T>::successes = 0; TEST(ExceptionCheckTest, Exhaustiveness) { auto exhaust_tester = testing::MakeExceptionSafetyTester() .WithContracts(CheckExhaustivenessTesterContracts) .WithOperation(invoker); EXPECT_TRUE( exhaust_tester.WithInitialValue(ExhaustivenessTester<int>{}).Test()); EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF); EXPECT_TRUE( exhaust_tester.WithInitialValue(ExhaustivenessTester<ThrowingValue<>>{}) .WithContracts(testing::strong_guarantee) .Test()); EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF); } struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject { LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) { ++counter; ThrowingValue<> v; static_cast<void>(v); --counter; } LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept : TrackedObject(ABSL_PRETTY_FUNCTION) {} static int counter; }; int LeaksIfCtorThrows::counter = 0; TEST(ExceptionCheckTest, TestLeakyCtor) { testing::TestThrowingCtor<LeaksIfCtorThrows>(); EXPECT_EQ(LeaksIfCtorThrows::counter, 1); LeaksIfCtorThrows::counter = 0; } struct Tracked : private exceptions_internal::TrackedObject { Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {} }; TEST(ConstructorTrackerTest, CreatedBefore) { Tracked a, b, c; exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); } TEST(ConstructorTrackerTest, CreatedAfter) { exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); Tracked a, b, c; } TEST(ConstructorTrackerTest, NotDestroyedAfter) { alignas(Tracked) unsigned char storage[sizeof(Tracked)]; EXPECT_NONFATAL_FAILURE( { exceptions_internal::ConstructorTracker ct( exceptions_internal::countdown); new (&storage) Tracked(); }, "not destroyed"); } TEST(ConstructorTrackerTest, DestroyedTwice) { exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); EXPECT_NONFATAL_FAILURE( { Tracked t; t.~Tracked(); }, "re-destroyed"); } TEST(ConstructorTrackerTest, ConstructedTwice) { exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); alignas(Tracked) unsigned char storage[sizeof(Tracked)]; EXPECT_NONFATAL_FAILURE( { new (&storage) Tracked(); new (&storage) Tracked(); reinterpret_cast<Tracked*>(&storage)->~Tracked(); }, "re-constructed"); } TEST(ThrowingValueTraitsTest, RelationalOperators) { ThrowingValue<> a, b; EXPECT_TRUE((std::is_convertible<decltype(a == b), bool>::value)); EXPECT_TRUE((std::is_convertible<decltype(a != b), bool>::value)); EXPECT_TRUE((std::is_convertible<decltype(a < b), bool>::value)); EXPECT_TRUE((std::is_convertible<decltype(a <= b), bool>::value)); EXPECT_TRUE((std::is_convertible<decltype(a > b), bool>::value)); EXPECT_TRUE((std::is_convertible<decltype(a >= b), bool>::value)); } TEST(ThrowingAllocatorTraitsTest, Assignablility) { EXPECT_TRUE(absl::is_move_assignable<ThrowingAllocator<int>>::value); EXPECT_TRUE(absl::is_copy_assignable<ThrowingAllocator<int>>::value); EXPECT_TRUE(std::is_nothrow_move_assignable<ThrowingAllocator<int>>::value); EXPECT_TRUE(std::is_nothrow_copy_assignable<ThrowingAllocator<int>>::value); } } } #endif
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/exception_safety_testing.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/exception_safety_testing_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
cc39785c-7b2f-476e-a2fa-adde7d1d292a
cpp
abseil/abseil-cpp
kernel_timeout
absl/synchronization/internal/kernel_timeout.cc
absl/synchronization/internal/kernel_timeout_test.cc
#include "absl/synchronization/internal/kernel_timeout.h" #ifndef _WIN32 #include <sys/types.h> #endif #include <algorithm> #include <chrono> #include <cstdint> #include <cstdlib> #include <cstring> #include <ctime> #include <limits> #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr uint64_t KernelTimeout::kNoTimeout; constexpr int64_t KernelTimeout::kMaxNanos; #endif int64_t KernelTimeout::SteadyClockNow() { if (!SupportsSteadyClock()) { return absl::GetCurrentTimeNanos(); } return std::chrono::duration_cast<std::chrono::nanoseconds>( std::chrono::steady_clock::now().time_since_epoch()) .count(); } KernelTimeout::KernelTimeout(absl::Time t) { if (t == absl::InfiniteFuture()) { rep_ = kNoTimeout; return; } int64_t unix_nanos = absl::ToUnixNanos(t); if (unix_nanos < 0) { unix_nanos = 0; } if (unix_nanos >= kMaxNanos) { rep_ = kNoTimeout; return; } rep_ = static_cast<uint64_t>(unix_nanos) << 1; } KernelTimeout::KernelTimeout(absl::Duration d) { if (d == absl::InfiniteDuration()) { rep_ = kNoTimeout; return; } int64_t nanos = absl::ToInt64Nanoseconds(d); if (nanos < 0) { nanos = 0; } int64_t now = SteadyClockNow(); if (nanos > kMaxNanos - now) { rep_ = kNoTimeout; return; } nanos += now; rep_ = (static_cast<uint64_t>(nanos) << 1) | uint64_t{1}; } int64_t KernelTimeout::MakeAbsNanos() const { if (!has_timeout()) { return kMaxNanos; } int64_t nanos = RawAbsNanos(); if (is_relative_timeout()) { nanos = std::max<int64_t>(nanos - SteadyClockNow(), 0); int64_t now = absl::GetCurrentTimeNanos(); if (nanos > kMaxNanos - now) { nanos = kMaxNanos; } else { nanos += now; } } else if (nanos == 0) { nanos = 1; } return nanos; } int64_t KernelTimeout::InNanosecondsFromNow() const { if (!has_timeout()) { return kMaxNanos; } int64_t nanos = RawAbsNanos(); if (is_absolute_timeout()) { return std::max<int64_t>(nanos - absl::GetCurrentTimeNanos(), 0); } return std::max<int64_t>(nanos - SteadyClockNow(), 0); } struct timespec KernelTimeout::MakeAbsTimespec() const { return absl::ToTimespec(absl::Nanoseconds(MakeAbsNanos())); } struct timespec KernelTimeout::MakeRelativeTimespec() const { return absl::ToTimespec(absl::Nanoseconds(InNanosecondsFromNow())); } #ifndef _WIN32 struct timespec KernelTimeout::MakeClockAbsoluteTimespec(clockid_t c) const { if (!has_timeout()) { return absl::ToTimespec(absl::Nanoseconds(kMaxNanos)); } int64_t nanos = RawAbsNanos(); if (is_absolute_timeout()) { nanos -= absl::GetCurrentTimeNanos(); } else { nanos -= SteadyClockNow(); } struct timespec now; ABSL_RAW_CHECK(clock_gettime(c, &now) == 0, "clock_gettime() failed"); absl::Duration from_clock_epoch = absl::DurationFromTimespec(now) + absl::Nanoseconds(nanos); if (from_clock_epoch <= absl::ZeroDuration()) { return absl::ToTimespec(absl::Nanoseconds(1)); } return absl::ToTimespec(from_clock_epoch); } #endif KernelTimeout::DWord KernelTimeout::InMillisecondsFromNow() const { constexpr DWord kInfinite = std::numeric_limits<DWord>::max(); if (!has_timeout()) { return kInfinite; } constexpr uint64_t kNanosInMillis = uint64_t{1'000'000}; constexpr uint64_t kMaxValueNanos = std::numeric_limits<int64_t>::max() - kNanosInMillis + 1; uint64_t ns_from_now = static_cast<uint64_t>(InNanosecondsFromNow()); if (ns_from_now >= kMaxValueNanos) { return kInfinite; } uint64_t ms_from_now = (ns_from_now + kNanosInMillis - 1) / kNanosInMillis; if (ms_from_now > kInfinite) { return kInfinite; } return static_cast<DWord>(ms_from_now); } std::chrono::time_point<std::chrono::system_clock> KernelTimeout::ToChronoTimePoint() const { if (!has_timeout()) { return std::chrono::time_point<std::chrono::system_clock>::max(); } auto micros = std::chrono::duration_cast<std::chrono::microseconds>( std::chrono::nanoseconds(MakeAbsNanos())); return std::chrono::system_clock::from_time_t(0) + micros; } std::chrono::nanoseconds KernelTimeout::ToChronoDuration() const { if (!has_timeout()) { return std::chrono::nanoseconds::max(); } return std::chrono::nanoseconds(InNanosecondsFromNow()); } } ABSL_NAMESPACE_END }
#include "absl/synchronization/internal/kernel_timeout.h" #include <ctime> #include <chrono> #include <limits> #include "absl/base/config.h" #include "absl/random/random.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "gtest/gtest.h" #if defined(__GOOGLE_GRTE_VERSION__) && \ !defined(ABSL_HAVE_ADDRESS_SANITIZER) && \ !defined(ABSL_HAVE_MEMORY_SANITIZER) && \ !defined(ABSL_HAVE_THREAD_SANITIZER) extern "C" int __clock_gettime(clockid_t c, struct timespec* ts); extern "C" int clock_gettime(clockid_t c, struct timespec* ts) { if (c == CLOCK_MONOTONIC && !absl::synchronization_internal::KernelTimeout::SupportsSteadyClock()) { thread_local absl::BitGen gen; ts->tv_sec = absl::Uniform(gen, 0, 1'000'000'000); ts->tv_nsec = absl::Uniform(gen, 0, 1'000'000'000); return 0; } return __clock_gettime(c, ts); } #endif namespace { #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ defined(ABSL_HAVE_MEMORY_SANITIZER) || \ defined(ABSL_HAVE_THREAD_SANITIZER) || defined(__ANDROID__) || \ defined(__APPLE__) || defined(_WIN32) || defined(_WIN64) constexpr absl::Duration kTimingBound = absl::Milliseconds(5); #else constexpr absl::Duration kTimingBound = absl::Microseconds(250); #endif using absl::synchronization_internal::KernelTimeout; TEST(KernelTimeout, DISABLED_FiniteTimes) { constexpr absl::Duration kDurationsToTest[] = { absl::ZeroDuration(), absl::Nanoseconds(1), absl::Microseconds(1), absl::Milliseconds(1), absl::Seconds(1), absl::Minutes(1), absl::Hours(1), absl::Hours(1000), -absl::Nanoseconds(1), -absl::Microseconds(1), -absl::Milliseconds(1), -absl::Seconds(1), -absl::Minutes(1), -absl::Hours(1), -absl::Hours(1000), }; for (auto duration : kDurationsToTest) { const absl::Time now = absl::Now(); const absl::Time when = now + duration; SCOPED_TRACE(duration); KernelTimeout t(when); EXPECT_TRUE(t.has_timeout()); EXPECT_TRUE(t.is_absolute_timeout()); EXPECT_FALSE(t.is_relative_timeout()); EXPECT_EQ(absl::TimeFromTimespec(t.MakeAbsTimespec()), when); #ifndef _WIN32 EXPECT_LE( absl::AbsDuration(absl::Now() + duration - absl::TimeFromTimespec( t.MakeClockAbsoluteTimespec(CLOCK_REALTIME))), absl::Milliseconds(10)); #endif EXPECT_LE( absl::AbsDuration(absl::DurationFromTimespec(t.MakeRelativeTimespec()) - std::max(duration, absl::ZeroDuration())), kTimingBound); EXPECT_EQ(absl::FromUnixNanos(t.MakeAbsNanos()), when); EXPECT_LE(absl::AbsDuration(absl::Milliseconds(t.InMillisecondsFromNow()) - std::max(duration, absl::ZeroDuration())), absl::Milliseconds(5)); EXPECT_LE(absl::AbsDuration(absl::FromChrono(t.ToChronoTimePoint()) - when), absl::Microseconds(1)); EXPECT_LE(absl::AbsDuration(absl::FromChrono(t.ToChronoDuration()) - std::max(duration, absl::ZeroDuration())), kTimingBound); } } TEST(KernelTimeout, InfiniteFuture) { KernelTimeout t(absl::InfiniteFuture()); EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, DefaultConstructor) { KernelTimeout t; EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, TimeMaxNanos) { KernelTimeout t(absl::FromUnixNanos(std::numeric_limits<int64_t>::max())); EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, Never) { KernelTimeout t = KernelTimeout::Never(); EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, InfinitePast) { KernelTimeout t(absl::InfinitePast()); EXPECT_TRUE(t.has_timeout()); EXPECT_TRUE(t.is_absolute_timeout()); EXPECT_FALSE(t.is_relative_timeout()); EXPECT_LE(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::FromUnixNanos(1)); #ifndef _WIN32 EXPECT_LE(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::FromUnixSeconds(1)); #endif EXPECT_EQ(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::ZeroDuration()); EXPECT_LE(absl::FromUnixNanos(t.MakeAbsNanos()), absl::FromUnixNanos(1)); EXPECT_EQ(t.InMillisecondsFromNow(), KernelTimeout::DWord{0}); EXPECT_LT(t.ToChronoTimePoint(), std::chrono::system_clock::from_time_t(0) + std::chrono::seconds(1)); EXPECT_EQ(t.ToChronoDuration(), std::chrono::nanoseconds(0)); } TEST(KernelTimeout, DISABLED_FiniteDurations) { constexpr absl::Duration kDurationsToTest[] = { absl::ZeroDuration(), absl::Nanoseconds(1), absl::Microseconds(1), absl::Milliseconds(1), absl::Seconds(1), absl::Minutes(1), absl::Hours(1), absl::Hours(1000), }; for (auto duration : kDurationsToTest) { SCOPED_TRACE(duration); KernelTimeout t(duration); EXPECT_TRUE(t.has_timeout()); EXPECT_FALSE(t.is_absolute_timeout()); EXPECT_TRUE(t.is_relative_timeout()); EXPECT_LE(absl::AbsDuration(absl::Now() + duration - absl::TimeFromTimespec(t.MakeAbsTimespec())), absl::Milliseconds(5)); #ifndef _WIN32 EXPECT_LE( absl::AbsDuration(absl::Now() + duration - absl::TimeFromTimespec( t.MakeClockAbsoluteTimespec(CLOCK_REALTIME))), absl::Milliseconds(5)); #endif EXPECT_LE( absl::AbsDuration(absl::DurationFromTimespec(t.MakeRelativeTimespec()) - duration), kTimingBound); EXPECT_LE(absl::AbsDuration(absl::Now() + duration - absl::FromUnixNanos(t.MakeAbsNanos())), absl::Milliseconds(5)); EXPECT_LE(absl::Milliseconds(t.InMillisecondsFromNow()) - duration, absl::Milliseconds(5)); EXPECT_LE(absl::AbsDuration(absl::Now() + duration - absl::FromChrono(t.ToChronoTimePoint())), kTimingBound); EXPECT_LE( absl::AbsDuration(absl::FromChrono(t.ToChronoDuration()) - duration), kTimingBound); } } TEST(KernelTimeout, DISABLED_NegativeDurations) { constexpr absl::Duration kDurationsToTest[] = { -absl::ZeroDuration(), -absl::Nanoseconds(1), -absl::Microseconds(1), -absl::Milliseconds(1), -absl::Seconds(1), -absl::Minutes(1), -absl::Hours(1), -absl::Hours(1000), -absl::InfiniteDuration(), }; for (auto duration : kDurationsToTest) { SCOPED_TRACE(duration); KernelTimeout t(duration); EXPECT_TRUE(t.has_timeout()); EXPECT_FALSE(t.is_absolute_timeout()); EXPECT_TRUE(t.is_relative_timeout()); EXPECT_LE(absl::AbsDuration(absl::Now() - absl::TimeFromTimespec(t.MakeAbsTimespec())), absl::Milliseconds(5)); #ifndef _WIN32 EXPECT_LE(absl::AbsDuration(absl::Now() - absl::TimeFromTimespec( t.MakeClockAbsoluteTimespec( CLOCK_REALTIME))), absl::Milliseconds(5)); #endif EXPECT_EQ(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::ZeroDuration()); EXPECT_LE( absl::AbsDuration(absl::Now() - absl::FromUnixNanos(t.MakeAbsNanos())), absl::Milliseconds(5)); EXPECT_EQ(t.InMillisecondsFromNow(), KernelTimeout::DWord{0}); EXPECT_LE(absl::AbsDuration(absl::Now() - absl::FromChrono(t.ToChronoTimePoint())), absl::Milliseconds(5)); EXPECT_EQ(t.ToChronoDuration(), std::chrono::nanoseconds(0)); } } TEST(KernelTimeout, InfiniteDuration) { KernelTimeout t(absl::InfiniteDuration()); EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, DurationMaxNanos) { KernelTimeout t(absl::Nanoseconds(std::numeric_limits<int64_t>::max())); EXPECT_FALSE(t.has_timeout()); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_EQ(t.InMillisecondsFromNow(), std::numeric_limits<KernelTimeout::DWord>::max()); EXPECT_EQ(t.ToChronoTimePoint(), std::chrono::time_point<std::chrono::system_clock>::max()); EXPECT_GE(t.ToChronoDuration(), std::chrono::nanoseconds::max()); } TEST(KernelTimeout, OverflowNanos) { int64_t now_nanos = absl::ToUnixNanos(absl::Now()); int64_t limit = std::numeric_limits<int64_t>::max() - now_nanos; absl::Duration duration = absl::Nanoseconds(limit) + absl::Seconds(1); KernelTimeout t(duration); EXPECT_GT(absl::TimeFromTimespec(t.MakeAbsTimespec()), absl::Now() + absl::Hours(100000)); #ifndef _WIN32 EXPECT_GT(absl::TimeFromTimespec(t.MakeClockAbsoluteTimespec(CLOCK_REALTIME)), absl::Now() + absl::Hours(100000)); #endif EXPECT_GT(absl::DurationFromTimespec(t.MakeRelativeTimespec()), absl::Hours(100000)); EXPECT_GT(absl::FromUnixNanos(t.MakeAbsNanos()), absl::Now() + absl::Hours(100000)); EXPECT_LE(absl::Milliseconds(t.InMillisecondsFromNow()) - duration, absl::Milliseconds(5)); EXPECT_GT(t.ToChronoTimePoint(), std::chrono::system_clock::now() + std::chrono::hours(100000)); EXPECT_GT(t.ToChronoDuration(), std::chrono::hours(100000)); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/internal/kernel_timeout.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/internal/kernel_timeout_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
70560aea-19e3-4db0-bb61-409c88fde8ba
cpp
tensorflow/tensorflow
quantized_pooling_ops
tensorflow/core/kernels/quantized_pooling_ops.cc
tensorflow/core/kernels/quantized_pooling_ops_test.cc
#define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/pooling_ops_common.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; template <typename Device, typename T> class QuantizedAvgPoolingOp : public OpKernel { public: explicit QuantizedAvgPoolingOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("ksize", &ksize_)); OP_REQUIRES(context, ksize_.size() == 4, errors::InvalidArgument("Sliding window ksize field must " "specify 4 dimensions")); OP_REQUIRES_OK(context, context->GetAttr("strides", &stride_)); OP_REQUIRES(context, stride_.size() == 4, errors::InvalidArgument("Sliding window strides field must " "specify 4 dimensions")); OP_REQUIRES_OK(context, context->GetAttr("padding", &padding_)); OP_REQUIRES(context, ksize_[0] == 1 && stride_[0] == 1, errors::Unimplemented( "Pooling is not yet supported on the batch dimension.")); } void Compute(OpKernelContext* context) override { const Tensor& tensor_in = context->input(0); PoolParameters params{context, ksize_, stride_, padding_, {}, FORMAT_NHWC, tensor_in.shape()}; if (!context->status().ok()) { return; } const Tensor& min_input_tensor = context->input(1); const Tensor& max_input_tensor = context->input(2); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_input_tensor.shape()), errors::InvalidArgument( "min_input shape must be rank 0 but is rank ", min_input_tensor.dims(), ", received shape: ", min_input_tensor.shape())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_input_tensor.shape()), errors::InvalidArgument( "max_input shape must be rank 0 but is rank ", max_input_tensor.dims(), ", received shape: ", max_input_tensor.shape())); const float min_input = context->input(1).scalar<float>()(); const float max_input = context->input(2).scalar<float>()(); OP_REQUIRES(context, params.depth_window == 1, errors::Unimplemented("Non-spatial pooling is not " "yet supported. Volunteers? :)")); OP_REQUIRES(context, tensor_in.dims() == 4, errors::InvalidArgument("tensor_in must be 4-dimensional")); Tensor* output = nullptr; TensorShape params_forward_output_shape; OP_REQUIRES_OK(context, params.forward_output_shape(&params_forward_output_shape)); OP_REQUIRES_OK(context, context->allocate_output( 0, params_forward_output_shape, &output)); const int32_t highest = static_cast<int32>(Eigen::NumTraits<T>::highest()); const int32_t lowest = static_cast<int32>(Eigen::NumTraits<T>::lowest()); OP_REQUIRES_OK(context, params.forward_output_shape(&params_forward_output_shape)); Tensor int32_output(DT_INT32, params_forward_output_shape); Tensor int32_input(DT_INT32, tensor_in.shape()); int32_input.flat<int32>() = tensor_in.flat<T>().template cast<int32>(); SpatialAvgPool<Device, int32>(context, &int32_output, int32_input, params, padding_); output->flat<T>() = int32_output.flat<int32>() .cwiseMax(lowest) .cwiseMin(highest) .template cast<T>(); Tensor* output_min = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); output_min->flat<float>()(0) = min_input; Tensor* output_max = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max)); output_max->flat<float>()(0) = max_input; } private: std::vector<int32> ksize_; std::vector<int32> stride_; Padding padding_; }; template <typename Device, typename T> class QuantizedMaxPoolingOp : public MaxPoolingOp<Device, T> { public: explicit QuantizedMaxPoolingOp(OpKernelConstruction* context) : MaxPoolingOp<Device, T>(context) {} void Compute(OpKernelContext* context) override { const Tensor& min_input_tensor = context->input(1); const Tensor& max_input_tensor = context->input(2); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_input_tensor.shape()), errors::InvalidArgument( "min_input shape must be rank 0 but is rank ", min_input_tensor.dims(), ", received shape: ", min_input_tensor.shape())); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_input_tensor.shape()), errors::InvalidArgument( "max_input shape must be rank 0 but is rank ", max_input_tensor.dims(), ", received shape: ", max_input_tensor.shape())); const float min_input = context->input(1).scalar<float>()(); const float max_input = context->input(2).scalar<float>()(); MaxPoolingOp<Device, T>::Compute(context); Tensor* output_min = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min)); output_min->flat<float>()(0) = min_input; Tensor* output_max = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max)); output_max->flat<float>()(0) = max_input; } }; REGISTER_KERNEL_BUILDER( Name("QuantizedAvgPool").Device(DEVICE_CPU).TypeConstraint<quint8>("T"), QuantizedAvgPoolingOp<CPUDevice, quint8>); REGISTER_KERNEL_BUILDER( Name("QuantizedMaxPool").Device(DEVICE_CPU).TypeConstraint<quint8>("T"), QuantizedMaxPoolingOp<CPUDevice, quint8>); #ifdef INTEL_MKL REGISTER_KERNEL_BUILDER( Name("QuantizedAvgPool").Device(DEVICE_CPU).TypeConstraint<qint8>("T"), QuantizedAvgPoolingOp<CPUDevice, qint8>); REGISTER_KERNEL_BUILDER( Name("QuantizedMaxPool").Device(DEVICE_CPU).TypeConstraint<qint8>("T"), QuantizedMaxPoolingOp<CPUDevice, qint8>); #endif }
#define EIGEN_USE_THREADS #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class QuantizedPoolingTest : public OpsTestBase { protected: }; TEST_F(QuantizedPoolingTest, SmallAveragePooling) { const int ksize = 2; const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_avg_pool_op", "QuantizedAvgPool") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("ksize", {1, ksize, ksize, 1}) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const float input_min = 0.0f; const float input_max = 255.0f; const int input_height = 4; const int input_width = 4; const int input_channels = 2; Tensor input_float(DT_FLOAT, {1, input_height, input_width, input_channels}); test::FillValues<float>( &input_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}); Tensor input_quantized = FloatTensorToQuantized<quint8>(input_float, input_min, input_max); const int expected_width = input_width / stride; const int expected_height = input_height / stride; Tensor expected_float(DT_FLOAT, {1, expected_height, expected_width, input_channels}); test::FillValues<float>(&expected_float, {6, 7, 10, 11, 22, 23, 26, 27}); AddInputFromArray<quint8>(input_quantized.shape(), input_quantized.flat<quint8>()); AddInputFromArray<float>(TensorShape({}), {input_min}); AddInputFromArray<float>(TensorShape({}), {input_max}); TF_ASSERT_OK(RunOpKernel()); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat<float>()(0); const float output_max = GetOutput(2)->flat<float>()(0); Tensor output_float = QuantizedTensorToFloat<quint8>(output_quantized, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 0.2); } TEST_F(QuantizedPoolingTest, SmallMaxPooling) { const int ksize = 2; const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_max_pool_op", "QuantizedMaxPool") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("T", DataTypeToEnum<quint8>::v()) .Attr("ksize", {1, ksize, ksize, 1}) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const float input_min = 0.0f; const float input_max = 255.0f; const int input_height = 4; const int input_width = 4; const int input_channels = 2; Tensor input_float(DT_FLOAT, {1, input_height, input_width, input_channels}); test::FillValues<float>( &input_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}); Tensor input_quantized = FloatTensorToQuantized<quint8>(input_float, input_min, input_max); const int expected_width = input_width / stride; const int expected_height = input_height / stride; Tensor expected_float(DT_FLOAT, {1, expected_height, expected_width, input_channels}); test::FillValues<float>(&expected_float, {11, 12, 15, 16, 27, 28, 31, 32}); AddInputFromArray<quint8>(input_quantized.shape(), input_quantized.flat<quint8>()); AddInputFromArray<float>(TensorShape({}), {input_min}); AddInputFromArray<float>(TensorShape({}), {input_max}); TF_ASSERT_OK(RunOpKernel()); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat<float>()(0); const float output_max = GetOutput(2)->flat<float>()(0); Tensor output_float = QuantizedTensorToFloat<quint8>(output_quantized, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 0.2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_pooling_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_pooling_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
486e1eb3-0d28-4e21-863a-18166ad5e866
cpp
tensorflow/tensorflow
verify_clustering_pass
tensorflow/compiler/mlir/tf2xla/internal/passes/verify_clustering_pass.cc
tensorflow/compiler/mlir/tf2xla/internal/passes/verify_clustering_pass_test.cc
#include <memory> #include <string> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Visitors.h" #include "mlir/Pass/Pass.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/mlir/tf2xla/internal/utils/dialect_detection_utils.h" namespace tensorflow { namespace tf2xla { namespace internal { namespace { #define GEN_PASS_DEF_VERIFYCLUSTERINGPASS #include "tensorflow/compiler/mlir/tf2xla/internal/passes/clustering_passes.h.inc" using mlir::Operation; using mlir::WalkResult; class VerifyClusteringPass : public impl::VerifyClusteringPassBase<VerifyClusteringPass> { public: void runOnOperation() override; }; void VerifyClusteringPass::runOnOperation() { Operation* func_op = getOperation(); auto walk_result = func_op->walk([&](Operation* op) { if (!tensorflow::tf2xla::internal::IsInBridgeAcceptableDialects(op)) { std::string error = "op is in dialect " + op->getDialect()->getNamespace().str() + " not in tf functional dialect"; op->emitError() << error; return WalkResult::interrupt(); } if (op->hasAttr(mlir::TF::kXlaOutsideCompilationAttr)) { std::string error = "op has outside compilation attribute _xla_outside_compilation which " "is not allowed after clustering"; op->emitError() << error; return mlir::WalkResult::interrupt(); } return WalkResult::advance(); }); if (walk_result.wasInterrupted()) { signalPassFailure(); } } } std::unique_ptr<mlir::OperationPass<mlir::func::FuncOp>> CreateVerifyClusteringPass() { return std::make_unique<VerifyClusteringPass>(); } } } }
#include <memory> #include <gtest/gtest.h> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tf2xla/internal/passes/clustering_passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace internal { namespace { using mlir::mhlo::test::GetMlirModuleFromString; class VerifyClusteringPassTest : public testing::Test { protected: void CreateModule(const char* module_string) { TF_ASSERT_OK_AND_ASSIGN(module_, GetMlirModuleFromString(module_string, &context_)); pm_ = std::make_unique<mlir::PassManager>(&context_); pm_->addNestedPass<mlir::func::FuncOp>(CreateVerifyClusteringPass()); } mlir::LogicalResult Run() { return pm_->run(module_.get()); } private: mlir::MLIRContext context_; mlir::OwningOpRef<mlir::ModuleOp> module_; std::unique_ptr<mlir::PassManager> pm_; }; TEST_F(VerifyClusteringPassTest, OnlyTfFunctionalPasses) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.Const"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> return %0 : tensor<1xi32> } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.succeeded()); } TEST_F(VerifyClusteringPassTest, NotTfFunctionalFails) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<3x32x32x3xf32> { %0 = mhlo.constant dense<2.550000e+02> : tensor<3x32x32x3xf32> return %0 : tensor<3x32x32x3xf32> } })"; CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.failed()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/passes/verify_clustering_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/passes/verify_clustering_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a07e1ff9-4f11-46b0-a33c-e1d5b746ce05
cpp
google/tensorstore
nditerable_elementwise_output_transform
tensorstore/internal/nditerable_elementwise_output_transform.cc
tensorstore/internal/nditerable_elementwise_output_transform_test.cc
#include "tensorstore/internal/nditerable_elementwise_output_transform.h" #include <array> #include <utility> #include "absl/status/status.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_buffer_management.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/internal/unique_with_intrusive_allocator.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal { namespace { struct ElementwiseOutputTransformNDIterator : public NDIterator::Base<ElementwiseOutputTransformNDIterator> { explicit ElementwiseOutputTransformNDIterator( const NDIterable* output, ElementwiseClosure<2, void*> closure, NDIterable::IterationBufferKindLayoutView layout, ArenaAllocator<> allocator) : output_(tensorstore::span(&output, 1), layout, allocator), context_(closure.context), elementwise_function_((*closure.function)[layout.buffer_kind]) {} ArenaAllocator<> get_allocator() const override { return output_.get_allocator(); } bool UpdateBlock(tensorstore::span<const Index> indices, IterationBufferShape block_shape, IterationBufferPointer pointer, absl::Status* status) override { return output_.GetBlock(indices, block_shape, status) && elementwise_function_(context_, block_shape, pointer, output_.block_pointers()[0], status) && output_.UpdateBlock(indices, block_shape, status); } NDIteratorsWithManagedBuffers<1> output_; void* context_; SpecializedElementwiseFunctionPointer<2, void*> elementwise_function_; }; struct ElementwiseOutputTransformNDIterable : public NDIterablesWithManagedBuffers< std::array<NDIterable::Ptr, 1>, NDIterable::Base<ElementwiseOutputTransformNDIterable>> { using Base = NDIterablesWithManagedBuffers< std::array<NDIterable::Ptr, 1>, NDIterable::Base<ElementwiseOutputTransformNDIterable>>; ElementwiseOutputTransformNDIterable(NDIterable::Ptr output, DataType input_dtype, ElementwiseClosure<2, void*> closure, ArenaAllocator<> allocator) : Base{{{std::move(output)}}}, input_dtype_(input_dtype), closure_(closure), allocator_(allocator) {} ArenaAllocator<> get_allocator() const override { return allocator_; } DataType dtype() const override { return input_dtype_; } NDIterator::Ptr GetIterator( NDIterable::IterationBufferKindLayoutView layout) const override { return MakeUniqueWithVirtualIntrusiveAllocator< ElementwiseOutputTransformNDIterator>( allocator_, this->iterables[0].get(), closure_, layout); } DataType input_dtype_; ElementwiseClosure<2, void*> closure_; ArenaAllocator<> allocator_; }; } NDIterable::Ptr GetElementwiseOutputTransformNDIterable( NDIterable::Ptr output, DataType input_dtype, ElementwiseClosure<2, void*> closure, Arena* arena) { return MakeUniqueWithVirtualIntrusiveAllocator< ElementwiseOutputTransformNDIterable>( ArenaAllocator<>(arena), std::move(output), input_dtype, closure); } } }
#include "tensorstore/internal/nditerable_elementwise_output_transform.h" #include <new> #include <tuple> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/nditerable_copy.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::internal::NDIterableCopier; using ::testing::_; using ::testing::Pair; template <typename Func, typename SourceArray, typename DestArray> absl::Status TestCopy(Func func, tensorstore::IterationConstraints constraints, SourceArray source_array, DestArray dest_array) { tensorstore::internal::Arena arena; tensorstore::internal::ElementwiseClosure<2, void*> closure = tensorstore::internal::SimpleElementwiseFunction< Func(typename SourceArray::Element, typename DestArray::Element), void*>::Closure(&func); auto iterable = tensorstore::internal::GetElementwiseOutputTransformNDIterable( tensorstore::internal::GetTransformedArrayNDIterable(dest_array, &arena) .value(), tensorstore::dtype_v<typename SourceArray::Element>, closure, &arena); return tensorstore::internal::NDIterableCopier( *tensorstore::internal::GetTransformedArrayNDIterable(source_array, &arena) .value(), *iterable, dest_array.shape(), constraints, &arena) .Copy(); } TEST(NDIterableElementwiseOutputTransformTest, Basic) { auto source = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); auto dest = tensorstore::AllocateArray<double>(source.shape()); TENSORSTORE_EXPECT_OK(TestCopy( [](const int* source, double* dest, void* status) { *dest = -*source; }, {}, source, dest)); EXPECT_EQ( tensorstore::MakeArray<double>({{-1.0, -2.0, -3.0}, {-4.0, -5.0, -6.0}}), dest); } TEST(NDIterableElementwiseOutputTransformTest, PartialCopy) { auto source = tensorstore::MakeArray<int>({1, 2, 3, 0, 5, 6}); auto dest = tensorstore::AllocateArray<double>( source.shape(), tensorstore::c_order, tensorstore::value_init); EXPECT_THAT(TestCopy( [](const int* source, double* dest, void* arg) { auto* status = static_cast<absl::Status*>(arg); if (*source == 0) { *status = absl::UnknownError("zero"); return false; } *dest = -*source; return true; }, tensorstore::c_order, source, dest), absl::UnknownError("zero")); EXPECT_EQ(tensorstore::MakeArray<double>({-1.0, -2.0, -3.0, 0.0, 0.0, 0.0}), dest); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_elementwise_output_transform.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_elementwise_output_transform_test.cc
4f887a6430414cd6088e1743555015b10f116d50
3c8d261a-8b13-453f-97e9-ad253db6ca01
cpp
tensorflow/tensorflow
process_function_library_runtime
tensorflow/core/common_runtime/process_function_library_runtime.cc
tensorflow/core/common_runtime/process_function_library_runtime_test.cc
#include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "xla/tsl/util/env_var.h" #include "tensorflow/core/common_runtime/build_graph_options.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/function_optimization_registry.h" #include "tensorflow/core/common_runtime/int32_fulltype.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include "tensorflow/core/common_runtime/partitioning_utils.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/common_runtime/rendezvous_util.h" #include "tensorflow/core/common_runtime/replicate_per_replica_nodes.h" #include "tensorflow/core/common_runtime/single_threaded_executor.h" #include "tensorflow/core/common_runtime/stats_publisher_interface.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tensorflow/core/util/reffed_status_callback.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/protobuf/remote_tensor_handle.pb.h" #endif namespace tensorflow { namespace { int64_t GetParallelSubgraphThreshold() { static int64_t parallel_subgraph_threshold = []() { int64_t result; TF_CHECK_OK(tsl::ReadInt64FromEnvVar( "TF_PFLR_PARALLEL_INSTANTIATE_THRESHOLD", 8, &result)); return result; }(); return parallel_subgraph_threshold; } } const char ProcessFunctionLibraryRuntime::kDefaultFLRDevice[] = "null"; void ProcessFunctionLibraryRuntime::FunctionData::DistributedInit( DistributedFunctionLibraryRuntime* parent, const string& function_name, const FunctionLibraryDefinition& lib_def, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::DoneCallback done) { { mutex_lock l(mu_); is_cross_process_ = true; if (init_started_) { init_done_.WaitForNotification(); done(init_result_); return; } init_started_ = true; } parent->Instantiate(function_name, lib_def, attrs, options, &local_handle_, [this, done](const Status& s) { init_done_.Notify(); done(s); }); } ProcessFunctionLibraryRuntime::ProcessFunctionLibraryRuntime( const DeviceMgr* device_mgr, Env* env, const ConfigProto* config, int graph_def_version, const FunctionLibraryDefinition* lib_def, const OptimizerOptions& optimizer_options, thread::ThreadPool* default_thread_pool, DistributedFunctionLibraryRuntime* parent, const SessionMetadata* session_metadata, Rendezvous::Factory rendezvous_factory, StatsPublisherFactory stats_publisher_factory) : parent_(parent), env_(env), config_(config ? std::make_optional(*config) : std::nullopt), device_mgr_(device_mgr), lib_def_(lib_def), default_thread_pool_(default_thread_pool), flr_map_( new std::unordered_map<Device*, core::RefCountPtr<FunctionLibraryRuntime>>), next_handle_(0), session_metadata_(session_metadata), rendezvous_factory_(std::move(rendezvous_factory)), optimizer_options_(optimizer_options), graph_def_version_(graph_def_version), stats_publisher_factory_(std::move(stats_publisher_factory)) { if (device_mgr == nullptr) { (*flr_map_)[nullptr] = NewFunctionLibraryRuntime( nullptr, env, config_ ? &(*config_) : nullptr, nullptr, graph_def_version, lib_def_, default_thread_pool, optimizer_options, session_metadata_, this); return; } InitializeDeviceAndFlr(); } Status ProcessFunctionLibraryRuntime::SendTensors( const string& source_device, const string& target_device, const string& key_prefix, int64_t src_incarnation, absl::Span<const Tensor> tensors_to_send, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, RendezvousInterface* rendezvous) { std::vector<string> keys; for (int i = 0; i < tensors_to_send.size(); ++i) { string name = strings::StrCat(key_prefix, i); string key = Rendezvous::CreateKey(source_device, src_incarnation, target_device, name, FrameAndIter(0, 0)); keys.push_back(key); } TF_RETURN_IF_ERROR(SendTensorsToRendezvous( rendezvous, device_context, alloc_attrs, keys, tensors_to_send)); return absl::OkStatus(); } void ProcessFunctionLibraryRuntime::ReceiveTensorsAsync( const string& source_device, const string& target_device, const string& key_prefix, int64_t src_incarnation, int64_t num_tensors, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, RendezvousInterface* rendezvous, std::vector<Tensor>* received_tensors, StatusCallback done) { std::vector<string> keys; for (int64_t i = 0; i < num_tensors; ++i) { string name = strings::StrCat(key_prefix, i); string key = Rendezvous::CreateKey(source_device, src_incarnation, target_device, name, FrameAndIter(0, 0)); keys.push_back(key); } RecvOutputsFromRendezvousAsync(rendezvous, device_context, alloc_attrs, keys, received_tensors, std::move(done)); } Status ProcessFunctionLibraryRuntime::GetRetTypes( FunctionLibraryRuntime::Handle h, DataTypeVector* ret_types) { FunctionLibraryRuntime* flr = nullptr; { tf_shared_lock l(mu_); auto miter = mdevice_data_.find(h); if (miter != mdevice_data_.end()) { *ret_types = miter->second->ret_types_; return absl::OkStatus(); } auto fiter = function_data_.find(h); if (fiter != function_data_.end()) { flr = GetFLR(fiter->second->target_device()); } } if (flr != nullptr) { return flr->GetRetTypes(h, ret_types); } return errors::InvalidArgument("Handle ", h, " not found."); } Status ProcessFunctionLibraryRuntime::GetDeviceIncarnation( const string& device_name, int64_t* incarnation) const { FunctionLibraryRuntime* flr = GetFLR(device_name); if (flr == nullptr) { return errors::InvalidArgument("Device name: ", device_name, " not found."); } *incarnation = flr->device()->attributes().incarnation(); return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::GetDeviceContext( const string& device_name, DeviceContext** device_context) const { *device_context = nullptr; FunctionLibraryRuntime* flr = GetFLR(device_name); if (flr == nullptr) { return errors::InvalidArgument("Device name: ", device_name, " not found."); } Device* device = flr->device(); string device_type = device->parsed_name().type; if (device_type == "CPU" || device_type == "TPU_SYSTEM") { return absl::OkStatus(); } if (device->IsRemoteCallAllowed()) { auto* dev_info = flr->device()->tensorflow_accelerator_device_info(); if (dev_info) { *device_context = dev_info->default_context; return absl::OkStatus(); } } return errors::Internal("Device type: ", device_type, " is currently unsupported for remote ", "function executions"); } void ProcessFunctionLibraryRuntime::InitializeDeviceAndFlr() { mutex_lock l(mu_); device_set_ = std::make_shared<DeviceSet>(); if (parent_ != nullptr && parent_->remote_device_mgr() != nullptr) { for (auto d : parent_->remote_device_mgr()->ListDevices()) { Device* device = nullptr; if (device_mgr_->LookupDevice(d->name(), &device) == absl::OkStatus()) { device_set_->AddDevice(device); } else { device_set_->AddDevice(d); } } } else { for (auto d : device_mgr_->ListDevices()) { device_set_->AddDevice(d); } } for (Device* d : device_mgr_->ListDevices()) { if ((*flr_map_)[d] == nullptr) { (*flr_map_)[d] = NewFunctionLibraryRuntime( device_mgr_, env_, config_ ? &(*config_) : nullptr, d, graph_def_version_, lib_def_, default_thread_pool_, optimizer_options_, session_metadata_, this); } } } FunctionLibraryRuntime* ProcessFunctionLibraryRuntime::GetFLR( const string& device_name) const { Device* device = nullptr; if (device_name != kDefaultFLRDevice) { if (!device_mgr_->LookupDevice(device_name, &device).ok()) { VLOG(4) << "Could not find device: " << device_name; return nullptr; } } const auto& iter = flr_map_->find(device); if (iter == flr_map_->end()) { VLOG(1) << "Could not find device: " << device_name << "in the local process."; return nullptr; } return iter->second.get(); } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddHandle( const string& function_key, const string& device_name, FunctionLibraryRuntime::LocalHandle local_handle) { mutex_lock l(mu_); return AddHandleLocked(function_key, device_name, local_handle); } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddHandleLocked( const string& function_key, const string& device_name, FunctionLibraryRuntime::LocalHandle local_handle) { auto h = next_handle_; function_data_[h] = std::make_unique<FunctionData>(device_name, local_handle, function_key); table_[function_key] = h; next_handle_++; return h; } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddMultiDeviceHandle( std::unique_ptr<MultiDeviceFunctionData> data, const string& function_key) { mutex_lock l(mu_); auto h = next_handle_; mdevice_data_[h] = std::move(data); table_[function_key] = h; next_handle_++; return h; } bool ProcessFunctionLibraryRuntime::HasMultiDeviceHandle( FunctionLibraryRuntime::Handle handle) const { bool multi_device; { tf_shared_lock l(mu_); multi_device = mdevice_data_.find(handle) != mdevice_data_.end(); } return multi_device; } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::GetHandle( const string& function_key) const { tf_shared_lock l(mu_); return gtl::FindWithDefault(table_, function_key, kInvalidHandle); } FunctionLibraryRuntime::LocalHandle ProcessFunctionLibraryRuntime::GetHandleOnDevice( const string& device_name, FunctionLibraryRuntime::Handle handle, bool include_multi_device) const { tf_shared_lock l(mu_); auto miter = mdevice_data_.find(handle); if (miter != mdevice_data_.end()) { if (!include_multi_device) return kInvalidLocalHandle; const MultiDeviceFunctionData& data = *miter->second; if (data.glue_.size() != 1) return kInvalidLocalHandle; const auto& pair = *data.glue_.begin(); const string& func_device_name = pair.first; const ComponentFunctionData& component_data = pair.second; if (func_device_name != device_name) return kInvalidLocalHandle; handle = component_data.handle; } auto iter = function_data_.find(handle); if (iter == function_data_.end()) { return kInvalidLocalHandle; } FunctionData* function_data = iter->second.get(); if (function_data->target_device() != device_name) { return kInvalidLocalHandle; } return function_data->local_handle(); } string ProcessFunctionLibraryRuntime::GetDeviceName( FunctionLibraryRuntime::Handle handle) const { tf_shared_lock l(mu_); auto iter = function_data_.find(handle); CHECK(iter != function_data_.end()); FunctionData* function_data = iter->second.get(); return function_data->target_device(); } ProcessFunctionLibraryRuntime::MultiDeviceFunctionData* ProcessFunctionLibraryRuntime::IsMultiDevice( FunctionLibraryRuntime::Handle handle) const { tf_shared_lock l(mu_); const auto& it = mdevice_data_.find(handle); if (it != mdevice_data_.end()) { return it->second.get(); } return nullptr; } namespace { std::vector<Tensor> GetLocalArgs(absl::Span<const FunctionArg> args) { std::vector<Tensor> tensors; for (const auto& arg : args) { if (arg.index() == 0) { tensors.push_back(absl::get<Tensor>(arg)); } } return tensors; } FunctionLibraryRuntime::DoneCallback TensorsToFunctionRetsDoneCallback( std::vector<FunctionRet>* rets, std::vector<Tensor>* tensors, FunctionLibraryRuntime::DoneCallback done) { return [rets, tensors, done = std::move(done)](const Status& s) { if (s.ok()) { for (const auto& t : *tensors) { rets->push_back(t); } } delete tensors; done(s); }; } Status FunctionRetsToTensors(const std::vector<FunctionRet>* function_rets, std::vector<Tensor>* tensors) { for (const auto& ret : *function_rets) { if (ret.index() != 0) { return errors::Internal( "Expect a Tensor as a function output but got a TensorShape."); } tensors->push_back(absl::get<Tensor>(ret)); } return absl::OkStatus(); } } ProcessFunctionLibraryRuntime::AsyncAttributes::Summary ProcessFunctionLibraryRuntime::AsyncAttributes::Summarize(const Graph* graph) { bool has_send_op = false; bool has_recv_op = false; bool has_unsafe_op = false; for (const Node* node : graph->nodes()) { if (node->IsSend() || node->IsHostSend()) { has_send_op = true; } if (node->IsRecv() || node->IsHostRecv()) { has_recv_op = true; } if (!ValidateOpIsSafeForSyncExecution(*node, allow_control_flow_sync_execution()) .ok()) { has_unsafe_op = true; } } if (has_unsafe_op) { metrics::IncrementTestCounter("subgraph_async_summary", "unsafe_op"); return AsyncAttributes::kAsyncRequired; } if (!has_send_op && !has_recv_op) { metrics::IncrementTestCounter("subgraph_async_summary", "safe_for_sync"); return AsyncAttributes::kSafeForSync; } if (has_send_op && !has_recv_op) { metrics::IncrementTestCounter("subgraph_async_summary", "send_only"); return AsyncAttributes::kSendOnly; } if (has_recv_op && !has_send_op) { metrics::IncrementTestCounter("subgraph_async_summary", "recv_only"); return AsyncAttributes::kRecvOnly; } metrics::IncrementTestCounter("subgraph_async_summary", "other"); return AsyncAttributes::kAsyncRequired; } void ProcessFunctionLibraryRuntime::PublishSubgraphs( const std::string& function_name, std::vector<core::RefCountPtr<FunctionRecord>>&& function_records) { std::unique_ptr<StatsPublisherInterface> stats_publisher = stats_publisher_factory_(function_name, BuildGraphOptions(), SessionOptions()); stats_publisher->PublishGraphProto(std::move(function_records)); mutex_lock l(mu_); stats_publishers_.push_back(std::move(stats_publisher)); } Status ProcessFunctionLibraryRuntime::InstantiateMultiDevice( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle) { const string& function_key = Canonicalize(function_name, attrs, options); { mutex_lock l(mu_); const auto& it = table_.find(function_key); if (it != table_.end()) { *handle = it->second; ++mdevice_data_[*handle]->instantiation_counter_; return absl::OkStatus(); } } VLOG(1) << "Instantiating MultiDevice function \"" << function_name << "\" on default device \"" << options.target << "\""; if (VLOG_IS_ON(3)) { int index = 0; VLOG(3) << "Requested input devices:"; for (const string& device : options.input_devices) { VLOG(3) << " [input " << index++ << "] " << device; } index = 0; VLOG(3) << "Requested output devices:"; for (const string& device : options.output_devices) { VLOG(3) << " [output " << index++ << "] " << device; } } const std::shared_ptr<DeviceSet> dev_set = device_set(); Device* default_device = nullptr; if (options.default_device_to_target && !options.target.empty()) { FunctionLibraryRuntime* flr = GetFLR(options.target); if (flr == nullptr) { return errors::InvalidArgument( "Cannot instantiate multi-device function with target device ", options.target); } default_device = flr->device(); } std::vector<CompositeDevice*> composite_devices; { tf_shared_lock l(mu_); for (auto* d : composite_devices_) composite_devices.push_back(d); } Device* cpu_device; TF_RETURN_IF_ERROR(device_mgr_->LookupDevice("CPU:0", &cpu_device)); const uint64 optimization_start_time_usecs = Env::Default()->NowMicros(); std::optional<absl::StatusOr<OptimizedFunctionGraph>> optimized_graph_proto = options.lib_def != nullptr ? options.lib_def->FindOptimizedFunctionGraph(function_name) : lib_def_->FindOptimizedFunctionGraph(function_name); if (optimized_graph_proto.has_value()) { if (optimized_graph_proto->ok()) { LOG(INFO) << "Found AOT'd graph for function: " << function_name; metrics::UpdateFunctionGraphOptimizationSavingTime( optimized_graph_proto->value().optimization_time_usecs(), metrics::GraphOptimizationSource::kAot); metrics::IncrementFunctionGraphOptimizationCacheHitCount( 1, metrics::GraphOptimizationSource::kAot); } else { LOG(WARNING) << "Failed to create AOT'd graph for function: " << function_name << " with status: " << optimized_graph_proto->status(); } } absl::StatusOr<OptimizedFunctionGraphInfo> optimized_graph_info = (!optimized_graph_proto.has_value() || !optimized_graph_proto.value().ok()) ? OptimizeFunctionGraphOrReadFromFileCache( function_name, attrs, options, *dev_set, lib_def_, composite_devices, cpu_device, default_device, env_) : OptimizedFunctionGraphInfo::FromProto( std::move(optimized_graph_proto.value().value())); if (!optimized_graph_info.ok()) return optimized_graph_info.status(); optimized_graph_info->function_graph->mutable_flib_def() ->set_default_registry(&(optimized_graph_info->lib_def)); TF_ASSIGN_OR_RETURN(auto subgraphs, PreprocessAndPartitionGraph( function_name, *optimized_graph_info, options, *dev_set, lib_def_, composite_devices, cpu_device, env_)); const uint64 optimization_end_time_usecs = Env::Default()->NowMicros(); const uint64 graph_optimization_duration = optimization_end_time_usecs - optimization_start_time_usecs; metrics::UpdateFunctionGraphOptimizationTime(graph_optimization_duration); VLOG(1) << "Finished graph optimizations for MultiDevice function \"" << function_name << "\" with target device \"" << options.target << "\". Took " << graph_optimization_duration / 1000000 << " secs."; const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? lib_def_ : options.lib_def; if (options.graph_collector != nullptr) { for (const auto& pair : *subgraphs) { GraphDef def; pair.second->ToGraphDef(&def); *def.mutable_library() = lib_def->ReachableDefinitions(def).ToProto(); options.graph_collector->CollectPartitionedGraph(def); } } const auto& node_name_to_control_ret = optimized_graph_info->node_name_to_control_ret; const auto control_ret = [&node_name_to_control_ret](const Node* n) -> std::optional<string> { const auto it = node_name_to_control_ret.find(n->name()); return it != node_name_to_control_ret.end() ? absl::make_optional<string>(it->second) : absl::nullopt; }; auto data = std::make_unique<MultiDeviceFunctionData>( function_name, function_key, optimized_graph_info->num_return_nodes, std::move(optimized_graph_info->ret_types)); int i = 0; FunctionLibraryDefinition data_lib_def = std::move(optimized_graph_info->lib_def); FunctionNameGenerator name_generator( &data_lib_def, absl::StrCat(function_name, "_partitioned_", random::New64())); const int num_subgraphs = subgraphs->size(); absl::InlinedVector<Status, 4UL> instantiate_status(num_subgraphs); data->enable_sync_execution = false; if (options.allow_small_function_optimizations) { data->enable_sync_execution = true; for (const auto& pair : *subgraphs) { ComponentFunctionData* comp_data = &data->glue_[pair.first]; const Graph* subgraph = pair.second.get(); comp_data->async_attributes = AsyncAttributes(subgraph, options.allow_control_flow_sync_execution); if (comp_data->async_attributes.summary() == AsyncAttributes::kAsyncRequired) { data->enable_sync_execution = false; } } } auto instantiate_component = [this, dev_set, &data_lib_def, &control_ret, &options, &data](const string& target, std::unique_ptr<Graph> subgraph, ComponentFunctionData* comp_data, std::function<void(Status)> done) { const string& device_type = dev_set->FindDeviceByName(target)->device_type(); bool ints_on_device = (device_type == "TPU" || device_type == "XLA_CPU" || device_type == "XLA_GPU" || options.int_args_and_retvals_on_device); Int32FulltypePass int32_fulltype( "ProcessFunctionLibraryRuntime::InstantiateMultiDevice"); Status s = int32_fulltype.ProcessGraph(subgraph.get(), ints_on_device); if (!s.ok()) { done(s); return; } s = UpdateArgAndRetvalMetadata(subgraph.get(), &comp_data->arg_indices, &comp_data->ret_indices, &comp_data->arg_alloc_attrs, &comp_data->ret_alloc_attrs, ints_on_device); if (!s.ok()) { done(s); return; } FunctionDef shard; s = GraphToFunctionDef(std::move(subgraph), comp_data->name, control_ret, &shard); if (!s.ok()) { done(s); return; } subgraph.reset(); AttrValueMap attrs(shard.attr()); s = data_lib_def.AddFunctionDef(std::move(shard)); if (!s.ok()) { done(s); return; } FunctionLibraryRuntime::InstantiateOptions opts; opts.executor_type = options.executor_type; opts.target = target; opts.lib_def = &data_lib_def; opts.create_kernels_eagerly = options.create_kernels_eagerly; opts.state_handle = options.state_handle; opts.allow_small_function_optimizations = data->enable_sync_execution; opts.allow_control_flow_sync_execution = options.allow_control_flow_sync_execution; AttrValue ints_on_device_attr; ints_on_device_attr.set_b(options.int_args_and_retvals_on_device); attrs.insert( {FunctionLibraryDefinition::kIntsOnDeviceAttr, ints_on_device_attr}); VLOG(1) << "Start instantiating component function " << comp_data->name << " on device " << target; auto* component_handle = new FunctionLibraryRuntime::Handle; auto wrapped_done = [this, comp_data, component_handle, &data, done = std::move(done)](const Status& s) { VLOG(1) << "Finished instantiating component function " << comp_data->name << " with handle " << *component_handle << " status: " << s; if (s.ok()) { { mutex_lock l(mu_); if (function_data_[*component_handle]->is_cross_process()) { data->is_cross_process_ = true; } } comp_data->handle = *component_handle; } delete component_handle; done(s); }; FunctionLibraryRuntime* flr = GetFLR(opts.target); if (flr != nullptr) { Status s = flr->Instantiate(comp_data->name, AttrSlice(&attrs), opts, component_handle); wrapped_done(s); } else { opts.ret_indices = comp_data->ret_indices; InstantiateRemote(comp_data->name, AttrSlice(&attrs), opts, component_handle, std::move(wrapped_done)); } }; if (default_thread_pool_ != nullptr && num_subgraphs > GetParallelSubgraphThreshold()) { BlockingCounter counter(static_cast<int>(num_subgraphs)); for (auto& pair : *subgraphs) { Status* status = &instantiate_status[i]; ComponentFunctionData* comp_data = &data->glue_[pair.first]; comp_data->name = name_generator.GetName(); default_thread_pool_->Schedule( [&instantiate_component, &pair, comp_data, &counter, status]() { instantiate_component(pair.first, std::move(pair.second), comp_data, [&counter, status](Status s) { status->Update(s); counter.DecrementCount(); }); }); i += 1; } counter.Wait(); } else { for (auto& pair : *subgraphs) { Notification n; Status* status = &instantiate_status[i]; ComponentFunctionData* comp_data = &data->glue_[pair.first]; comp_data->name = name_generator.GetName(); instantiate_component(pair.first, std::move(pair.second), comp_data, [&n, status](Status s) { status->Update(s); n.Notify(); }); n.WaitForNotification(); i += 1; } } StatusGroup group; for (auto& status : instantiate_status) { group.Update(status); } TF_RETURN_IF_ERROR(group.as_summary_status()); std::vector<core::RefCountPtr<FunctionRecord>> function_records; const bool should_publish_function_graphs = flags::Global().publish_function_graphs.value(); if (should_publish_function_graphs) { for (const auto& pair : *subgraphs) { ComponentFunctionData* comp_data = &data->glue_[pair.first]; function_records.push_back(data_lib_def.FindRecord(comp_data->name)); } } *handle = AddMultiDeviceHandle(std::move(data), function_key); VLOG(1) << "Instantiated MultiDevice function \"" << function_name << "\" with handle " << *handle; if (should_publish_function_graphs) { PublishSubgraphs(function_name, std::move(function_records)); } return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::GetOutputDevices( FunctionLibraryRuntime::Handle handle, std::vector<Device*>* output_devices) const { MultiDeviceFunctionData* data = IsMultiDevice(handle); if (data == nullptr) { return errors::InvalidArgument( "Failed for find multi-device function handle ", handle); } for (const auto& pair : data->glue_) { const ComponentFunctionData& comp_data = pair.second; DCHECK(comp_data.ret_alloc_attrs.size() == comp_data.ret_indices.size()); if (comp_data.ret_indices.empty()) { continue; } const string& target = pair.first; FunctionLibraryRuntime* target_flr = GetFLR(target); Device* target_device = nullptr; Device* host = nullptr; if (target_flr == nullptr) { if (!data->has_remote_outputs) { data->has_remote_outputs = true; } target_device = device_set()->FindDeviceByName(target); string remote_host; TF_RETURN_IF_ERROR( DeviceNameUtils::DeviceNameToCpuDeviceName(target, &remote_host)); host = device_set()->FindDeviceByName(remote_host); } else { target_device = target_flr->device(); } output_devices->resize(data->num_outputs_); for (int j = 0; j < comp_data.ret_indices.size(); ++j) { int ret_index = comp_data.ret_indices[j]; if (data->ret_types_[ret_index] == DT_RESOURCE) { (*output_devices)[ret_index] = target_device; } else { (*output_devices)[ret_index] = comp_data.ret_alloc_attrs[j].on_host() ? host : target_device; } } } return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::PrepareRunMultiDevice( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, const MultiDeviceFunctionData** data) const { if (opts.create_rendezvous) { return errors::Internal( "Cannot call ProcessFunctionLibraryRuntime::Run with " "create_rendezvous=true. Please run the function " "using FunctionLibraryRuntime::Run"); } *data = IsMultiDevice(handle); if (*data == nullptr) { return errors::NotFound("Multi-device function handle ", handle, "not found. Was the function instantiated?"); } if (opts.rendezvous && (*data)->is_cross_process_ && !opts.rendezvous->is_cross_process()) { return errors::InvalidArgument( "Running a cross process function ", (*data)->function_name_, " without an appropriate cross process Rendezvous."); } return absl::OkStatus(); } std::vector<string> ProcessFunctionLibraryRuntime::GetOrderedSubgraphs( const MultiDeviceFunctionData* data) const { std::vector<string> subgraph_keys; subgraph_keys.reserve(data->glue_.size()); for (const auto& pair : data->glue_) { subgraph_keys.push_back(pair.first); } auto send_first_ordering = [&](const string& a, const string& b) { auto a_summary = data->glue_.at(a).async_attributes.summary(); auto b_summary = data->glue_.at(b).async_attributes.summary(); if (a_summary == b_summary) { return false; } if (a_summary == AsyncAttributes::kSendOnly) { return true; } return false; }; std::sort(subgraph_keys.begin(), subgraph_keys.end(), send_first_ordering); return subgraph_keys; } Status ProcessFunctionLibraryRuntime::RunMultiDeviceSync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle outer_handle, std::vector<FunctionRet>* rets, std::function<Status(const ComponentFunctionData& comp_data, InternalArgs* args)> get_component_args) const { const MultiDeviceFunctionData* data; Status prepare_status = PrepareRunMultiDevice(opts, outer_handle, &data); if (!prepare_status.ok()) { return prepare_status; } FunctionLibraryRuntime::Options opts_copy = opts; std::vector<string> subgraph_keys = GetOrderedSubgraphs(data); for (const string& target : subgraph_keys) { const ComponentFunctionData& comp_data = data->glue_.at(target); FunctionLibraryRuntime::Handle comp_handle = comp_data.handle; opts_copy.args_alloc_attrs = comp_data.arg_alloc_attrs; opts_copy.rets_alloc_attrs = comp_data.ret_alloc_attrs; InternalArgs comp_args; Status args_status = get_component_args(comp_data, &comp_args); if (!args_status.ok()) { VLOG(2) << "Failed to get component function arguments: " << args_status; return args_status; } rets->resize(data->num_outputs_); VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; FunctionLibraryRuntime* flr = GetFLR(target); if (flr != nullptr) { opts_copy.remote_execution = false; thread::ThreadPool* pool = flr->device()->tensorflow_device_thread_pool(); opts_copy.runner = (pool == nullptr) ? opts.runner : flr->runner(); VLOG(4) << " with " << opts_copy.DebugString(); std::vector<Tensor> comp_tensor_rets; Status run_status = flr->RunSync(opts_copy, comp_handle, GetLocalArgs(comp_args.args), &comp_tensor_rets); if (!run_status.ok()) { VLOG(2) << "Component function execution failed: " << run_status; const string function_and_msg = strings::StrCat( errors::FormatFunctionForError(data->function_name_), " ", run_status.message()); if (opts.rendezvous != nullptr) opts.rendezvous->StartAbort(run_status); return errors::CreateWithUpdatedMessage(run_status, function_and_msg); } else { VLOG(2) << "Component function execution succeeded."; for (int i = 0; i < comp_tensor_rets.size(); ++i) { (*rets)[comp_data.ret_indices[i]] = comp_tensor_rets[i]; } } } else { opts_copy.remote_execution = true; VLOG(4) << " with " << opts_copy.DebugString(); std::vector<std::unique_ptr<CleanUpItem>> cleanup_items; Notification n; Status s; std::vector<FunctionRet> comp_rets; RunInternal(opts_copy, comp_handle, comp_args.args, &comp_rets, &cleanup_items, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } } return absl::OkStatus(); } void ProcessFunctionLibraryRuntime::RunMultiDeviceAsync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle outer_handle, std::vector<FunctionRet>* rets, std::vector<std::unique_ptr<CleanUpItem>>* cleanup_items, FunctionLibraryRuntime::DoneCallback done, std::function<Status(const ComponentFunctionData& comp_data, InternalArgs* args)> get_component_args) const { const MultiDeviceFunctionData* data; Status prepare_status = PrepareRunMultiDevice(opts, outer_handle, &data); if (!prepare_status.ok()) { done(prepare_status); return; } std::shared_ptr<CancellationManager> local_cm; CancellationManager* cm = opts.cancellation_manager; if (cm == nullptr) { local_cm = std::make_shared<CancellationManager>(); cm = local_cm.get(); } auto* refcounted_done = new ReffedStatusCallback(std::move(done)); for (int i = 0; i < data->glue_.size(); ++i) { refcounted_done->Ref(); } FunctionLibraryRuntime::Options opts_copy = opts; for (const auto& pair : data->glue_) { const string& target = pair.first; const ComponentFunctionData& comp_data = pair.second; FunctionLibraryRuntime::Handle comp_handle = pair.second.handle; opts_copy.args_alloc_attrs = comp_data.arg_alloc_attrs; opts_copy.rets_alloc_attrs = comp_data.ret_alloc_attrs; opts_copy.cancellation_manager = cm; InternalArgs comp_args; Status s = get_component_args(comp_data, &comp_args); if (!s.ok()) { VLOG(2) << "Failed to get component function arguments: " << s; refcounted_done->UpdateStatus(s); refcounted_done->Unref(); cm->StartCancel(); continue; } std::vector<FunctionRet>* comp_rets = new std::vector<FunctionRet>; rets->resize(data->num_outputs_); auto component_fn_callback = [comp_rets, rets, comp_data, refcounted_done, cm, local_cm, data, comp_handle, target](const Status& status) { if (!status.ok()) { VLOG(2) << "Component function execution on target " << target << " from " << data->function_name_ << " with handle " << comp_handle << " failed: " << status; const string function_and_msg = strings::StrCat( errors::FormatFunctionForError(data->function_name_), " ", status.message()); refcounted_done->UpdateStatus( errors::CreateWithUpdatedMessage(status, function_and_msg)); cm->StartCancel(); } else { VLOG(2) << "Component function execution on target " << target << " from " << data->function_name_ << " with handle " << comp_handle << " succeeded."; for (int i = 0; i < comp_rets->size(); ++i) { (*rets)[comp_data.ret_indices[i]] = (*comp_rets)[i]; } } delete comp_rets; refcounted_done->Unref(); }; FunctionLibraryRuntime* flr = GetFLR(target); if (flr != nullptr) { opts_copy.remote_execution = false; thread::ThreadPool* pool = flr->device()->tensorflow_device_thread_pool(); opts_copy.runner = (pool == nullptr) ? opts.runner : flr->runner(); VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; VLOG(4) << " with " << opts_copy.DebugString(); std::vector<Tensor>* comp_tensor_rets = new std::vector<Tensor>; flr->Run( opts_copy, comp_handle, GetLocalArgs(comp_args.args), comp_tensor_rets, TensorsToFunctionRetsDoneCallback(comp_rets, comp_tensor_rets, std::move(component_fn_callback))); } else { opts_copy.remote_execution = true; VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; VLOG(4) << " with " << opts_copy.DebugString(); RunInternal(opts_copy, comp_handle, comp_args.args, comp_rets, cleanup_items, std::move(component_fn_callback)); } } refcounted_done->Unref(); } Status ProcessFunctionLibraryRuntime::Instantiate( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle) { if (options.is_multi_device_function) { return InstantiateMultiDevice(function_name, attrs, options, handle); } *handle = kInvalidHandle; FunctionLibraryRuntime* flr = GetFLR(options.target); if (flr != nullptr) { return flr->Instantiate(function_name, attrs, options, handle); } Status status; Notification notification; InstantiateRemote(function_name, attrs, options, handle, [&status, &notification](const Status& s) { status = s; notification.Notify(); }); notification.WaitForNotification(); return status; } Status ProcessFunctionLibraryRuntime::IsCrossProcess( FunctionLibraryRuntime::Handle handle, bool* is_cross_process) const { tf_shared_lock l(mu_); const auto& mdevice_it = mdevice_data_.find(handle); if (mdevice_it != mdevice_data_.end()) { *is_cross_process = mdevice_it->second->is_cross_process_; return absl::OkStatus(); } const auto& it = function_data_.find(handle); if (it != function_data_.end()) { *is_cross_process = it->second->is_cross_process(); return absl::OkStatus(); } return errors::InvalidArgument("Handle ", handle, " not found."); } void ProcessFunctionLibraryRuntime::InstantiateRemote( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle, FunctionLibraryRuntime::DoneCallback done) { if (parent_ == nullptr) { done(errors::Internal( "Currently don't support instantiating functions on device: ", options.target)); return; } auto target = options.target; VLOG(1) << "ProcessFLR Instantiate: " << function_name << " on: " << target; string function_key = Canonicalize(function_name, attrs, options); FunctionData* f; { mutex_lock l(mu_); FunctionLibraryRuntime::Handle h = gtl::FindWithDefault(table_, function_key, kInvalidHandle); if (h == kInvalidHandle || function_data_.count(h) == 0) { h = AddHandleLocked(function_key, target, kInvalidHandle); } f = function_data_[h].get(); *handle = h; } f->DistributedInit( parent_, function_name, options.lib_def == nullptr ? *lib_def_ : *options.lib_def, attrs, options, [this, function_name, target, handle, done](const Status& s) { VLOG(1) << "ProcessFLR Instantiate [success]: " << function_name << " on: " << target << " with handle: " << *handle << " (this: " << this << ")"; done(s); }); } Status ProcessFunctionLibraryRuntime::RemoveHandle( FunctionLibraryRuntime::Handle handle) { mutex_lock l(mu_); table_.erase(function_data_[handle]->function_key()); function_data_.erase(handle); return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::ReleaseMultiDeviceHandle( FunctionLibraryRuntime::Handle handle) { std::unique_ptr<MultiDeviceFunctionData> mdata; { mutex_lock l(mu_); auto it = mdevice_data_.find(handle); --it->second->instantiation_counter_; if (it->second->instantiation_counter_ != 0) { return absl::OkStatus(); } mdata = std::move(it->second); table_.erase(mdata->function_key_); mdevice_data_.erase(it); } Status overall_status; for (const auto& it : mdata->glue_) { const string& device = it.first; FunctionLibraryRuntime::Handle flr_handle = it.second.handle; FunctionLibraryRuntime* flr = GetFLR(device); if (flr == nullptr) { if (parent_ != nullptr) { return errors::Unimplemented( "Releasing a multi-device component handle on a remote device is " "not yet implemented."); } return errors::InvalidArgument( "Failed to find FunctionLibraryRuntime for device ", device, " when releasing multi-device function handle ", handle); } Status status = flr->ReleaseHandle(flr_handle); if (!status.ok()) { overall_status = status; } } return overall_status; } Status ProcessFunctionLibraryRuntime::ReleaseHandle( FunctionLibraryRuntime::Handle handle) { if (flr_map_ == nullptr) return absl::OkStatus(); if (IsMultiDevice(handle)) { return ReleaseMultiDeviceHandle(handle); } FunctionLibraryRuntime* flr = nullptr; string target_device; { mutex_lock l(mu_); CHECK_EQ(1, function_data_.count(handle)) << " handle: " << handle; target_device = function_data_[handle]->target_device(); } flr = GetFLR(target_device); if (flr != nullptr) { return flr->ReleaseHandle(handle); } return errors::InvalidArgument("Handle not found: ", handle); } FunctionLibraryRuntime::DoneCallback ProcessFunctionLibraryRuntime::ApplyCleanUpToDoneCallback( std::vector<std::unique_ptr<CleanUpItem>>* items, FunctionLibraryRuntime::DoneCallback done, const FunctionLibraryRuntime::Options& opts, tsl::core::RefCountPtr<Rendezvous> created_rendezvous) const { return [this, items, done = std::move(done), step_id = opts.step_id, created_rendezvous = created_rendezvous.release()](const Status& status) { if (created_rendezvous != nullptr) { created_rendezvous->Unref(); } auto* local_status = new Status(status); CleanUp(items, [local_status, done](const Status& cleanup_status) { local_status->Update(cleanup_status); done(*local_status); delete local_status; }); delete items; }; } Status ProcessFunctionLibraryRuntime::CreateRendezvous( FunctionLibraryRuntime::Options& opts, tsl::core::RefCountPtr<Rendezvous>* created_rendezvous) const { DCHECK(opts.rendezvous == nullptr); if (!rendezvous_factory_) { return errors::FailedPrecondition( "The caller does not provide a rendezvous and " "ProcessFunctionLibraryRuntime was created without a rendezvous " "factory."); } Status s = rendezvous_factory_(opts.step_id, device_mgr_, created_rendezvous); if (s.ok()) { opts.rendezvous = created_rendezvous->get(); opts.create_rendezvous = false; } return s; } Status ProcessFunctionLibraryRuntime::GetComponentArgs( const absl::Span<const Tensor> args, const ProcessFunctionLibraryRuntime::ComponentFunctionData& comp_data, ProcessFunctionLibraryRuntime::InternalArgs* comp_args) { for (const auto& it : comp_data.arg_indices) { if (it.index >= args.size()) { return errors::InvalidArgument("index ", it.index, " is out of range [0, ", args.size(), ")"); } if (it.sub_index >= 0) { const Tensor& t = args[it.index]; if (t.dtype() != DT_RESOURCE) { return errors::InvalidArgument("Got unexpected sub_index ", it.sub_index, " for argument ", it.index); } const auto& handles = t.flat<ResourceHandle>(); if (it.sub_index >= handles.size()) { return errors::InvalidArgument("Sub_index ", it.sub_index, "is out of range [0,", handles.size(), ") for argument ", it.index); } comp_args->args.push_back(Tensor(handles(it.sub_index))); } else { comp_args->args.push_back(args[it.index]); } } return absl::OkStatus(); } #if !defined(IS_MOBILE_PLATFORM) Status ProcessFunctionLibraryRuntime::GetComponentArgs( const FunctionArgsInterface& args, const ProcessFunctionLibraryRuntime::ComponentFunctionData& comp_data, ProcessFunctionLibraryRuntime::InternalArgs* comp_args) { for (int i = 0; i < comp_data.arg_indices.size(); ++i) { const FunctionArgIndex index = comp_data.arg_indices.at(i); Tensor tensor; if (args.GetLocalArg(index, &tensor).ok()) { comp_args->args.push_back(std::move(tensor)); } else { eager::RemoteTensorHandle remote_handle; TF_RETURN_IF_ERROR(args.GetRemoteArg(index, &remote_handle)); comp_args->remote_args.emplace_back( std::make_unique<eager::RemoteTensorHandle>( std::move(remote_handle))); comp_args->args.push_back(comp_args->remote_args.back().get()); } } return absl::OkStatus(); } #endif void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets, FunctionLibraryRuntime::DoneCallback done) const { FunctionLibraryRuntime::Options new_opts = opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!opts.rendezvous) { Status s = CreateRendezvous(new_opts, &created_rendezvous); if (!s.ok()) { done(s); return; } } auto* cleanup_items = new std::vector<std::unique_ptr<CleanUpItem>>; done = ApplyCleanUpToDoneCallback(cleanup_items, std::move(done), new_opts, std::move(created_rendezvous)); std::vector<FunctionRet>* function_rets = new std::vector<FunctionRet>; done = [rets, function_rets, done = std::move(done)](const Status& s) { Status status = s; if (status.ok()) { status.Update(FunctionRetsToTensors(function_rets, rets)); } delete function_rets; done(status); }; bool multi_device = HasMultiDeviceHandle(handle); if (multi_device) { auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) -> Status { return GetComponentArgs(args, comp_data, comp_args); }; return RunMultiDeviceAsync(new_opts, handle, function_rets, cleanup_items, std::move(done), std::move(get_component_args)); } std::vector<FunctionArg> local_args; for (const auto& tensor : args) { local_args.push_back(tensor); } RunInternal(new_opts, handle, local_args, function_rets, cleanup_items, std::move(done)); } void ProcessFunctionLibraryRuntime::RunInternal( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, absl::Span<const FunctionArg> args, std::vector<FunctionRet>* rets, std::vector<std::unique_ptr<CleanUpItem>>* cleanup_items, FunctionLibraryRuntime::DoneCallback done) const { FunctionLibraryRuntime* flr = nullptr; string target_device; FunctionLibraryRuntime::LocalHandle local_handle; { tf_shared_lock l(mu_); auto iter = function_data_.find(handle); if (iter == function_data_.end()) { done(errors::NotFound("Handle: ", handle, " not found.")); return; } FunctionData* function_data = iter->second.get(); target_device = function_data->target_device(); local_handle = function_data->local_handle(); } if (!opts.remote_execution) { done( errors::InvalidArgument("ProcessFunctionLibraryRuntime::Run should " "only be called for multi-device functions or " "for remote execution.")); return; } flr = GetFLR(target_device); if (flr != nullptr) { auto rendezvous = opts.rendezvous; string source_device = opts.source_device; DeviceContext* device_context; Status s = GetDeviceContext(source_device, &device_context); if (!s.ok()) { done(s); return; } int64_t src_incarnation, target_incarnation; s = GetDeviceIncarnation(source_device, &src_incarnation); s.Update(GetDeviceIncarnation(target_device, &target_incarnation)); if (!s.ok()) { done(s); return; } std::vector<Tensor> local_args = GetLocalArgs(args); s = SendTensors(source_device, target_device, "arg_", src_incarnation, local_args, device_context, opts.args_alloc_attrs, rendezvous); if (!s.ok()) { done(s); return; } const std::vector<AllocatorAttributes>& rets_alloc_attrs = opts.rets_alloc_attrs; std::vector<Tensor>* remote_rets = new std::vector<Tensor>; flr->Run(opts, handle, local_args, remote_rets, [source_device, target_device, target_incarnation, rendezvous, device_context, rets_alloc_attrs, remote_rets, rets, done = std::move(done)](const Status& status) mutable { if (!status.ok()) { delete remote_rets; done(status); return; } int64_t num_returns = remote_rets->size(); delete remote_rets; std::vector<Tensor>* recv_tensors = new std::vector<Tensor>; ReceiveTensorsAsync(target_device, source_device, "ret_", target_incarnation, num_returns, device_context, rets_alloc_attrs, rendezvous, recv_tensors, TensorsToFunctionRetsDoneCallback( rets, recv_tensors, std::move(done))); }); return; } if (parent_ != nullptr) { auto cleanup_item = std::make_unique<CleanUpItem>(); cleanup_item->device = target_device; cleanup_item->step_id = opts.step_id; cleanup_item->local_handle = local_handle; cleanup_items->emplace_back(std::move(cleanup_item)); parent_->Run(opts, local_handle, args, rets, std::move(done)); return; } done(errors::Internal("Could not find device")); } void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, CallFrameInterface* frame, FunctionLibraryRuntime::DoneCallback done) const { std::vector<Tensor> args; args.reserve(frame->num_args()); for (size_t i = 0; i < frame->num_args(); ++i) { const Tensor* arg; Status s = frame->GetArg(i, &arg); args.emplace_back(*arg); if (!s.ok()) { done(s); } } std::vector<Tensor>* rets = new std::vector<Tensor>; rets->reserve(frame->num_retvals()); Run(opts, handle, args, rets, [frame, rets, done = std::move(done)](const Status& status) { std::unique_ptr<std::vector<Tensor>> rets_releaser(rets); if (!status.ok()) { done(status); return; } if (rets->size() != frame->num_retvals()) { done(errors::Internal( "Number of return values from function (", rets->size(), ") did not match expected number of return values (", frame->num_retvals(), ").")); return; } for (size_t i = 0; i < frame->num_retvals(); ++i) { Status s = frame->SetRetval(i, (*rets)[i]); if (!s.ok()) { done(s); return; } } done(absl::OkStatus()); }); } Status ProcessFunctionLibraryRuntime::RunSync( const FunctionLibraryRuntime::Options& orig_opts, FunctionLibraryRuntime::Handle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets) const { MultiDeviceFunctionData* multi_device_data = IsMultiDevice(handle); if (multi_device_data && multi_device_data->enable_sync_execution) { metrics::IncrementTestCounter("pflr_runsync", "sync"); FunctionLibraryRuntime::Options new_opts = orig_opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!new_opts.rendezvous) { TF_RETURN_IF_ERROR(CreateRendezvous(new_opts, &created_rendezvous)); } std::vector<FunctionRet> function_rets; auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) { return GetComponentArgs(args, comp_data, comp_args); }; Status status = RunMultiDeviceSync(new_opts, handle, &function_rets, std::move(get_component_args)); status.Update(FunctionRetsToTensors(&function_rets, rets)); return status; } else { metrics::IncrementTestCounter("pflr_runsync", "async"); Notification n; Status s; Run(orig_opts, handle, args, rets, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } } Status ProcessFunctionLibraryRuntime::RunSync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, CallFrameInterface* frame) const { Notification n; Status s; Run(opts, handle, frame, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, const FunctionArgsInterface& args, std::vector<FunctionRet>* rets, FunctionLibraryRuntime::DoneCallback done) const { bool has_remote_outputs = false; const MultiDeviceFunctionData* data = IsMultiDevice(handle); if (data != nullptr) { has_remote_outputs = data->has_remote_outputs; } if (!args.HasRemoteOrPackedInputs() && !has_remote_outputs) { const std::vector<Tensor> local_inputs = args.GetLocalTensors(); std::vector<Tensor>* tensor_rets = new std::vector<Tensor>; return Run( opts, handle, local_inputs, tensor_rets, TensorsToFunctionRetsDoneCallback(rets, tensor_rets, std::move(done))); } FunctionLibraryRuntime::Options new_opts = opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!opts.rendezvous) { Status s = CreateRendezvous(new_opts, &created_rendezvous); if (!s.ok()) { done(s); return; } } #if defined(IS_MOBILE_PLATFORM) done(errors::Unimplemented( "Remote inputs are not available on mobile devices.")); return; #else auto* cleanup_items = new std::vector<std::unique_ptr<CleanUpItem>>; done = ApplyCleanUpToDoneCallback(cleanup_items, done, opts, std::move(created_rendezvous)); auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) -> Status { return GetComponentArgs(args, comp_data, comp_args); }; return RunMultiDeviceAsync(new_opts, handle, rets, cleanup_items, std::move(done), std::move(get_component_args)); #endif } void ProcessFunctionLibraryRuntime::CleanUp( std::vector<std::unique_ptr<CleanUpItem>>* items, FunctionLibraryRuntime::DoneCallback done) const { auto* refcounted_done = new ReffedStatusCallback(std::move(done)); for (auto& item : *items) { refcounted_done->Ref(); auto* flr = GetFLR(item->device); if (flr != nullptr) { refcounted_done->UpdateStatus( errors::Internal("Cleanup items shouldn't contain local item.")); refcounted_done->Unref(); } else if (parent_ != nullptr) { parent_->CleanUp(item->step_id, item->local_handle, [refcounted_done](const Status& status) { if (!status.ok()) { refcounted_done->UpdateStatus(status); } refcounted_done->Unref(); }); } else { refcounted_done->UpdateStatus( errors::Internal("Could not find device in cleanup.")); refcounted_done->Unref(); } } refcounted_done->Unref(); } Status ProcessFunctionLibraryRuntime::Clone( Env* env, int graph_def_version, const OptimizerOptions& optimizer_options, std::unique_ptr<FunctionLibraryDefinition>* out_lib_def, std::unique_ptr<ProcessFunctionLibraryRuntime>* out_pflr, bool skip_flib_def) const { if (skip_flib_def) { *out_lib_def = std::make_unique<FunctionLibraryDefinition>( lib_def_->default_registry(), FunctionDefLibrary()); } else { *out_lib_def = std::make_unique<FunctionLibraryDefinition>(*lib_def_); } *out_pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_, env, config_ ? &(*config_) : nullptr, graph_def_version, out_lib_def->get(), optimizer_options, default_thread_pool_, parent_, session_metadata_, rendezvous_factory_); { tf_shared_lock l(mu_); for (auto* d : composite_devices_) (*out_pflr)->AddCompositeDevice(d); } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include <memory> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/rendezvous_cache.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/optimized_function_graph.pb.h" #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/type_index.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/protobuf.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #elif TENSORFLOW_USE_ROCM #include "rocm/include/hip/hip_runtime.h" #endif namespace tensorflow { namespace { class TestClusterFLR : public DistributedFunctionLibraryRuntime { public: explicit TestClusterFLR(DeviceMgr* device_mgr) : device_mgr_(device_mgr) {} void Instantiate(const string& function_name, const FunctionLibraryDefinition& lib_def, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::LocalHandle* handle, FunctionLibraryRuntime::DoneCallback done) override { { mutex_lock l(mu_); *handle = next_handle_; next_handle_++; } done(absl::OkStatus()); } void Run(const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets, FunctionLibraryRuntime::DoneCallback done) override {} void Run(const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const FunctionArg> args, std::vector<FunctionRet>* rets, FunctionLibraryRuntime::DoneCallback done) override {} void CleanUp(uint64 step_id, FunctionLibraryRuntime::LocalHandle handle, FunctionLibraryRuntime::DoneCallback done) override {} DeviceMgr* remote_device_mgr() const override { return device_mgr_; } private: mutex mu_; int next_handle_ TF_GUARDED_BY(mu_) = 0; DeviceMgr* device_mgr_; }; SessionMetadata GenerateSessionMetadata() { SessionMetadata session_metadata; session_metadata.set_name("name"); session_metadata.set_version(42); return session_metadata; } class ProcessFunctionLibraryRuntimeTest : public ::testing::Test { public: ProcessFunctionLibraryRuntimeTest() : rendezvous_cache_(new RendezvousCache<IntraProcessRendezvous>()) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 3}); std::vector<std::unique_ptr<Device>> created_devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &created_devices)); device2_ = std::move(created_devices[2]); created_devices.erase(created_devices.begin() + 2); device_mgr_ = std::make_unique<DynamicDeviceMgr>(); TF_CHECK_OK(device_mgr_->AddDevices(std::move(created_devices))); TF_CHECK_OK(device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:CPU:0", &device0_)); TF_CHECK_OK(device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:CPU:1", &device1_)); Device* device2_ptr = nullptr; EXPECT_NE( error::OK, device_mgr_ ->LookupDevice("/job:a/replica:0/task:0/device:CPU:2", &device2_ptr) .code()); Status status = device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:GPU:0", &gpu_device_); if (!status.ok()) { CHECK_EQ(nullptr, gpu_device_); } } void Init(const std::vector<FunctionDef>& flib, const SessionMetadata* session_metadata = nullptr, const std::vector<OptimizedFunctionGraph>& optimized_function_graphs = {}) { FunctionDefLibrary proto; for (const auto& fdef : flib) *(proto.add_function()) = fdef; lib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), proto)); for (const auto& fg : optimized_function_graphs) { lib_def_->AddOptimizedFunctionGraph(fg.name(), fg); } OptimizerOptions opts; cluster_flr_.reset(new TestClusterFLR(device_mgr_.get())); proc_flr_.reset(new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def_.get(), opts, nullptr, cluster_flr_.get(), session_metadata, Rendezvous::Factory{[this](const int64_t step_id, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = this->rendezvous_cache_->FindOrCreate(step_id, [device_mgr]() { return tsl::core::RefCountPtr<IntraProcessRendezvous>( new IntraProcessRendezvous(device_mgr)); }); return absl::OkStatus(); }})); } void AddCompositeDevice(CompositeDevice* d) { proc_flr_->AddCompositeDevice(d); } Status Instantiate( const string& name, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, FunctionLibraryRuntime::Handle* handle) { return proc_flr_->Instantiate(name, attrs, instantiate_opts, handle); } Tensor GPUToCPU(const Tensor& device_tensor) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CHECK(gpu_device_); CHECK(gpu_device_->tensorflow_accelerator_device_info() != nullptr); DeviceContext* device_context = gpu_device_->tensorflow_accelerator_device_info()->default_context; Tensor cpu_tensor(device_tensor.dtype(), device_tensor.shape()); CHECK(device_context ->CopyDeviceTensorToCPUSync(&device_tensor, "", gpu_device_, &cpu_tensor) .ok()); return cpu_tensor; #else CHECK(false); #endif } Tensor CPUToGPU(const Tensor& cpu_tensor) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CHECK(gpu_device_); CHECK(gpu_device_->tensorflow_accelerator_device_info() != nullptr); DeviceContext* device_context = gpu_device_->tensorflow_accelerator_device_info()->default_context; Tensor device_tensor(gpu_device_->GetAllocator({}), cpu_tensor.dtype(), cpu_tensor.shape(), {}); CHECK(device_context ->CopyCPUTensorToDeviceSync(&cpu_tensor, gpu_device_, &device_tensor) .ok()); return device_tensor; #else CHECK(false); #endif } template <typename T, typename K> Status RunWithRuntime( const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const T& args, std::vector<K*> rets, ProcessFunctionLibraryRuntime* pflr) { FunctionLibraryRuntime::Handle handle; Status status = pflr->Instantiate(name, attrs, instantiate_opts, &handle); if (!status.ok()) { return status; } bool is_cross_process = false; TF_CHECK_OK(pflr->IsCrossProcess(handle, &is_cross_process)); EXPECT_FALSE(is_cross_process); std::function<void(std::function<void()>)> runner = [](std::function<void()> fn) { test::function::FunctionTestSchedClosure(fn); }; Notification done; opts.runner = &runner; std::vector<K> out; pflr->Run(opts, handle, args, &out, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); if (!status.ok()) { return status; } CHECK_EQ(rets.size(), out.size()); for (size_t i = 0; i < rets.size(); ++i) { *rets[i] = out[i]; } status = pflr->ReleaseHandle(handle); if (!status.ok()) { return status; } Notification done2; pflr->Run(opts, handle, args, &out, [&status, &done2](const Status& s) { status = s; done2.Notify(); }); done2.WaitForNotification(); EXPECT_TRUE(errors::IsNotFound(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains(status.message(), "not found.")); return absl::OkStatus(); } Status Run(const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const std::vector<Tensor>& args, std::vector<Tensor*> rets, ProcessFunctionLibraryRuntime* pflr = nullptr) { return RunWithRuntime<std::vector<Tensor>, Tensor>( name, opts, attrs, instantiate_opts, args, rets, proc_flr_.get()); } Status RunWithPackedArgs( const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const FunctionArgsInterface& args, std::vector<FunctionRet*> rets, ProcessFunctionLibraryRuntime* pflr = nullptr) { return RunWithRuntime<FunctionArgsInterface, FunctionRet>( name, opts, attrs, instantiate_opts, args, rets, proc_flr_.get()); } Status RunInstantiated(FunctionLibraryRuntime::Handle handle, FunctionLibraryRuntime::Options opts, const std::vector<Tensor>& args, std::vector<Tensor*> rets) { std::function<void(std::function<void()>)> runner = [](std::function<void()> fn) { test::function::FunctionTestSchedClosure(fn); }; opts.runner = &runner; Status status; Notification done; std::vector<Tensor> out; proc_flr_->Run(opts, handle, args, &out, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); if (!status.ok()) { return status; } CHECK_EQ(rets.size(), out.size()); for (size_t i = 0; i < rets.size(); ++i) { *rets[i] = out[i]; } return absl::OkStatus(); } std::unique_ptr<DynamicDeviceMgr> device_mgr_; Device* device0_ = nullptr; Device* device1_ = nullptr; std::unique_ptr<Device> device2_; Device* gpu_device_ = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def_; std::unique_ptr<TestClusterFLR> cluster_flr_; std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr_; tsl::core::RefCountPtr<RendezvousCache<IntraProcessRendezvous>> rendezvous_cache_; }; TEST_F(ProcessFunctionLibraryRuntimeTest, GetFLRNull) { FunctionDefLibrary proto; std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), proto)); OptimizerOptions opts; std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr( new ProcessFunctionLibraryRuntime( nullptr , Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts)); FunctionLibraryRuntime* flr = proc_flr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); EXPECT_NE(flr, nullptr); } TEST_F(ProcessFunctionLibraryRuntimeTest, DeviceSet) { FunctionDefLibrary proto; std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), proto)); OptimizerOptions opts; std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(device2_)); auto mgr = std::make_unique<DynamicDeviceMgr>(); TF_CHECK_OK(mgr.get()->AddDevices(std::move(devices))); std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr( new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts, nullptr)); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:0")); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:1")); cluster_flr_.reset(new TestClusterFLR(mgr.get())); proc_flr.reset(new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts, nullptr, cluster_flr_.get())); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:2")); } TEST_F(ProcessFunctionLibraryRuntimeTest, Basic) { Init({}); FunctionLibraryRuntime* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/device:CPU:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/device:CPU:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:1"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device1_); flr = proc_flr_->GetFLR("abc"); EXPECT_EQ(flr, nullptr); } TEST_F(ProcessFunctionLibraryRuntimeTest, GetDeviceIncarnation) { Init({}); int64_t incarnation; TF_EXPECT_OK(proc_flr_->GetDeviceIncarnation("/job:a/replica:0/task:0/cpu:1", &incarnation)); EXPECT_NE(incarnation, 0); Status s = proc_flr_->GetDeviceIncarnation("/job:a/replica:0/task:0/cpu:2", &incarnation); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); } TEST_F(ProcessFunctionLibraryRuntimeTest, SingleCall) { Init({test::function::XTimesTwo()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; auto x = test::AsTensor<float>({1, 2, 3, 4}); Tensor y; TF_CHECK_OK( Run("XTimesTwo", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({2, 4, 6, 8})); } TEST_F(ProcessFunctionLibraryRuntimeTest, SingleCallFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; Tensor y; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:0"}, TensorShape({}))); EXPECT_EQ(0, rendezvous_cache_->Size()); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceXTimes) { Init({test::function::XTimesTwo(), test::function::XTimesFour()}); auto x = test::AsTensor<float>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; Tensor y; TF_CHECK_OK( Run("XTimesTwo", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({2, 4, 6, 8})); TF_CHECK_OK( Run("XTimesFour", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, SameDeviceXTimesFourInt32MultiDevice) { Init({test::function::XTimesTwoInt32(), test::function::XTimesFourInt32()}); auto x = test::AsTensor<int32>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; instantiate_opts.input_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.output_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.is_multi_device_function = true; Tensor y; TF_CHECK_OK(Run("XTimesFourInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceXTimesMultiDevice) { Init({test::function::XTimesTwoInt32(), test::function::XTimesFourInt32()}); auto x = test::AsTensor<int32>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; instantiate_opts.input_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.output_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.is_multi_device_function = true; Tensor y; TF_CHECK_OK(Run("XTimesTwoInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({2, 4, 6, 8})); TF_CHECK_OK(Run("XTimesFourInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:1"; Tensor y; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsDiffDeviceFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; Tensor y; FunctionLibraryRuntime::InstantiateOptions instantiate_opts_0; instantiate_opts_0.target = "/job:a/replica:0/task:0/device:CPU:0"; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts_0, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:0"}, TensorShape({}))); FunctionLibraryRuntime::InstantiateOptions instantiate_opts_1; instantiate_opts_1.target = "/job:a/replica:0/task:0/device:CPU:1"; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts_1, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); } TEST_F(ProcessFunctionLibraryRuntimeTest, InstantiateFunctionOnRemovedDevice) { std::vector<std::unique_ptr<Device>> devices; Device* device2_ptr = device2_.get(); devices.emplace_back(std::move(device2_)); TF_CHECK_OK(device_mgr_->AddDevices(std::move(devices))); Init({test::function::FindDevice()}); std::vector<Device*> remove_devices{device2_ptr}; TF_CHECK_OK(device_mgr_->RemoveDevices(std::move(remove_devices))); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; FunctionLibraryRuntime::Handle h; instantiate_opts.target = "/job:a/replica:0/task:0/device:CPU:1"; instantiate_opts.is_multi_device_function = true; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:2"}}, instantiate_opts, &h)); } TEST_F(ProcessFunctionLibraryRuntimeTest, ClusterFLRSerialTest) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:b/replica:0/task:0/device:CPU:0"; FunctionLibraryRuntime::Handle h; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); bool is_cross_process = false; TF_CHECK_OK(proc_flr_->IsCrossProcess(h, &is_cross_process)); EXPECT_TRUE(is_cross_process); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); instantiate_opts.target = "/job:c/replica:0/task:0/device:CPU:0"; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:c/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(1, proc_flr_->GetHandleOnDevice( "/job:c/replica:0/task:0/device:CPU:0", h)); } TEST_F(ProcessFunctionLibraryRuntimeTest, ClusterFLRParallelTest) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:b/replica:0/task:0/device:CPU:0"; thread::ThreadPool* tp = new thread::ThreadPool(Env::Default(), "test", 4); auto fn = [this, &instantiate_opts]() { FunctionLibraryRuntime::Handle h; TF_CHECK_OK(Instantiate( "FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); }; for (int i = 0; i < 100; ++i) { tp->Schedule(fn); } delete tp; } bool IsCUDATensor(const Tensor& t) { #if GOOGLE_CUDA cudaPointerAttributes attributes; cudaError_t err = cudaPointerGetAttributes(&attributes, t.tensor_data().data()); if (err == cudaErrorInvalidValue) return false; CHECK_EQ(cudaSuccess, err) << cudaGetErrorString(err); return (attributes.type == cudaMemoryTypeDevice); #elif TENSORFLOW_USE_ROCM hipPointerAttribute_t attributes; hipError_t err = hipPointerGetAttributes(&attributes, t.tensor_data().data()); if (err == hipErrorInvalidValue) return false; CHECK_EQ(hipSuccess, err) << hipGetErrorString(err); return (attributes.memoryType == hipMemoryTypeDevice); #else CHECK(false) << "IsCUDATensor should not be called when CUDA is not available"; #endif } void TestTwoDeviceMult( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts, const string& error = "") { fixture->Init({test::function::TwoDeviceMult()}); FunctionLibraryRuntime::Options opts; auto x = test::AsTensor<float>({1, 2, 3}); Tensor y_cpu; Tensor y_gpu; Status status = fixture->Run("TwoDeviceMult", opts, {{"T", DT_FLOAT}}, inst_opts, {x}, {&y_cpu, &y_gpu}); if (!error.empty()) { EXPECT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains(status.message(), error)) << "Actual error message: " << status.message(); return; } EXPECT_TRUE(status.ok()) << "Actual status: " << status; EXPECT_FALSE(IsCUDATensor(y_cpu)); test::ExpectTensorEqual<float>(y_cpu, test::AsTensor<float>({2, 4, 6})); EXPECT_TRUE(IsCUDATensor(y_gpu)); Tensor y_gpu_on_cpu = fixture->GPUToCPU(y_gpu); test::ExpectTensorEqual<float>(y_gpu_on_cpu, test::AsTensor<float>({3, 6, 9})); } void TestInstantiateSimpleFunction( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& orig_opts) { fixture->Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions opts_copy = orig_opts; opts_copy.input_devices.clear(); FunctionLibraryRuntime::Handle h; TF_CHECK_OK(fixture->Instantiate( "FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, opts_copy, &h)); } void TestControlFlow( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts) { fixture->Init({test::function::ControlFlow()}); FunctionLibraryRuntime::Options opts; Tensor x1 = test::AsTensor<float>({3, 5, 17, 257}); if (absl::StrContains(inst_opts.input_devices[0], "GPU")) { x1 = fixture->CPUToGPU(x1); } Tensor y1; TF_CHECK_OK(fixture->Run("ControlFlow", opts, {}, inst_opts, {x1}, {&y1})); if (absl::StrContains(inst_opts.output_devices[0], "GPU")) { EXPECT_TRUE(IsCUDATensor(y1)); y1 = fixture->GPUToCPU(y1); } test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({3, 5, 17, 257})); } void TestTwoDeviceInputOutput( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts) { if (fixture->gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } fixture->Init({test::function::TwoDeviceInputOutput()}); FunctionLibraryRuntime::Options opts; Tensor x1 = test::AsTensor<float>({1, 2}); if (absl::StrContains(inst_opts.input_devices[0], "GPU")) { x1 = fixture->CPUToGPU(x1); } Tensor x2 = test::AsTensor<float>({10, 20}); if (absl::StrContains(inst_opts.input_devices[1], "GPU")) { x2 = fixture->CPUToGPU(x2); } Tensor y1; Tensor y2; TF_CHECK_OK(fixture->Run("TwoDeviceInputOutput", opts, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&y1, &y2})); if (absl::StrContains(inst_opts.output_devices[0], "GPU")) { EXPECT_TRUE(IsCUDATensor(y1)); y1 = fixture->GPUToCPU(y1); } else { EXPECT_FALSE(IsCUDATensor(y1)); } test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({2, 4})); if (absl::StrContains(inst_opts.output_devices[1], "GPU")) { EXPECT_TRUE(IsCUDATensor(y2)); y2 = fixture->GPUToCPU(y2); } else { EXPECT_FALSE(IsCUDATensor(y2)); } test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({30, 60})); } std::vector<string> CompleteDevices(const std::vector<string>& v) { std::vector<string> result; result.reserve(v.size()); for (const string& s : v) { result.push_back(strings::StrCat("/job:a/replica:0/task:0/device:", s)); } return result; } FunctionLibraryRuntime::InstantiateOptions MakeOptions( const string& target, const std::vector<string>& input_devices, const std::vector<string>& output_devices) { FunctionLibraryRuntime::InstantiateOptions inst_opts; inst_opts.target = target; inst_opts.input_devices = CompleteDevices(input_devices); inst_opts.output_devices = CompleteDevices(output_devices); inst_opts.is_multi_device_function = true; return inst_opts; } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ExplicitOutputDevice) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_InferredOutputDevice) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0"}, {})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenNoInputDevices) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {}, {}), "input_devices must have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenTooManyInputDevices) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0", "CPU:1"}, {}), "input_devices must have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenTooManyOutputDevices) { TestTwoDeviceMult( this, MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0", "CPU:1"}), "output_devices must either be empty or have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenBadTargetDevice) { TestTwoDeviceMult( this, MakeOptions("GPU:11", {"CPU:0"}, {"CPU:0", "GPU:0"}), "Cannot instantiate multi-device function with target device GPU:11"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenListInput) { const FunctionDef& def = test::function::FuncWithListInput(); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "FuncWithListInput", test::function::Attrs({{"T", DT_FLOAT}, {"N", 1}}), MakeOptions("CPU:0", {"CPU:0"}, {}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains( status.message(), "FuncWithListInput has an input named \"x1\" that is a list of tensors")) << "Actual error message: " << status.message(); } TEST_F(ProcessFunctionLibraryRuntimeTest, FullTypeForInt32) { FunctionDef def = test::function::XTimesTwoInt32(); def.mutable_node_def(2)->mutable_experimental_type()->set_type_id( TFT_PRODUCT); def.mutable_node_def(2)->mutable_experimental_type()->add_args()->set_type_id( TFT_TENSOR); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate("XTimesTwoInt32", test::function::Attrs({}), MakeOptions("CPU:0", {"CPU:0"}, {}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains( status.message(), "in 'ProcessFunctionLibraryRuntime::InstantiateMultiDevice' has " "TFT_TENSOR output 0 which has 0 args instead of 1")); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenListOutput) { const FunctionDef& def = test::function::FuncWithListOutput(); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "FuncWithListOutput", test::function::Attrs({{"T", DT_FLOAT}, {"N", 1}}), MakeOptions("CPU:0", {}, {"CPU:0"}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains( status.message(), "FuncWithListOutput has an output named \"y\" that is a list of tensors")) << "Actual error message: " << status.message(); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ExplicitMultiInputOutput) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"CPU:0", "GPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipInputs) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipOutputs) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"CPU:0", "GPU:0"}, {"GPU:0", "CPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipBoth) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"GPU:0", "CPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_EmptyBodySwap) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"CPU:0", "GPU:0"}); Init({test::function::EmptyBodySwap()}); Tensor x1 = CPUToGPU(test::AsTensor<float>({1, 2})); Tensor x2 = test::AsTensor<float>({10, 20}); Tensor y1; Tensor y2; TF_CHECK_OK(Run("EmptyBodySwap", {}, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&y1, &y2})); EXPECT_FALSE(IsCUDATensor(y1)); test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({10, 20})); EXPECT_TRUE(IsCUDATensor(y2)); y2 = GPUToCPU(y2); test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({1, 2})); } Tensor GetResourceHandle(const string& var_name, const string& container, const string& device_name) { ResourceHandle handle; handle.set_device(device_name); handle.set_container(container); handle.set_name(var_name); handle.set_hash_code(TypeIndex::Make<Var>().hash_code()); handle.set_maybe_type_name(TypeIndex::Make<Var>().name()); Tensor tensor(DT_RESOURCE, TensorShape({})); tensor.scalar<ResourceHandle>()() = handle; return tensor; } FunctionDef AddVarAcrossDevices() { return FunctionDefHelper::Create( "AddVarAcrossDevices", {"x: resource"}, {"y: float"}, {}, { {{"read0"}, "ReadVariableOp", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/device:CPU:0"}, {{"read1"}, "ReadVariableOp", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/device:CPU:1"}, {{"add"}, "Add", {"read0:value:0", "read1:value:0"}, {{"T", DT_FLOAT}}, {}, "/device:CPU:0"}, }, {{"y", "add:z:0"}}); } class TestFunctionPackedArgs : public FunctionArgsInterface { public: TestFunctionPackedArgs(const int index, absl::InlinedVector<TensorValue, 4UL>&& tensor_args) { packed_args_.emplace(index, std::move(tensor_args)); } ~TestFunctionPackedArgs() override{}; bool HasRemoteOrPackedInputs() const override { return true; }; Status GetLocalArg(const FunctionArgIndex& index, Tensor* val) const override { *val = *packed_args_.at(index.index).at(index.sub_index).tensor; return absl::OkStatus(); }; std::vector<Tensor> GetLocalTensors() const override { return {}; } private: absl::flat_hash_map<int, absl::InlinedVector<TensorValue, 4UL>> packed_args_; }; TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_CompositeDevice) { Init({AddVarAcrossDevices()}); const Tensor initial_resource_value0 = test::AsTensor<float>({10, 20}); Var* resource0 = new Var(DT_FLOAT); *resource0->tensor() = initial_resource_value0; resource0->is_initialized = true; const Tensor initial_resource_value1 = test::AsTensor<float>({30, 40}); Var* resource1 = new Var(DT_FLOAT); *resource1->tensor() = initial_resource_value1; resource1->is_initialized = true; ResourceMgr* mgr0 = device0_->resource_manager(); ResourceMgr* mgr1 = device1_->resource_manager(); TF_ASSERT_OK(mgr0->Create(mgr0->default_container(), "var", resource0)); TF_ASSERT_OK(mgr1->Create(mgr1->default_container(), "var", resource1)); Tensor resource_handle0 = GetResourceHandle("var", mgr0->default_container(), device0_->name()); Tensor resource_handle1 = GetResourceHandle("var", mgr1->default_container(), device1_->name()); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0_->name(), device1_->name()}, 0, device_mgr_->HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); AddCompositeDevice(composite_device.get()); FunctionLibraryRuntime::Options opts; FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"COMPOSITE:0"}, {"CPU:0"}); inst_opts.composite_devices[composite_device->name()] = composite_device->underlying_devices(); inst_opts.input_resource_dtypes_and_shapes[0] = { initial_resource_value0.dtype(), initial_resource_value0.shape()}; { absl::InlinedVector<TensorValue, 4UL> handles; handles.push_back(TensorValue(&resource_handle0)); handles.push_back(TensorValue(&resource_handle1)); TestFunctionPackedArgs args(0, std::move(handles)); FunctionRet ret; TF_CHECK_OK(RunWithPackedArgs("AddVarAcrossDevices", opts, {{"T", DT_FLOAT}}, inst_opts, args, {&ret})); EXPECT_EQ(ret.index(), 0); test::ExpectTensorEqual<float>(absl::get<Tensor>(ret), test::AsTensor<float>({40, 60})); } { Tensor arg(DT_RESOURCE, TensorShape({2})); arg.flat<ResourceHandle>()(0) = resource_handle0.scalar<ResourceHandle>()(); arg.flat<ResourceHandle>()(1) = resource_handle1.scalar<ResourceHandle>()(); Tensor ret; TF_CHECK_OK(Run("AddVarAcrossDevices", opts, {{"T", DT_FLOAT}}, inst_opts, {arg}, {&ret})); test::ExpectTensorEqual<float>(ret, test::AsTensor<float>({40, 60})); } } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ResourceOutput_GPU) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "GPU:0"}, {"GPU:0", "GPU:0"}); Init({test::function::ResourceOutput(), test::function::ReadResourceVariable()}); Tensor resource_value = CPUToGPU(test::AsTensor<float>({10, 20})); Var* resource = new Var(DT_FLOAT); *resource->tensor() = resource_value; resource->is_initialized = true; ResourceMgr* mgr = gpu_device_->resource_manager(); Status status = mgr->Create(mgr->default_container(), "my_gpu_var", resource); ASSERT_TRUE(status.ok()) << status.message(); FunctionLibraryRuntime::Options opts; Tensor x1 = CPUToGPU(test::AsTensor<float>({1, 2})); Tensor x2 = GetResourceHandle("my_gpu_var", mgr->default_container(), "/job:a/replica:0/task:0/device:GPU:0"); Tensor returned_handle; Tensor y2; TF_CHECK_OK(Run("ResourceOutput", opts, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&returned_handle, &y2})); EXPECT_FALSE(IsCUDATensor(returned_handle)); EXPECT_TRUE(IsCUDATensor(y2)); y2 = GPUToCPU(y2); test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({2, 4})); inst_opts = MakeOptions("GPU:0", {"GPU:0"}, {"GPU:0"}); Tensor read_resource; TF_CHECK_OK(Run("ReadResourceVariable", opts, {{"T", DT_FLOAT}}, inst_opts, {returned_handle}, {&read_resource})); EXPECT_TRUE(IsCUDATensor(read_resource)); read_resource = GPUToCPU(read_resource); test::ExpectTensorEqual<float>(read_resource, test::AsTensor<float>({10, 20})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_PlacerError) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "GPU:0"}, {"CPU:0", "GPU:0"}); Init({test::function::ResourceOutput(), test::function::ReadResourceVariable()}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "ResourceOutput", test::function::Attrs({{"T", DT_FLOAT}}), inst_opts, &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains(status.message(), "Cannot place")); } REGISTER_OP("BrokenOp") .Input("in: T") .Output("out: T") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape); class BrokenOp : public OpKernel { public: explicit BrokenOp(OpKernelConstruction* ctx) : OpKernel(ctx) { ctx->SetStatus(errors::Internal("I am broken")); } void Compute(OpKernelContext* ctx) override { ctx->SetStatus(errors::Internal("I am broken")); } }; REGISTER_KERNEL_BUILDER(Name("BrokenOp").Device(DEVICE_CPU), BrokenOp); TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_CreateKernelsEagerly) { auto T = DT_INT32; FunctionDef broken_func = FunctionDefHelper::Define( "Broken", {"x: int32"}, {"y: int32"}, {}, {{{"y"}, "BrokenOp", {"x"}, {{"T", T}}}}); Init({broken_func}); FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0"}); FunctionLibraryRuntime::Handle handle; TF_CHECK_OK(Instantiate("Broken", {{"T", DT_INT32}}, inst_opts, &handle)); TF_CHECK_OK(proc_flr_->ReleaseHandle(handle)); inst_opts.create_kernels_eagerly = true; Status status = Instantiate("Broken", {{"T", DT_INT32}}, inst_opts, &handle); EXPECT_TRUE(errors::IsInternal(status)); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_StateHandle) { auto T = DT_INT32; FunctionDef stateful_func = FunctionDefHelper::Define( "RandomUniformWrapper", {"x: resource"}, {"y: int32"}, {}, {FunctionDefHelper::Const<int32>("shape", absl::Span<const int32>({1})), FunctionDefHelper::Const<int32>("minval", 0), {{"maxval"}, "ReadVariableOp", {"x"}, {{"dtype", T}}, {}}, {{"y"}, "RandomUniformInt", {"shape", "minval", "maxval"}, {{"seed", 37}, {"seed2", 48}, {"Tout", T}, {"T", T}}}}); Init({stateful_func}); if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } ResourceMgr* mgr = gpu_device_->resource_manager(); Tensor resource_value = CPUToGPU(test::AsScalar<int>(10)); Var* resource = new Var(T); *resource->tensor() = resource_value; resource->is_initialized = true; Status status = mgr->Create(mgr->default_container(), "my_gpu_var", resource); ASSERT_TRUE(status.ok()) << status.message(); Tensor x = GetResourceHandle("my_gpu_var", mgr->default_container(), "/job:a/replica:0/task:0/device:GPU:0"); Tensor y; FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0"}, {"CPU:0"}); FunctionLibraryRuntime::Handle handle; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &handle)); for (auto expected : {6, 4}) { TF_CHECK_OK(RunInstantiated(handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } FunctionLibraryRuntime::Handle other_handle; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_EQ(handle, other_handle); for (auto expected : {0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_1"; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_2"; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_3"; for (int i = 0; i < 2; ++i) { TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } TF_CHECK_OK(proc_flr_->ReleaseHandle(other_handle)); } } REGISTER_OP("SessionMetadataReader") .Input("x: int64") .Output("y: string") .SetIsStateful() .Doc(R"doc(SessionMetadataReader returns the session metadata. x: int64 y: string )doc"); class SessionMetadataReaderOp : public OpKernel { public: explicit SessionMetadataReaderOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { Tensor* out_tensor = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output("y", TensorShape({}), &out_tensor)); if (ctx->session_metadata() != nullptr) { out_tensor->scalar<tstring>()() = tsl::LegacyUnredactedDebugString(*ctx->session_metadata()); } else { out_tensor->scalar<tstring>()() = ""; } } }; REGISTER_KERNEL_BUILDER(Name("SessionMetadataReader").Device(DEVICE_CPU), SessionMetadataReaderOp); FunctionDef SessionMetadataReaderOpFn() { return FunctionDefHelper::Define( "SessionMetadataReaderFn", {"x: int64"}, {"y: string"}, {}, {{{"y"}, "SessionMetadataReader", {"x"}, {}}}); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataAbsent) { Init({SessionMetadataReaderOpFn()}, nullptr); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; TF_CHECK_OK( Run("SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y})); EXPECT_EQ("", y.scalar<tstring>()()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataPresent) { const SessionMetadata session_metadata = GenerateSessionMetadata(); Init({SessionMetadataReaderOpFn()}, &session_metadata); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; TF_CHECK_OK( Run("SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y})); SessionMetadata read_metadata; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(y.scalar<tstring>()(), &read_metadata)); EXPECT_EQ(session_metadata.name(), read_metadata.name()); EXPECT_EQ(session_metadata.version(), read_metadata.version()); } TEST_F(ProcessFunctionLibraryRuntimeTest, CompositeDevicesAfterCloning) { Init({AddVarAcrossDevices()}); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0_->name(), device1_->name()}, 0, device_mgr_->HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); AddCompositeDevice(composite_device.get()); auto* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); ASSERT_NE(nullptr, flr); std::unique_ptr<FunctionLibraryDefinition> cloned_lib_def; std::unique_ptr<ProcessFunctionLibraryRuntime> cloned_proc_flr; FunctionLibraryRuntime* cloned_flr; TF_ASSERT_OK(flr->Clone(&cloned_lib_def, &cloned_proc_flr, &cloned_flr)); EXPECT_EQ( cloned_proc_flr->device_set()->FindDeviceByName(composite_device->name()), composite_device.get()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataPresentAfterCloning) { const SessionMetadata session_metadata = GenerateSessionMetadata(); Init({SessionMetadataReaderOpFn()}, &session_metadata); auto* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); ASSERT_NE(nullptr, flr); std::unique_ptr<FunctionLibraryDefinition> cloned_lib_def; std::unique_ptr<ProcessFunctionLibraryRuntime> cloned_proc_flr; FunctionLibraryRuntime* cloned_flr; TF_ASSERT_OK(flr->Clone(&cloned_lib_def, &cloned_proc_flr, &cloned_flr)); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; Status s = RunWithRuntime<std::vector<Tensor>, Tensor>( "SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y}, cloned_proc_flr.get()); TF_CHECK_OK(s); SessionMetadata read_metadata; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(y.scalar<tstring>()(), &read_metadata)); EXPECT_EQ(session_metadata.name(), read_metadata.name()); EXPECT_EQ(session_metadata.version(), read_metadata.version()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SimpleGraphAllowsSync) { auto async_safe = metrics::TestDelta("subgraph_async_summary", "safe_for_sync"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {}, {}); opts.allow_small_function_optimizations = true; TestInstantiateSimpleFunction(this, opts); EXPECT_GT(async_safe.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, UnsafeOpRequiresAsync) { auto async_safe = metrics::TestDelta("subgraph_async_summary", "safe_for_sync"); auto async_unsafe_op = metrics::TestDelta("subgraph_async_summary", "unsafe_op"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0"}); opts.allow_small_function_optimizations = true; TestControlFlow(this, opts); EXPECT_EQ(async_safe.Get(), 0); EXPECT_GT(async_unsafe_op.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, PartitionedGraphRequiresAsync) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } auto async_send_only = metrics::TestDelta("subgraph_async_summary", "send_only"); auto async_recv_only = metrics::TestDelta("subgraph_async_summary", "recv_only"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0"}); opts.allow_small_function_optimizations = true; TestTwoDeviceMult(this, opts); EXPECT_GT(async_send_only.Get(), 0); EXPECT_GT(async_recv_only.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, RecordAotSavingTimeAndHitCount) { FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {}, {}); opts.allow_small_function_optimizations = true; FunctionLibraryRuntime::Handle h; OptimizedFunctionGraph optimized_graph_proto; optimized_graph_proto.set_name("FindDevice"); optimized_graph_proto.set_optimization_time_usecs(10); Init({test::function::FindDevice()}, nullptr, {optimized_graph_proto}); Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, opts, &h) .IgnoreError(); EXPECT_EQ(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kAot), 10); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kAot), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_function_library_runtime.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_function_library_runtime_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a3f8588-637c-45e9-a35c-80b3a7189e17
cpp
tensorflow/tensorflow
cost_recorder
tensorflow/core/tfrt/fallback/cost_recorder.cc
tensorflow/core/tfrt/fallback/cost_recorder_test.cc
#include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace tfrt_stub { void CostRecorder::RecordCost(int64_t op_key, uint64_t execution_time) { mutex_lock l(op_cost_map_mutex_); op_cost_map_[op_key].first += execution_time; op_cost_map_[op_key].second += 1; } uint64_t CostRecorder::GetCost(int64_t op_key) const { tf_shared_lock l(op_cost_map_mutex_); const auto iter = op_cost_map_.find(op_key); if (iter == op_cost_map_.end()) return std::numeric_limits<uint32_t>::max(); const auto total_cost = iter->second.first; const auto num_ops = iter->second.second; auto r = std::max(static_cast<uint64_t>(1), static_cast<uint64_t>(total_cost / num_ops)); VLOG(2) << "Get cost for op_key=" << op_key << ", cost=" << r; return r; } Status CostRecorder::WriteToFile() const { OpCostMapProto op_cost_map_proto; { tf_shared_lock l(op_cost_map_mutex_); for (const auto& [op_key, op_cost] : op_cost_map_) { const uint64_t avg_op_cost = op_cost.first / op_cost.second; (*op_cost_map_proto.mutable_op_cost_map())[op_key] = avg_op_cost; } } std::string measured_cost_path; TF_RETURN_IF_ERROR(ReadStringFromEnvVar(MesuredCostPathEnvVarName(), "", &measured_cost_path)); return tensorflow::WriteTextProto(tensorflow::Env::Default(), measured_cost_path, op_cost_map_proto); } size_t CostRecorder::size() const { tf_shared_lock l(op_cost_map_mutex_); return op_cost_map_.size(); } } }
#include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include <gtest/gtest.h> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr int64_t kTestOpKey = 1; constexpr uint64_t kTestCost = 1234; constexpr uint64_t kTestAvgCost = 1851; TEST(CostRecorderTest, RecordCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, kTestCost); EXPECT_EQ(recorder.size(), 1); } TEST(CostRecorderTest, GetCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); EXPECT_EQ(recorder.size(), 1); EXPECT_EQ(recorder.GetCost(kTestOpKey), kTestAvgCost); } TEST(CostRecorderTest, GetCostDefaultValueTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); EXPECT_EQ(recorder.GetCost(kTestOpKey), std::numeric_limits<uint32_t>::max()); } TEST(CostRecorderTest, WriteToFileTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv("TF_TFRT_MEASURED_COST_PATH", measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map_size(), 0); } TEST(CostRecorderTest, ProtoRecordsTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); ASSERT_EQ(recorder.size(), 1); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv(CostRecorder::MesuredCostPathEnvVarName(), measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map().find(kTestOpKey)->second, kTestAvgCost); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/cost_recorder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/cost_recorder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
504bdc2c-48c0-44c6-9489-d2383b5d9d67
cpp
tensorflow/tensorflow
cuda_platform
third_party/xla/xla/stream_executor/cuda/cuda_platform.cc
third_party/xla/xla/stream_executor/cuda/cuda_platform_test.cc
#include "xla/stream_executor/cuda/cuda_platform.h" #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/stream_executor/cuda/cuda_executor.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform/initialize.h" #include "xla/stream_executor/platform_manager.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace stream_executor { namespace gpu { CudaPlatform::CudaPlatform() : name_("CUDA") {} Platform::Id CudaPlatform::id() const { return cuda::kCudaPlatformId; } int CudaPlatform::VisibleDeviceCount() const { static const int num_devices = [] { if (!GpuDriver::Init().ok()) return -1; return GpuDriver::GetDeviceCount(); }(); return num_devices; } const std::string& CudaPlatform::Name() const { return name_; } absl::StatusOr<std::unique_ptr<DeviceDescription>> CudaPlatform::DescriptionForDevice(int ordinal) const { return CudaExecutor::CreateDeviceDescription(ordinal); } absl::StatusOr<StreamExecutor*> CudaPlatform::ExecutorForDevice(int ordinal) { return executor_cache_.GetOrCreate( ordinal, [this, ordinal]() { return GetUncachedExecutor(ordinal); }); } absl::StatusOr<StreamExecutor*> CudaPlatform::FindExisting(int ordinal) { return executor_cache_.Get(ordinal); } absl::StatusOr<std::unique_ptr<StreamExecutor>> CudaPlatform::GetUncachedExecutor(int ordinal) { auto executor = std::make_unique<CudaExecutor>(this, ordinal); TF_RETURN_IF_ERROR(executor->Init()); return std::move(executor); } } static void InitializeCudaPlatform() { TF_CHECK_OK( PlatformManager::RegisterPlatform(std::make_unique<gpu::CudaPlatform>())); } } STREAM_EXECUTOR_REGISTER_MODULE_INITIALIZER( cuda_platform, stream_executor::InitializeCudaPlatform());
#include "xla/stream_executor/cuda/cuda_platform.h" #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { TEST(CudaPlatformTest, FindExistingWorks) { TF_ASSERT_OK_AND_ASSIGN(Platform * platform, PlatformManager::PlatformWithName("CUDA")); CHECK_GT(platform->VisibleDeviceCount(), 0); for (int i = 0; i < platform->VisibleDeviceCount(); ++i) { EXPECT_FALSE(platform->FindExisting(i).ok()); } absl::flat_hash_map<int, StreamExecutor*> executors; for (int i = 0; i < platform->VisibleDeviceCount(); ++i) { TF_ASSERT_OK_AND_ASSIGN(auto executor, platform->ExecutorForDevice(i)); executors[i] = executor; } EXPECT_EQ(executors.size(), platform->VisibleDeviceCount()); for (int i = 0; i < platform->VisibleDeviceCount(); ++i) { TF_ASSERT_OK_AND_ASSIGN(auto executor, platform->FindExisting(i)); EXPECT_EQ(executor, executors[i]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_platform.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_platform_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b87bef5-aef6-4c86-af67-6588098ca436
cpp
tensorflow/tensorflow
overflow
tensorflow/core/util/overflow.h
tensorflow/core/util/overflow_test.cc
#ifndef TENSORFLOW_CORE_UTIL_OVERFLOW_H_ #define TENSORFLOW_CORE_UTIL_OVERFLOW_H_ #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { inline int64_t MultiplyWithoutOverflow(int64_t x, int64_t y) { if (TF_PREDICT_FALSE(x < 0)) return -1; if (TF_PREDICT_FALSE(y < 0)) return -1; if (TF_PREDICT_FALSE(x == 0)) return 0; const uint64 ux = x; const uint64 uy = y; const uint64 uxy = ux * uy; if (TF_PREDICT_FALSE((ux | uy) >> 32 != 0)) { if (uxy / ux != uy) return -1; } return static_cast<int64_t>(uxy); } inline int64_t AddWithoutOverflow(int64_t x, int64_t y) { if (TF_PREDICT_FALSE((x < 0)) || (y < 0)) return -1; const uint64 ux = x; const uint64 uy = y; const uint64 uxy = ux + uy; return static_cast<int64_t>(uxy); } } #endif
#include "tensorflow/core/util/overflow.h" #include <cmath> #include <limits> #include <vector> #ifdef PLATFORM_WINDOWS #include <Windows.h> #endif #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { bool HasMultiplyOverflow(int64_t x, int64_t y) { #ifdef PLATFORM_WINDOWS return ::MultiplyHigh(x, y) != 0; #else long double dxy = static_cast<long double>(x) * static_cast<long double>(y); return dxy > std::numeric_limits<int64_t>::max(); #endif } bool HasAddOverflow(int64_t x, int64_t y) { int64_t carry_from_lower_bits = ((x & 0xffffffff) + (y & 0xffffffff)) >> 32; if ((x >> 32) + (y >> 32) + carry_from_lower_bits >= (static_cast<int64_t>(1) << 31)) { return true; } return false; } TEST(OverflowTest, Nonnegative) { std::vector<int64_t> interesting = { 0, std::numeric_limits<int64_t>::max(), }; for (int i = 0; i < 63; i++) { int64_t bit = static_cast<int64_t>(1) << i; interesting.push_back(bit); interesting.push_back(bit + 1); interesting.push_back(bit - 1); } for (const int64_t mid : {static_cast<int64_t>(1) << 32, static_cast<int64_t>(std::pow(2, 63.0 / 2))}) { for (int i = -5; i < 5; i++) { interesting.push_back(mid + i); } } for (int64_t x : interesting) { for (int64_t y : interesting) { int64_t xmy = MultiplyWithoutOverflow(x, y); if (HasMultiplyOverflow(x, y)) { EXPECT_LT(xmy, 0) << x << " " << y; } else { EXPECT_EQ(x * y, xmy) << x << " " << y; } int64_t xpy = AddWithoutOverflow(x, y); if (HasAddOverflow(x, y)) { EXPECT_LT(xpy, 0) << x << " " << y; } else { EXPECT_EQ(x + y, xpy) << x << " " << y; } } } } TEST(OverflowTest, Negative) { const int64_t negatives[] = {-1, std::numeric_limits<int64_t>::min()}; for (const int64_t n : negatives) { EXPECT_LT(MultiplyWithoutOverflow(n, 0), 0) << n; EXPECT_LT(MultiplyWithoutOverflow(0, n), 0) << n; EXPECT_LT(MultiplyWithoutOverflow(n, n), 0) << n; EXPECT_LT(AddWithoutOverflow(n, 0), 0) << n; EXPECT_LT(AddWithoutOverflow(0, n), 0) << n; EXPECT_LT(AddWithoutOverflow(n, n), 0) << n; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/overflow.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/overflow_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
11861505-cf46-458e-b235-534742eff9ac
cpp
tensorflow/tensorflow
schedule_aware_collective_ops_cse
third_party/xla/xla/service/spmd/schedule_aware_collective_ops_cse.cc
third_party/xla/xla/service/spmd/schedule_aware_collective_ops_cse_test.cc
#include "xla/service/spmd/schedule_aware_collective_ops_cse.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsAddingOnlyDegenerateDimensions(const HloInstruction* inst) { if (inst->opcode() != HloOpcode::kBitcast && inst->opcode() != HloOpcode::kReshape) { return false; } const Shape& in_shape = inst->operand(0)->shape(); const Shape& out_shape = inst->shape(); return ShapeUtil::ElementsIn(in_shape) == ShapeUtil::ElementsIn(out_shape) && ShapeUtil::DimensionsUnmodifiedByReshape(in_shape, out_shape).size() == in_shape.rank(); } const HloInstruction* PassthroughDegenerateAddingReshapes( const HloInstruction* inst) { while (IsAddingOnlyDegenerateDimensions(inst)) { inst = inst->operand(0); } return inst; } bool ShouldConsiderSchedule(HloInstruction* hlo) { return hlo->opcode() != HloOpcode::kCollectivePermute; } HloInstruction* MayConsiderCollective(HloInstruction* hlo, bool for_replicas) { auto chan_instr = DynCast<HloChannelInstruction>(hlo); if (!chan_instr) { return nullptr; } if (for_replicas == chan_instr->channel_id().has_value()) { return nullptr; } if (hlo->opcode() == HloOpcode::kCollectivePermute) { return hlo; } auto coll = DynCast<HloCollectiveInstruction>(hlo); if (!coll) { return nullptr; } if (coll->constrain_layout()) { return nullptr; } if (coll->opcode() == HloOpcode::kAllGather) { return coll; } if (coll->opcode() == HloOpcode::kAllReduce && coll->shape().IsArray()) { auto operand = coll->operand(0); return operand->opcode() == HloOpcode::kDynamicUpdateSlice && operand->operand(0)->opcode() == HloOpcode::kBroadcast ? coll : nullptr; } return nullptr; } absl::StatusOr<bool> RunOnComputation(HloComputation* comp, bool for_replicas, int64_t distance_threshold) { bool changed = false; absl::flat_hash_map<const HloInstruction*, int64_t> height; auto ordered_hlos = comp->MakeInstructionPostOrder(); int64_t max_height = 0; for (auto it = ordered_hlos.rbegin(); it != ordered_hlos.rend(); ++it) { auto hlo = *it; int64_t h = 0; for (auto user : hlo->users()) { h = std::max(h, height[user]) + 1; } max_height = std::max(max_height, h); height[hlo] = h; } auto lowest_user_height = [&](const HloInstruction* hlo) { int64_t lowest = height[hlo]; for (auto user : hlo->users()) { lowest = std::min(lowest, height[user]); } return lowest; }; absl::flat_hash_map<const HloInstruction*, std::vector<HloInstruction*>> operand_to_collective; for (HloInstruction* hlo : ordered_hlos) { HloInstruction* coll = MayConsiderCollective(hlo, for_replicas); if (!coll) { continue; } auto& earlier_colls = operand_to_collective[PassthroughDegenerateAddingReshapes( coll->operand(0))]; bool found = false; int64_t coll_height = height[coll]; for (HloInstruction* earlier_coll : earlier_colls) { if (!ShapeUtil::Equal(earlier_coll->shape(), coll->shape())) { continue; } HloInstruction* coll_operand = coll->mutable_operand(0); TF_RETURN_IF_ERROR( coll->ReplaceOperandWith(0, earlier_coll->mutable_operand(0))); if (!earlier_coll->IdenticalIgnoringChannelIdValues(*coll)) { TF_RETURN_IF_ERROR(coll->ReplaceOperandWith(0, coll_operand)); continue; } found = true; if (ShouldConsiderSchedule(coll) && lowest_user_height(earlier_coll) > coll_height + distance_threshold) { TF_RETURN_IF_ERROR(coll->ReplaceOperandWith(0, coll_operand)); earlier_coll = coll; continue; } changed = true; VLOG(1) << "Replacing " << coll->ToString() << " with " << earlier_coll->ToString(); TF_RETURN_IF_ERROR(coll->ReplaceAllUsesWith(earlier_coll)); break; } if (!found) { earlier_colls.push_back(coll); } } return changed; } } absl::StatusOr<bool> ScheduleAwareCollectiveOpsCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto comp : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN( auto comp_changed, RunOnComputation(comp, for_replicas_, distance_threshold_)); changed |= comp_changed; } return changed; } }
#include "xla/service/spmd/schedule_aware_collective_ops_cse.h" #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { class CollectiveOpsCseTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, int64_t distance_threshold = 100) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest())); HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<ScheduleAwareCollectiveOpsCSE>(distance_threshold, false); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } }; TEST_F(CollectiveOpsCseTest, SimpleCseAllGather) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[1,8]{1,0} parameter(0) ag1 = s32[2,8]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true ag2 = s32[2,8]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={0}, channel_id=1, use_global_device_ids=true ROOT tuple = (s32[2,8]{1,0}, s32[2,8]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleCseCollectivePermute) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[2,8]{1,0} parameter(0) cp1 = s32[2,8]{1,0} collective-permute(param0), source_target_pairs={{0,1},{1,0}}, channel_id=0 cp2 = s32[2,8]{1,0} collective-permute(param0), source_target_pairs={{0,1},{1,0}}, channel_id=1 ROOT tuple = (s32[2,8]{1,0}, s32[2,8]{1,0}) tuple(cp1, cp2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleCseReshapeLookthroughAllGather) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) rshp = s32[1,8]{1,0} reshape(param0) rshp2 = s32[1,8]{1,0} reshape(param0) ag1 = s32[2,8]{1,0} all-gather(rshp), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true ag2 = s32[2,8]{1,0} all-gather(rshp2), replica_groups={{0,1}}, dimensions={0}, channel_id=1, use_global_device_ids=true ROOT tuple = (s32[2,8]{1,0}, s32[2,8]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleCseReshapeLookthroughCollectivePermute) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) rshp = s32[1,8]{1,0} reshape(param0) rshp2 = s32[1,8]{1,0} reshape(param0) cp1 = s32[1,8]{1,0} collective-permute(rshp), source_target_pairs={{0,1},{1,0}}, channel_id=0 cp2 = s32[1,8]{1,0} collective-permute(rshp2), source_target_pairs={{0,1},{1,0}}, channel_id=1 ROOT tuple = (s32[1,8]{1,0}, s32[1,8]{1,0}) tuple(cp1, cp2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleNoCseInvalidReshapes) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) rshp = s32[2,4]{1,0} reshape(param0) rshp2 = s32[2,4]{1,0} reshape(param0) ag1 = s32[4,4]{1,0} all-gather(rshp), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true ag2 = s32[4,4]{1,0} all-gather(rshp2), replica_groups={{0,1}}, dimensions={0}, channel_id=1, use_global_device_ids=true ROOT tuple = (s32[4,4]{1,0}, s32[4,4]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_NE(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleCseDifferentDim) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[1,8]{1,0} parameter(0) ag1 = s32[1,16]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={1}, channel_id=0, use_global_device_ids=true ag2 = s32[1,16]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={1}, channel_id=1, use_global_device_ids=true ROOT tuple = (s32[1,16]{1,0}, s32[1,16]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, SimpleCseDifferentDimReshapeLookthrough) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) rshp = s32[1,8]{1,0} reshape(param0) rshp2 = s32[1,8]{1,0} reshape(param0) ag1 = s32[1,16]{1,0} all-gather(rshp), replica_groups={{0,1}}, dimensions={1}, channel_id=0, use_global_device_ids=true ag2 = s32[1,16]{1,0} all-gather(rshp2), replica_groups={{0,1}}, dimensions={1}, channel_id=1, use_global_device_ids=true ROOT tuple = (s32[1,16]{1,0}, s32[1,16]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_EQ(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, NoCseGlobalDevice) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[1,8]{1,0} parameter(0) ag1 = s32[2,8]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true ag2 = s32[2,8]{1,0} all-gather(param0), replica_groups={{0},{1}}, dimensions={0}, channel_id=1, use_global_device_ids=false ROOT tuple = (s32[2,8]{1,0}, s32[2,8]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_NE(tuple->operand(0), tuple->operand(1)); } TEST_F(CollectiveOpsCseTest, NoCseChannelIdMismatch) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[1,8]{1,0} parameter(0) ag1 = s32[1,16]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={1}, channel_id=0 ag2 = s32[1,16]{1,0} all-gather(param0), replica_groups={{0,1}}, dimensions={1} ROOT tuple = (s32[1,16]{1,0}, s32[1,16]{1,0}) tuple(ag1, ag2) })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* tuple = module->entry_computation()->root_instruction(); EXPECT_EQ(tuple->opcode(), HloOpcode::kTuple); EXPECT_EQ(tuple->operand_count(), 2); EXPECT_NE(tuple->operand(0), tuple->operand(1)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/schedule_aware_collective_ops_cse.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/spmd/schedule_aware_collective_ops_cse_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
98be112c-907d-41a9-8977-35bd21348749
cpp
tensorflow/tensorflow
local_response_norm
tensorflow/lite/kernels/local_response_norm.cc
tensorflow/lite/kernels/local_response_norm_test.cc
#include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace local_response_norm { enum KernelType { kReference, kGenericOptimized, }; constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = input->dims->data[1]; output_size->data[2] = input->dims->data[2]; output_size->data[3] = input->dims->data[3]; return context->ResizeTensor(context, output, output_size); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteLocalResponseNormParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (output->type == kTfLiteFloat32) { #define TF_LITE_LOCAL_RESPONSE_NORM(type) \ tflite::LocalResponseNormalizationParams op_params; \ op_params.range = params->radius; \ op_params.bias = params->bias; \ op_params.alpha = params->alpha; \ op_params.beta = params->beta; \ type::LocalResponseNormalization( \ op_params, GetTensorShape(input), GetTensorData<float>(input), \ GetTensorShape(output), GetTensorData<float>(output)) if (kernel_type == kReference) { TF_LITE_LOCAL_RESPONSE_NORM(reference_ops); } if (kernel_type == kGenericOptimized) { TF_LITE_LOCAL_RESPONSE_NORM(optimized_ops); } #undef TF_LITE_LOCAL_RESPONSE_NORM } else { TF_LITE_KERNEL_LOG(context, "Output type is %d, requires float.", output->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_LOCAL_RESPONSE_NORM_REF() { static TfLiteRegistration r = { nullptr, nullptr, local_response_norm::Prepare, local_response_norm::Eval<local_response_norm::kReference>}; return &r; } TfLiteRegistration* Register_LOCAL_RESPONSE_NORM_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, local_response_norm::Prepare, local_response_norm::Eval<local_response_norm::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_LOCAL_RESPONSE_NORMALIZATION() { return Register_LOCAL_RESPONSE_NORM_GENERIC_OPT(); } } } }
#include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class LocalResponseNormOpModel : public SingleOpModel { public: LocalResponseNormOpModel(std::initializer_list<int> input_shape, int radius, float bias, float alpha, float beta) { input_ = AddInput(TensorType_FLOAT32); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, BuiltinOptions_LocalResponseNormalizationOptions, CreateLocalResponseNormalizationOptions(builder_, radius, bias, alpha, beta) .Union()); BuildInterpreter({input_shape}); } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } private: int input_; int output_; }; TEST(LocalResponseNormOpTest, SameAsL2Norm) { LocalResponseNormOpModel m({1, 1, 1, 6}, 20, 0.0, 1.0, 0.5); m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}))); } TEST(LocalResponseNormOpTest, WithAlpha) { LocalResponseNormOpModel m({1, 1, 1, 6}, 20, 0.0, 4.0, 0.5); m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-0.275, 0.15, 0.175, 0.3, -0.175, 0.025}))); } TEST(LocalResponseNormOpTest, WithBias) { LocalResponseNormOpModel m({1, 1, 1, 6}, 20, 9.0, 4.0, 0.5); m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear({-0.22, 0.12, 0.14, 0.24, -0.14, 0.02}))); } TEST(LocalResponseNormOpTest, SmallRadius) { LocalResponseNormOpModel m({1, 1, 1, 6}, 2, 9.0, 4.0, 0.5); m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-0.264926, 0.125109, 0.140112, 0.267261, -0.161788, 0.0244266}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/local_response_norm.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/local_response_norm_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8163b5c8-cb29-47ef-96a7-84b47fec4f55
cpp
google/cel-cpp
strings
extensions/strings.cc
extensions/strings_test.cc
#include "extensions/strings.h" #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <tuple> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "common/casting.h" #include "common/type.h" #include "common/value.h" #include "common/value_manager.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_options.h" #include "internal/status_macros.h" #include "internal/utf8.h" #include "runtime/function_adapter.h" #include "runtime/function_registry.h" #include "runtime/internal/errors.h" #include "runtime/runtime_options.h" namespace cel::extensions { namespace { struct AppendToStringVisitor { std::string& append_to; void operator()(absl::string_view string) const { append_to.append(string); } void operator()(const absl::Cord& cord) const { append_to.append(static_cast<std::string>(cord)); } }; absl::StatusOr<Value> Join2(ValueManager& value_manager, const ListValue& value, const StringValue& separator) { std::string result; CEL_ASSIGN_OR_RETURN(auto iterator, value.NewIterator(value_manager)); Value element; if (iterator->HasNext()) { CEL_RETURN_IF_ERROR(iterator->Next(value_manager, element)); if (auto string_element = As<StringValue>(element); string_element) { string_element->NativeValue(AppendToStringVisitor{result}); } else { return ErrorValue{ runtime_internal::CreateNoMatchingOverloadError("join")}; } } std::string separator_scratch; absl::string_view separator_view = separator.NativeString(separator_scratch); while (iterator->HasNext()) { result.append(separator_view); CEL_RETURN_IF_ERROR(iterator->Next(value_manager, element)); if (auto string_element = As<StringValue>(element); string_element) { string_element->NativeValue(AppendToStringVisitor{result}); } else { return ErrorValue{ runtime_internal::CreateNoMatchingOverloadError("join")}; } } result.shrink_to_fit(); return value_manager.CreateUncheckedStringValue(std::move(result)); } absl::StatusOr<Value> Join1(ValueManager& value_manager, const ListValue& value) { return Join2(value_manager, value, StringValue{}); } struct SplitWithEmptyDelimiter { ValueManager& value_manager; int64_t& limit; ListValueBuilder& builder; absl::StatusOr<Value> operator()(absl::string_view string) const { char32_t rune; size_t count; std::string buffer; buffer.reserve(4); while (!string.empty() && limit > 1) { std::tie(rune, count) = internal::Utf8Decode(string); buffer.clear(); internal::Utf8Encode(buffer, rune); CEL_RETURN_IF_ERROR(builder.Add( value_manager.CreateUncheckedStringValue(absl::string_view(buffer)))); --limit; string.remove_prefix(count); } if (!string.empty()) { CEL_RETURN_IF_ERROR( builder.Add(value_manager.CreateUncheckedStringValue(string))); } return std::move(builder).Build(); } absl::StatusOr<Value> operator()(const absl::Cord& string) const { auto begin = string.char_begin(); auto end = string.char_end(); char32_t rune; size_t count; std::string buffer; while (begin != end && limit > 1) { std::tie(rune, count) = internal::Utf8Decode(begin); buffer.clear(); internal::Utf8Encode(buffer, rune); CEL_RETURN_IF_ERROR(builder.Add( value_manager.CreateUncheckedStringValue(absl::string_view(buffer)))); --limit; absl::Cord::Advance(&begin, count); } if (begin != end) { buffer.clear(); while (begin != end) { auto chunk = absl::Cord::ChunkRemaining(begin); buffer.append(chunk); absl::Cord::Advance(&begin, chunk.size()); } buffer.shrink_to_fit(); CEL_RETURN_IF_ERROR(builder.Add( value_manager.CreateUncheckedStringValue(std::move(buffer)))); } return std::move(builder).Build(); } }; absl::StatusOr<Value> Split3(ValueManager& value_manager, const StringValue& string, const StringValue& delimiter, int64_t limit) { if (limit == 0) { return ListValue{}; } if (limit < 0) { limit = std::numeric_limits<int64_t>::max(); } CEL_ASSIGN_OR_RETURN(auto builder, value_manager.NewListValueBuilder(ListType{})); if (string.IsEmpty()) { builder->Reserve(1); CEL_RETURN_IF_ERROR(builder->Add(StringValue{})); return std::move(*builder).Build(); } if (delimiter.IsEmpty()) { return string.NativeValue( SplitWithEmptyDelimiter{value_manager, limit, *builder}); } std::string delimiter_scratch; absl::string_view delimiter_view = delimiter.NativeString(delimiter_scratch); std::string content_scratch; absl::string_view content_view = string.NativeString(content_scratch); while (limit > 1 && !content_view.empty()) { auto pos = content_view.find(delimiter_view); if (pos == absl::string_view::npos) { break; } CEL_RETURN_IF_ERROR(builder->Add( value_manager.CreateUncheckedStringValue(content_view.substr(0, pos)))); --limit; content_view.remove_prefix(pos + delimiter_view.size()); if (content_view.empty()) { CEL_RETURN_IF_ERROR(builder->Add(StringValue{})); return std::move(*builder).Build(); } } CEL_RETURN_IF_ERROR( builder->Add(value_manager.CreateUncheckedStringValue(content_view))); return std::move(*builder).Build(); } absl::StatusOr<Value> Split2(ValueManager& value_manager, const StringValue& string, const StringValue& delimiter) { return Split3(value_manager, string, delimiter, -1); } absl::StatusOr<Value> LowerAscii(ValueManager& value_manager, const StringValue& string) { std::string content = string.NativeString(); absl::AsciiStrToLower(&content); return value_manager.CreateUncheckedStringValue(std::move(content)); } } absl::Status RegisterStringsFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<absl::StatusOr<Value>, ListValue>::CreateDescriptor( "join", true), UnaryFunctionAdapter<absl::StatusOr<Value>, ListValue>::WrapFunction( Join1))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, ListValue, StringValue>:: CreateDescriptor("join", true), BinaryFunctionAdapter<absl::StatusOr<Value>, ListValue, StringValue>::WrapFunction(Join2))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, StringValue, StringValue>:: CreateDescriptor("split", true), BinaryFunctionAdapter<absl::StatusOr<Value>, StringValue, StringValue>::WrapFunction(Split2))); CEL_RETURN_IF_ERROR(registry.Register( VariadicFunctionAdapter< absl::StatusOr<Value>, StringValue, StringValue, int64_t>::CreateDescriptor("split", true), VariadicFunctionAdapter<absl::StatusOr<Value>, StringValue, StringValue, int64_t>::WrapFunction(Split3))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<absl::StatusOr<Value>, StringValue>:: CreateDescriptor("lowerAscii", true), UnaryFunctionAdapter<absl::StatusOr<Value>, StringValue>::WrapFunction( LowerAscii))); return absl::OkStatus(); } absl::Status RegisterStringsFunctions( google::api::expr::runtime::CelFunctionRegistry* registry, const google::api::expr::runtime::InterpreterOptions& options) { return RegisterStringsFunctions( registry->InternalGetRegistry(), google::api::expr::runtime::ConvertToRuntimeOptions(options)); } }
#include "extensions/strings.h" #include <memory> #include <utility> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/strings/cord.h" #include "common/memory.h" #include "common/value.h" #include "common/values/legacy_value_manager.h" #include "extensions/protobuf/runtime_adapter.h" #include "internal/testing.h" #include "parser/options.h" #include "parser/parser.h" #include "runtime/activation.h" #include "runtime/runtime.h" #include "runtime/runtime_builder.h" #include "runtime/runtime_options.h" #include "runtime/standard_runtime_builder_factory.h" namespace cel::extensions { namespace { using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::parser::Parse; using ::google::api::expr::parser::ParserOptions; TEST(Strings, SplitWithEmptyDelimiterCord) { MemoryManagerRef memory_manager = MemoryManagerRef::ReferenceCounting(); const auto options = RuntimeOptions{}; ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(options)); EXPECT_OK(RegisterStringsFunctions(builder.function_registry(), options)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr expr, Parse("foo.split('') == ['h', 'e', 'l', 'l', 'o', ' ', " "'w', 'o', 'r', 'l', 'd', '!']", "<input>", ParserOptions{})); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Program> program, ProtobufRuntimeAdapter::CreateProgram(*runtime, expr)); common_internal::LegacyValueManager value_factory(memory_manager, runtime->GetTypeProvider()); Activation activation; activation.InsertOrAssignValue("foo", StringValue{absl::Cord("hello world!")}); ASSERT_OK_AND_ASSIGN(Value result, program->Evaluate(activation, value_factory)); ASSERT_TRUE(result.Is<BoolValue>()); EXPECT_TRUE(result.GetBool().NativeValue()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/strings.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/strings_test.cc
4552db5798fb0853b131b783d8875794334fae7f
6c343a4e-4b19-467e-921b-27a1d42e21d4
cpp
google/arolla
sequence_qtype
arolla/sequence/sequence_qtype.cc
arolla/sequence/sequence_qtype_test.cc
#include "arolla/sequence/sequence_qtype.h" #include <memory> #include <string> #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/synchronization/mutex.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/simple_qtype.h" #include "arolla/sequence/sequence.h" #include "arolla/util/fast_dynamic_downcast_final.h" #include "arolla/util/meta.h" namespace arolla { namespace { class SequenceQType final : public SimpleQType { public: explicit SequenceQType(QTypePtr value_qtype) : SimpleQType(meta::type<Sequence>(), "SEQUENCE[" + std::string(value_qtype->name()) + "]", value_qtype, "::arolla::SequenceQType") {} }; class SequenceQTypeRegistry { public: QTypePtr GetSequenceQType(QTypePtr value_qtype) { absl::WriterMutexLock l(&lock_); auto& result = registry_[value_qtype]; if (!result) { result = std::make_unique<SequenceQType>(value_qtype); } return result.get(); } private: absl::Mutex lock_; absl::flat_hash_map<QTypePtr, std::unique_ptr<SequenceQType>> registry_ ABSL_GUARDED_BY(lock_); }; } bool IsSequenceQType(const QType* qtype) { return fast_dynamic_downcast_final<const SequenceQType*>(qtype) != nullptr; } QTypePtr GetSequenceQType(QTypePtr value_qtype) { static absl::NoDestructor<SequenceQTypeRegistry> registry; return registry->GetSequenceQType(value_qtype); } }
#include "arolla/sequence/sequence_qtype.h" #include <cstdint> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/sequence/mutable_sequence.h" #include "arolla/sequence/sequence.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla { namespace { using ::arolla::testing::ReprTokenEq; TEST(SequenceQTypeTest, Basics) { const auto* qtype = GetSequenceQType<QTypePtr>(); EXPECT_EQ(qtype->name(), "SEQUENCE[QTYPE]"); EXPECT_EQ(qtype->type_info(), typeid(Sequence)); EXPECT_EQ(qtype->type_layout().AllocSize(), sizeof(Sequence)); EXPECT_EQ(qtype->type_layout().AllocAlignment().value, alignof(Sequence)); EXPECT_TRUE(qtype->type_fields().empty()); EXPECT_EQ(qtype->value_qtype(), GetQTypeQType()); EXPECT_EQ(qtype->qtype_specialization_key(), "::arolla::SequenceQType"); } TEST(SequenceQTypeTest, IsSequenceQType) { EXPECT_TRUE(IsSequenceQType(GetSequenceQType<QTypePtr>())); EXPECT_TRUE(IsSequenceQType(GetSequenceQType<int32_t>())); EXPECT_TRUE(IsSequenceQType(GetSequenceQType<float>())); EXPECT_FALSE(IsSequenceQType(GetQTypeQType())); EXPECT_FALSE(IsSequenceQType(GetQType<int32_t>())); EXPECT_FALSE(IsSequenceQType(GetQType<float>())); } TEST(SequenceQTypeTest, TypedValue) { ASSERT_OK_AND_ASSIGN(auto mutable_seq, MutableSequence::Make(GetQType<int32_t>(), 3)); auto mutable_span = mutable_seq.UnsafeSpan<int32_t>(); mutable_span[0] = 1; mutable_span[1] = 2; mutable_span[2] = 3; ASSERT_OK_AND_ASSIGN(auto typed_value, TypedValue::FromValueWithQType( std::move(mutable_seq).Finish(), GetSequenceQType<int32_t>())); EXPECT_EQ(typed_value.GetType()->name(), "SEQUENCE[INT32]"); EXPECT_THAT(typed_value.GenReprToken(), ReprTokenEq("sequence(1, 2, 3, value_qtype=INT32)")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/sequence/sequence_qtype.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/sequence/sequence_qtype_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
1d493d61-fa22-4cee-8c9e-7ecf1b5e0542
cpp
tensorflow/tensorflow
gif_io
tensorflow/core/lib/gif/gif_io.cc
tensorflow/core/lib/gif/gif_io_test.cc
#include "tensorflow/core/lib/gif/gif_io.h" #include <algorithm> #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/gif.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace gif { struct InputBufferInfo { const uint8_t* buf; int bytes_left; }; int input_callback(GifFileType* gif_file, GifByteType* buf, int size) { InputBufferInfo* const info = reinterpret_cast<InputBufferInfo*>(gif_file->UserData); if (info != nullptr) { if (size > info->bytes_left) size = info->bytes_left; memcpy(buf, info->buf, size); info->buf += size; info->bytes_left -= size; return size; } return 0; } static const char* GifErrorStringNonNull(int error_code) { const char* error_string = GifErrorString(error_code); if (error_string == nullptr) { return "Unknown error"; } return error_string; } uint8* Decode(const void* srcdata, int datasize, const std::function<uint8*(int, int, int, int)>& allocate_output, string* error_string, bool expand_animations) { int error_code = D_GIF_SUCCEEDED; InputBufferInfo info = {reinterpret_cast<const uint8*>(srcdata), datasize}; GifFileType* gif_file = DGifOpen(static_cast<void*>(&info), &input_callback, &error_code); const auto cleanup = gtl::MakeCleanup([gif_file]() { int error_code = D_GIF_SUCCEEDED; if (gif_file && DGifCloseFile(gif_file, &error_code) != GIF_OK) { LOG(WARNING) << "Fail to close gif file, reason: " << GifErrorStringNonNull(error_code); } }); if (error_code != D_GIF_SUCCEEDED) { *error_string = absl::StrCat("failed to open gif file: ", GifErrorStringNonNull(error_code)); return nullptr; } if (DGifSlurp(gif_file) != GIF_OK) { *error_string = absl::StrCat("failed to slurp gif file: ", GifErrorStringNonNull(gif_file->Error)); if (gif_file->ImageCount <= 0 || gif_file->SavedImages[gif_file->ImageCount - 1].RasterBits == NULL) { return nullptr; } LOG(ERROR) << *error_string; } if (gif_file->ImageCount <= 0) { *error_string = "gif file does not contain any image"; return nullptr; } int target_num_frames = gif_file->ImageCount; int max_frame_width = 0; int max_frame_height = 0; for (int k = 0; k < target_num_frames; k++) { SavedImage* si = &gif_file->SavedImages[k]; if (max_frame_height < si->ImageDesc.Height) max_frame_height = si->ImageDesc.Height; if (max_frame_width < si->ImageDesc.Width) max_frame_width = si->ImageDesc.Width; } const int width = max_frame_width; const int height = max_frame_height; const int channel = 3; if (!expand_animations) target_num_frames = 1; uint8* const dstdata = allocate_output(target_num_frames, width, height, channel); if (!dstdata) return nullptr; for (int64_t k = 0; k < target_num_frames; k++) { uint8* this_dst = dstdata + k * width * channel * height; SavedImage* this_image = &gif_file->SavedImages[k]; GifImageDesc* img_desc = &this_image->ImageDesc; GraphicsControlBlock gcb; DGifSavedExtensionToGCB(gif_file, k, &gcb); int imgLeft = img_desc->Left; int imgTop = img_desc->Top; int imgRight = img_desc->Left + img_desc->Width; int imgBottom = img_desc->Top + img_desc->Height; if (k > 0) { uint8* last_dst = dstdata + (k - 1) * width * channel * height; for (int64_t i = 0; i < height; ++i) { uint8* p_dst = this_dst + i * width * channel; uint8* l_dst = last_dst + i * width * channel; for (int64_t j = 0; j < width; ++j) { p_dst[j * channel + 0] = l_dst[j * channel + 0]; p_dst[j * channel + 1] = l_dst[j * channel + 1]; p_dst[j * channel + 2] = l_dst[j * channel + 2]; } } } if (img_desc->Left != 0 || img_desc->Top != 0 || img_desc->Width != width || img_desc->Height != height) { if (k == 0) { for (int64_t i = 0; i < height; ++i) { uint8* p_dst = this_dst + i * width * channel; for (int64_t j = 0; j < width; ++j) { p_dst[j * channel + 0] = 0; p_dst[j * channel + 1] = 0; p_dst[j * channel + 2] = 0; } } } imgLeft = std::max(imgLeft, 0); imgTop = std::max(imgTop, 0); imgRight = std::min(imgRight, width); imgBottom = std::min(imgBottom, height); } ColorMapObject* color_map = this_image->ImageDesc.ColorMap ? this_image->ImageDesc.ColorMap : gif_file->SColorMap; if (color_map == nullptr) { *error_string = absl::StrCat("missing color map for frame ", k); return nullptr; } for (int64_t i = imgTop; i < imgBottom; ++i) { uint8* p_dst = this_dst + i * width * channel; for (int64_t j = imgLeft; j < imgRight; ++j) { GifByteType color_index = this_image->RasterBits[(i - img_desc->Top) * (img_desc->Width) + (j - img_desc->Left)]; if (color_index == gcb.TransparentColor) { if (k == 0) { p_dst[j * channel + 0] = 0; p_dst[j * channel + 1] = 0; p_dst[j * channel + 2] = 0; } continue; } if (color_index >= color_map->ColorCount) { *error_string = absl::StrCat("found color index ", color_index, " outside of color map range ", color_map->ColorCount); return nullptr; } const GifColorType& gif_color = color_map->Colors[color_index]; p_dst[j * channel + 0] = gif_color.Red; p_dst[j * channel + 1] = gif_color.Green; p_dst[j * channel + 2] = gif_color.Blue; } } } return dstdata; } } }
#include "tensorflow/core/lib/gif/gif_io.h" #include <memory> #include "tensorflow/core/lib/png/png_io.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gif { namespace { const char kTestData[] = "tensorflow/core/lib/gif/testdata/"; struct DecodeGifTestCase { const string filepath; const int num_frames; const int width; const int height; const int channels; }; void ReadFileToStringOrDie(Env* env, const string& filename, string* output) { TF_CHECK_OK(ReadFileToString(env, filename, output)); } void TestDecodeGif(Env* env, DecodeGifTestCase testcase) { string gif; ReadFileToStringOrDie(env, testcase.filepath, &gif); std::unique_ptr<uint8[]> imgdata; int nframes, w, h, c; string error_string; imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; w = width; h = height; c = channels; return new uint8[static_cast<int64_t>(frame_cnt) * height * width * channels]; }, &error_string)); ASSERT_NE(imgdata, nullptr); ASSERT_EQ(nframes, testcase.num_frames); ASSERT_EQ(w, testcase.width); ASSERT_EQ(h, testcase.height); ASSERT_EQ(c, testcase.channels); } TEST(GifTest, Gif) { Env* env = Env::Default(); const string testdata_path = kTestData; std::vector<DecodeGifTestCase> testcases( { {testdata_path + "lena.gif", 1, 51, 26, 3}, {testdata_path + "optimized.gif", 12, 20, 40, 3}, {testdata_path + "red_black.gif", 1, 16, 16, 3}, {testdata_path + "scan.gif", 12, 20, 40, 3}, {testdata_path + "squares.gif", 2, 16, 16, 3}, {testdata_path + "3g_multiframe.gif", 519, 1920, 1080, 3}}); for (const auto& tc : testcases) { TestDecodeGif(env, tc); } } void TestDecodeAnimatedGif(Env* env, const uint8* gif_data, const string& png_filepath, int frame_idx) { string png; ReadFileToStringOrDie(env, png_filepath, &png); png::DecodeContext decode; png::CommonInitDecode(png, 3, 8, &decode); const int width = static_cast<int>(decode.width); const int height = static_cast<int>(decode.height); std::unique_ptr<uint8[]> png_imgdata( new uint8[height * width * decode.channels]); png::CommonFinishDecode(reinterpret_cast<png_bytep>(png_imgdata.get()), decode.channels * width * sizeof(uint8), &decode); int frame_len = width * height * decode.channels; int gif_idx = frame_len * frame_idx; for (int i = 0; i < frame_len; i++) { ASSERT_EQ(gif_data[gif_idx + i], png_imgdata[i]); } } TEST(GifTest, AnimatedGif) { Env* env = Env::Default(); const string testdata_path = kTestData; string gif; ReadFileToStringOrDie(env, testdata_path + "pendulum_sm.gif", &gif); std::unique_ptr<uint8[]> gif_imgdata; int nframes, w, h, c; string error_string; gif_imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int num_frames, int width, int height, int channels) -> uint8* { nframes = num_frames; w = width; h = height; c = channels; return new uint8[num_frames * height * width * channels]; }, &error_string)); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame0.png", 0); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame1.png", 1); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame2.png", 2); } void TestExpandAnimations(Env* env, const string& filepath) { string gif; ReadFileToStringOrDie(env, filepath, &gif); std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; bool expand_animations = false; imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; return new uint8[frame_cnt * height * width * channels]; }, &error_string, expand_animations)); ASSERT_EQ(nframes, 1); } TEST(GifTest, ExpandAnimations) { Env* env = Env::Default(); const string testdata_path = kTestData; TestExpandAnimations(env, testdata_path + "scan.gif"); TestExpandAnimations(env, testdata_path + "pendulum_sm.gif"); TestExpandAnimations(env, testdata_path + "squares.gif"); } void TestInvalidGifFormat(const string& header_bytes) { std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; imgdata.reset(gif::Decode( header_bytes.data(), header_bytes.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; return new uint8[frame_cnt * height * width * channels]; }, &error_string)); string err_msg = "failed to open gif file"; ASSERT_EQ(error_string.substr(0, 23), err_msg); } TEST(GifTest, BadGif) { TestInvalidGifFormat("\x89\x50\x4E\x47\x0D\x0A\x1A\x0A"); TestInvalidGifFormat("\x42\x4d"); TestInvalidGifFormat("\xff\xd8\xff"); TestInvalidGifFormat("\x49\x49\x2A\x00"); } TEST(GifTest, TransparentIndexOutsideColorTable) { unsigned char encoded[43] = { 'G', 'I', 'F', '8', '9', 'a', 3, 0, 1, 0, 0b1'111'0'000, 0, 0, 0x80, 0x00, 0x00, 0xFF, 0xFF, 0xFF, '!', 0xF9, 0x04, 1, 0, 0, 2, 0, ',', 0, 0, 0, 0, 3, 0, 1, 0, 0, 2, 2, 0b01'000'100, 0b0'101'010'0, 0, ';' }; std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; auto allocate_image_data = [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; imgdata = std::make_unique<uint8[]>(frame_cnt * height * width * channels); return imgdata.get(); }; gif::Decode(encoded, sizeof(encoded), allocate_image_data, &error_string); ASSERT_EQ(nframes, 1); ASSERT_EQ(error_string, ""); uint8 expected[9] = { 0x80, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, }; for (int i = 0; i < 9; i++) { ASSERT_EQ(imgdata[i], expected[i]) << "i=" << i; } encoded[40] = 0b0'101'011'0; error_string.clear(); gif::Decode(encoded, sizeof(encoded), allocate_image_data, &error_string); ASSERT_EQ(error_string, "found color index 3 outside of color map range 2"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gif/gif_io.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gif/gif_io_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ba7b5bf3-c665-4206-9012-cb249e157cf2
cpp
google/arolla
cast_operator
arolla/qexpr/operators/core/cast_operator.h
arolla/qexpr/operators/core/cast_operator_test.cc
#ifndef AROLLA_OPERATORS_CORE_CAST_OPERATOR_H_ #define AROLLA_OPERATORS_CORE_CAST_OPERATOR_H_ #include <cstdint> #include <limits> #include <tuple> #include <type_traits> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "arolla/memory/optional_value.h" #include "arolla/util/meta.h" #include "arolla/util/repr.h" namespace arolla { template <typename DST> struct CastOp { using run_on_missing = std::true_type; using DstTypes = meta::type_list<bool, int32_t, int64_t, uint64_t, float, double>; using SrcTypes = meta::type_list<bool, int32_t, int64_t, uint64_t, float, double>; static_assert(meta::contains_v<DstTypes, DST>); template <typename SRC> static constexpr SRC max_float_to_int_safe_value() { using dst_limits = std::numeric_limits<DST>; using src_limits = std::numeric_limits<SRC>; static_assert(dst_limits::is_integer); static_assert(std::is_floating_point_v<SRC>); SRC result = 0; int i = 0; for (; i < src_limits::digits; ++i) { result *= 2; result += 1; } for (; i < dst_limits::digits; ++i) { result *= 2; } for (; i > dst_limits::digits; --i) { result /= 2; } return result; } template <typename SRC> static constexpr SRC min_float_to_int_safe_value() { using dst_limits = std::numeric_limits<DST>; using src_limits = std::numeric_limits<SRC>; static_assert(dst_limits::is_integer); static_assert(std::is_floating_point_v<SRC>); if constexpr (!dst_limits::is_signed) { return 0.0; } else { SRC result = 1; int i = 0; for (; i < src_limits::digits; ++i) { result *= 2; } for (; i < dst_limits::digits; ++i) { result *= 2; } for (; i > dst_limits::digits; --i) { result += 1; result /= 2; } return -result; } } template <typename SRC> static constexpr auto safe_range() { static_assert(meta::contains_v<SrcTypes, SRC>); using dst_limits = std::numeric_limits<DST>; using src_limits = std::numeric_limits<SRC>; if constexpr (std::is_same_v<SRC, DST>) { return std::make_tuple(); } else if constexpr (std::is_integral_v<DST> && std::is_integral_v<SRC>) { constexpr SRC safe_min = std::max<int64_t>(dst_limits::min(), src_limits::min()); constexpr SRC safe_max = std::min<uint64_t>(dst_limits::max(), src_limits::max()); if constexpr (safe_min <= src_limits::min() && safe_max >= src_limits::max()) { return std::make_tuple(); } else { return std::tuple<SRC, SRC>(safe_min, safe_max); } } else if constexpr (std::is_integral_v<DST> && std::is_floating_point_v<SRC>) { return std::tuple<SRC, SRC>(min_float_to_int_safe_value<SRC>(), max_float_to_int_safe_value<SRC>()); } else if constexpr (std::is_floating_point_v<DST> && std::is_floating_point_v<SRC>) { constexpr bool ub_check = (src_limits::max() <= dst_limits::max() || static_cast<DST>(src_limits::max()) == dst_limits::max() || static_cast<DST>(src_limits::max()) == dst_limits::infinity()); static_assert(ub_check); return std::make_tuple(); } else { return std::make_tuple(); } } template <typename SRC> auto operator()(SRC src) const { constexpr auto src_range = safe_range<SRC>(); if constexpr (std::tuple_size_v<decltype(src_range)> == 0) { return static_cast<DST>(src); } else { using ReturnType = absl::StatusOr<DST>; const auto& [range_min, range_max] = src_range; if (range_min <= src && src <= range_max) { return ReturnType(static_cast<DST>(src)); } else { return ReturnType(absl::InvalidArgumentError(absl::StrCat( "cannot cast ", ::arolla::Repr(src), " to ", std::is_unsigned_v<DST> ? "u" : "", "int", 8 * sizeof(DST)))); } } } }; struct ToBoolOp { using run_on_missing = std::true_type; template <typename T> bool operator()(const T& x) const { return x != 0; } }; struct ToOptionalOp { using run_on_missing = std::true_type; template <typename T> OptionalValue<T> operator()(const T& x) const { return OptionalValue<T>(x); } }; struct GetOptionalValueOp { template <typename T> absl::StatusOr<T> operator()(const OptionalValue<T>& x) const { if (!x.present) { return absl::FailedPreconditionError( "core.get_optional_value expects present value, got missing"); } return x.value; } }; } #endif
#include "arolla/qexpr/operators/core/cast_operator.h" #include <cmath> #include <cstdint> #include <limits> #include <tuple> #include <type_traits> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/util/meta.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::Eq; TEST(CastOperatorTest, CastToInt32UB) { constexpr auto kInt32Min = std::numeric_limits<int32_t>::min(); constexpr auto kInt32Max = std::numeric_limits<int32_t>::max(); constexpr auto kDoubleInt32Min = static_cast<double>(kInt32Min); constexpr auto kDoubleInt32Max = static_cast<double>(kInt32Max); const auto to_int32 = CastOp<int32_t>(); EXPECT_THAT(to_int32(kDoubleInt32Min), IsOkAndHolds(kInt32Min)); EXPECT_THAT(to_int32(kDoubleInt32Max), IsOkAndHolds(kInt32Max)); EXPECT_THAT(to_int32(std::nextafter(kDoubleInt32Min - 1., 0.)), IsOkAndHolds(kInt32Min)); EXPECT_THAT(to_int32(std::nextafter(kDoubleInt32Max + 1., 0.)), IsOkAndHolds(kInt32Max)); EXPECT_THAT(to_int32(kDoubleInt32Min - 1.), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast float64{-2147483649} to int32")); EXPECT_THAT(to_int32(kDoubleInt32Max + 1.), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast float64{2147483648} to int32")); } TEST(CastOperatorTest, CastFromUInt64) { EXPECT_THAT((CastOp<int32_t>()(uint64_t{1})), IsOkAndHolds(int32_t{1})); EXPECT_THAT((CastOp<float>()(uint64_t{1})), Eq(1.0f)); EXPECT_THAT((CastOp<double>()(uint64_t{1})), Eq(1.0)); EXPECT_THAT((CastOp<int64_t>()(uint64_t{1ull << 63})), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast uint64{9223372036854775808} to int64")); } TEST(CastOperatorTest, CastToUInt64) { CastOp<uint64_t> to_uint64; EXPECT_THAT(to_uint64(std::numeric_limits<int64_t>::max()), IsOkAndHolds(uint64_t{std::numeric_limits<int64_t>::max()})); EXPECT_THAT(to_uint64(double{1.0}), IsOkAndHolds(uint64_t{1})); EXPECT_THAT(to_uint64(float{1.0f}), IsOkAndHolds(uint64_t{1})); EXPECT_THAT(to_uint64(uint64_t{1}), Eq(uint64_t{1})); EXPECT_THAT(to_uint64(float{-1.0f}), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast -1. to uint64")); EXPECT_THAT(to_uint64(double{-1.0f}), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast float64{-1} to uint64")); EXPECT_THAT( to_uint64(int32_t{-1}), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast -1 to uint64")); EXPECT_THAT(to_uint64(int64_t{-1}), StatusIs(absl::StatusCode::kInvalidArgument, "cannot cast int64{-1} to uint64")); } TEST(CastOperatorTest, CastTo_SafeRange_FloatToInt) { using Srcs = meta::type_list<float, double>; using Dsts = meta::type_list<int32_t, int64_t, uint64_t>; meta::foreach_type<Srcs>([](auto src_type) { using SRC = typename decltype(src_type)::type; meta::foreach_type<Dsts>([](auto dst_type) { using DST = typename decltype(dst_type)::type; using dst_limits = std::numeric_limits<DST>; using src_limits = std::numeric_limits<SRC>; const auto [range_min, range_max] = CastOp<DST>::template safe_range<SRC>(); ASSERT_EQ(static_cast<DST>(range_min), dst_limits::min()); if (!std::is_unsigned_v<DST>) { ASSERT_NE( std::trunc(range_min), std::trunc(std::nextafter(range_min, -src_limits::infinity()))); } ASSERT_LE(static_cast<DST>(range_max), dst_limits::max()); ASSERT_GE(std::nextafter(range_max, src_limits::infinity()), std::exp2(static_cast<SRC>(dst_limits::digits))); }); }); } TEST(CastOperatorTest, CastTo_SafeRange_IntToInt) { ASSERT_EQ(CastOp<int32_t>::safe_range<uint64_t>(), (std::tuple<uint64_t, uint64_t>(0, (1ull << 31) - 1))); ASSERT_EQ(CastOp<int64_t>::safe_range<uint64_t>(), (std::tuple<uint64_t, uint64_t>(0, (1ull << 63) - 1))); ASSERT_EQ(CastOp<uint64_t>::safe_range<int32_t>(), (std::tuple<uint32_t, uint32_t>(0, (1u << 31) - 1))); ASSERT_EQ(CastOp<uint64_t>::safe_range<int64_t>(), (std::tuple<int64_t, int64_t>(0, (1ull << 63) - 1))); } TEST(CastOperatorTest, CastTo_SafeRange_Unneeded) { ASSERT_EQ(CastOp<int64_t>::safe_range<int32_t>(), std::tuple<>()); ASSERT_EQ(CastOp<int32_t>::safe_range<bool>(), std::tuple<>()); ASSERT_EQ(CastOp<float>::safe_range<double>(), std::tuple<>()); ASSERT_EQ(CastOp<double>::safe_range<float>(), std::tuple<>()); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/cast_operator.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/core/cast_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
df23d9ae-e864-4c4b-8284-7fedafb1249f
cpp
google/tensorstore
integer_overflow
tensorstore/internal/integer_overflow.h
tensorstore/internal/integer_overflow_test.cc
#ifndef TENSORSTORE_INTERNAL_INTEGER_OVERFLOW_H_ #define TENSORSTORE_INTERNAL_INTEGER_OVERFLOW_H_ #include <limits> #include <type_traits> #include "absl/base/attributes.h" namespace tensorstore { namespace internal { namespace wrap_on_overflow { #if ABSL_HAVE_ATTRIBUTE(no_sanitize) && defined(__clang__) #define TENSORSTORE_ATTRIBUTE_NO_SANITIZE_UNSIGNED_INTEGER_OVERFLOW \ __attribute__((no_sanitize("unsigned-integer-overflow"))) #else #define TENSORSTORE_ATTRIBUTE_NO_SANITIZE_UNSIGNED_INTEGER_OVERFLOW #endif #define TENSORSTORE_INTERNAL_DEFINE_WRAP_ON_OVERFLOW_OP(OP, NAME) \ template <typename T> \ TENSORSTORE_ATTRIBUTE_NO_SANITIZE_UNSIGNED_INTEGER_OVERFLOW \ std::enable_if_t<std::is_integral<T>::value, T> \ NAME(T a, T b) { \ using UnsignedT = std::make_unsigned_t<T>; \ return static_cast<T>(static_cast<UnsignedT>( \ static_cast<UnsignedT>(a) OP static_cast<UnsignedT>(b))); \ } \ TENSORSTORE_INTERNAL_DEFINE_WRAP_ON_OVERFLOW_OP(+, Add) TENSORSTORE_INTERNAL_DEFINE_WRAP_ON_OVERFLOW_OP(-, Subtract) TENSORSTORE_INTERNAL_DEFINE_WRAP_ON_OVERFLOW_OP(*, Multiply) #undef TENSORSTORE_INTERNAL_DEFINE_WRAP_ON_OVERFLOW_OP template <typename AccumType, typename T0, typename T1> inline AccumType InnerProduct(std::ptrdiff_t n, const T0* a, const T1* b) { AccumType sum = 0; for (std::ptrdiff_t i = 0; i < n; ++i) { sum = Add(sum, Multiply(static_cast<AccumType>(a[i]), static_cast<AccumType>(b[i]))); } return sum; } template <ptrdiff_t N, typename AccumType, typename T0, typename T1> inline AccumType InnerProduct(const T0* a, const T1* b) { AccumType sum = 0; for (std::ptrdiff_t i = 0; i < N; ++i) { sum = Add(sum, Multiply(static_cast<AccumType>(a[i]), static_cast<AccumType>(b[i]))); } return sum; } } template <typename T> constexpr bool AddOverflow(T a, T b, T* result) { #if defined(__clang__) || !defined(_MSC_VER) return __builtin_add_overflow(a, b, result); #else *result = wrap_on_overflow::Add(a, b); return (a > 0 && (b > std::numeric_limits<T>::max() - a)) || (a < 0 && (b < std::numeric_limits<T>::min() - a)); #endif } template <typename T> constexpr T AddSaturate(T a, T b) { T result; if (AddOverflow(a, b, &result)) { result = (b >= 0 ? std::numeric_limits<T>::max() : std::numeric_limits<T>::min()); } return result; } template <typename T> constexpr bool SubOverflow(T a, T b, T* result) { #if defined(__clang__) || !defined(_MSC_VER) return __builtin_sub_overflow(a, b, result); #else *result = wrap_on_overflow::Subtract(a, b); return (b < 0 && (a > std::numeric_limits<T>::max() + b)) || (b > 0 && (a < std::numeric_limits<T>::min() + b)); #endif } template <typename T> constexpr bool MulOverflow(T a, T b, T* result) { #if defined(__clang__) || !defined(_MSC_VER) return __builtin_mul_overflow(a, b, result); #else const T r = *result = wrap_on_overflow::Multiply(a, b); return b && (r / b) != a; #endif } } } #endif
#include "tensorstore/internal/integer_overflow.h" #include <cstdint> #include <gtest/gtest.h> #include "tensorstore/index.h" namespace { using ::tensorstore::Index; using ::tensorstore::internal::AddOverflow; using ::tensorstore::internal::AddSaturate; using ::tensorstore::internal::MulOverflow; using ::tensorstore::internal::SubOverflow; using ::tensorstore::internal::wrap_on_overflow::Add; using ::tensorstore::internal::wrap_on_overflow::InnerProduct; using ::tensorstore::internal::wrap_on_overflow::Multiply; TEST(AddTest, Overflow) { EXPECT_EQ(std::int32_t{-0x80000000LL}, Add(std::int32_t{0x40000000}, std::int32_t{0x40000000})); } TEST(MultiplyTest, Overflow) { EXPECT_EQ(std::int32_t{-0x80000000LL}, Multiply(std::int32_t{0x40000000}, std::int32_t{2})); } TEST(InnerProductTest, Basic) { const Index a[] = {1, 2, 3}; const Index b[] = {4, 5, 6}; EXPECT_EQ(1 * 4 + 2 * 5 + 3 * 6, InnerProduct<Index>(3, a, b)); } TEST(InnerProductTest, Convert) { const uint32_t a[] = {0x80000000}; const uint32_t b[] = {2}; EXPECT_EQ(Index{0x100000000}, InnerProduct<Index>(1, a, b)); } TEST(InnerProductTest, WrapOnOverflowMultiply) { const Index a[] = {Index(1) << 62, 2, 3}; const Index b[] = {4, 5, 6}; EXPECT_EQ(Index{2 * 5 + 3 * 6}, InnerProduct<Index>(3, a, b)); } TEST(InnerProductTest, WrapOnOverflowAdd) { const Index a[] = {Index(1) << 62, Index(1) << 62}; const Index b[] = {2, 2}; EXPECT_EQ(Index{0}, InnerProduct<Index>(2, a, b)); } TEST(MulOverflow, Uint32) { uint32_t a, b, c; a = 0x7fffffff; b = 2; EXPECT_EQ(false, MulOverflow(a, b, &c)); EXPECT_EQ(uint32_t{0xfffffffe}, c); EXPECT_EQ(false, MulOverflow(b, a, &c)); EXPECT_EQ(uint32_t{0xfffffffe}, c); a = 0x80000000; c = 2; EXPECT_EQ(true, MulOverflow(a, b, &c)); EXPECT_EQ(uint32_t{0}, c); EXPECT_EQ(true, MulOverflow(b, a, &c)); EXPECT_EQ(uint32_t{0}, c); } TEST(MulOverflow, Int32) { std::int32_t a, b, c; a = -0x40000000; b = 2; EXPECT_EQ(false, MulOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); EXPECT_EQ(false, MulOverflow(b, a, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); a = 0x40000000; c = 2; EXPECT_EQ(true, MulOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); EXPECT_EQ(true, MulOverflow(b, a, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); } TEST(AddOverflow, Uint32) { uint32_t a, b, c; a = 0x7fffffff; b = 0x80000000; EXPECT_EQ(false, AddOverflow(a, b, &c)); EXPECT_EQ(uint32_t{0xffffffff}, c); EXPECT_EQ(false, AddOverflow(b, a, &c)); EXPECT_EQ(uint32_t{0xffffffff}, c); a = 0x80000000; c = 0x80000000; EXPECT_EQ(true, MulOverflow(a, b, &c)); EXPECT_EQ(uint32_t{0}, c); } TEST(AddOverflow, Int32) { std::int32_t a, b, c; a = 0x40000000; b = 0x3fffffff; EXPECT_EQ(false, AddOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{0x7fffffff}, c); EXPECT_EQ(false, AddOverflow(b, a, &c)); EXPECT_EQ(std::int32_t{0x7fffffff}, c); a = -0x40000000; b = -0x40000000; EXPECT_EQ(false, AddOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); a = 0x40000000; b = 0x40000000; EXPECT_EQ(true, AddOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); } TEST(AddSaturate, Int32) { EXPECT_EQ(0x7fffffff, AddSaturate<int32_t>(0x40000000, 0x3fffffff)); EXPECT_EQ(0x7fffffff, AddSaturate<int32_t>(0x40000000, 0x40000000)); EXPECT_EQ(-0x80000000, AddSaturate<int32_t>(-0x40000000, -0x40000000)); EXPECT_EQ(-0x80000000, AddSaturate<int32_t>(-0x40000000, -0x41000000)); } TEST(SubOverflow, Uint32) { uint32_t a, b, c; a = 0x80000000; b = 0x7fffffff; EXPECT_EQ(false, SubOverflow(a, b, &c)); EXPECT_EQ(uint32_t{1}, c); a = 0x7fffffff; b = 0x80000000; EXPECT_EQ(true, SubOverflow(a, b, &c)); EXPECT_EQ(uint32_t{0xffffffff}, c); } TEST(SubOverflow, Int32) { std::int32_t a, b, c; a = -0x40000000; b = 0x40000000; EXPECT_EQ(false, SubOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); a = 0x40000000; b = -0x40000000; EXPECT_EQ(true, SubOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{-0x80000000LL}, c); a = -0x40000001; b = 0x40000000; EXPECT_EQ(true, SubOverflow(a, b, &c)); EXPECT_EQ(std::int32_t{0x7fffffff}, c); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/integer_overflow.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/integer_overflow_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d67fd247-b4ef-42cf-bc1c-4fa0a8cfd35b
cpp
google/cel-cpp
type_param_type
common/types/type_param_type.h
common/types/type_param_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_TYPE_PARAM_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_TYPE_PARAM_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class TypeParamType final { public: static constexpr TypeKind kKind = TypeKind::kTypeParam; explicit TypeParamType(absl::string_view name ABSL_ATTRIBUTE_LIFETIME_BOUND) : name_(name) {} TypeParamType() = default; TypeParamType(const TypeParamType&) = default; TypeParamType(TypeParamType&&) = default; TypeParamType& operator=(const TypeParamType&) = default; TypeParamType& operator=(TypeParamType&&) = default; static TypeKind kind() { return kKind; } absl::string_view name() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return name_; } static TypeParameters GetParameters(); std::string DebugString() const { return std::string(name()); } friend void swap(TypeParamType& lhs, TypeParamType& rhs) noexcept { using std::swap; swap(lhs.name_, rhs.name_); } private: absl::string_view name_; }; inline bool operator==(const TypeParamType& lhs, const TypeParamType& rhs) { return lhs.name() == rhs.name(); } inline bool operator!=(const TypeParamType& lhs, const TypeParamType& rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, const TypeParamType& type) { return H::combine(std::move(state), type.name()); } inline std::ostream& operator<<(std::ostream& out, const TypeParamType& type) { return out << type.DebugString(); } } #endif
#include "common/type.h" #include <sstream> #include "absl/hash/hash.h" #include "internal/testing.h" namespace cel { namespace { TEST(TypeParamType, Kind) { EXPECT_EQ(TypeParamType("T").kind(), TypeParamType::kKind); EXPECT_EQ(Type(TypeParamType("T")).kind(), TypeParamType::kKind); } TEST(TypeParamType, Name) { EXPECT_EQ(TypeParamType("T").name(), "T"); EXPECT_EQ(Type(TypeParamType("T")).name(), "T"); } TEST(TypeParamType, DebugString) { { std::ostringstream out; out << TypeParamType("T"); EXPECT_EQ(out.str(), "T"); } { std::ostringstream out; out << Type(TypeParamType("T")); EXPECT_EQ(out.str(), "T"); } } TEST(TypeParamType, Hash) { EXPECT_EQ(absl::HashOf(TypeParamType("T")), absl::HashOf(TypeParamType("T"))); } TEST(TypeParamType, Equal) { EXPECT_EQ(TypeParamType("T"), TypeParamType("T")); EXPECT_EQ(Type(TypeParamType("T")), TypeParamType("T")); EXPECT_EQ(TypeParamType("T"), Type(TypeParamType("T"))); EXPECT_EQ(Type(TypeParamType("T")), Type(TypeParamType("T"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/type_param_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/type_param_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
54b89a8b-1450-4244-8eb6-f5d3b0bf5712
cpp
google/quiche
hpack_decoder
quiche/http2/hpack/decoder/hpack_decoder.cc
quiche/http2/hpack/decoder/hpack_decoder_test.cc
#include "quiche/http2/hpack/decoder/hpack_decoder.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/common/platform/api/quiche_flag_utils.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { HpackDecoder::HpackDecoder(HpackDecoderListener* listener, size_t max_string_size) : decoder_state_(listener), entry_buffer_(&decoder_state_, max_string_size), block_decoder_(&entry_buffer_), error_(HpackDecodingError::kOk) {} HpackDecoder::~HpackDecoder() = default; void HpackDecoder::set_max_string_size_bytes(size_t max_string_size_bytes) { entry_buffer_.set_max_string_size_bytes(max_string_size_bytes); } void HpackDecoder::ApplyHeaderTableSizeSetting(uint32_t max_header_table_size) { decoder_state_.ApplyHeaderTableSizeSetting(max_header_table_size); } bool HpackDecoder::StartDecodingBlock() { QUICHE_DVLOG(3) << "HpackDecoder::StartDecodingBlock, error_detected=" << (DetectError() ? "true" : "false"); if (DetectError()) { return false; } block_decoder_.Reset(); decoder_state_.OnHeaderBlockStart(); return true; } bool HpackDecoder::DecodeFragment(DecodeBuffer* db) { QUICHE_DVLOG(3) << "HpackDecoder::DecodeFragment, error_detected=" << (DetectError() ? "true" : "false") << ", size=" << db->Remaining(); if (DetectError()) { QUICHE_CODE_COUNT_N(decompress_failure_3, 3, 23); return false; } DecodeStatus status = block_decoder_.Decode(db); if (status == DecodeStatus::kDecodeError) { ReportError(block_decoder_.error()); QUICHE_CODE_COUNT_N(decompress_failure_3, 4, 23); return false; } else if (DetectError()) { QUICHE_CODE_COUNT_N(decompress_failure_3, 5, 23); return false; } QUICHE_DCHECK_EQ(block_decoder_.before_entry(), status == DecodeStatus::kDecodeDone) << status; if (!block_decoder_.before_entry()) { entry_buffer_.BufferStringsIfUnbuffered(); } return true; } bool HpackDecoder::EndDecodingBlock() { QUICHE_DVLOG(3) << "HpackDecoder::EndDecodingBlock, error_detected=" << (DetectError() ? "true" : "false"); if (DetectError()) { QUICHE_CODE_COUNT_N(decompress_failure_3, 6, 23); return false; } if (!block_decoder_.before_entry()) { ReportError(HpackDecodingError::kTruncatedBlock); QUICHE_CODE_COUNT_N(decompress_failure_3, 7, 23); return false; } decoder_state_.OnHeaderBlockEnd(); if (DetectError()) { QUICHE_CODE_COUNT_N(decompress_failure_3, 8, 23); return false; } return true; } bool HpackDecoder::DetectError() { if (error_ != HpackDecodingError::kOk) { return true; } if (decoder_state_.error() != HpackDecodingError::kOk) { QUICHE_DVLOG(2) << "Error detected in decoder_state_"; QUICHE_CODE_COUNT_N(decompress_failure_3, 10, 23); error_ = decoder_state_.error(); } return error_ != HpackDecodingError::kOk; } void HpackDecoder::ReportError(HpackDecodingError error) { QUICHE_DVLOG(3) << "HpackDecoder::ReportError is new=" << (error_ == HpackDecodingError::kOk ? "true" : "false") << ", error: " << HpackDecodingErrorToString(error); if (error_ == HpackDecodingError::kOk) { error_ = error; decoder_state_.listener()->OnHeaderErrorDetected( HpackDecodingErrorToString(error)); } } }
#include "quiche/http2/hpack/decoder/hpack_decoder.h" #include <string> #include <tuple> #include <utility> #include <vector> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/hpack/decoder/hpack_decoder_listener.h" #include "quiche/http2/hpack/decoder/hpack_decoder_state.h" #include "quiche/http2/hpack/decoder/hpack_decoder_tables.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/test_tools/hpack_example.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/random_util.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; using ::testing::AssertionSuccess; using ::testing::ElementsAreArray; using ::testing::Eq; namespace http2 { namespace test { class HpackDecoderStatePeer { public: static HpackDecoderTables* GetDecoderTables(HpackDecoderState* state) { return &state->decoder_tables_; } static void set_listener(HpackDecoderState* state, HpackDecoderListener* listener) { state->listener_ = listener; } }; class HpackDecoderPeer { public: static HpackDecoderState* GetDecoderState(HpackDecoder* decoder) { return &decoder->decoder_state_; } static HpackDecoderTables* GetDecoderTables(HpackDecoder* decoder) { return HpackDecoderStatePeer::GetDecoderTables(GetDecoderState(decoder)); } }; namespace { typedef std::pair<std::string, std::string> HpackHeaderEntry; typedef std::vector<HpackHeaderEntry> HpackHeaderEntries; class MockHpackDecoderListener : public HpackDecoderListener { public: MOCK_METHOD(void, OnHeaderListStart, (), (override)); MOCK_METHOD(void, OnHeader, (absl::string_view name, absl::string_view value), (override)); MOCK_METHOD(void, OnHeaderListEnd, (), (override)); MOCK_METHOD(void, OnHeaderErrorDetected, (absl::string_view error_message), (override)); }; class HpackDecoderTest : public quiche::test::QuicheTestWithParam<bool>, public HpackDecoderListener { protected: HpackDecoderTest() : decoder_(this, 4096) { fragment_the_hpack_block_ = GetParam(); } ~HpackDecoderTest() override = default; void OnHeaderListStart() override { ASSERT_FALSE(saw_start_); ASSERT_FALSE(saw_end_); saw_start_ = true; header_entries_.clear(); } void OnHeader(absl::string_view name, absl::string_view value) override { ASSERT_TRUE(saw_start_); ASSERT_FALSE(saw_end_); header_entries_.emplace_back(name, value); } void OnHeaderListEnd() override { ASSERT_TRUE(saw_start_); ASSERT_FALSE(saw_end_); ASSERT_TRUE(error_messages_.empty()); saw_end_ = true; } void OnHeaderErrorDetected(absl::string_view error_message) override { ASSERT_TRUE(saw_start_); error_messages_.push_back(std::string(error_message)); HpackDecoderStatePeer::set_listener( HpackDecoderPeer::GetDecoderState(&decoder_), &mock_listener_); } AssertionResult DecodeBlock(absl::string_view block) { QUICHE_VLOG(1) << "HpackDecoderTest::DecodeBlock"; HTTP2_VERIFY_FALSE(decoder_.DetectError()); HTTP2_VERIFY_TRUE(error_messages_.empty()); HTTP2_VERIFY_FALSE(saw_start_); HTTP2_VERIFY_FALSE(saw_end_); header_entries_.clear(); HTTP2_VERIFY_FALSE(decoder_.DetectError()); HTTP2_VERIFY_TRUE(decoder_.StartDecodingBlock()); HTTP2_VERIFY_FALSE(decoder_.DetectError()); if (fragment_the_hpack_block_) { while (!block.empty()) { size_t fragment_size = random_.RandomSizeSkewedLow(block.size()); DecodeBuffer db(block.substr(0, fragment_size)); HTTP2_VERIFY_TRUE(decoder_.DecodeFragment(&db)); HTTP2_VERIFY_EQ(0u, db.Remaining()); block.remove_prefix(fragment_size); } } else { DecodeBuffer db(block); HTTP2_VERIFY_TRUE(decoder_.DecodeFragment(&db)); HTTP2_VERIFY_EQ(0u, db.Remaining()); } HTTP2_VERIFY_FALSE(decoder_.DetectError()); HTTP2_VERIFY_TRUE(decoder_.EndDecodingBlock()); if (saw_end_) { HTTP2_VERIFY_FALSE(decoder_.DetectError()); HTTP2_VERIFY_TRUE(error_messages_.empty()); } else { HTTP2_VERIFY_TRUE(decoder_.DetectError()); HTTP2_VERIFY_FALSE(error_messages_.empty()); } saw_start_ = saw_end_ = false; return AssertionSuccess(); } const HpackDecoderTables& GetDecoderTables() { return *HpackDecoderPeer::GetDecoderTables(&decoder_); } const HpackStringPair* Lookup(size_t index) { return GetDecoderTables().Lookup(index); } size_t current_header_table_size() { return GetDecoderTables().current_header_table_size(); } size_t header_table_size_limit() { return GetDecoderTables().header_table_size_limit(); } void set_header_table_size_limit(size_t size) { HpackDecoderPeer::GetDecoderTables(&decoder_)->DynamicTableSizeUpdate(size); } AssertionResult VerifyEntry(size_t dynamic_index, const char* name, const char* value) { const HpackStringPair* entry = Lookup(dynamic_index + kFirstDynamicTableIndex - 1); HTTP2_VERIFY_NE(entry, nullptr); HTTP2_VERIFY_EQ(entry->name, name); HTTP2_VERIFY_EQ(entry->value, value); return AssertionSuccess(); } AssertionResult VerifyNoEntry(size_t dynamic_index) { const HpackStringPair* entry = Lookup(dynamic_index + kFirstDynamicTableIndex - 1); HTTP2_VERIFY_EQ(entry, nullptr); return AssertionSuccess(); } AssertionResult VerifyDynamicTableContents( const std::vector<std::pair<const char*, const char*>>& entries) { size_t index = 1; for (const auto& entry : entries) { HTTP2_VERIFY_SUCCESS(VerifyEntry(index, entry.first, entry.second)); ++index; } HTTP2_VERIFY_SUCCESS(VerifyNoEntry(index)); return AssertionSuccess(); } Http2Random random_; HpackDecoder decoder_; testing::StrictMock<MockHpackDecoderListener> mock_listener_; HpackHeaderEntries header_entries_; std::vector<std::string> error_messages_; bool fragment_the_hpack_block_; bool saw_start_ = false; bool saw_end_ = false; }; INSTANTIATE_TEST_SUITE_P(AllWays, HpackDecoderTest, ::testing::Bool()); TEST_P(HpackDecoderTest, C3_RequestExamples) { std::string hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 86 | == Indexed - Add == | idx = 6 | -> :scheme: http 84 | == Indexed - Add == | idx = 4 | -> :path: / 41 | == Literal indexed == | Indexed name (idx = 1) | :authority 0f | Literal value (len = 15) 7777 772e 6578 616d 706c 652e 636f 6d | www.example.com | -> :authority: | www.example.com )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "http"}, HpackHeaderEntry{":path", "/"}, HpackHeaderEntry{":authority", "www.example.com"}, })); ASSERT_TRUE(VerifyDynamicTableContents({{":authority", "www.example.com"}})); ASSERT_EQ(57u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 86 | == Indexed - Add == | idx = 6 | -> :scheme: http 84 | == Indexed - Add == | idx = 4 | -> :path: / be | == Indexed - Add == | idx = 62 | -> :authority: | www.example.com 58 | == Literal indexed == | Indexed name (idx = 24) | cache-control 08 | Literal value (len = 8) 6e6f 2d63 6163 6865 | no-cache | -> cache-control: no-cache )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "http"}, HpackHeaderEntry{":path", "/"}, HpackHeaderEntry{":authority", "www.example.com"}, HpackHeaderEntry{"cache-control", "no-cache"}, })); ASSERT_TRUE(VerifyDynamicTableContents( {{"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(110u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 87 | == Indexed - Add == | idx = 7 | -> :scheme: https 85 | == Indexed - Add == | idx = 5 | -> :path: /index.html bf | == Indexed - Add == | idx = 63 | -> :authority: | www.example.com 40 | == Literal indexed == 0a | Literal name (len = 10) 6375 7374 6f6d 2d6b 6579 | custom-key 0c | Literal value (len = 12) 6375 7374 6f6d 2d76 616c 7565 | custom-value | -> custom-key: | custom-value )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "https"}, HpackHeaderEntry{":path", "/index.html"}, HpackHeaderEntry{":authority", "www.example.com"}, HpackHeaderEntry{"custom-key", "custom-value"}, })); ASSERT_TRUE(VerifyDynamicTableContents({{"custom-key", "custom-value"}, {"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(164u, current_header_table_size()); } TEST_P(HpackDecoderTest, C4_RequestExamplesWithHuffmanEncoding) { std::string hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 86 | == Indexed - Add == | idx = 6 | -> :scheme: http 84 | == Indexed - Add == | idx = 4 | -> :path: / 41 | == Literal indexed == | Indexed name (idx = 1) | :authority 8c | Literal value (len = 12) | Huffman encoded: f1e3 c2e5 f23a 6ba0 ab90 f4ff | .....:k..... | Decoded: | www.example.com | -> :authority: | www.example.com )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "http"}, HpackHeaderEntry{":path", "/"}, HpackHeaderEntry{":authority", "www.example.com"}, })); ASSERT_TRUE(VerifyDynamicTableContents({{":authority", "www.example.com"}})); ASSERT_EQ(57u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 86 | == Indexed - Add == | idx = 6 | -> :scheme: http 84 | == Indexed - Add == | idx = 4 | -> :path: / be | == Indexed - Add == | idx = 62 | -> :authority: | www.example.com 58 | == Literal indexed == | Indexed name (idx = 24) | cache-control 86 | Literal value (len = 6) | Huffman encoded: a8eb 1064 9cbf | ...d.. | Decoded: | no-cache | -> cache-control: no-cache )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "http"}, HpackHeaderEntry{":path", "/"}, HpackHeaderEntry{":authority", "www.example.com"}, HpackHeaderEntry{"cache-control", "no-cache"}, })); ASSERT_TRUE(VerifyDynamicTableContents( {{"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(110u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 87 | == Indexed - Add == | idx = 7 | -> :scheme: https 85 | == Indexed - Add == | idx = 5 | -> :path: /index.html bf | == Indexed - Add == | idx = 63 | -> :authority: | www.example.com 40 | == Literal indexed == 88 | Literal name (len = 8) | Huffman encoded: 25a8 49e9 5ba9 7d7f | %.I.[.}. | Decoded: | custom-key 89 | Literal value (len = 9) | Huffman encoded: 25a8 49e9 5bb8 e8b4 bf | %.I.[.... | Decoded: | custom-value | -> custom-key: | custom-value )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":method", "GET"}, HpackHeaderEntry{":scheme", "https"}, HpackHeaderEntry{":path", "/index.html"}, HpackHeaderEntry{":authority", "www.example.com"}, HpackHeaderEntry{"custom-key", "custom-value"}, })); ASSERT_TRUE(VerifyDynamicTableContents({{"custom-key", "custom-value"}, {"cache-control", "no-cache"}, {":authority", "www.example.com"}})); ASSERT_EQ(164u, current_header_table_size()); } TEST_P(HpackDecoderTest, C5_ResponseExamples) { set_header_table_size_limit(256); std::string hpack_block = HpackExampleToStringOrDie(R"( 48 | == Literal indexed == | Indexed name (idx = 8) | :status 03 | Literal value (len = 3) 3330 32 | 302 | -> :status: 302 58 | == Literal indexed == | Indexed name (idx = 24) | cache-control 07 | Literal value (len = 7) 7072 6976 6174 65 | private | -> cache-control: private 61 | == Literal indexed == | Indexed name (idx = 33) | date 1d | Literal value (len = 29) 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013 2032 303a 3133 3a32 3120 474d 54 | 20:13:21 GMT | -> date: Mon, 21 Oct 2013 | 20:13:21 GMT 6e | == Literal indexed == | Indexed name (idx = 46) | location 17 | Literal value (len = 23) 6874 7470 733a 2f2f 7777 772e 6578 616d | https: 706c 652e 636f 6d | ple.com | -> location: | https: )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "302"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, HpackHeaderEntry{"location", "https: })); ASSERT_TRUE( VerifyDynamicTableContents({{"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}, {":status", "302"}})); ASSERT_EQ(222u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 48 | == Literal indexed == | Indexed name (idx = 8) | :status 03 | Literal value (len = 3) 3330 37 | 307 | - evict: :status: 302 | -> :status: 307 c1 | == Indexed - Add == | idx = 65 | -> cache-control: private c0 | == Indexed - Add == | idx = 64 | -> date: Mon, 21 Oct 2013 | 20:13:21 GMT bf | == Indexed - Add == | idx = 63 | -> location: | https: )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "307"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, HpackHeaderEntry{"location", "https: })); ASSERT_TRUE( VerifyDynamicTableContents({{":status", "307"}, {"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}})); ASSERT_EQ(222u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 88 | == Indexed - Add == | idx = 8 | -> :status: 200 c1 | == Indexed - Add == | idx = 65 | -> cache-control: private 61 | == Literal indexed == | Indexed name (idx = 33) | date 1d | Literal value (len = 29) 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013 2032 303a 3133 3a32 3220 474d 54 | 20:13:22 GMT | - evict: cache-control: | private | -> date: Mon, 21 Oct 2013 | 20:13:22 GMT c0 | == Indexed - Add == | idx = 64 | -> location: | https: 5a | == Literal indexed == | Indexed name (idx = 26) | content-encoding 04 | Literal value (len = 4) 677a 6970 | gzip | - evict: date: Mon, 21 Oct | 2013 20:13:21 GMT | -> content-encoding: gzip 77 | == Literal indexed == | Indexed name (idx = 55) | set-cookie 38 | Literal value (len = 56) 666f 6f3d 4153 444a 4b48 514b 425a 584f | foo=ASDJKHQKBZXO 5157 454f 5049 5541 5851 5745 4f49 553b | QWEOPIUAXQWEOIU; 206d 6178 2d61 6765 3d33 3630 303b 2076 | max-age=3600; v 6572 7369 6f6e 3d31 | ersion=1 | - evict: location: | https: | - evict: :status: 307 | -> set-cookie: foo=ASDJKHQ | KBZXOQWEOPIUAXQWEOIU; ma | x-age=3600; version=1 )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT( header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "200"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:22 GMT"}, HpackHeaderEntry{"location", "https: HpackHeaderEntry{"content-encoding", "gzip"}, HpackHeaderEntry{ "set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1"}, })); ASSERT_TRUE(VerifyDynamicTableContents( {{"set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1"}, {"content-encoding", "gzip"}, {"date", "Mon, 21 Oct 2013 20:13:22 GMT"}})); ASSERT_EQ(215u, current_header_table_size()); } TEST_P(HpackDecoderTest, C6_ResponseExamplesWithHuffmanEncoding) { set_header_table_size_limit(256); std::string hpack_block = HpackExampleToStringOrDie(R"( 48 | == Literal indexed == | Indexed name (idx = 8) | :status 03 | Literal value (len = 3) 3330 32 | 302 | -> :status: 302 58 | == Literal indexed == | Indexed name (idx = 24) | cache-control 07 | Literal value (len = 7) 7072 6976 6174 65 | private | -> cache-control: private 61 | == Literal indexed == | Indexed name (idx = 33) | date 1d | Literal value (len = 29) 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013 2032 303a 3133 3a32 3120 474d 54 | 20:13:21 GMT | -> date: Mon, 21 Oct 2013 | 20:13:21 GMT 6e | == Literal indexed == | Indexed name (idx = 46) | location 17 | Literal value (len = 23) 6874 7470 733a 2f2f 7777 772e 6578 616d | https: 706c 652e 636f 6d | ple.com | -> location: | https: )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "302"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, HpackHeaderEntry{"location", "https: })); ASSERT_TRUE( VerifyDynamicTableContents({{"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}, {":status", "302"}})); ASSERT_EQ(222u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 48 | == Literal indexed == | Indexed name (idx = 8) | :status 03 | Literal value (len = 3) 3330 37 | 307 | - evict: :status: 302 | -> :status: 307 c1 | == Indexed - Add == | idx = 65 | -> cache-control: private c0 | == Indexed - Add == | idx = 64 | -> date: Mon, 21 Oct 2013 | 20:13:21 GMT bf | == Indexed - Add == | idx = 63 | -> location: | https: )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT(header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "307"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, HpackHeaderEntry{"location", "https: })); ASSERT_TRUE( VerifyDynamicTableContents({{":status", "307"}, {"location", "https: {"date", "Mon, 21 Oct 2013 20:13:21 GMT"}, {"cache-control", "private"}})); ASSERT_EQ(222u, current_header_table_size()); hpack_block = HpackExampleToStringOrDie(R"( 88 | == Indexed - Add == | idx = 8 | -> :status: 200 c1 | == Indexed - Add == | idx = 65 | -> cache-control: private 61 | == Literal indexed == | Indexed name (idx = 33) | date 1d | Literal value (len = 29) 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013 2032 303a 3133 3a32 3220 474d 54 | 20:13:22 GMT | - evict: cache-control: | private | -> date: Mon, 21 Oct 2013 | 20:13:22 GMT c0 | == Indexed - Add == | idx = 64 | -> location: | https: 5a | == Literal indexed == | Indexed name (idx = 26) | content-encoding 04 | Literal value (len = 4) 677a 6970 | gzip | - evict: date: Mon, 21 Oct | 2013 20:13:21 GMT | -> content-encoding: gzip 77 | == Literal indexed == | Indexed name (idx = 55) | set-cookie 38 | Literal value (len = 56) 666f 6f3d 4153 444a 4b48 514b 425a 584f | foo=ASDJKHQKBZXO 5157 454f 5049 5541 5851 5745 4f49 553b | QWEOPIUAXQWEOIU; 206d 6178 2d61 6765 3d33 3630 303b 2076 | max-age=3600; v 6572 7369 6f6e 3d31 | ersion=1 | - evict: location: | https: | - evict: :status: 307 | -> set-cookie: foo=ASDJKHQ | KBZXOQWEOPIUAXQWEOIU; ma | x-age=3600; version=1 )"); EXPECT_TRUE(DecodeBlock(hpack_block)); ASSERT_THAT( header_entries_, ElementsAreArray({ HpackHeaderEntry{":status", "200"}, HpackHeaderEntry{"cache-control", "private"}, HpackHeaderEntry{"date", "Mon, 21 Oct 2013 20:13:22 GMT"}, HpackHeaderEntry{"location", "https: HpackHeaderEntry{"content-encoding", "gzip"}, HpackHeaderEntry{ "set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1"}, })); ASSERT_TRUE(VerifyDynamicTableContents( {{"set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1"}, {"content-encoding", "gzip"}, {"date", "Mon, 21 Oct 2013 20:13:22 GMT"}})); ASSERT_EQ(215u, current_header_table_size()); } TEST_P(HpackDecoderTest, ProcessesOptionalTableSizeUpdates) { EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(3000); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_EQ(3000u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); EXPECT_TRUE(header_entries_.empty()); } { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(2000); hbb.AppendDynamicTableSizeUpdate(2500); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_EQ(2500u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); EXPECT_TRUE(header_entries_.empty()); } { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(1500); hbb.AppendDynamicTableSizeUpdate(1000); hbb.AppendDynamicTableSizeUpdate(500); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_EQ(HpackDecodingError::kDynamicTableSizeUpdateNotAllowed, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Dynamic table size update not allowed")); EXPECT_EQ(1000u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); EXPECT_TRUE(header_entries_.empty()); } DecodeBuffer db("\x80"); EXPECT_FALSE(decoder_.DecodeFragment(&db)); EXPECT_EQ(0u, db.Offset()); EXPECT_EQ(1u, error_messages_.size()); } TEST_P(HpackDecoderTest, ProcessesRequiredTableSizeUpdate) { EXPECT_EQ(4096u, decoder_.GetCurrentHeaderTableSizeSetting()); decoder_.ApplyHeaderTableSizeSetting(1024); decoder_.ApplyHeaderTableSizeSetting(2048); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); EXPECT_EQ(2048u, decoder_.GetCurrentHeaderTableSizeSetting()); { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(1024); hbb.AppendIndexedHeader(4); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_THAT(header_entries_, ElementsAreArray({HpackHeaderEntry{":path", "/"}})); EXPECT_EQ(1024u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); } decoder_.ApplyHeaderTableSizeSetting(1000); decoder_.ApplyHeaderTableSizeSetting(1500); EXPECT_EQ(1500u, decoder_.GetCurrentHeaderTableSizeSetting()); { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(500); hbb.AppendDynamicTableSizeUpdate(1250); hbb.AppendIndexedHeader(5); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_THAT(header_entries_, ElementsAreArray({HpackHeaderEntry{":path", "/index.html"}})); EXPECT_EQ(1250u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); } decoder_.ApplyHeaderTableSizeSetting(500); decoder_.ApplyHeaderTableSizeSetting(1000); EXPECT_EQ(1000u, decoder_.GetCurrentHeaderTableSizeSetting()); { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(200); hbb.AppendDynamicTableSizeUpdate(700); hbb.AppendDynamicTableSizeUpdate(900); hbb.AppendIndexedHeader(5); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_FALSE(saw_end_); EXPECT_EQ(HpackDecodingError::kDynamicTableSizeUpdateNotAllowed, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Dynamic table size update not allowed")); EXPECT_EQ(700u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); EXPECT_TRUE(header_entries_.empty()); } EXPECT_EQ(1000u, decoder_.GetCurrentHeaderTableSizeSetting()); EXPECT_FALSE(decoder_.StartDecodingBlock()); } TEST_P(HpackDecoderTest, InvalidRequiredSizeUpdate) { decoder_.ApplyHeaderTableSizeSetting(1); decoder_.ApplyHeaderTableSizeSetting(1024); HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(2); EXPECT_TRUE(decoder_.StartDecodingBlock()); DecodeBuffer db(hbb.buffer()); EXPECT_FALSE(decoder_.DecodeFragment(&db)); EXPECT_FALSE(saw_end_); EXPECT_EQ( HpackDecodingError::kInitialDynamicTableSizeUpdateIsAboveLowWaterMark, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Initial dynamic table size update is above low water mark")); EXPECT_EQ(Http2SettingsInfo::DefaultHeaderTableSize(), header_table_size_limit()); } TEST_P(HpackDecoderTest, RequiredTableSizeChangeBeforeEnd) { decoder_.ApplyHeaderTableSizeSetting(1024); EXPECT_FALSE(DecodeBlock("")); EXPECT_EQ(HpackDecodingError::kMissingDynamicTableSizeUpdate, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Missing dynamic table size update")); EXPECT_FALSE(saw_end_); } TEST_P(HpackDecoderTest, RequiredTableSizeChangeBeforeIndexedHeader) { decoder_.ApplyHeaderTableSizeSetting(1024); HpackBlockBuilder hbb; hbb.AppendIndexedHeader(1); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_EQ(HpackDecodingError::kMissingDynamicTableSizeUpdate, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Missing dynamic table size update")); EXPECT_FALSE(saw_end_); EXPECT_TRUE(header_entries_.empty()); } TEST_P(HpackDecoderTest, RequiredTableSizeChangeBeforeIndexedHeaderName) { decoder_.ApplyHeaderTableSizeSetting(1024); HpackBlockBuilder hbb; hbb.AppendNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 2, false, "PUT"); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_EQ(HpackDecodingError::kMissingDynamicTableSizeUpdate, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Missing dynamic table size update")); EXPECT_FALSE(saw_end_); EXPECT_TRUE(header_entries_.empty()); } TEST_P(HpackDecoderTest, RequiredTableSizeChangeBeforeLiteralName) { decoder_.ApplyHeaderTableSizeSetting(1024); HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, false, "name", false, "some data."); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_EQ(HpackDecodingError::kMissingDynamicTableSizeUpdate, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Missing dynamic table size update")); EXPECT_FALSE(saw_end_); EXPECT_TRUE(header_entries_.empty()); } TEST_P(HpackDecoderTest, InvalidIndexedHeaderVarint) { EXPECT_TRUE(decoder_.StartDecodingBlock()); DecodeBuffer db("\xff\x80\x80\x80\x80\x80\x80\x80\x80\x80\x80\x00"); EXPECT_FALSE(decoder_.DecodeFragment(&db)); EXPECT_TRUE(decoder_.DetectError()); EXPECT_FALSE(saw_end_); EXPECT_EQ(HpackDecodingError::kIndexVarintError, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Index varint beyond implementation limit")); EXPECT_TRUE(header_entries_.empty()); EXPECT_FALSE(decoder_.EndDecodingBlock()); } TEST_P(HpackDecoderTest, InvalidIndex) { EXPECT_TRUE(decoder_.StartDecodingBlock()); DecodeBuffer db("\x80"); EXPECT_FALSE(decoder_.DecodeFragment(&db)); EXPECT_TRUE(decoder_.DetectError()); EXPECT_FALSE(saw_end_); EXPECT_EQ(HpackDecodingError::kInvalidIndex, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Invalid index in indexed header field representation")); EXPECT_TRUE(header_entries_.empty()); EXPECT_FALSE(decoder_.EndDecodingBlock()); } TEST_P(HpackDecoderTest, TruncatedBlock) { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(3000); EXPECT_EQ(3u, hbb.size()); hbb.AppendDynamicTableSizeUpdate(4000); EXPECT_EQ(6u, hbb.size()); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_EQ(4000u, header_table_size_limit()); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_EQ(4000u, header_table_size_limit()); EXPECT_FALSE(DecodeBlock(hbb.buffer().substr(0, hbb.size() - 1))); EXPECT_FALSE(saw_end_); EXPECT_EQ(HpackDecodingError::kTruncatedBlock, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Block ends in the middle of an instruction")); EXPECT_EQ(3000u, header_table_size_limit()); EXPECT_EQ(0u, current_header_table_size()); EXPECT_TRUE(header_entries_.empty()); } TEST_P(HpackDecoderTest, OversizeStringDetected) { HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, false, "name", false, "some data."); hbb.AppendLiteralNameAndValue(HpackEntryType::kUnindexedLiteralHeader, false, "name2", false, "longer data"); EXPECT_TRUE(DecodeBlock(hbb.buffer())); EXPECT_THAT(header_entries_, ElementsAreArray({HpackHeaderEntry{"name", "some data."}, HpackHeaderEntry{"name2", "longer data"}})); decoder_.set_max_string_size_bytes(10); EXPECT_FALSE(DecodeBlock(hbb.buffer())); EXPECT_THAT(header_entries_, ElementsAreArray({HpackHeaderEntry{"name", "some data."}})); EXPECT_FALSE(saw_end_); EXPECT_EQ(HpackDecodingError::kValueTooLong, decoder_.error()); EXPECT_EQ(1u, error_messages_.size()); EXPECT_THAT(error_messages_[0], Eq("Value length exceeds buffer limit")); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
52d6522f-ddf2-4de4-9a6c-6004ec920947
cpp
tensorflow/tensorflow
input_slices
third_party/xla/xla/service/gpu/fusions/legacy/input_slices.cc
third_party/xla/xla/service/gpu/fusions/legacy/input_slices_test.cc
#include "xla/service/gpu/fusions/legacy/input_slices.h" #include <cstddef> #include <cstdint> #include <optional> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Value.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/elemental_ir_emitter.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/parallel_loop_emitter.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/kernel_support_library.h" #include "xla/service/llvm_ir/llvm_loop.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::Status EmitElementForInputFusibleSlices( ElementalIrEmitter& elemental_emitter, const HloComputation* fused_computation, const std::vector<llvm_ir::IrArray>& inputs, const std::vector<llvm_ir::IrArray>& outputs, const llvm_ir::IrArray::Index& index, llvm::IRBuilder<>* builder) { VLOG(10) << "Emitting slice input fusion for " << fused_computation->ToString(); HloInstruction* slice_or_tuple = fused_computation->root_instruction(); auto slice_instructions = [&]() -> absl::Span<HloInstruction* const> { if (slice_or_tuple->opcode() == HloOpcode::kSlice) { return absl::Span<HloInstruction* const>(&slice_or_tuple, 1); } CHECK_EQ(slice_or_tuple->opcode(), HloOpcode::kTuple); return slice_or_tuple->operands(); }(); std::vector<llvm::Value*> input_ir_values; FusedIrEmitter fused_emitter(elemental_emitter); for (int i = 0; i < fused_computation->num_parameters(); i++) { fused_emitter.BindGenerator( *fused_computation->parameter_instruction(i), [&inputs, i, builder](llvm_ir::IrArray::Index index) { return inputs[i].EmitReadArrayElement(index, builder); }); } for (const HloInstruction* slice : slice_instructions) { auto input_generator = *fused_emitter.GetGenerator(*slice->operand(0)); input_ir_values.push_back(input_generator(index).value()); } KernelSupportLibrary ksl(builder, llvm_ir::UnrollMode::kDefaultUnroll); for (int64_t i = 0; i < slice_instructions.size(); ++i) { HloInstruction* slice = slice_instructions[i]; std::vector<llvm::Value*> index_within_ranges; for (size_t dim = 0; dim < slice->slice_starts().size(); ++dim) { CHECK_EQ(slice->slice_strides(dim), 1); auto larger_or_equal_than_start = builder->CreateICmpSGE( index.multidim()[dim], index.GetConstantWithIndexType(slice->slice_starts(dim))); llvm::Value* smaller_than_limit = builder->CreateICmpSLT( index.multidim()[dim], index.GetConstantWithIndexType(slice->slice_limits(dim))); llvm::Value* within_range = builder->CreateAnd(larger_or_equal_than_start, smaller_than_limit); index_within_ranges.push_back(within_range); } llvm::Value* guarding_cond = builder->CreateAnd(index_within_ranges); auto emit_slice_elem_func = [&] { const std::vector<llvm::Value*>& src_multidim = index.multidim(); std::vector<llvm::Value*> dst_multidim(src_multidim.size()); for (size_t dim = 0; dim < src_multidim.size(); ++dim) { dst_multidim[dim] = builder->CreateSub( src_multidim[dim], index.GetConstantWithIndexType(slice->slice_starts(dim))); } const llvm_ir::IrArray& src_ir_array = outputs[i]; llvm_ir::IrArray::Index slice_dst_index(dst_multidim, slice->shape(), index.GetType()); src_ir_array.EmitWriteArrayElement(slice_dst_index, input_ir_values[i], builder); }; ksl.If(absl::StrCat("slice", i), guarding_cond, emit_slice_elem_func); } return absl::OkStatus(); } absl::StatusOr<Shape> GetConsistentInputShapeForRootSlices( const HloComputation* fused_computation) { const HloInstruction& root = *fused_computation->root_instruction(); if (root.opcode() == HloOpcode::kSlice) { return root.operands()[0]->shape(); } CHECK_EQ(root.opcode(), HloOpcode::kTuple); const Shape& first_slice_operand_shape = root.operands()[0]->operands()[0]->shape(); for (size_t i = 1; i < root.operands().size(); ++i) { const HloInstruction* slice = root.operands()[i]; const Shape& operand_shape = slice->operands()[0]->shape(); if (!ShapeUtil::EqualIgnoringElementType(first_slice_operand_shape, operand_shape)) { return FailedPrecondition( "Fused slices do not have the same input shape, fused computation = " "%s.", root.parent()->name()); } } return first_slice_operand_shape; } } LaunchDimensions InputSlicesFusion::launch_dimensions() const { const auto& root = analysis_.fusion_root(0).instruction(); const auto& shape = root.operand(0)->shape(); return CalculateLaunchDimensions(shape, analysis_.device_info(), {unroll_factor_}); } std::optional<IndexingMap> InputSlicesFusion::ComputeThreadIdToOutputIndexing( int64_t output_id, mlir::MLIRContext* ctx) const { auto launch_dims = launch_dimensions(); const auto& shape = analysis_.fusion_root(output_id).shape(); return GetDefaultThreadIdIndexingMap(launch_dims, unroll_factor_, shape, ctx); } absl::Status InputSlicesFusion::EmitKernel( IrEmitterContext& ir_emitter_context, const HloFusionInstruction& fusion, const LaunchDimensions& launch_dims, std::vector<llvm_ir::IrArray> inputs, std::vector<llvm_ir::IrArray> outputs, llvm::IRBuilder<>* builder) const { TF_ASSIGN_OR_RETURN(Shape element_shape, GetConsistentInputShapeForRootSlices( fusion.fused_instructions_computation())); LaunchDimensionsConfig launch_config; launch_config.unroll_factor = unroll_factor_; GpuElementalIrEmitter elemental_emitter(ir_emitter_context, builder); return ParallelLoopEmitter( [&](const llvm_ir::IrArray::Index index) -> absl::Status { return EmitElementForInputFusibleSlices( elemental_emitter, fusion.fused_instructions_computation(), inputs, outputs, index, builder); }, element_shape, launch_dims, builder, launch_config) .EmitLoop( fusion.name(), GetIndexTypeForKernel(&fusion, launch_dims.launch_bound(), builder)); } } }
#include "xla/service/gpu/fusions/legacy/input_slices.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/MLIRContext.h" #include "xla/service/gpu/fusions/fusions.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/indexing_map_serialization.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { class InputSlicesTest : public HloTestBase { protected: DebugOptions GetDebugOptionsForTest() override { auto opts = HloTestBase::GetDebugOptionsForTest(); opts.set_xla_gpu_mlir_emitter_level(0); return opts; } mlir::MLIRContext mlir_context_; }; TEST_F(InputSlicesTest, ThreadIndexing) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { %input = f32[2,3,5,7]{2,1,0,3} parameter(0) slice0 = f32[1,2,3,5]{2,1,0,3} slice(input), slice={[0:1],[1:3],[0:3],[2:7]} slice1 = f32[1,2,3,5]{2,1,0,3} slice(input), slice={[0:1],[0:2],[0:3],[2:7]} ROOT tuple = (f32[1,2,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) tuple(slice0, slice1) } ENTRY entry { %input = f32[2,3,5,7]{2,1,0,3} parameter(0) ROOT %fusion = (f32[1,2,3,5]{2,1,0,3}, f32[1,2,3,5]{2,1,0,3}) fusion(%input), kind=kLoop, calls=fused_computation })") .value(); stream_executor::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = HloFusionAnalysis::Create(*root, device_info); auto emitter = GetFusionEmitter(PreBufferAssignmentFusionInfo{analysis_fused}); auto fusion = dynamic_cast<InputSlicesFusion*>(emitter.get()); ASSERT_NE(fusion, nullptr); auto thread_id_to_output_indexing = fusion->ComputeThreadIdToOutputIndexing(0, &mlir_context_); EXPECT_THAT(ToString(*thread_id_to_output_indexing, {"th_x", "th_y", "th_z", "bl_x", "bl_y", "bl_z"}, {"chunk_id", "unroll_id"}, {}), MatchIndexingString(R"( (th_x, th_y, th_z, bl_x, bl_y, bl_z)[chunk_id, unroll_id] -> (0, ((bl_x * 128 + th_x) floordiv 3) mod 2, (bl_x * 128 + th_x) mod 3, (bl_x * 128 + th_x) floordiv 6), domain: th_x in [0, 127], th_y in [0, 0], th_z in [0, 0], bl_x in [0, 1], bl_y in [0, 0], bl_z in [0, 0], chunk_id in [0, 0], unroll_id in [0, 0], bl_x * 128 + th_x in [0, 29] )")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/legacy/input_slices.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/legacy/input_slices_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d2b37d13-4f6d-45ff-bfc3-4017594a9cec
cpp
tensorflow/tensorflow
gemm_fusion_autotuner
third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc
third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner_test.cc
#include "xla/service/gpu/autotuning/gemm_fusion_autotuner.h" #include <algorithm> #include <array> #include <atomic> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "third_party/gpus/cuda/include/cublas_v2.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/call_inliner.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/float_normalization.h" #include "xla/service/gpu/autotuning/autotuner_compile_util.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_comparator.h" #include "xla/service/gpu/gpu_float_support.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/custom_kernel_fusion.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/split_k_gemm_rewriter.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/transforms/cudnn_fusion_compiler.h" #include "xla/service/gpu/transforms/custom_kernel_fusion_rewriter.h" #include "xla/service/gpu/transforms/fusion_wrapper.h" #include "xla/service/gpu/transforms/gemm_rewriter.h" #include "xla/service/gpu/transforms/priority_fusion.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tsl/lib/core/bits.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace gpu { using BackendConfig = GemmFusionAutotunerImpl::BackendConfig; using BackendConfigs = GemmFusionAutotunerImpl::BackendConfigs; using ProfilingOutput = AutotunerCompileUtil::ProfilingOutput; namespace { constexpr int kMinTileSize = 16; constexpr TritonGemmConfig kDefaultGemmTiling = {32, 32, 32, 1, 1, 4}; constexpr int kMaxWavesForSplitK = 5; constexpr std::array<int, 6> kBlockSizes = {16, 32, 64, 128, 256, 512}; constexpr std::array<int, 4> kNumStages = {1, 2, 3, 4}; constexpr std::array<int, 4> kNumWarps = {2, 4, 8, 16}; constexpr std::array<int, 5> kSplitK = {1, 2, 4, 8, 16}; constexpr std::array<int, 5> kNumCtas = {1, 2, 4, 8, 16}; using AutoTuneCacheKeyCount = absl::flat_hash_map<AutotuneCacheKey, uint64_t>; class GemmConfigSetCollector : public ConstDfsHloVisitorWithDefault { public: explicit GemmConfigSetCollector(GemmFusionAutotunerImpl* impl) : impl_(impl) {} absl::StatusOr<BackendConfigs> CollectGemmConfigSets( const HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads = {}) { error_out_on_cache_miss_ = module->config() .debug_options() .xla_gpu_require_complete_aot_autotune_results(); gemm_config_sets_.clear(); for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_RETURN_IF_ERROR(computation->Accept(this)); } return std::move(gemm_config_sets_); } AutoTuneCacheKeyCount GetFusionsCount() { return std::move(fusion_count_map_); } absl::Status HandleFusion(const HloInstruction* hlo) override { const HloFusionInstruction* fusion = Cast<HloFusionInstruction>(hlo); TF_ASSIGN_OR_RETURN(auto gpu_config, hlo->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); AutotuneCacheKey key = AutotunerUtil::GetKey(hlo, impl_->GetConfig()); auto [iterator, inserted] = fusion_count_map_.insert({key, 1}); if (!inserted) { ++(iterator->second); } TF_ASSIGN_OR_RETURN(bool is_in_cache, AutotunerUtil::IsInCache(key, impl_->GetConfig())); if (is_in_cache || handled_fusions_.contains(key)) { return absl::OkStatus(); } bool missing_config = (backend_config.kind() == kTritonGemmFusionKind && !backend_config.has_triton_gemm_config()) || (backend_config.kind() == kCuDnnFusionKind && !backend_config.has_cudnn_fusion_config()) || (backend_config.kind() == kCustomFusionKind && !backend_config.has_custom_fusion_config()); if (missing_config) { if (error_out_on_cache_miss_) { return absl::NotFoundError(absl::StrCat( "Complete autotuning results are required, but no cache result " "found for key: ", key.ToString())); } TF_ASSIGN_OR_RETURN(std::vector<BackendConfig> configs, impl_->GenerateConfigs(*fusion)); gemm_config_sets_.push_back({fusion, std::move(configs)}); } handled_fusions_.insert(key); return absl::OkStatus(); } absl::Status DefaultAction(const HloInstruction* hlo) override { return absl::OkStatus(); } private: bool error_out_on_cache_miss_; GemmFusionAutotunerImpl* impl_; BackendConfigs gemm_config_sets_; AutoTuneCacheKeyCount fusion_count_map_; absl::flat_hash_set<AutotuneCacheKey> handled_fusions_; }; struct TileSizeLimit { int block_m = 0; int block_n = 0; int block_k = 0; }; absl::StatusOr<TileSizeLimit> GetLimits(const HloDotInstruction& dot) { TF_ASSIGN_OR_RETURN(int64_t non_contracting_index_lhs, NonContractingDimensionIndex(dot, 0)); TF_ASSIGN_OR_RETURN(int64_t non_contracting_index_rhs, NonContractingDimensionIndex(dot, 1)); TF_ASSIGN_OR_RETURN(int64_t contracting_index, ContractingDimensionIndex(dot, 1)); const int max_m = tsl::NextPowerOfTwoS64( dot.operand(0)->shape().dimensions(non_contracting_index_lhs)); const int max_n = tsl::NextPowerOfTwoS64( dot.operand(1)->shape().dimensions(non_contracting_index_rhs)); const int max_k = tsl::NextPowerOfTwoS64( dot.operand(1)->shape().dimensions(contracting_index)); return TileSizeLimit{ std::max(max_m, kMinTileSize), std::max(max_n, kMinTileSize), std::max(max_k, kMinTileSize), }; } int GetLogEveryN() { return VLOG_IS_ON(3) ? 100 : 1000; } int64_t PriorityFusionShapeSize(const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); } HloCostAnalysis::Options PriorityFusionOptions() { return {PriorityFusionShapeSize, {}, {}, true}; } absl::StatusOr<std::unique_ptr<HloModule>> TritonGemmAutotuneExtractor( const TritonGemmConfig& config, const se::DeviceDescription& gpu_device_info, const HloFusionInstruction* fusion, DebugOptions debug_opts, bool allow_filtering_kernels_spilling_registers) { std::unique_ptr<HloModule> new_module = ExtractInstructionIntoNewModule(*fusion); if (!allow_filtering_kernels_spilling_registers) { debug_opts.set_xla_gpu_filter_kernels_spilling_registers_on_autotuning( false); } new_module->mutable_config().set_debug_options(debug_opts); HloComputation* entry_computation = new_module->entry_computation(); HloInstruction* cloned_dot_fusion = entry_computation->root_instruction(); TF_ASSIGN_OR_RETURN(auto gpu_config, cloned_dot_fusion->backend_config<GpuBackendConfig>()); FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); *backend_config.mutable_triton_gemm_config() = config.ToProto(); TF_RETURN_IF_ERROR(cloned_dot_fusion->set_backend_config(gpu_config)); if (config.split_k > 1) { TF_RETURN_IF_ERROR(MakeDotSplitKBatch(cloned_dot_fusion, config)); for (PrimitiveType type : {BF16, F8E5M2, F8E4M3FN, F8E4M3B11FNUZ, F8E5M2FNUZ, F8E4M3FNUZ}) { GpuFloatSupport float_support(gpu_device_info.cuda_compute_capability(), type); FloatNormalization float_normalization(&float_support); TF_RETURN_IF_ERROR(float_normalization.Run(new_module.get()).status()); } PriorityFusion priority_fusion( nullptr, gpu_device_info, PriorityFusionOptions()); TF_RETURN_IF_ERROR(priority_fusion.Run(new_module.get()).status()); FusionWrapper fusion_wrapper; TF_RETURN_IF_ERROR(fusion_wrapper.Run(new_module.get()).status()); } return new_module; } absl::StatusOr<std::unique_ptr<HloModule>> CublasGemmAutotuneExtractor( const AutotuneConfig& config, const se::DeviceDescription& gpu_device_info, const se::SemanticVersion& toolkit_version, const HloFusionInstruction* fusion, const DebugOptions& debug_opts) { const HloComputation* fusion_computation = fusion->called_computations().at(0); std::unique_ptr<HloModule> new_module = ExtractComputationIntoNewModule(*fusion_computation); new_module->mutable_config().set_debug_options(debug_opts); auto* dot = hlo_query::GetFirstInstructionWithOpcode( *new_module->entry_computation(), HloOpcode::kDot); if (dot->precision_config().algorithm() == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X3 || dot->precision_config().algorithm() == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X6 || dot->precision_config().algorithm() == PrecisionConfig::ALG_DOT_TF32_TF32_F32_X3) { dot->mutable_precision_config()->set_algorithm( PrecisionConfig::ALG_DOT_F32_F32_F32); } for (GemmRewriterOptions::DType dtype : {GemmRewriterOptions::DType::kFp8Only, GemmRewriterOptions::DType::kNonFp8Only}) { GemmRewriter rewriter(config.GetGpuComputeCapability(), toolkit_version, GemmRewriterOptions{dtype}); PriorityFusion fusion_pass( nullptr, gpu_device_info, PriorityFusionOptions()); TF_RETURN_IF_ERROR(rewriter.Run(new_module.get()).status()); TF_RETURN_IF_ERROR(fusion_pass.Run(new_module.get()).status()); } return new_module; } absl::Status UpdateFusionInstructionKernelIndex( HloInstruction* fusion_instruction, int kernel_index) { GpuBackendConfig gpu_config = fusion_instruction->backend_config<GpuBackendConfig>().value(); gpu_config.mutable_fusion_backend_config() ->mutable_custom_fusion_config() ->set_kernel_index(kernel_index); TF_RETURN_IF_ERROR(fusion_instruction->set_backend_config(gpu_config)); return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<HloModule>> CustomFusionKernelAutotuneExtractor( const GemmFusionAutotunerImpl::CustomKernelFusionConfig& cutlass_config, const AutotuneConfig& config, const se::SemanticVersion& toolkit_version, const HloFusionInstruction* fusion, const DebugOptions& debug_opts) { const HloComputation* fusion_computation = fusion->called_computation(); std::unique_ptr<HloModule> new_module = ExtractComputationIntoNewModule(*fusion_computation); new_module->mutable_config().set_debug_options(debug_opts); CustomKernelFusionRewriter rewriter( &config.GetExecutor()->GetDeviceDescription()); PriorityFusion fusion_pass( nullptr, config.GetExecutor()->GetDeviceDescription(), PriorityFusionOptions()); TF_RETURN_IF_ERROR(rewriter.Run(new_module.get()).status()); TF_RETURN_IF_ERROR(fusion_pass.Run(new_module.get()).status()); HloInstruction* custom_kernel_fusion = hlo_query::GetFirstInstructionWithOpcode(*new_module->entry_computation(), HloOpcode::kFusion); int64_t kernel_index = cutlass_config.kernel_index; TF_RETURN_IF_ERROR( UpdateFusionInstructionKernelIndex(custom_kernel_fusion, kernel_index)); return new_module; } absl::StatusOr<std::unique_ptr<HloModule>> FusionExtractor( const HloFusionInstruction& fusion, const DebugOptions& debug_opts) { std::unique_ptr<HloModule> module = ExtractInstructionIntoNewModule(fusion); module->mutable_config().set_debug_options(debug_opts); return module; } absl::StatusOr<std::unique_ptr<HloModule>> CuDnnFusionExtractor( const HloFusionInstruction& fusion, const DebugOptions& debug_opts, const int plan_id) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, FusionExtractor(fusion, debug_opts)); GpuBackendConfig gpu_config; FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); backend_config.set_kind(std::string(kCuDnnFusionKind)); backend_config.mutable_cudnn_fusion_config()->set_plan_id(plan_id); TF_RETURN_IF_ERROR( module->entry_computation()->root_instruction()->set_backend_config( gpu_config)); return module; } bool IsFusionKind(const HloInstruction& hlo, absl::string_view kind) { auto gpu_config = hlo.backend_config<GpuBackendConfig>(); if (!gpu_config.ok()) { return false; } return gpu_config->fusion_backend_config().kind() == kind; } int GetCuDnnPlanCount(const HloInstruction& hlo, const AutotuneConfig& autotune_config) { if (auto gpu_config = hlo.backend_config<GpuBackendConfig>(); !gpu_config.ok() || gpu_config->fusion_backend_config().has_cudnn_fusion_config()) { return {}; } return CuDnnFusionCompiler::GetAvailablePlanCount( *autotune_config.GetExecutor(), *DynCast<HloFusionInstruction>(&hlo)); } AutotuneResult FromConfig(const BackendConfig& config) { AutotuneResult res; if (std::holds_alternative<GemmFusionAutotunerImpl::CuBlasConfig>(config)) { res.mutable_gemm()->set_algorithm(CUBLAS_GEMM_DEFAULT); } else if (std::holds_alternative< GemmFusionAutotunerImpl::CustomKernelFusionConfig>(config)) { res.mutable_custom_kernel_fusion()->set_kernel_index( std::get<GemmFusionAutotunerImpl::CustomKernelFusionConfig>(config) .kernel_index); } else if (std::holds_alternative<GemmFusionAutotunerImpl::CuDnnConfig>( config)) { res.mutable_algorithm()->set_algo_id( std::get<GemmFusionAutotunerImpl::CuDnnConfig>(config).plan_id); } else if (std::holds_alternative<TritonGemmConfig>(config)) { *res.mutable_triton() = std::get<TritonGemmConfig>(config).ToProto(); } else { LOG(FATAL) << "Unsupported config type: " << config.index(); } return res; } absl::Status DumpOriginalFusion(AutotunerCompileUtil& util, const HloFusionInstruction& fusion, int fusion_id) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> module, util.ExtractModule([&](const DebugOptions& debug_opts) { return FusionExtractor(fusion, debug_opts); })); module->set_name(std::string(fusion.name())); std::string rendered_graph_name = absl::StrCat("gemm_fusion_", fusion_id, ".", module->name(), ".dot"); std::string rendered_graph = RenderGraph(rendered_graph_name, *module, RenderedGraphFormat::kDot, true); DumpToFileInDir( *fusion.GetModule(), "", rendered_graph_name, rendered_graph); DumpToFileInDirOrStdout( *fusion.GetModule(), "", absl::StrCat("gemm_fusion_", fusion_id, ".", module->name(), ".txt"), module->ToString()); return absl::OkStatus(); } absl::Status DumpAutotunedFusion(const AutotuneConfig& autotune_config, const se::SemanticVersion& toolkit_version, AutotunerCompileUtil& util, const AutotuneResult result, const HloFusionInstruction* fusion, int fusion_id) { TritonGemmConfig triton_gemm_config; if (result.has_triton()) { TF_ASSIGN_OR_RETURN(triton_gemm_config, TritonGemmConfig::FromProto(result.triton())); } const se::DeviceDescription& device_desc = autotune_config.GetExecutor()->GetDeviceDescription(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, util.ExtractModule([&](const DebugOptions& debug_opts) { if (result.has_algorithm()) { return CuDnnFusionExtractor(*fusion, debug_opts, result.algorithm().algo_id()); } else if (result.has_triton()) { return TritonGemmAutotuneExtractor( triton_gemm_config, device_desc, fusion, debug_opts, true); } else if (result.has_gemm()) { return CublasGemmAutotuneExtractor(autotune_config, device_desc, toolkit_version, fusion, debug_opts); } else { LOG(FATAL) << "Unknown result type: " << result.DebugString(); } })); module->set_name(std::string(fusion->name())); DumpToFileInDirOrStdout( *fusion->GetModule(), "", absl::StrCat("gemm_fusion_", fusion_id, ".", module->name(), ".optimized.txt"), module->ToString()); return absl::OkStatus(); } std::string Serialize(const BackendConfig& config) { if (auto triton_config = std::get_if<TritonGemmConfig>(&config)) { tsl::protobuf::TextFormat::Printer printer; printer.SetSingleLineMode(true); std::string result; printer.PrintToString(triton_config->ToProto(), &result); return result; } return GemmFusionAutotunerImpl::ToString(config); } } absl::Status RewriteGemmFusionToCall(HloInstruction* fusion_instr) { HloComputation* const computation = fusion_instr->parent(); HloInstruction* const call = computation->AddInstruction(HloInstruction::CreateCall( fusion_instr->shape(), fusion_instr->operands(), fusion_instr->fused_instructions_computation())); return computation->ReplaceInstruction(fusion_instr, call); } absl::Status RewriteGemmFusionToCustomKernelFusion( HloInstruction* fusion_instr, se::DeviceDescription device_description, int64_t kernel_index) { HloComputation* const computation = fusion_instr->parent(); HloInstruction* const call = computation->AddInstruction(HloInstruction::CreateCall( fusion_instr->shape(), fusion_instr->operands(), fusion_instr->fused_instructions_computation())); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(fusion_instr, call)); HloPassPipeline pipeline("autotuner_custom_kernel_fusion_rewriter"); pipeline.AddPass<CallInliner>(); pipeline.AddPass<CustomKernelFusionRewriter>(&device_description, kernel_index); HloModule* hlo_module = call->GetModule(); return pipeline.Run(hlo_module).status(); } absl::Status HandleTritonGemm(HloInstruction* fusion_instr, FusionBackendConfig& fusion_backend_config) { TF_ASSIGN_OR_RETURN( const TritonGemmConfig config, TritonGemmConfig::FromProto(fusion_backend_config.triton_gemm_config())); if (config.split_k > 1) { TF_RETURN_IF_ERROR(MakeDotSplitKBatch(fusion_instr, config)); } return absl::OkStatus(); } absl::Status GemmFusionAutotunerRewriterVisitor::HandleFusion( HloInstruction* fusion_instr) { TF_ASSIGN_OR_RETURN(auto gpu_config, fusion_instr->backend_config<GpuBackendConfig>()); FusionBackendConfig& fusion_backend_config = *gpu_config.mutable_fusion_backend_config(); if (fusion_backend_config.kind() != kTritonGemmFusionKind && fusion_backend_config.kind() != kCuDnnFusionKind && fusion_backend_config.kind() != kCustomFusionKind) { return absl::OkStatus(); } if (fusion_backend_config.has_triton_gemm_config()) { TF_RETURN_IF_ERROR(HandleTritonGemm(fusion_instr, fusion_backend_config)); MarkAsChanged(); return absl::OkStatus(); } if (fusion_backend_config.has_cudnn_fusion_config() || fusion_backend_config.has_custom_fusion_config()) { return absl::OkStatus(); } VLOG(4) << "Autotuning fusion instruction: " << fusion_instr->ToString(); TF_ASSIGN_OR_RETURN( AutotuneResult autotune_result, AutotunerUtil::Autotune( fusion_instr, config_, [&]() -> absl::StatusOr<AutotuneResult> { if (config_.IsDeviceless()) { return absl::InternalError(absl::StrCat( "Expect autotune result cache hit for deviceless " "compilation (HLO: ", fusion_instr->ToString(), ")")); } return absl::InternalError("Expect autotune result cache hit."); })); VLOG(4) << "Autotuning result: " << autotune_result.ShortDebugString(); if (autotune_result.has_triton()) { *fusion_backend_config.mutable_triton_gemm_config() = autotune_result.triton(); TF_RETURN_IF_ERROR(fusion_instr->set_backend_config(gpu_config)); TF_RETURN_IF_ERROR(HandleTritonGemm(fusion_instr, fusion_backend_config)); MarkAsChanged(); return absl::OkStatus(); } if (autotune_result.has_gemm()) { TF_RETURN_IF_ERROR(RewriteGemmFusionToCall(fusion_instr)); MarkAsChanged(); return absl::OkStatus(); } if (autotune_result.has_custom_kernel_fusion()) { TF_RETURN_IF_ERROR(RewriteGemmFusionToCustomKernelFusion( fusion_instr, config_.GetExecutor()->GetDeviceDescription(), autotune_result.custom_kernel_fusion().kernel_index())); MarkAsChanged(); return absl::OkStatus(); } CHECK(autotune_result.has_algorithm()); fusion_backend_config.set_kind(std::string(kCuDnnFusionKind)); fusion_backend_config.mutable_cudnn_fusion_config()->set_plan_id( autotune_result.algorithm().algo_id()); TF_RETURN_IF_ERROR(fusion_instr->set_backend_config(gpu_config)); MarkAsChanged(); return absl::OkStatus(); } bool GemmFusionAutotunerImpl::CuBlasConfig::operator<( const CuBlasConfig& other) const { return false; } bool GemmFusionAutotunerImpl::CuDnnConfig::operator<( const CuDnnConfig& other) const { return plan_id < other.plan_id; } bool GemmFusionAutotunerImpl::CustomKernelFusionConfig::operator<( const CustomKernelFusionConfig& other) const { return false; } bool GemmFusionAutotunerImpl::IsAutotuningEnabled() const { return debug_options_.xla_gpu_autotune_level() > 0 && !debug_options_.xla_gpu_deterministic_ops(); } std::string GemmFusionAutotunerImpl::ToString( const BackendConfig& config) { if (std::holds_alternative<TritonGemmConfig>(config)) { return std::get<TritonGemmConfig>(config).ToString(); } else if (std::holds_alternative<CuDnnConfig>(config)) { return absl::StrFormat("cuDNN plan %d", std::get<CuDnnConfig>(config).plan_id); } else if (std::holds_alternative<CuBlasConfig>(config)) { return "reference (cublas)"; } else { LOG(FATAL) << "Unsupported config type: " << config.index(); } } std::vector<BackendConfig> GenerateCustomKernelFusionConfigs( const HloFusionInstruction& fusion, se::DeviceDescription device_description) { std::vector<BackendConfig> configs; const CustomKernelFusionPatternRegistry* patterns = CustomKernelFusionPatternRegistry::Default(); HloComputation* computation = fusion.called_computation(); HloInstruction* dot_instruction = hlo_query::GetFirstInstructionWithOpcode(*computation, HloOpcode::kDot); std::vector<CustomKernelFusionPattern::Match> match = patterns->Match(device_description, dot_instruction); if (match.size() == 1) { CustomKernelFusionRegistry* registry = CustomKernelFusionRegistry::Default(); auto* custom_kernel_fusion = registry->Lookup(match[0].config().name()); if (custom_kernel_fusion != nullptr) { const HloComputation* fusion_computation = fusion.called_computation(); std::unique_ptr<HloModule> new_module = ExtractComputationIntoNewModule(*fusion_computation); CustomKernelFusionRewriter rewriter(&device_description); absl::StatusOr<bool> changed = rewriter.Run(new_module.get()); if (!changed.ok() || !changed.value()) { VLOG(2) << "Skip custom kernel config. Failed to rewrite custom kernel " "fusion: " << changed.status(); return configs; } HloInstruction* custom_kernel_fusion_instr = hlo_query::GetFirstInstructionWithOpcode( *new_module->entry_computation(), HloOpcode::kFusion); if (custom_kernel_fusion_instr == nullptr) { VLOG(2) << "Skip custom kernel config. Failed to find custom kernel " "fusion instruction in the rewritten module."; return configs; } absl::StatusOr<std::vector<CustomKernel>> kernels = custom_kernel_fusion->LoadKernels( device_description, custom_kernel_fusion_instr->fused_instructions_computation()); if (!kernels.ok()) { VLOG(2) << "Skip custom kernel config. Failed to load custom kernels: " << kernels.status(); } else { for (int i = 0; i < kernels.value().size(); ++i) { GemmFusionAutotunerImpl::CustomKernelFusionConfig config{ i}; configs.push_back(config); } } } } return configs; } absl::StatusOr<std::vector<BackendConfig>> GemmFusionAutotunerImpl::GenerateConfigs(const HloFusionInstruction& fusion) { const HloDotInstruction* dot = Cast<HloDotInstruction>(hlo_query::GetFirstInstructionWithOpcode( *fusion.called_computations().at(0), HloOpcode::kDot)); std::vector<BackendConfig> configs; if (!debug_options_.xla_gpu_experimental_disable_binary_libraries()) { if (algorithm_util::IsSupportedByCublasOrCublasLt( dot->precision_config().algorithm(), GetComputeCapability()) && !dot->sparse_operands() && IsAutotuningEnabled()) { configs.push_back(CuBlasConfig{}); } bool is_hopper = !config_.IsDeviceless() && GetComputeCapability().IsAtLeastHopper(); bool is_cudnn_enabled = debug_options_.xla_gpu_cudnn_gemm_fusion_level() > 0 && is_hopper && GetDnnVersionInfoOrDefault(config_.GetExecutor()).major_version() >= 9; if ((IsFusionKind(fusion, kCuDnnFusionKind) && IsAutotuningEnabled()) || (IsFusionKind(fusion, kTritonGemmFusionKind) && is_cudnn_enabled && algorithm_util::IsSupportedByCudnn( dot->precision_config().algorithm()) && !dot->sparse_operands() && IsAutotuningEnabled())) { const int plan_count = GetCuDnnPlanCount(fusion, config_); for (int plan_id = 0; plan_id < plan_count; ++plan_id) { configs.push_back(CuDnnConfig{plan_id}); } } if (IsFusionKind(fusion, kCuDnnFusionKind)) { if (!IsAutotuningEnabled()) { configs.push_back(CuDnnConfig{-1}); } return configs; } } if ((IsFusionKind(fusion, kCustomFusionKind) || IsFusionKind(fusion, kTritonGemmFusionKind)) && IsAutotuningEnabled() && !config_.IsDeviceless()) { std::vector<BackendConfig> custom_kernel_fusion_configs = GenerateCustomKernelFusionConfigs( fusion, config_.GetExecutor()->GetDeviceDescription()); configs.insert(configs.end(), custom_kernel_fusion_configs.begin(), custom_kernel_fusion_configs.end()); } TF_ASSIGN_OR_RETURN(std::vector<TritonGemmConfig> triton_configs, GenerateTritonConfigs(*dot)); for (TritonGemmConfig& config : triton_configs) { configs.push_back(std::move(config)); } return configs; } absl::StatusOr<std::vector<TritonGemmConfig>> GemmFusionAutotunerImpl::GenerateTritonConfigs(const HloDotInstruction& dot) { std::vector<const HloInstruction*> converts = HloBfsFindAll({&dot}, [&](const HloInstruction* node) { return node->opcode() == HloOpcode::kConvert; }); int minBitWidth = primitive_util::BitWidth(dot.shape().element_type()); for (auto convert : converts) { auto in_type = convert->operand(0)->shape().element_type(); auto out_type = convert->shape().element_type(); minBitWidth = std::min({minBitWidth, primitive_util::BitWidth(in_type), primitive_util::BitWidth(out_type)}); } std::vector<TritonGemmConfig> result_configs; TF_ASSIGN_OR_RETURN(TileSizeLimit limits, GetLimits(dot)); if (triton_configs_.empty()) { triton_configs_ = !IsAutotuningEnabled() ? std::vector(1, kDefaultGemmTiling) : debug_options_.xla_gpu_exhaustive_tiling_search() ? GetExhaustiveTritonConfigs() : GetDefaultTritonConfigs(); } constexpr int kMinGemmElements = 32 * 32; bool small_dot = ShapeUtil::ElementsIn(dot.operand(0)->shape()) <= kMinGemmElements && ShapeUtil::ElementsIn(dot.operand(1)->shape()) <= kMinGemmElements; std::vector<TritonGemmConfig> triton_configs = small_dot ? std::vector(1, kDefaultGemmTiling) : triton_configs_; const int kCoreCount = !config_.IsDeviceless() ? config_.GetExecutor()->GetDeviceDescription().core_count() : 100; const int64_t kSufficientNumberOfTiles = kMaxWavesForSplitK * kCoreCount; const int64_t result_size = ShapeUtil::ElementsIn(dot.shape()); absl::flat_hash_set<TritonGemmConfig> added; bool is_hopper = !config_.IsDeviceless() && GetComputeCapability().IsAtLeastHopper(); for (TritonGemmConfig& config : triton_configs) { config.block_m = std::min(config.block_m, limits.block_m); config.block_n = std::min(config.block_n, limits.block_n); config.block_k = std::min(config.block_k, limits.block_k); int max_split_k = 1; if (debug_options_.xla_gpu_enable_split_k_autotuning()) { int64_t ratio = kSufficientNumberOfTiles * config.block_m * config.block_n / result_size; max_split_k = 1 << std::max<int>(tsl::Log2Floor64(ratio), 0); } config.split_k = std::min(config.split_k, max_split_k); constexpr int kLdmatrixGranularity = 256; config.block_k = std::max(config.block_k, kLdmatrixGranularity / minBitWidth); if (dot.sparse_operands()) { if (is_hopper) { config.block_m = std::max(config.block_m, 64); config.num_warps = std::max(config.num_warps, 4); } config.block_k = std::max( config.block_k, 2 * std::max(kMinTileSize, kLdmatrixGranularity / minBitWidth)); int meta_elements = config.block_m * config.block_k / 16; config.num_warps = std::min<int>(config.num_warps, meta_elements / WarpSize()); } if (added.insert(config).second) { result_configs.push_back(config); } } return result_configs; } absl::StatusOr<absl::flat_hash_map< const HloFusionInstruction*, std::vector<GemmFusionAutotunerImpl::ExecutableCandidate>>> GemmFusionAutotunerImpl::CompileAll(AutotunerCompileUtil& compile_util, const BackendConfigs& task) { tsl::profiler::ScopedAnnotation annotation("XlaAutotunerCompilation"); absl::Mutex results_mu; absl::flat_hash_map<const HloFusionInstruction*, std::vector<ExecutableCandidate>> results; if (task.empty()) { return results; } const int log_every_n = GetLogEveryN(); int64_t config_count = 0; for (const auto& [unused, configs] : task) { config_count += configs.size(); } std::atomic<int> done_count = 0; std::atomic<int> good_count = 0; auto log = [&](bool success) { const int done_so_far = done_count.fetch_add(1) + 1; const int good_so_far = success ? good_count.fetch_add(1) + 1 : good_count.load(); if (done_so_far % log_every_n == 0) { VLOG(2) << "Compiled " << done_so_far << " of " << config_count << " configs (successful: " << good_so_far << ")"; } }; auto compile = [&](const HloFusionInstruction* fusion, const BackendConfig& config, bool allow_filtering_kernels_spilling_registers) -> absl::StatusOr<bool> { std::unique_ptr<Executable> executable; if (std::holds_alternative<TritonGemmConfig>(config)) { TF_ASSIGN_OR_RETURN( executable, compile_util.Compile([&](const DebugOptions& opts) { return TritonGemmAutotuneExtractor( std::get<TritonGemmConfig>(config), config_.GetExecutor()->GetDeviceDescription(), fusion, opts, allow_filtering_kernels_spilling_registers); })); } else if (std::holds_alternative<CuDnnConfig>(config)) { executable = compile_util .Compile([&](const DebugOptions& opts) { return CuDnnFusionExtractor( *fusion, opts, std::get<CuDnnConfig>(config).plan_id); }) .value_or(nullptr); } else if (std::holds_alternative<CuBlasConfig>(config)) { TF_ASSIGN_OR_RETURN( executable, compile_util.Compile([&](const DebugOptions& opts) { return CublasGemmAutotuneExtractor( config_, config_.GetExecutor()->GetDeviceDescription(), toolkit_version_, fusion, opts); })); } else if (std::holds_alternative<CustomKernelFusionConfig>(config)) { TF_ASSIGN_OR_RETURN(executable, compile_util.Compile([&](const DebugOptions& opts) { return CustomFusionKernelAutotuneExtractor( std::get<CustomKernelFusionConfig>(config), config_, toolkit_version_, fusion, opts); })); } else { LOG(FATAL) << "Unsupported config type: " << config.index(); } if (executable != nullptr) { absl::MutexLock lock(&results_mu); results[fusion].push_back({config, std::move(executable)}); return true; } return false; }; if (thread_pool_ && thread_pool_->NumThreads() > 1 && debug_options_.xla_gpu_force_compilation_parallelism() != 1) { if (task.size() == 1) { absl::string_view fusion_name = task.begin()->first->name(); VLOG(1) << "Compiling " << config_count << " configs for " << fusion_name << " on " << thread_pool_->NumThreads() << " threads."; } else { VLOG(1) << "Compiling " << config_count << " configs for " << task.size() << " fusions on " << thread_pool_->NumThreads() << " threads."; } tsl::BlockingCounter counter(config_count); for (const auto& key_value : task) { const HloFusionInstruction* fusion = key_value.first; const std::vector<BackendConfig>& gemm_config_set = key_value.second; VLOG(10) << "Compiling fusion: " << fusion->name(); VLOG(10) << "Dumping fusion computation: " << fusion->called_computation()->ToString(); for (const BackendConfig& config : gemm_config_set) { thread_pool_->Schedule([&, fusion] { VLOG(10) << "Trying configuration forceable through: " "--xla_gpu_override_gemm_autotuner='" << Serialize(config) << "'"; VLOG(10) << "WARNING: you are running in multithreaded-mode, the " "last configuration printed out might not be the one " "causing issues! Use " "--xla_gpu_force_compilation_parallelism=1 to fix."; absl::StatusOr<bool> has_executable = compile(fusion, config, gemm_config_set.size() > 1); TF_CHECK_OK(has_executable.status()) << "Failure occured when compiling fusion " << fusion->name() << " with config '" << ToString(config) << "'\nFused HLO computation:\n" << fusion->fused_instructions_computation()->ToString(); log(has_executable.value()); counter.DecrementCount(); }); } } counter.Wait(); } else { if (task.size() == 1) { absl::string_view fusion_name = task.begin()->first->name(); LOG(WARNING) << "Compiling " << config_count << " configs for " << fusion_name << " on a single thread."; } else { LOG(WARNING) << "Compiling " << config_count << " configs for " << task.size() << " fusions on a single thread."; } for (const auto& [fusion, gemm_config_set] : task) { VLOG(10) << "Compiling fusion: " << fusion->name(); VLOG(10) << "Dumping fusion computation: " << fusion->called_computation()->ToString(); for (const BackendConfig& config : gemm_config_set) { VLOG(10) << "Trying configuration forceable through: " "--xla_gpu_override_gemm_autotuner='" << Serialize(config) << "'"; TF_ASSIGN_OR_RETURN( bool has_executable, compile(fusion, config, gemm_config_set.size() > 1)); log(has_executable); } } } VLOG(1) << "Done compiling (successful: " << good_count.load() << ")."; return results; } absl::StatusOr<std::vector<AutotuneResult>> GemmFusionAutotunerImpl::Profile( AutotunerCompileUtil& compile_util, const HloFusionInstruction& fusion, absl::Span<const ExecutableCandidate> candidates) { const HloComputation* fusion_computation = fusion.called_computations().at(0); se::StreamExecutor* stream_exec = config_.GetExecutor(); if (!stream_exec->SynchronizeAllActivity()) { return Internal("Failed to synchronize GPU for autotuning."); } tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaAutotunerMeasurement:#hlo_op=%s#", fusion.name()); }); se::DeviceMemoryAllocator* allocator = config_.GetAllocator(); std::unique_ptr<se::DeviceMemoryAllocator> owned_allocator; if (allocator == nullptr) { owned_allocator = std::make_unique<se::StreamExecutorMemoryAllocator>(stream_exec); allocator = owned_allocator.get(); } TF_ASSIGN_OR_RETURN(se::Stream* const stream, config_.GetStream()); const HloInstruction& root = *fusion_computation->root_instruction(); BufferComparator comparator(root.shape(), debug_options_.xla_gpu_autotune_gemm_rtol()); TF_ASSIGN_OR_RETURN(auto rz_buffers, RedzoneBuffers::FromInstruction( *fusion_computation->FusionInstruction(), config_, debug_options_, RedzoneBuffers::kAllInputs)); const int log_every_n = GetLogEveryN(); std::vector<AutotuneResult> results; std::optional<ScopedShapedBuffer> reference_buffer; for (const ExecutableCandidate& candidate : candidates) { VLOG(5) << "Trying : " << ToString(candidate.config); AutotuneResult res = FromConfig(candidate.config); std::optional<ProfilingOutput> profiling_output; if (IsAutotuningEnabled()) { TF_ASSIGN_OR_RETURN( profiling_output, compile_util.ProfileExecutable(candidate.executable.get(), stream, rz_buffers.input_buffers(), rz_buffers.input_shapes())); if (std::holds_alternative<CuBlasConfig>(candidate.config) && config_.should_check_correctness()) { reference_buffer = std::move(profiling_output->output); } int ran_so_far = results.size() + 1; if (ran_so_far % log_every_n == 0) { VLOG(2) << "Ran " << ran_so_far << " configs of " << candidates.size() << "."; } if (!profiling_output) { VLOG(5) << "Skipping this tiling."; continue; } VLOG(5) << "Running the kernel took: " << profiling_output->duration; if (profiling_output->duration >= absl::Seconds(1)) { LOG(WARNING) << "Slow kernel for " << fusion.called_computations()[0]->ToString() << " took: " << profiling_output->duration << ". " << ToString(candidate.config); } *res.mutable_run_time() = tsl::proto_utils::ToDurationProto(profiling_output->duration); } if (reference_buffer.has_value() && !std::holds_alternative<CuBlasConfig>(candidate.config)) { TF_ASSIGN_OR_RETURN( se::RedzoneAllocator::RedzoneCheckStatus rz_check_status, rz_buffers.RedzoneAllocator().CheckRedzones()); if (!rz_check_status.ok()) { LOG(ERROR) << "Red zone modified"; res.mutable_failure()->set_kind(AutotuneResult::REDZONE_MODIFIED); res.mutable_failure()->set_msg(rz_check_status.RedzoneFailureMsg()); CHECK(!config_.should_crash_on_check_failure()); continue; } TF_ASSIGN_OR_RETURN( bool outputs_match, comparator.CompareEqual( stream, profiling_output->output.root_buffer(), reference_buffer->root_buffer())); if (!outputs_match) { const char kMessage[] = "Results do not match the reference. This is likely a " "bug/unexpected loss of precision."; LOG(ERROR) << kMessage; CHECK(!config_.should_crash_on_check_failure()); res.mutable_failure()->set_kind(AutotuneResult::DISQUALIFIED); res.mutable_failure()->set_msg(kMessage); } } results.push_back(std::move(res)); } VLOG(2) << "Done running."; return results; } std::vector<TritonGemmConfig> GemmFusionAutotunerImpl::GetExhaustiveTritonConfigs() const { std::vector<TritonGemmConfig> configs; se::CudaComputeCapability cc = GetComputeCapability(); bool should_tune_ctas = debug_options_.xla_gpu_exhaustive_tiling_search() && cc.IsAtLeastHopper(); for (int num_stages : kNumStages) { for (int tile_m : kBlockSizes) { for (int tile_n : kBlockSizes) { for (int tile_k : kBlockSizes) { const int tile_lhs = tile_m * tile_k; const int tile_rhs = tile_k * tile_n; for (int num_warps : kNumWarps) { if (num_warps * WarpSize() > std::min(tile_lhs, tile_rhs)) { break; } for (int split_k : kSplitK) { if (!debug_options_.xla_gpu_enable_split_k_autotuning() && split_k > 1) { break; } if (should_tune_ctas) { for (int num_ctas : kNumCtas) { if (num_ctas <= num_warps) { configs.push_back(TritonGemmConfig(tile_m, tile_n, tile_k, split_k, num_stages, num_warps, num_ctas)); } } } else { configs.push_back(TritonGemmConfig(tile_m, tile_n, tile_k, split_k, num_stages, num_warps, 1)); } } } } } } } return configs; } std::vector<TritonGemmConfig> GemmFusionAutotunerImpl::GetDefaultTritonConfigs() const { using Config = TritonGemmConfig; std::vector<Config> configs = { Config(32, 32, 256, 1, 1, 4), Config(64, 32, 32, 16, 1, 4), Config(32, 64, 64, 4, 1, 4), Config(128, 128, 64, 4, 1, 4), Config(16, 16, 256, 1, 1, 4), Config(16, 128, 32, 16, 1, 4), Config(16, 64, 128, 1, 1, 4), Config(16, 128, 32, 8, 1, 4), Config(16, 16, 512, 1, 1, 4), Config(32, 16, 512, 1, 1, 4), Config(64, 32, 64, 1, 2, 8), Config(128, 256, 32, 1, 3, 8), Config(256, 128, 32, 1, 3, 8), Config(256, 64, 32, 1, 4, 4), Config(64, 256, 32, 1, 4, 4), Config(128, 64, 32, 1, 4, 4), Config(64, 128, 32, 1, 4, 4), Config(256, 128, 128, 1, 3, 8), Config(256, 64, 128, 1, 4, 4), Config(64, 256, 128, 1, 4, 4), Config(128, 128, 128, 1, 4, 4), Config(128, 64, 64, 1, 4, 4), Config(64, 128, 64, 1, 4, 4), Config(128, 32, 64, 1, 4, 4), Config(64, 32, 64, 1, 4, 4), Config(32, 128, 32, 1, 4, 4), Config(128, 128, 32, 1, 4, 4), Config(16, 16, 256, 1, 3, 4), Config(128, 128, 64, 2, 1, 8), Config(64, 64, 64, 1, 2, 4), Config(16, 64, 256, 8, 1, 4), Config(256, 256, 128, 1, 3, 8)}; if (GetComputeCapability().IsAtLeastHopper()) { absl::c_copy( std::vector<Config>{ Config(16, 32, 32, 8, 1, 2), Config(16, 64, 128, 8, 1, 4), Config(16, 64, 128, 16, 3, 4), }, std::back_inserter(configs)); } return configs; } absl::Status DumpAutotuningLogs(const DebugOptions& debug_opts, const AutotuningLogs& autotuning_logs) { if (absl::string_view file_path = debug_opts.xla_gpu_dump_autotune_logs_to(); !file_path.empty()) { std::string resolved_path; if (!tsl::io::ResolveTestPrefixes(file_path, resolved_path)) { return FailedPrecondition("File path can not be resolved: %s", file_path); } std::string textproto; tsl::protobuf::TextFormat::PrintToString(autotuning_logs, &textproto); TF_RETURN_IF_ERROR( tsl::WriteStringToFile(tsl::Env::Default(), resolved_path, textproto)); LOG(INFO) << "Autotune logs serialized to file: " << resolved_path; } return absl::OkStatus(); } absl::Status GemmFusionAutotunerImpl::Autotune( AutotunerCompileUtil& compile_util, const BackendConfigs& gemm_config_sets, AutoTuneCacheKeyCount fusion_count_map) { TF_ASSIGN_OR_RETURN(auto executable_sets, CompileAll(compile_util, gemm_config_sets)); for (auto& [unused, candidates] : executable_sets) { absl::c_sort(candidates, [](const auto& a, const auto& b) { return a.config < b.config; }); } AutotuningLogs autotuning_logs; int fusion_id = 0; for (const auto& [fusion, candidates] : executable_sets) { TF_ASSIGN_OR_RETURN(std::vector<AutotuneResult> results, Profile(compile_util, *fusion, candidates)); if (!debug_options_.xla_gpu_cublas_fallback() && results.front().has_gemm()) { results.erase(results.begin()); } const HloInstruction* root = fusion->called_computations().at(0)->root_instruction(); TF_ASSIGN_OR_RETURN( AutotuneResult best, PickBestResult(results, root->ToString(), root->GetModule()->config())); VLOG(2) << "Best time: " << tsl::proto_utils::FromDurationProto(best.run_time()); if (debug_options_.xla_gpu_dump_autotuned_gemm_fusions()) { TF_RETURN_IF_ERROR(DumpOriginalFusion(compile_util, *fusion, fusion_id)); TF_RETURN_IF_ERROR(DumpAutotunedFusion( config_, toolkit_version_, compile_util, best, fusion, fusion_id++)); } const AutotuneCacheKey key = AutotunerUtil::GetKey(fusion, config_); TF_ASSIGN_OR_RETURN( bool added, AutotunerUtil::AddResult(key, std::move(best), config_)); if (!added) { LOG(WARNING) << "AutotunerUtil::AddResult already existed: " << key.ToString(); } if (!debug_options_.xla_gpu_dump_autotune_logs_to().empty()) { auto autotuning_log = autotuning_logs.add_logs(); autotuning_log->set_fusion_name(std::string(fusion->name())); for (const auto& autotune_result : results) { auto log_result = autotuning_log->add_results(); log_result->CopyFrom(autotune_result); } if (auto fusion_key_count = fusion_count_map.find(key); fusion_key_count != fusion_count_map.end()) { auto fusion_key = fusion_key_count->first; auto fusion_count = fusion_key_count->second; autotuning_log->set_fusion_count(fusion_count); } } } TF_RETURN_IF_ERROR(DumpAutotuningLogs(debug_options_, autotuning_logs)); return absl::OkStatus(); } static BackendConfigs TrimConfigs(const BackendConfigs& gemm_config_sets, const int shard_index, const int shard_count) { const uint64_t bucket_size = (gemm_config_sets.size() + shard_count - 1) / shard_count; const uint64_t start = bucket_size * shard_index; const uint64_t end = std::min(start + bucket_size, gemm_config_sets.size()); if (start >= end) { return {}; } return BackendConfigs(gemm_config_sets.cbegin() + start, gemm_config_sets.cbegin() + end); } absl::Status ExchangeResults(KeyValueStoreInterface& key_value_store, const int module_id, const int shard_index, const int shard_count) { AutotuneResults results; TF_RETURN_IF_ERROR(AutotunerUtil::SerializeAutotuneResults(&results)); TF_ASSIGN_OR_RETURN(std::string results_str, AutotuneResultsToString(results, true)); constexpr absl::string_view kKeyPrefix = "gemm_fusion_autotuning_results"; TF_RETURN_IF_ERROR(key_value_store.Set( absl::StrFormat("%s_%d_%d", kKeyPrefix, module_id, shard_index), results_str)); VLOG(2) << "Rank " << shard_index << ": published results"; for (int i = 0; i < shard_count; ++i) { if (i == shard_index) { continue; } VLOG(2) << "Rank " << shard_index << ": waiting for results from rank " << i << " / " << shard_count; TF_ASSIGN_OR_RETURN( std::string autotune_results_str, key_value_store.Get( absl::StrFormat("%s_%d_%d", kKeyPrefix, module_id, i), absl::Hours(24))); TF_RETURN_IF_ERROR( AutotunerUtil::LoadAutotuneResults(autotune_results_str, true)); } return absl::OkStatus(); } absl::StatusOr<bool> GemmFusionAutotuner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_SCOPED_LOGGING_TIMER("GEMM fusion autotuner"); const DebugOptions& debug_options = module->config().debug_options(); GemmFusionAutotunerImpl autotuner(config_, toolkit_version_, debug_options, thread_pool_); GemmConfigSetCollector gemm_config_set_collector(&autotuner); TF_ASSIGN_OR_RETURN(BackendConfigs gemm_config_sets, gemm_config_set_collector.CollectGemmConfigSets( module, execution_threads)); const int total_fusion_count = gemm_config_sets.size(); AutoTuneCacheKeyCount fusion_count_map = gemm_config_set_collector.GetFusionsCount(); if (!autotuner.IsAutotuningEnabled()) { for (const auto& [fusion, tilings] : gemm_config_sets) { const AutotuneCacheKey key = AutotunerUtil::GetKey(fusion, config_); AutotuneResult res = FromConfig(tilings[0]); *res.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::ZeroDuration()); TF_RETURN_IF_ERROR(AutotunerUtil::AddResult(key, res, config_).status()); } } else if (!debug_options.xla_gpu_override_gemm_autotuner().empty()) { AutotuneResult::TritonGemmKey gemm_key; CHECK(tsl::protobuf::TextFormat::ParseFromString( debug_options.xla_gpu_override_gemm_autotuner(), &gemm_key)); VLOG(1) << "Overriding GEMM autotuner with the following config: " << gemm_key.DebugString(); for (const auto& [fusion, unused] : gemm_config_sets) { const AutotuneCacheKey key = AutotunerUtil::GetKey(fusion, config_); AutotuneResult res; *res.mutable_triton() = gemm_key; *res.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::ZeroDuration()); TF_RETURN_IF_ERROR(AutotunerUtil::AddResult(key, res, config_).status()); } } else if (!config_.IsDeviceless()) { TF_ASSIGN_OR_RETURN(std::optional<AutotunerCompileUtil> opt_compile_util, AutotunerCompileUtil::Create(config_, debug_options)); TF_RET_CHECK(opt_compile_util.has_value()); std::string correctness_check_str = config_.should_check_correctness() ? "(with correctness check)" : "(without correctness check)"; const bool shard_autotuning = debug_options.xla_gpu_shard_autotuning() && key_value_store_.process_count > 1 && total_fusion_count > 0; if (shard_autotuning) { if (key_value_store_.key_value_store == nullptr) { return absl::FailedPreconditionError( "Sharded autotuning requested but key-value store is missing."); } gemm_config_sets = TrimConfigs(gemm_config_sets, key_value_store_.process_index, key_value_store_.process_count); } VLOG(1) << absl::StrFormat( "Shard %d / %d: autotuning %d / %d fusions for %s %s.", key_value_store_.process_index + 1, key_value_store_.process_count, gemm_config_sets.size(), total_fusion_count, module->name(), correctness_check_str); TF_RETURN_IF_ERROR(autotuner.Autotune(*opt_compile_util, gemm_config_sets, std::move(fusion_count_map))); VLOG(1) << "Done autotuning."; if (shard_autotuning) { TF_RETURN_IF_ERROR(ExchangeResults( *key_value_store_.key_value_store, module->unique_id(), key_value_store_.process_index, key_value_store_.process_count)); } } return GemmFusionAutotunerRewriterVisitor(config_).RunOnModule( module, execution_threads); } } }
#include "xla/service/gpu/autotuning/gemm_fusion_autotuner.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/autotuning.pb.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/call_inliner.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuning/autotuner_compile_util.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/transforms/gemm_fusion.h" #include "xla/service/gpu/transforms/gemm_rewriter.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/semantic_version.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tools/hlo_decomposer.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using HloExtractionTest = HloTestBase; TEST_F(HloExtractionTest, InstructionExtractionIsCorrect) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module triton_gemm_dot { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) c0 = f32[10,10] convert(p0) ROOT dot.0 = f32[10,10] dot(c0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY entry { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) s = f32[10,10] sqrt(p1) d = f32[10,10] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot ROOT r = f32[10,10] add(d, s) })") .value(); std::unique_ptr<HloModule> extracted_module = ExtractInstructionIntoNewModule( *module->entry_computation()->root_instruction()->operand(0)); module = nullptr; EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_EQ(extracted_module->entry_computation()->instruction_count(), 3); TF_EXPECT_OK(VerifyHloModule(extracted_module.get(), true, false)); } TEST_F(HloExtractionTest, ComputationExtractionIsCorrect) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module triton_gemm_dot { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) c0 = f32[10,10] convert(p0) ROOT dot.0 = f32[10,10] dot(c0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY entry { p0 = s8[10,10] parameter(0) p1 = f32[10,10] parameter(1) s = f32[10,10] sqrt(p1) d = f32[10,10] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot ROOT r = f32[10,10] add(d, s) })") .value(); std::unique_ptr<HloModule> extracted_module = ExtractComputationIntoNewModule(*module->entry_computation() ->root_instruction() ->operand(0) ->fused_instructions_computation()); module = nullptr; EXPECT_THAT(extracted_module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Convert(m::Parameter()), m::Parameter()))); EXPECT_EQ(extracted_module->entry_computation()->instruction_count(), 4); TF_EXPECT_OK(VerifyHloModule(extracted_module.get(), true, false)); } class StatelessAutotunerTest : public HloTestBase { public: StatelessAutotunerTest() : HloTestBase(true, false) {} se::SemanticVersion GetToolkitVersion() const { return backend() .default_stream_executor() ->GetDeviceDescription() .runtime_version(); } void SetUp() override { AutotunerUtil::ClearAutotuneResults(); HloTestBase::SetUp(); } void TearDown() override { AutotunerUtil::ClearAutotuneResults(); HloTestBase::TearDown(); } absl::StatusOr<std::vector<GemmFusionAutotunerImpl::BackendConfig>> GetPossibleMatmulAutotuneConfigs( const HloModule& module, const se::CudaComputeCapability& compute_capability, const se::SemanticVersion& toolkit_version, const DebugOptions& debug_options) { const HloFusionInstruction& fusion = *Cast<HloFusionInstruction>( module.entry_computation()->root_instruction()); se::GpuDeviceInfoProto deviceless_proto; auto ccc = deviceless_proto.mutable_cuda_compute_capability(); ccc->set_major(compute_capability.major); ccc->set_minor(compute_capability.minor); DeviceConfig test_config{backend().default_stream_executor(), backend().memory_allocator()}; AutotuneConfig autotune_config{test_config, debug_options}; GemmFusionAutotunerImpl autotuner(autotune_config, toolkit_version, debug_options, nullptr); return autotuner.GenerateConfigs(fusion); } se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } absl::StatusOr<std::vector<GemmFusionAutotunerImpl::BackendConfig>> GetPossibleMatmulAutotuneConfigs(const HloModule& module) { DeviceConfig device_config{backend().default_stream_executor(), backend().memory_allocator()}; AutotuneConfig autotune_config{device_config, GetDebugOptionsForTest()}; GemmFusionAutotunerImpl autotuner(autotune_config, GetToolkitVersion(), GetDebugOptionsForTest(), nullptr); const HloFusionInstruction& fusion = *Cast<HloFusionInstruction>( module.entry_computation()->root_instruction()); return autotuner.GenerateConfigs(fusion); } bool hasCublasConfig( const std::vector<GemmFusionAutotunerImpl::BackendConfig>& configs) { return std::any_of( configs.begin(), configs.end(), [](const GemmFusionAutotunerImpl::BackendConfig& config) { return std::holds_alternative<GemmFusionAutotunerImpl::CuBlasConfig>( config); }); } }; constexpr absl::string_view kHloDotFusionWithAlgorithm = R"( HloModule module computation { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), algorithm=$0, lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY main { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT computation = f32[1024,1024] fusion(f32[1024,1024] p0,f32[1024,1024] p1), kind=kCustom, calls=computation } )"; TEST_F(StatelessAutotunerTest, NoCublasFallbackForTf32Tf32F32X3Algorithm) { TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(absl::Substitute( kHloDotFusionWithAlgorithm, "dot_tf32_tf32_f32_x3"))); TF_ASSERT_OK_AND_ASSIGN(auto configs, GetPossibleMatmulAutotuneConfigs(*module)); EXPECT_FALSE(hasCublasConfig(configs)) << "There is no cublas implementation for dot_tf32_tf32_f32_x3. That is " "why we don't want to fallback to cublas."; } TEST_F(StatelessAutotunerTest, NoCublasFallbackForBf16Bf16F32AlgorithmOnHopper) { TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(absl::Substitute( kHloDotFusionWithAlgorithm, "dot_bf16_bf16_f32"))); TF_ASSERT_OK_AND_ASSIGN(auto configs, GetPossibleMatmulAutotuneConfigs(*module)); switch (GetCudaComputeCapability().major) { case se::CudaComputeCapability::AMPERE: EXPECT_TRUE(hasCublasConfig(configs)) << "There is a cublas implementation for dot_bf16_bf16_f32 on Ampere"; break; case se::CudaComputeCapability::HOPPER: EXPECT_FALSE(hasCublasConfig(configs)) << "There is no cublas implementation for dot_bf16_bf16_f32 on " "Hopper. That is why we don't want to fallback to cublas."; break; default: EXPECT_FALSE(hasCublasConfig(configs)); } } class GemmFusionAutotunerTest : public StatelessAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = StatelessAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_triton_gemm(true); debug_options.set_xla_gpu_cublas_fallback(false); debug_options.set_xla_gpu_cudnn_gemm_fusion_level(0); return debug_options; } void CheckTritonAutotuning(absl::string_view hlo, absl::string_view expected) { HloPassPipeline pipeline("gemm_rewrite"); pipeline.AddPass<GemmFusion>(backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability()); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); DebugOptions opts; MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>( AutotuneConfig{DeviceConfig{backend().default_stream_executor(), backend().memory_allocator()}, opts}, GetToolkitVersion(), &thread_pool, key_value_store); RunAndFilecheckHloRewrite( hlo, std::move(pipeline), expected, [](const HloModule* m) { VLOG(5) << m->ToString(); const HloInstruction* dot_fusion = m->entry_computation()->root_instruction(); if (dot_fusion->opcode() == HloOpcode::kReduce) { dot_fusion = dot_fusion->operand(0); } CHECK_EQ(dot_fusion->opcode(), HloOpcode::kFusion); if (!dot_fusion->backend_config<GpuBackendConfig>() ->fusion_backend_config() .has_cudnn_fusion_config()) { CHECK_GT(dot_fusion->backend_config<GpuBackendConfig>() .value() .fusion_backend_config() .triton_gemm_config() .block_m(), 0); } }); } }; class GemmFusionAutotunerTestWithMorePreciseReduction : public GemmFusionAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_disable_reduced_precision_reduction( true); return debug_options; } }; absl::StatusOr<std::vector<TritonGemmConfig>> GetPossibleMatmulAutotuneTritonConfigs( const HloDotInstruction& dot, const se::CudaComputeCapability& compute_capability, const se::SemanticVersion& toolkit_version, const DebugOptions& debug_options) { se::GpuDeviceInfoProto deviceless_proto; auto ccc = deviceless_proto.mutable_cuda_compute_capability(); ccc->set_major(compute_capability.major); ccc->set_minor(compute_capability.minor); DevicelessConfig test_config{se::DeviceDescription{deviceless_proto}}; AutotuneConfig autotune_config{test_config, debug_options}; GemmFusionAutotunerImpl autotuner(autotune_config, toolkit_version, debug_options, nullptr); return autotuner.GenerateTritonConfigs(dot); } TEST_F(GemmFusionAutotunerTest, AmpereUsesMoreThanTwoStages) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.num_stages > 2; })); } TEST_F(GemmFusionAutotunerTest, SmallOutputCanUseLargeSplitK) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.split_k >= 4; })); } TEST_F(GemmFusionAutotunerTest, LargeOutputDoesNotUseLargeSplitK) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[20480,20480] parameter(0) p1 = f32[20480,20480] parameter(1) ROOT r = f32[20480,20480] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_FALSE(std::any_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.split_k > 1; })); } TEST_F(GemmFusionAutotunerTest, Int8FusedGemm) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[128,64] parameter(0) c = f16[128,64] convert(x) y = f16[64,6144] parameter(1) ROOT out = f16[128,6144] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{5e-3, 5e-3})); } TEST_F(GemmFusionAutotunerTest, Int8FusedGemm256) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[128,256] parameter(0) c = f16[128,256] convert(x) y = f16[256,6144] parameter(1) ROOT out = f16[128,6144] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-2, 1e-2})); } TEST_F(GemmFusionAutotunerTest, SelectsSplitK) { const std::string kHloText = R"( HloModule t ENTRY e { p0 = s8[7,8192] parameter(0) p0c = f16[7,8192] convert(p0) p1 = f16[8192,18] parameter(1) ROOT dot.0 = f16[7,18] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: reduce ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: kCustom ; CHECK-NEXT: kLoop )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1, 0.5})); } TEST_F(GemmFusionAutotunerTestWithMorePreciseReduction, SelectsSplitK) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { p0 = s8[7,8192] parameter(0) p0c = f16[7,8192] convert(p0) p1 = f16[8192,18] parameter(1) ROOT dot.0 = f16[7,18] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: reduce ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: kCustom ; CHECK-NEXT: kLoop )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-2, 1e-3})); } TEST_F(GemmFusionAutotunerTest, ApplySplitKWithoutAlteringTiling) { const std::string kHloText = R"( triton_dot { p0 = f16[55,120] parameter(0) p1 = f16[120,20] parameter(1) ROOT dot = f16[55,20] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[55,120]{1,0} parameter(0) p1 = f16[120,20]{1,0} parameter(1) ROOT _ = f16[55,20] fusion(p0, p1), kind=kCustom, calls=triton_dot, backend_config={"fusion_backend_config":{kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":64,"block_k":32,"split_k":3,"num_stages":1,"num_warps":2,"num_ctas":1}}} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: f16[3,55,20] ; CHECK: {"block_m":16,"block_n":64,"block_k":32,"split_k":3,"num_stages":1,"num_warps":2,"num_ctas":1} ; CHECK: f16[55,20]{1,0} {{(reduce|fusion)}} )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } TEST_F(GemmFusionAutotunerTest, DoNotRunAutotuningKernelSpillingRegisters) { const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = s8[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.p0 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) %convert.p1 = f16[4,12288]{1,0} convert(s8[4,12288]{1,0} %p1) %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %convert.p1, f16[12288,1536]{1,0} %convert.p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %convert = s8[4,1536]{1,0} convert(f16[4,1536]{1,0} %dot) } ENTRY %e { %get-tuple-element.7020 = s8[12288,1536]{1,0} parameter(0) %convert = s8[4,12288]{1,0} parameter(1) ROOT %triton = s8[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %get-tuple-element.7020, s8[4,12288]{1,0} %convert), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"16","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); EXPECT_THAT(backend().compiler()->RunBackend( std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}), ::testing::AnyOf( tsl::testing::StatusIs( tsl::error::CANCELLED, "Compilation result discarded due to register spilling"), tsl::testing::StatusIs( tsl::error::RESOURCE_EXHAUSTED, ::testing::HasSubstr("Register allocation failed")), tsl::testing::StatusIs( tsl::error::RESOURCE_EXHAUSTED, ::testing::HasSubstr("Insufficient registers")))); } TEST_F(GemmFusionAutotunerTest, DoNotFilterOutAutotuningKernelSpillingRegisters) { if (GetCudaComputeCapability().IsAtLeastHopper()) { GTEST_SKIP() << "Hopper and newer runs out of registers for such HLOs"; } const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = s8[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.p0 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) %convert.p1 = f16[4,12288]{1,0} convert(s8[4,12288]{1,0} %p1) %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %convert.p1, f16[12288,1536]{1,0} %convert.p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %convert = s8[4,1536]{1,0} convert(f16[4,1536]{1,0} %dot) } ENTRY %e { %get-tuple-element.7020 = s8[12288,1536]{1,0} parameter(0) %convert = s8[4,12288]{1,0} parameter(1) ROOT %triton = s8[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %get-tuple-element.7020, s8[4,12288]{1,0} %convert), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"256","block_n":"256","block_k":"16","split_k":"1","num_stages":"1","num_warps":"16","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); HloModuleConfig config = module->config(); DebugOptions debug_options = config.debug_options(); debug_options.set_xla_gpu_filter_kernels_spilling_registers_on_autotuning( false); config.set_debug_options(debug_options); module->set_config(config); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_NE(executable, nullptr); } TEST_F(GemmFusionAutotunerTest, RunAutotuningKernelNotSpillingRegisters) { const std::string kHloText = R"( HloModule m %triton_gemm_dot { %p1 = f16[4,12288]{1,0} parameter(1) %p0 = s8[12288,1536]{1,0} parameter(0) %convert.10406 = f16[12288,1536]{1,0} convert(s8[12288,1536]{1,0} %p0) ROOT %dot = f16[4,1536]{1,0} dot(f16[4,12288]{1,0} %p1, f16[12288,1536]{1,0} %convert.10406), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY %e { %p0 = s8[12288,1536]{1,0} parameter(0) %p1 = f16[4,12288]{1,0} parameter(1) ROOT %triton_dot = f16[4,1536]{1,0} fusion(s8[12288,1536]{1,0} %p0, f16[4,12288]{1,0} %p1), kind=kCustom, calls=%triton_gemm_dot, backend_config={"fusion_backend_config":{"kind":"__triton_gemm","triton_gemm_config":{"block_m":"16","block_n":"32","block_k":"16","split_k":"1","num_stages":"1","num_warps":"2","num_ctas":"1"}}} })"; auto module = ParseAndReturnVerifiedModule(kHloText).value(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_NE(executable, nullptr); } using GemmFusionAutotunerDumpTest = GemmFusionAutotunerTest; TEST_F(GemmFusionAutotunerDumpTest, Fp8CublasltFallbackSupport) { const std::string kHloText = R"( HloModule o gemm_fusion { p0 = f8e4m3fn[64,6144]{1,0} parameter(0) p1 = f8e4m3fn[64,6144]{1,0} parameter(1) ROOT %dot.0 = f32[64,64]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY main { p0 = f8e4m3fn[64,6144]{1,0} parameter(0) p1 = f8e4m3fn[64,6144]{1,0} parameter(1) ROOT %dot.0 = f32[64,64]{1,0} fusion(p0, p1), kind=kCustom, calls=gemm_fusion, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); DebugOptions opts; AutotuneConfig autotune_config{ DeviceConfig{backend().default_stream_executor(), backend().memory_allocator()}, opts}; AutotuneCacheKey cache_key(autotune_config.GetModelStr(), *module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN(AutotuneResults autotune_results_override, ParseTextProto<AutotuneResults>(R"pb( version: 3 results { device: "..." hlo: "..." result { gemm { algorithm: -1 } run_time { nanos: 14 } } })pb")); autotune_results_override.mutable_results(0)->set_device( std::string(cache_key.GetModelStr())); autotune_results_override.mutable_results(0)->set_hlo( std::string(cache_key.GetHlo())); CHECK_OK(AutotunerUtil::LoadAutotuneResults(autotune_results_override)); HloPassPipeline pipeline("gemm_autotune"); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>(autotune_config, GetToolkitVersion(), &thread_pool, key_value_store); pipeline.AddPass<CallInliner>(); for (GemmRewriterOptions::DType dtype : {GemmRewriterOptions::DType::kFp8Only, GemmRewriterOptions::DType::kNonFp8Only}) { pipeline.AddPass<GemmRewriter>(autotune_config.GetGpuComputeCapability(), GetToolkitVersion(), GemmRewriterOptions{dtype}); } TF_EXPECT_OK(HloTestBase::RunHloPass(&pipeline, module.get())); const bool is_at_least_hopper = std::holds_alternative<se::CudaComputeCapability>( autotune_config.GetGpuComputeCapability()) && std::get<se::CudaComputeCapability>( autotune_config.GetGpuComputeCapability()) .IsAtLeastHopper(); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck(module->ToString(), is_at_least_hopper ? " : " EXPECT_TRUE(filecheck_matches); } TEST_F(GemmFusionAutotunerDumpTest, DumpingWorks) { HloModuleConfig config; DebugOptions options = GetDebugOptionsForTest(); options.set_xla_gpu_cublas_fallback(true); options.set_xla_gpu_dump_autotuned_gemm_fusions(true); std::string output_directory; if (!tsl::io::GetTestUndeclaredOutputsDir(&output_directory)) { output_directory = tsl::testing::TmpDir(); } options.set_xla_dump_to(output_directory); config.set_debug_options(options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( fusion1 { p0 = f32[333,333] parameter(0) s = f32[333,333] sine(p0) p1 = f32[333,333] parameter(1) c = f32[333,333] cosine(p1) ROOT dot = f32[333,333] dot(s, c), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[333,333] parameter(0) p1 = f32[333,333] parameter(1) ROOT rr = f32[333,333] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__triton_gemm"}} })", config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); std::string dump; TF_EXPECT_OK(tsl::ReadFileToString( tsl::Env::Default(), tsl::io::JoinPath(output_directory, FilenameFor(*optimized_module, "", "gemm_fusion_0.rr.txt")), &dump)); EXPECT_TRUE(*RunFileCheck(dump, R"( CHECK: HloModule rr CHECK-NOT: cublas CHECK: __triton_gemm CHECK-NOT: block_m )")); dump.clear(); TF_EXPECT_OK(tsl::ReadFileToString( tsl::Env::Default(), tsl::io::JoinPath( output_directory, FilenameFor(*optimized_module, "", "gemm_fusion_0.rr.optimized.txt")), &dump)); EXPECT_TRUE(*RunFileCheck(dump, R"( CHECK: HloModule rr CHECK-NOT: triton CHECK: cublas )")); } TEST_F(GemmFusionAutotunerTest, AutotuneCuDnnFusion) { const std::string kHlo = R"( fusion1 { p0 = f32[3,28,32] parameter(0) p1 = f32[3,28,32] parameter(1) ROOT d = f32[3,32,32] dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[3,28,32] parameter(0) p1 = f32[3,28,32] parameter(1) ROOT _ = f32[3,32,32] fusion(p0, p1), kind=kCustom, calls=fusion1, backend_config={"fusion_backend_config": {kind: "__cudnn$fusion"}} })"; CheckTritonAutotuning(kHlo, R"( )"); } class GemmFusionAutotunerLevelTest : public StatelessAutotunerTest, public ::testing::WithParamInterface<int> { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = StatelessAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_autotune_level(GetParam()); debug_options.set_xla_gpu_cublas_fallback(false); return debug_options; } }; TEST_P(GemmFusionAutotunerLevelTest, AllAutotuningLevelsWorkCorrectly) { const std::string kHloText = R"( HloModule m ENTRY e { p0 = pred[64,10] parameter(0) p0c = f32[64,10] convert(p0) p1 = f32[10,128] parameter(1) ROOT r = f32[64,128] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; MatchOptimizedHlo(kHloText, R"( ; CHECK: kind=kCustom ; CHECK-SAME: block_m )"); EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } TEST_P(GemmFusionAutotunerLevelTest, Deviceless) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[16,16] parameter(0) c = f16[16,16] convert(x) y = f16[16,16] parameter(1) ROOT out = f16[16,16] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; HloPassPipeline pipeline("gemm_rewrite_deviceless"); pipeline.AddPass<GemmFusion>(backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability()); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "", tsl::port::MaxParallelism()); DebugOptions opts; MultiProcessKeyValueStore key_value_store; pipeline.AddPass<GemmFusionAutotuner>( AutotuneConfig{ DevicelessConfig{ backend().default_stream_executor()->GetDeviceDescription()}, opts}, GetToolkitVersion(), &thread_pool, key_value_store); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo)); if (GetDebugOptionsForTest().xla_gpu_autotune_level() == 0) { TF_ASSERT_OK_AND_ASSIGN(bool changed, HloTestBase::RunHloPass(&pipeline, module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck( module->ToString(HloPrintOptions{}.set_print_operand_shape(false)), R"( )")); EXPECT_TRUE(filecheck_matches); } else { EXPECT_THAT(HloTestBase::RunHloPass(&pipeline, module.get()), tsl::testing::StatusIs( tsl::error::INTERNAL, ::testing::HasSubstr( "Expect autotune result cache hit for deviceless"))); } } INSTANTIATE_TEST_SUITE_P(GemmFusionAutotunerLevelSweep, GemmFusionAutotunerLevelTest, ::testing::Range(0, 5)); class GemmFusionAutotunerExhaustiveTest : public GemmFusionAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_exhaustive_tiling_search(true); return debug_options; } }; TEST_F(GemmFusionAutotunerExhaustiveTest, DISABLED_CompileOnly) { const std::string hlo = R"( HloModule module ENTRY e { x = s8[16,16] parameter(0) c = f16[16,16] convert(x) y = f16[16,16] parameter(1) ROOT out = f16[16,16] dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CheckTritonAutotuning(hlo, R"( )"); } TEST_F(GemmFusionAutotunerExhaustiveTest, SkipsCrashingTileKConfig) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module ENTRY e { x = s8[33,33]{1,0} parameter(0) c = f16[33,33]{1,0} convert(x) y = f16[33,33]{1,0} parameter(1) ROOT out = f16[33,33]{1,0} dot(c, y), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::all_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.block_k > 16; })); } class GemmFusionAutotunerDisableSplitK : public GemmFusionAutotunerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionAutotunerTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_split_k_autotuning(false); return debug_options; } }; TEST_F(GemmFusionAutotunerDisableSplitK, SplitKIsDisabled) { std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[1024,1024] parameter(0) p1 = f32[1024,1024] parameter(1) ROOT r = f32[1024,1024] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::all_of( configs.begin(), configs.end(), [](const TritonGemmConfig& config) { return config.split_k == 1; })); } class GemmFusionAutotunerConfigTest : public StatelessAutotunerTest, public ::testing::WithParamInterface<bool> {}; TEST_P(GemmFusionAutotunerConfigTest, SparseDotDiscardsUnsupportedTiles) { const std::string kHloText = R"( HloModule test ENTRY wais { lhs = f16[5,1600] parameter(0) rhs = f16[3200,10] parameter(1) meta = u16[5,200] parameter(2) ROOT dot = f32[5,10] dot(lhs, rhs, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_exhaustive_tiling_search(GetParam()); TF_ASSERT_OK_AND_ASSIGN( const std::vector<TritonGemmConfig> configs, GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), compute_capability, GetToolkitVersion(), debug_options)); for (const auto& config : configs) { int metadata_size = config.block_m * config.block_k / 16; EXPECT_LE(config.num_warps * WarpSize(), metadata_size); EXPECT_GT(config.block_k, 16); } } INSTANTIATE_TEST_SUITE_P(GemmFusionAutotunerConfigSweep, GemmFusionAutotunerConfigTest, ::testing::Bool()); TEST_F(StatelessAutotunerTest, ExhaustiveAutotuningTunesNumberOfCtasFromHopper) { const std::string kHloText = R"( HloModule test ENTRY main { lhs = f32[5,1600] parameter(0) rhs = f32[1600,10] parameter(1) ROOT dot = f32[5,10] dot(lhs, rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHloText)); DebugOptions debug_options_with_exhaustive_autotuning = GetDebugOptionsForTest(); debug_options_with_exhaustive_autotuning.set_xla_gpu_exhaustive_tiling_search( true); auto get_configs = [&](const se::CudaComputeCapability& cc, const DebugOptions& debug_options) { return GetPossibleMatmulAutotuneTritonConfigs( *Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), cc, GetToolkitVersion(), debug_options) .value(); }; for (const auto& config : get_configs(se::CudaComputeCapability::Ampere(), debug_options_with_exhaustive_autotuning)) { EXPECT_EQ(config.num_ctas, 1); } absl::flat_hash_set<int> config_num_ctas; for (const auto& config : get_configs(se::CudaComputeCapability::Hopper(), debug_options_with_exhaustive_autotuning)) { config_num_ctas.insert(config.num_ctas); } EXPECT_GT(config_num_ctas.size(), 1); DebugOptions debug_options_without_exhaustive_autotuning = GetDebugOptionsForTest(); debug_options_without_exhaustive_autotuning .set_xla_gpu_exhaustive_tiling_search(false); for (const auto& config : get_configs(se::CudaComputeCapability::Hopper(), debug_options_without_exhaustive_autotuning)) { EXPECT_EQ(config.num_ctas, 1); } } TEST_F(GemmFusionAutotunerTest, SplitKFLoatNormalization) { if (!GetCudaComputeCapability().IsAtLeastHopper()) { GTEST_SKIP() << "f8 types are only supported from Hopper onwards."; } const se::CudaComputeCapability compute_capability = GetCudaComputeCapability(); se::GpuDeviceInfoProto deviceless_proto; auto ccc = deviceless_proto.mutable_cuda_compute_capability(); ccc->set_major(compute_capability.major); ccc->set_minor(compute_capability.minor); DeviceConfig test_config{backend().default_stream_executor(), backend().memory_allocator()}; AutotuneConfig autotune_config{test_config, GetDebugOptionsForTest()}; GemmFusionAutotunerImpl autotuner(autotune_config, GetToolkitVersion(), GetDebugOptionsForTest(), nullptr); TF_ASSERT_OK_AND_ASSIGN( auto compile_util, AutotunerCompileUtil::Create(autotune_config, GetDebugOptionsForTest())) std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(R"( HloModule module %gemm_fusion_dot_computation (parameter_0: f8e5m2[256,256], parameter_1: f8e4m3fn[128,256]) -> f8e5m2[256,128] { %parameter_0 = f8e5m2[256,256]{1,0} parameter(0) %parameter_1 = f8e4m3fn[128,256]{1,0} parameter(1) %dot.1 = f32[256,128]{1,0} dot(f8e5m2[256,256]{1,0} %parameter_0, f8e4m3fn[128,256]{1,0} %parameter_1), lhs_contracting_dims={0}, rhs_contracting_dims={1} ROOT %convert.2 = f8e5m2[256,128]{1,0} convert(f32[256,128]{1,0} %dot.1) } ENTRY entry { %p0 = f8e5m2[256,256]{1,0} parameter(0) %p1 = f8e4m3fn[128,256]{1,0} parameter(1) ROOT r = f8e5m2[256,128]{1,0} fusion(f8e5m2[256,256]{1,0} %p0, f8e4m3fn[128,256]{1,0} %p1), kind=kCustom, calls=%gemm_fusion_dot_computation, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} })") .value(); GemmFusionAutotunerImpl::BackendConfigs configs; configs.emplace_back( DynCast<HloFusionInstruction>( module->entry_computation()->root_instruction()), std::vector<GemmFusionAutotunerImpl::BackendConfig>{ GemmFusionAutotunerImpl::BackendConfig(TritonGemmConfig( 32, 64, 64, 4, 1, 4, 1))}); CHECK_OK(autotuner.CompileAll(*compile_util, configs)); } TEST_F(GemmFusionAutotunerTest, CreatesCustomKernelFusionConfigs) { const std::string kHlo = R"( HloModule module, entry_computation_layout={(bf16[1024,1024]{1,0}, bf16[1024,1024]{1,0})->f32[1024,1024]{1,0}} %gemm_fusion_r_computation { %parameter_0 = bf16[1024,1024]{1,0} parameter(0) %convert.2 = f32[1024,1024]{1,0} convert(%parameter_0) %parameter_1 = bf16[1024,1024]{1,0} parameter(1) %convert.3 = f32[1024,1024]{1,0} convert(%parameter_1) ROOT %r.1 = f32[1024,1024]{1,0} dot(%convert.2, %convert.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY main { %p0 = bf16[1024,1024]{1,0} parameter(0) %p1 = bf16[1024,1024]{1,0} parameter(1) ROOT %gemm_fusion_r = f32[1024,1024]{1,0} fusion(%p0, %p1), kind=kCustom, calls=gemm_fusion_r_computation, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} })"; std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(kHlo).value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<GemmFusionAutotunerImpl::BackendConfig> configs, GetPossibleMatmulAutotuneConfigs(*module, compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const GemmFusionAutotunerImpl::BackendConfig& config) { return std::holds_alternative< GemmFusionAutotunerImpl::CustomKernelFusionConfig>(config); })); } TEST_F(GemmFusionAutotunerTest, GeneratesConfigForUpcastGemmWithPrologue) { const std::string kHlo = R"( HloModule module %gemm_fusion_r_computation (parameter_0.1: f32[1,256,4,4096], parameter_1.1: bf16[1,4,4096,4096]) -> f32[256,4096] { %parameter_0.1 = f32[1,256,4,4096]{3,2,1,0} parameter(0) %bitcast.60 = f32[256,16384]{1,0} bitcast(f32[1,256,4,4096]{3,2,1,0} %parameter_0.1) %parameter_1.1 = bf16[1,4,4096,4096]{3,2,1,0} parameter(1) %bitcast.61 = bf16[16384,4096]{1,0} bitcast(bf16[1,4,4096,4096]{3,2,1,0} %parameter_1.1) %convert.22 = f32[16384,4096]{1,0} convert(bf16[16384,4096]{1,0} %bitcast.61) ROOT r = f32[256,4096]{1,0} dot(f32[256,16384]{1,0} %bitcast.60, f32[16384,4096]{1,0} %convert.22), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY main { %p0 = f32[1,256,4,4096] parameter(0) %p1 = bf16[1,4,4096,4096] parameter(1) ROOT %gemm_fusion_r = f32[256,4096] fusion(%p0, %p1), kind=kCustom, calls=gemm_fusion_r_computation, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} } )"; std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(kHlo).value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<GemmFusionAutotunerImpl::BackendConfig> configs, GetPossibleMatmulAutotuneConfigs(*module, compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const GemmFusionAutotunerImpl::BackendConfig& config) { return std::holds_alternative< GemmFusionAutotunerImpl::CustomKernelFusionConfig>(config); })); } TEST_F(GemmFusionAutotunerTest, GeneratesConfigForUpcastGemmWithPrologueAndEpilogue) { const std::string kHlo = R"( HloModule module %gemm_fusion_r_computation (parameter_0.1: f32[1,256,4,4096], parameter_1.1: bf16[1,4,4096,4096]) -> bf16[1048576] { %parameter_0.1 = f32[1,256,4,4096]{3,2,1,0} parameter(0) %bitcast.60 = f32[256,16384]{1,0} bitcast(f32[1,256,4,4096]{3,2,1,0} %parameter_0.1) %parameter_1.1 = bf16[1,4,4096,4096]{3,2,1,0} parameter(1) %bitcast.61 = bf16[16384,4096]{1,0} bitcast(bf16[1,4,4096,4096]{3,2,1,0} %parameter_1.1) %convert.22 = f32[16384,4096]{1,0} convert(bf16[16384,4096]{1,0} %bitcast.61) %dot.5 = f32[256,4096]{1,0} dot(f32[256,16384]{1,0} %bitcast.60, f32[16384,4096]{1,0} %convert.22), lhs_contracting_dims={1}, rhs_contracting_dims={0} %convert.23 = bf16[256,4096]{1,0} convert(f32[256,4096]{1,0} %dot.5) %bitcast.62 = bf16[1,256,4096]{2,1,0} bitcast(bf16[256,4096]{1,0} %convert.23) %transpose.18 = bf16[1,4096,256]{2,1,0} transpose(bf16[1,256,4096]{2,1,0} %bitcast.62), dimensions={0,2,1} ROOT %bitcast.63 = bf16[1048576]{0} bitcast(bf16[1,4096,256]{2,1,0} %transpose.18) } ENTRY main { %p0 = f32[1,256,4,4096] parameter(0) %p1 = bf16[1,4,4096,4096] parameter(1) ROOT %gemm_fusion_r = bf16[1048576] fusion(%p0, %p1), kind=kCustom, calls=gemm_fusion_r_computation, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} } )"; std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(kHlo).value(); const se::CudaComputeCapability compute_capability{ se::CudaComputeCapability::AMPERE, 0}; TF_ASSERT_OK_AND_ASSIGN( const std::vector<GemmFusionAutotunerImpl::BackendConfig> configs, GetPossibleMatmulAutotuneConfigs(*module, compute_capability, GetToolkitVersion(), GetDebugOptionsForTest())); EXPECT_TRUE(std::any_of( configs.begin(), configs.end(), [](const GemmFusionAutotunerImpl::BackendConfig& config) { return std::holds_alternative< GemmFusionAutotunerImpl::CustomKernelFusionConfig>(config); })); } TEST_F(GemmFusionAutotunerTest, RewritesGemmFusionToCustomKernelFusion) { const std::string kHlo = R"( HloModule module, entry_computation_layout={(bf16[1024,1024]{1,0}, bf16[1024,1024]{1,0})->f32[1024,1024]{1,0}} %gemm_fusion_r_computation { %parameter_0 = bf16[1024,1024]{1,0} parameter(0) %convert.2 = f32[1024,1024]{1,0} convert(%parameter_0) %parameter_1 = bf16[1024,1024]{1,0} parameter(1) %convert.3 = f32[1024,1024]{1,0} convert(%parameter_1) ROOT %r.1 = f32[1024,1024]{1,0} dot(%convert.2, %convert.3), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY main { %p0 = bf16[1024,1024]{1,0} parameter(0) %p1 = bf16[1024,1024]{1,0} parameter(1) ROOT %gemm_fusion_r = f32[1024,1024]{1,0} fusion(%p0, %p1), kind=kCustom, calls=gemm_fusion_r_computation, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false} } )"; std::unique_ptr<VerifiedHloModule> module = ParseAndReturnVerifiedModule(kHlo).value(); DebugOptions opts; AutotuneConfig autotune_config{ DeviceConfig{backend().default_stream_executor(), backend().memory_allocator()}, opts}; AutotuneCacheKey cache_key(autotune_config.GetModelStr(), *module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN(AutotuneResults autotune_results_override, ParseTextProto<AutotuneResults>(R"pb( version: 3 results { device: "..." hlo: "..." result { custom_kernel_fusion { kernel_index: 1 } run_time { nanos: 14 } } })pb")); autotune_results_override.mutable_results(0)->set_device( std::string(cache_key.GetModelStr())); autotune_results_override.mutable_results(0)->set_hlo( std::string(cache_key.GetHlo())); GemmFusionAutotunerRewriterVisitor visitor(autotune_config); CHECK_OK(AutotunerUtil::LoadAutotuneResults(autotune_results_override)); visitor.RunOnModule(module.get(), {}).value(); std::string pattern = R"( CHECK: ROOT %cutlass_gemm_with_upcast CHECK-SAME: fusion CHECK-SAME: kind=kCustom CHECK-SAME: "kernel_index":1 )"; TF_ASSERT_OK_AND_ASSIGN(bool file_check_matches, RunFileCheck(module->ToString(), pattern)); EXPECT_TRUE(file_check_matches); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/gemm_fusion_autotuner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0e944d9e-4edc-4707-94c2-94790f462ce2
cpp
google/arolla
dynamic_compiled_expr
arolla/expr/eval/dynamic_compiled_expr.cc
arolla/expr/eval/dynamic_compiled_expr_test.cc
#include "arolla/expr/eval/dynamic_compiled_expr.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/derived_qtype_cast_operator.h" #include "arolla/expr/eval/compile_std_function_operator.h" #include "arolla/expr/eval/compile_where_operator.h" #include "arolla/expr/eval/compile_while_operator.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/eval/extensions.h" #include "arolla/expr/eval/prepare_expression.h" #include "arolla/expr/eval/slot_allocator.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_stack_trace.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/operators/std_function_operator.h" #include "arolla/expr/operators/while_loop/while_loop.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/tuple_expr_operator.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/evaluation_engine.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/operators/core/utility_operators.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/demangle.h" #include "arolla/util/fast_dynamic_downcast_final.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { namespace { const OperatorDirectory& GetOperatorDirectory( const DynamicEvaluationEngineOptions& options) { return options.operator_directory != nullptr ? *options.operator_directory : *OperatorRegistry::GetInstance(); } struct OutputInfo { ExprNodePtr expr; TypedSlot forced_output_slot; }; absl::Status VerifySlotsCount(absl::string_view op_name, absl::Span<const TypedSlot> input_slots, int64_t expected_count) { if (input_slots.size() != expected_count) { return absl::InvalidArgumentError( absl::StrFormat("%s operator expects %d argument(s), got %d", op_name, expected_count, input_slots.size())); } return absl::OkStatus(); } class EvalVisitor { public: EvalVisitor(DynamicEvaluationEngineOptions options, const absl::flat_hash_map<std::string, TypedSlot>& input_slots, OutputInfo output_info, ExecutableBuilder* executable_builder, const std::vector<std::string>& side_output_names, absl::flat_hash_map<Fingerprint, QTypePtr> node_types, eval_internal::SlotAllocator& slot_allocator) : options_(std::move(options)), expr_input_slots_(input_slots), output_info_(std::move(output_info)), executable_builder_(executable_builder), side_output_names_(side_output_names), node_types_(std::move(node_types)), slot_allocator_(slot_allocator), compiler_extensions_(CompilerExtensionRegistry::GetInstance() .GetCompilerExtensionSet()) {} absl::StatusOr<TypedSlot> operator()( const ExprNodePtr& node, absl::Span<const TypedSlot* const> visits) { auto inputs = DereferenceVisitPointers(visits); ASSIGN_OR_RETURN(QTypePtr output_type, LookupQType(node, node_types_)); if (output_type == nullptr) { return absl::FailedPreconditionError( absl::StrFormat("unable to deduce output type of the node %s", GetDebugSnippet(node))); } ASSIGN_OR_RETURN( TypedSlot output_slot, ConstructOutputSlot(node, inputs, output_type), _ << "while compiling node " << GetDebugSnippet(node) << "; the expression is likely not fully compiled and is using " "derived operators that are not supported in the backend"); if (output_slot.GetType() != output_type) { return absl::FailedPreconditionError(absl::StrFormat( "unexpected output type of the node %s: MetaEval: %s, " "backend: %s; operator signatures " "are inconsistent on argument types %s", GetDebugSnippet(node), output_type->name(), output_slot.GetType()->name(), FormatTypeVector(SlotsToTypes(inputs)))); } if (node->op() != eval_internal::InternalRootOperator()) { RETURN_IF_ERROR(slot_allocator_.ReleaseSlotsNotNeededAfter(node)); } return output_slot; } private: using AddSlotFn = std::function<TypedSlot(bool allow_recycled)>; using CopySlotFn = std::function<absl::StatusOr<TypedSlot>( TypedSlot slot, const ExprNodePtr& slot_origin)>; absl::StatusOr<TypedSlot> ConstructOutputSlot( const ExprNodePtr& node, absl::Span<const TypedSlot> input_slots, QTypePtr output_type) { std::optional<TypedSlot> forced_output_slot; if (node.get() == output_info_.expr.get()) { forced_output_slot = output_info_.forced_output_slot; } AddSlotFn maybe_add_output_slot = [this, output_type, &node, forced_output_slot](bool allow_recycled) { if (forced_output_slot.has_value()) { return *forced_output_slot; } auto slot = slot_allocator_.AddSlotForNode(node, output_type, allow_recycled); return slot; }; CopySlotFn maybe_copy_slot = [this, &node, forced_output_slot]( TypedSlot slot, const ExprNodePtr& slot_origin) -> absl::StatusOr<TypedSlot> { if (forced_output_slot.has_value()) { RETURN_IF_ERROR(this->executable_builder_ ->BindEvalOp(*MakeCopyOp(slot.GetType()), {slot}, *forced_output_slot, "core._copy") .status()); slot = *forced_output_slot; } else { RETURN_IF_ERROR(slot_allocator_.ExtendSlotLifetime(slot_origin, node)); } return slot; }; switch (node->type()) { case ExprNodeType::kPlaceholder: return absl::InternalError( absl::StrFormat("placeholder should be substituted before " "evaluation: P.%s", node->placeholder_key())); case ExprNodeType::kLeaf: { if (!expr_input_slots_.contains(node->leaf_key())) { return absl::InvalidArgumentError( absl::StrCat("unbound leaf: ", node->leaf_key())); } return maybe_copy_slot({expr_input_slots_.at(node->leaf_key())}, node); } case ExprNodeType::kLiteral: { TypedSlot output_slot = slot_allocator_.AddSlotForNode(node, output_type, false); RETURN_IF_ERROR(executable_builder_->AddLiteralInitialization( *node->qvalue(), output_slot)); return maybe_copy_slot(output_slot, node); } case ExprNodeType::kOperator: { ASSIGN_OR_RETURN(auto op, DecayRegisteredOperator(node->op())); if (!HasBuiltinExprOperatorTag(op) && !HasBackendExprOperatorTag(op)) { return absl::InvalidArgumentError( absl::StrCat(node->op()->display_name(), " is not a builtin or backend ExprOperator")); } const auto& op_typeid = typeid(*op); if (HasBackendExprOperatorTag(op)) { if (op->display_name() == "core.has._optional") { return HandleHas(node->node_deps(), input_slots, maybe_copy_slot, maybe_add_output_slot); } return CompileBackendOperator( op->display_name(), input_slots, maybe_add_output_slot(true), node); } else if (HasAnnotationExprOperatorTag(op)) { return maybe_copy_slot(input_slots[0], node->node_deps()[0]); } else if (op == eval_internal::InternalRootOperator()) { return HandleInternalRoot(input_slots); } else if (op_typeid == typeid(GetNthOperator)) { return HandleGetNth(op, node->node_deps(), input_slots, maybe_copy_slot); } else if (auto* where_op = fast_dynamic_downcast_final<const PackedWhereOp*>( op.get())) { DynamicEvaluationEngineOptions options(options_); options.allow_overriding_input_slots = false; return CompileWhereOperator( options, *where_op, input_slots, maybe_add_output_slot(true), executable_builder_); } else if (auto* while_op = fast_dynamic_downcast_final< const expr_operators::WhileLoopOperator*>(op.get())) { DynamicEvaluationEngineOptions options(options_); options.allow_overriding_input_slots = false; auto output_slot = maybe_add_output_slot(true); RETURN_IF_ERROR(eval_internal::CompileWhileOperator( options, *while_op, input_slots, output_slot, *executable_builder_)); return output_slot; } else if (op_typeid == typeid(DerivedQTypeUpcastOperator) || op_typeid == typeid(DerivedQTypeDowncastOperator)) { return HandleDerivedQTypeCast(*op, node->node_deps(), input_slots, maybe_copy_slot); } else if (auto* std_function_op = dynamic_cast<const expr_operators::StdFunctionOperator*>( op.get())) { auto output_slot = maybe_add_output_slot(true); RETURN_IF_ERROR(eval_internal::CompileStdFunctionOperator( *std_function_op, input_slots, output_slot, *executable_builder_, node)); return output_slot; } auto output_slot = maybe_add_output_slot(true); if (auto result = compiler_extensions_.compile_operator_fn(CompileOperatorFnArgs{ .options = options_, .op = op, .input_slots = input_slots, .output_slot = output_slot, .executable_builder = executable_builder_}); result.has_value()) { RETURN_IF_ERROR(*result); return output_slot; } return absl::InvalidArgumentError(absl::StrCat( "unsupported builtin ExprOperator: name=", node->op()->display_name(), ", CxxType=", TypeName(op_typeid))); } } return absl::InternalError(absl::StrFormat("unexpected ExprNodeType: %d", static_cast<int>(node->type()))); } absl::StatusOr<TypedSlot> HandleInternalRoot( absl::Span<const TypedSlot> input_slots) const { if (input_slots.size() != 1 + side_output_names_.size()) { return absl::InternalError( absl::StrFormat("InternalRootOperator bound with %d " "arguments, %d expected", input_slots.size(), 1 + side_output_names_.size())); } if (input_slots[0] != output_info_.forced_output_slot) { return absl::InternalError( "InternalRootOperator first slot was handled incorrectly"); } for (size_t i = 0; i < side_output_names_.size(); ++i) { RETURN_IF_ERROR(executable_builder_->AddNamedOutput(side_output_names_[i], input_slots[i + 1])); } return input_slots[0]; } absl::StatusOr<TypedSlot> HandleHas(absl::Span<const ExprNodePtr> node_deps, absl::Span<const TypedSlot> input_slots, CopySlotFn copy_slot_fn, AddSlotFn add_slot_fn) { RETURN_IF_ERROR(VerifySlotsCount("core.has._optional", input_slots, 1)); if (!IsOptionalQType(input_slots[0].GetType())) { return CompileBackendOperator("core.has._optional", input_slots, add_slot_fn(true)); } static_assert(sizeof(OptionalUnit) == sizeof(bool)); static_assert(alignof(OptionalUnit) == alignof(bool)); auto mask_slot = FrameLayout::Slot<OptionalUnit>::UnsafeSlotFromOffset( input_slots[0].byte_offset()); RETURN_IF_ERROR(executable_builder_->layout_builder()->RegisterUnsafeSlot( mask_slot, true)); DCHECK_EQ(node_deps.size(), 1); return copy_slot_fn(TypedSlot::FromSlot(mask_slot), node_deps[0]); } absl::StatusOr<TypedSlot> HandleGetNth( const ExprOperatorPtr& op, absl::Span<const ExprNodePtr> node_deps, absl::Span<const TypedSlot> input_slots, CopySlotFn copy_slot_fn) const { RETURN_IF_ERROR(VerifySlotsCount(op->display_name(), input_slots, 1)); const GetNthOperator& get_nth = *static_cast<const GetNthOperator*>(op.get()); if (get_nth.index() < 0 || get_nth.index() >= input_slots[0].SubSlotCount()) { return absl::InternalError( absl::StrFormat("input type %s is not compatible with %s, index %d " "is out of range", input_slots[0].GetType()->name(), get_nth.display_name(), get_nth.index())); } DCHECK_EQ(node_deps.size(), 1); return copy_slot_fn(input_slots[0].SubSlot(get_nth.index()), node_deps[0]); } absl::StatusOr<TypedSlot> HandleDerivedQTypeCast( const ExprOperator& op, absl::Span<const ExprNodePtr> node_deps, absl::Span<const TypedSlot> input_slots, CopySlotFn copy_slot_fn) const { RETURN_IF_ERROR(VerifySlotsCount(op.display_name(), input_slots, 1)); DCHECK(typeid(op) == typeid(DerivedQTypeUpcastOperator) || typeid(op) == typeid(DerivedQTypeDowncastOperator)); ASSIGN_OR_RETURN( auto output_attr, op.InferAttributes({ExprAttributes(input_slots[0].GetType())})); DCHECK_EQ(node_deps.size(), 1); DCHECK(output_attr.qtype()); return copy_slot_fn(TypedSlot::UnsafeFromOffset( output_attr.qtype(), input_slots[0].byte_offset()), node_deps[0]); } absl::StatusOr<TypedSlot> CompileBackendOperator( absl::string_view name, absl::Span<const TypedSlot> input_slots, TypedSlot output_slot, absl::Nullable<ExprNodePtr> node = nullptr) { ASSIGN_OR_RETURN( auto op, GetOperatorDirectory(options_).LookupOperator( name, SlotsToTypes(input_slots), output_slot.GetType())); ASSIGN_OR_RETURN(auto ip, executable_builder_->BindEvalOp( *op, input_slots, output_slot, name)); if (node != nullptr) { executable_builder_->RegisterStacktrace(ip, node); } return output_slot; } DynamicEvaluationEngineOptions options_; const absl::flat_hash_map<std::string, TypedSlot>& expr_input_slots_; OutputInfo output_info_; ExecutableBuilder* executable_builder_; const std::vector<std::string>& side_output_names_; absl::flat_hash_map<Fingerprint, QTypePtr> node_types_; eval_internal::SlotAllocator& slot_allocator_; CompilerExtensionSet compiler_extensions_; }; } DynamicCompiledExpr::DynamicCompiledExpr( DynamicEvaluationEngineOptions options, absl::flat_hash_map<std::string, QTypePtr> input_types, QTypePtr output_type, absl::flat_hash_map<std::string, QTypePtr> named_output_types, ExprNodePtr prepared_expr, std::vector<std::string> side_output_names, absl::flat_hash_map<Fingerprint, QTypePtr> types, std::shared_ptr<const ExprStackTrace> stack_trace) : CompiledExpr(std::move(input_types), output_type, std::move(named_output_types)), options_(std::move(options)), prepared_expr_(std::move(prepared_expr)), side_output_names_(std::move(side_output_names)), types_(std::move(types)), stack_trace_(std::move(stack_trace)) {} absl::StatusOr<std::unique_ptr<BoundExpr>> DynamicCompiledExpr::Bind( FrameLayout::Builder* layout_builder, const absl::flat_hash_map<std::string, TypedSlot>& input_slots, std::optional<TypedSlot> output_slot) const { ExecutableBuilder executable_builder( layout_builder, options_.collect_op_descriptions, stack_trace_); if (!output_slot.has_value()) { output_slot = AddSlot(output_type(), layout_builder); } RETURN_IF_ERROR( BindToExecutableBuilder(executable_builder, input_slots, *output_slot)); return std::move(executable_builder).Build(input_slots, *output_slot); } absl::Status DynamicCompiledExpr::BindToExecutableBuilder( ExecutableBuilder& executable_builder, const absl::flat_hash_map<std::string, TypedSlot>& input_slots, TypedSlot output_slot) const { RETURN_IF_ERROR(VerifySlotTypes(input_types(), input_slots, false, true)); ExprNodePtr output_expr = prepared_expr_; if (output_expr->op() == eval_internal::InternalRootOperator()) { if (output_expr->node_deps().empty()) { return absl::InternalError("InternalRootOperator bound with 0 arguments"); } output_expr = output_expr->node_deps()[0]; } eval_internal::SlotAllocator slot_allocator( prepared_expr_, *executable_builder.layout_builder(), input_slots, options_.allow_overriding_input_slots); EvalVisitor visitor(options_, input_slots, {output_expr, output_slot}, &executable_builder, side_output_names_, types_, slot_allocator); ASSIGN_OR_RETURN(TypedSlot new_output_slot, PostOrderTraverse(prepared_expr_, std::ref(visitor))); if (output_slot != new_output_slot) { return absl::InternalError( absl::StrFormat("expression %s bound to a wrong output slot", GetDebugSnippet(prepared_expr_))); } return absl::OkStatus(); } }
#include "arolla/expr/eval/dynamic_compiled_expr.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/eval/prepare_expression.h" #include "arolla/expr/eval/test_utils.h" #include "arolla/expr/expr.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/evaluation_engine.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/fingerprint.h" namespace arolla::expr::eval_internal { namespace { TEST(DynamicCompiledExprTest, BindToExecutableBuilder) { ASSERT_OK_AND_ASSIGN(auto expr, CallOp("math.add", {Leaf("x"), Literal<int32_t>(1)})); absl::flat_hash_map<std::string, QTypePtr> input_types = { {"x", GetQType<int32_t>()}}; ASSERT_OK_AND_ASSIGN( expr, PrepareExpression(expr, input_types, DynamicEvaluationEngineOptions{})); absl::flat_hash_map<Fingerprint, QTypePtr> node_types; ASSERT_OK_AND_ASSIGN(expr, ExtractQTypesForCompilation(expr, &node_types)); DynamicCompiledExpr compiled_expr( DynamicEvaluationEngineOptions{}, input_types, GetQType<int32_t>(), {}, expr, {}, node_types); FrameLayout::Builder layout_builder; ExecutableBuilder executable_builder(&layout_builder, true); auto x1_slot = layout_builder.AddSlot<int32_t>(); auto x2_slot = layout_builder.AddSlot<int32_t>(); auto result_slot = layout_builder.AddSlot<int32_t>(); auto other_result_slot = layout_builder.AddSlot<int32_t>(); ASSERT_OK(compiled_expr.BindToExecutableBuilder( executable_builder, {{"x", TypedSlot::FromSlot(x1_slot)}}, TypedSlot::FromSlot(result_slot))); ASSERT_OK(compiled_expr.BindToExecutableBuilder( executable_builder, {{"x", TypedSlot::FromSlot(x1_slot)}}, TypedSlot::FromSlot(other_result_slot))); ASSERT_OK(compiled_expr.BindToExecutableBuilder( executable_builder, {{"x", TypedSlot::FromSlot(x2_slot)}}, TypedSlot::FromSlot(other_result_slot))); std::unique_ptr<BoundExpr> executable_expr = std::move(executable_builder) .Build({{"x1", TypedSlot::FromSlot(x1_slot)}, {"x2", TypedSlot::FromSlot(x2_slot)}}, TypedSlot::FromSlot(result_slot)); EXPECT_THAT( executable_expr, AllOf(InitOperationsAre( "INT32 [0x10] = 1\n" "INT32 [0x14] = 1\n" "INT32 [0x18] = 1"), EvalOperationsAre( "INT32 [0x08] = math.add(INT32 [0x00], INT32 [0x10])", "INT32 [0x0C] = math.add(INT32 [0x00], INT32 [0x14])", "INT32 [0x0C] = math.add(INT32 [0x04], INT32 [0x18])"))); auto layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&layout); alloc.frame().Set(x1_slot, 56); alloc.frame().Set(x2_slot, 1); EvaluationContext ctx; executable_expr->InitializeLiterals(&ctx, alloc.frame()); executable_expr->Execute(&ctx, alloc.frame()); EXPECT_OK(ctx.status()); EXPECT_EQ(alloc.frame().Get(result_slot), 57); EXPECT_EQ(alloc.frame().Get(other_result_slot), 2); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/dynamic_compiled_expr.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/dynamic_compiled_expr_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
8e4c68dd-bf7a-461f-8359-b00cdc6e5b6d
cpp
google/tensorstore
gcs_grpc
tensorstore/kvstore/gcs_grpc/gcs_grpc.cc
tensorstore/kvstore/gcs_grpc/gcs_grpc_test.cc
#include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/crc/crc32c.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/client_context.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/client_callback.h" #include "grpcpp/support/status.h" #include "tensorstore/context.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/gcs/gcs_resource.h" #include "tensorstore/kvstore/gcs/validate.h" #include "tensorstore/kvstore/gcs_grpc/get_credentials.h" #include "tensorstore/kvstore/gcs_grpc/storage_stub_pool.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/absl_time.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/context_binding.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/fwd.h" #include "google/protobuf/empty.pb.h" #include "google/storage/v2/storage.grpc.pb.h" #include "google/storage/v2/storage.pb.h" using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::GrpcStatusToAbslStatus; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_gcs_grpc::GetCredentialsForEndpoint; using ::tensorstore::internal_gcs_grpc::GetSharedStorageStubPool; using ::tensorstore::internal_gcs_grpc::StorageStubPool; using ::tensorstore::internal_storage_gcs::GcsUserProjectResource; using ::tensorstore::internal_storage_gcs::IsRetriable; using ::tensorstore::internal_storage_gcs::IsValidBucketName; using ::tensorstore::internal_storage_gcs::IsValidObjectName; using ::tensorstore::internal_storage_gcs::IsValidStorageGeneration; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; using ::google::storage::v2::DeleteObjectRequest; using ::google::storage::v2::ListObjectsRequest; using ::google::storage::v2::ListObjectsResponse; using ::google::storage::v2::ReadObjectRequest; using ::google::storage::v2::ReadObjectResponse; using ::google::storage::v2::ServiceConstants; using ::google::storage::v2::WriteObjectRequest; using ::google::storage::v2::WriteObjectResponse; using ::google::storage::v2::Storage; namespace { static constexpr char kUriScheme[] = "gcs_grpc"; static constexpr size_t kMaxWriteBytes = ServiceConstants::MAX_WRITE_CHUNK_BYTES; } namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct GcsMetrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& retries; }; auto gcs_grpc_metrics = []() -> GcsMetrics { return {TENSORSTORE_KVSTORE_COMMON_METRICS(gcs_grpc), TENSORSTORE_KVSTORE_COUNTER_IMPL( gcs_grpc, retries, "Ccunt of all retried requests (read/write/delete)")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag gcs_grpc_logging("gcs_grpc"); struct GcsGrpcKeyValueStoreSpecData { std::string bucket; std::string endpoint; uint32_t num_channels = 0; absl::Duration timeout = absl::ZeroDuration(); absl::Duration wait_for_connection = absl::ZeroDuration(); Context::Resource<GcsUserProjectResource> user_project; Context::Resource<internal_storage_gcs::GcsRequestRetries> retries; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.bucket, x.endpoint, x.num_channels, x.timeout, x.wait_for_connection, x.user_project, x.retries, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member( "bucket", jb::Projection<&GcsGrpcKeyValueStoreSpecData::bucket>( jb::Validate([](const auto& options, const std::string* x) { if (!IsValidBucketName(*x)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GCS bucket name: ", QuoteString(*x))); } return absl::OkStatus(); }))), jb::Member("endpoint", jb::Projection<&GcsGrpcKeyValueStoreSpecData::endpoint>( jb::DefaultInitializedValue())), jb::Member("num_channels", jb::Projection<&GcsGrpcKeyValueStoreSpecData::num_channels>( jb::DefaultInitializedValue())), jb::Member("timeout", jb::Projection<&GcsGrpcKeyValueStoreSpecData::timeout>( jb::DefaultValue<jb::kNeverIncludeDefaults>( [](auto* x) { *x = absl::ZeroDuration(); }))), jb::Member( "wait_for_connection", jb::Projection<&GcsGrpcKeyValueStoreSpecData::wait_for_connection>( jb::DefaultValue<jb::kNeverIncludeDefaults>( [](auto* x) { *x = absl::ZeroDuration(); }))), jb::Member(GcsUserProjectResource::id, jb::Projection<&GcsGrpcKeyValueStoreSpecData::user_project>()), jb::Member(internal_storage_gcs::GcsRequestRetries::id, jb::Projection<&GcsGrpcKeyValueStoreSpecData::retries>()), jb::Member( DataCopyConcurrencyResource::id, jb::Projection< &GcsGrpcKeyValueStoreSpecData::data_copy_concurrency>()), jb::DiscardExtraMembers); }; class GcsGrpcKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< GcsGrpcKeyValueStoreSpec, GcsGrpcKeyValueStoreSpecData> { public: static constexpr char id[] = "gcs_grpc"; Future<kvstore::DriverPtr> DoOpen() const override; absl::Status NormalizeSpec(std::string& path) override { if (!path.empty() && !IsValidObjectName(path)) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid GCS path: ", QuoteString(path))); } return absl::OkStatus(); } Result<std::string> ToUrl(std::string_view path) const override { if (!data_.endpoint.empty()) { return absl::UnimplementedError( "URL representation does not support test endpoints"); } return tensorstore::StrCat(kUriScheme, ": internal::PercentEncodeUriPath(path)); } }; class GcsGrpcKeyValueStore : public internal_kvstore::RegisteredDriver<GcsGrpcKeyValueStore, GcsGrpcKeyValueStoreSpec> { public: internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { return internal_kvstore_batch::kDefaultRemoteStorageCoalescingOptions; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<const void> DeleteRange(KeyRange range) override; absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } std::string bucket_name() { return bucket_; } std::shared_ptr<Storage::StubInterface> get_stub() { return storage_stub_pool_->get_next_stub(); } std::unique_ptr<grpc::ClientContext> AllocateContext() { auto context = std::make_unique<grpc::ClientContext>(); if (spec_.user_project->project_id && !spec_.user_project->project_id->empty()) { context->AddMetadata("x-goog-user-project", *spec_.user_project->project_id); } context->AddMetadata("x-goog-request-params", absl::StrFormat("bucket=%s", bucket_name())); if (spec_.timeout > absl::ZeroDuration() && spec_.timeout < absl::InfiniteDuration()) { context->set_deadline(absl::ToChronoTime(absl::Now() + spec_.timeout)); } if (call_credentials_fn_) { context->set_credentials(call_credentials_fn_()); } return context; } template <typename Task> absl::Status BackoffForAttemptAsync( absl::Status status, int attempt, Task* task, SourceLocation loc = ::tensorstore::SourceLocation::current()) { assert(task != nullptr); auto delay = spec_.retries->BackoffForAttempt(attempt); if (!delay) { return MaybeAnnotateStatus(std::move(status), absl::StrFormat("All %d retry attempts failed", spec_.retries->max_retries), absl::StatusCode::kAborted, loc); } gcs_grpc_metrics.retries.Increment(); ScheduleAt(absl::Now() + *delay, WithExecutor(executor(), [task = internal::IntrusivePtr<Task>( task)] { task->Retry(); })); return absl::OkStatus(); } SpecData spec_; std::string bucket_; std::shared_ptr<StorageStubPool> storage_stub_pool_; std::function<std::shared_ptr<grpc::CallCredentials>()> call_credentials_fn_; }; absl::crc32c_t ComputeCrc32c(const absl::Cord& cord) { absl::crc32c_t crc{0}; for (auto chunk : cord.Chunks()) { crc = absl::ExtendCrc32c(crc, chunk); } return crc; } struct ReadTask : public internal::AtomicReferenceCount<ReadTask>, public grpc::ClientReadReactor<ReadObjectResponse> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::ReadOptions options_; Promise<kvstore::ReadResult> promise_; Storage::StubInterface* stub_ = nullptr; ReadObjectRequest request_; ReadObjectResponse response_; std::optional<absl::crc32c_t> crc32c_; TimestampedStorageGeneration storage_generation_; absl::Cord value_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void Start(const std::string& object_name) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "ReadTask " << object_name; stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded( [self = internal::IntrusivePtr<ReadTask>(this)] { self->TryCancel(); }); request_.set_bucket(driver_->bucket_name()); request_.set_object(object_name); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { uint64_t gen = StorageGeneration::IsNoValue(options_.generation_conditions.if_equal) ? 0 : StorageGeneration::ToUint64( options_.generation_conditions.if_equal); request_.set_if_generation_match(gen); } if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_not_equal)) { uint64_t gen = StorageGeneration::IsNoValue( options_.generation_conditions.if_not_equal) ? 0 : StorageGeneration::ToUint64( options_.generation_conditions.if_not_equal); request_.set_if_generation_not_match(gen); } if (options_.byte_range.inclusive_min != 0) { request_.set_read_offset(options_.byte_range.inclusive_min); } if (options_.byte_range.exclusive_max != -1) { auto target_size = options_.byte_range.size(); assert(target_size >= 0); request_.set_read_limit(target_size == 0 ? 1 : target_size); } Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } value_.Clear(); storage_generation_ = TimestampedStorageGeneration{StorageGeneration::Unknown(), absl::Now()}; { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->ReadObject(context_.get(), &request_, this); } StartRead(&response_); StartCall(); } void OnReadDone(bool ok) override { if (!ok) return; if (!promise_.result_needed()) { TryCancel(); return; } if (response_.has_metadata()) { storage_generation_.generation = StorageGeneration::FromUint64(response_.metadata().generation()); } if (response_.has_object_checksums() && response_.object_checksums().crc32c() != 0 && options_.byte_range.inclusive_min == 0 && !options_.byte_range.exclusive_max) { crc32c_ = absl::crc32c_t(response_.object_checksums().crc32c()); } if (response_.has_content_range()) { auto returned_size = response_.content_range().end() - response_.content_range().start(); if (auto size = options_.byte_range.size(); (size > 0 && size != returned_size) || (options_.byte_range.inclusive_min >= 0 && response_.content_range().start() != options_.byte_range.inclusive_min)) { promise_.SetResult(absl::OutOfRangeError( tensorstore::StrCat("Requested byte range ", options_.byte_range, " was not satisfied by GCS object with size ", response_.content_range().complete_length()))); TryCancel(); return; } } if (response_.has_checksummed_data() && response_.checksummed_data().has_crc32c() && response_.checksummed_data().crc32c() != 0) { auto content_crc32c = ComputeCrc32c(response_.checksummed_data().content()); if (content_crc32c != absl::crc32c_t(response_.checksummed_data().crc32c())) { promise_.SetResult(absl::DataLossError(absl::StrFormat( "Object fragment crc32c %08x does not match expected crc32c %08x", static_cast<uint32_t>(content_crc32c), response_.checksummed_data().crc32c()))); TryCancel(); return; } } if (response_.has_checksummed_data()) { gcs_grpc_metrics.bytes_read.IncrementBy( response_.checksummed_data().content().size()); value_.Append(response_.checksummed_data().content()); } StartRead(&response_); } void OnDone(const grpc::Status& s) override { internal::IntrusivePtr<ReadTask> self(this, internal::adopt_object_ref); driver_->executor()( [self = std::move(self), status = GrpcStatusToAbslStatus(s)]() { self->ReadFinished(std::move(status)); }); } void ReadFinished(absl::Status status) { if (!promise_.result_needed()) { return; } { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } auto latency = absl::Now() - storage_generation_.time; gcs_grpc_metrics.read_latency_ms.Observe( absl::ToInt64Milliseconds(latency)); if (!status.ok()) { if (absl::IsFailedPrecondition(status) || absl::IsAborted(status)) { if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { storage_generation_.generation = StorageGeneration::Unknown(); } else { storage_generation_.generation = options_.generation_conditions.if_not_equal; } promise_.SetResult( kvstore::ReadResult::Unspecified(std::move(storage_generation_))); return; } if (absl::IsNotFound(status)) { promise_.SetResult( kvstore::ReadResult::Missing(storage_generation_.time)); return; } promise_.SetResult(std::move(status)); return; } if (StorageGeneration::IsUnknown(storage_generation_.generation)) { promise_.SetResult( absl::InternalError("Object missing a valid generation")); return; } if (options_.byte_range.size() == 0) { value_.Clear(); } else if (crc32c_.has_value() && ComputeCrc32c(value_) != *crc32c_) { promise_.SetResult( absl::DataLossError("Object crc32c does not match expected crc32c")); return; } promise_.SetResult(kvstore::ReadResult::Value( std::move(value_), std::move(storage_generation_))); } }; struct WriteTask : public internal::AtomicReferenceCount<WriteTask>, public grpc::ClientWriteReactor<WriteObjectRequest> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::WriteOptions options_; Promise<TimestampedStorageGeneration> promise_; std::string object_name_; absl::Cord value_; Storage::StubInterface* stub_ = nullptr; WriteObjectRequest request_; WriteObjectResponse response_; TimestampedStorageGeneration write_result_; size_t write_offset_; absl::crc32c_t crc32c_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void UpdateRequestForNextWrite() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (write_offset_ == 0) { write_result_.time = absl::Now(); auto& resource = *request_.mutable_write_object_spec()->mutable_resource(); resource.set_bucket(driver_->bucket_name()); resource.set_name(object_name_); request_.mutable_write_object_spec()->set_object_size(value_.size()); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { auto gen = StorageGeneration::ToUint64( options_.generation_conditions.if_equal); request_.mutable_write_object_spec()->set_if_generation_match(gen); } } else { request_.clear_write_object_spec(); } request_.set_write_offset(write_offset_); size_t next_write_offset = std::min(write_offset_ + kMaxWriteBytes, value_.size()); auto& checksummed_data = *request_.mutable_checksummed_data(); checksummed_data.set_content( value_.Subcord(write_offset_, next_write_offset - write_offset_)); auto chunk_crc32c = ComputeCrc32c(checksummed_data.content()); checksummed_data.set_crc32c(static_cast<uint32_t>(chunk_crc32c)); crc32c_ = absl::ConcatCrc32c(crc32c_, chunk_crc32c, checksummed_data.content().size()); write_offset_ = next_write_offset; if (write_offset_ == value_.size()) { request_.mutable_object_checksums()->set_crc32c( static_cast<uint32_t>(crc32c_)); request_.set_finish_write(true); } } void Start(std::string object_name, absl::Cord value) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "WriteTask " << object_name; object_name_ = std::move(object_name); value_ = std::move(value); stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded([self = internal::IntrusivePtr<WriteTask>( this)] { self->TryCancel(); }); Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } write_offset_ = 0; crc32c_ = absl::crc32c_t{0}; request_.Clear(); { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->WriteObject(context_.get(), &response_, this); } UpdateRequestForNextWrite(); auto options = grpc::WriteOptions(); if (request_.finish_write()) { options.set_last_message(); } StartWrite(&request_, options); StartCall(); } void OnWriteDone(bool ok) override { if (!ok) return; if (request_.finish_write()) return; UpdateRequestForNextWrite(); auto options = grpc::WriteOptions(); if (request_.finish_write()) { options.set_last_message(); } StartWrite(&request_, options); } void OnDone(const grpc::Status& s) override { internal::IntrusivePtr<WriteTask> self(this, internal::adopt_object_ref); driver_->executor()( [self = std::move(self), status = GrpcStatusToAbslStatus(s)] { self->WriteFinished(std::move(status)); }); } void WriteFinished(absl::Status status) { if (!promise_.result_needed()) { return; } auto latency = absl::Now() - write_result_.time; gcs_grpc_metrics.write_latency_ms.Observe( absl::ToInt64Milliseconds(latency)); { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (response_.has_resource()) { write_result_.generation = StorageGeneration::FromUint64(response_.resource().generation()); } if (absl::IsFailedPrecondition(status) || absl::IsAlreadyExists(status)) { write_result_.generation = StorageGeneration::Unknown(); promise_.SetResult(std::move(write_result_)); } else if (absl::IsNotFound(status) && !StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { write_result_.generation = StorageGeneration::Unknown(); promise_.SetResult(std::move(write_result_)); } else if (!status.ok()) { promise_.SetResult(status); } else { promise_.SetResult(std::move(write_result_)); } } }; struct DeleteTask : public internal::AtomicReferenceCount<DeleteTask> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::WriteOptions options_; Promise<TimestampedStorageGeneration> promise_; Storage::StubInterface* stub_ = nullptr; absl::Time start_time_; DeleteObjectRequest request_; ::google::protobuf::Empty response_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void Start(const std::string& object_name) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "DeleteTask " << object_name; stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded([self = internal::IntrusivePtr<DeleteTask>( this)] { self->TryCancel(); }); request_.set_bucket(driver_->bucket_name()); request_.set_object(object_name); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { auto gen = StorageGeneration::ToUint64(options_.generation_conditions.if_equal); request_.set_if_generation_match(gen); } Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } start_time_ = absl::Now(); { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->DeleteObject( context_.get(), &request_, &response_, WithExecutor(driver_->executor(), [this](::grpc::Status s) { internal::IntrusivePtr<DeleteTask> self(this, internal::adopt_object_ref); self->DeleteFinished(GrpcStatusToAbslStatus(s)); })); } } void DeleteFinished(absl::Status status) { if (!promise_.result_needed()) { return; } { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } TimestampedStorageGeneration r; r.time = start_time_; r.generation = StorageGeneration::NoValue(); if (absl::IsFailedPrecondition(status)) { r.generation = StorageGeneration::Unknown(); } else if (absl::IsNotFound(status)) { if (!options_.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); } } else if (!status.ok()) { promise_.SetResult(std::move(status)); return; } promise_.SetResult(std::move(r)); } }; struct ListTask : public internal::AtomicReferenceCount<ListTask> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::ListOptions options_; ListReceiver receiver_; Storage::StubInterface* stub_ = nullptr; ListObjectsRequest request; ListObjectsResponse response; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); bool cancelled_ ABSL_GUARDED_BY(mutex_) = false; ListTask(internal::IntrusivePtr<GcsGrpcKeyValueStore>&& driver, kvstore::ListOptions&& options, ListReceiver&& receiver) : driver_(std::move(driver)), options_(std::move(options)), receiver_(std::move(receiver)) { execution::set_starting(receiver_, [this] { TryCancel(); }); } ~ListTask() { { absl::MutexLock l(&mutex_); context_ = nullptr; } driver_ = {}; execution::set_stopping(receiver_); } bool is_cancelled() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock l(&mutex_); return cancelled_; } void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock l(&mutex_); if (!cancelled_) { cancelled_ = true; if (context_) context_->TryCancel(); } } void Start() { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "ListTask " << options_.range; stub_ = driver_->get_stub().get(); request.set_lexicographic_start(options_.range.inclusive_min); request.set_lexicographic_end(options_.range.exclusive_max); request.set_parent(driver_->bucket_name()); request.set_page_size(1000); Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (is_cancelled()) { execution::set_done(receiver_); return; } { absl::MutexLock lock(&mutex_); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->ListObjects( context_.get(), &request, &response, WithExecutor(driver_->executor(), [this](::grpc::Status s) { internal::IntrusivePtr<ListTask> self(this, internal::adopt_object_ref); self->ListFinished(GrpcStatusToAbslStatus(s)); })); } } void ListFinished(absl::Status status) { if (is_cancelled()) { execution::set_done(receiver_); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { execution::set_error(receiver_, std::move(status)); return; } bool done = false; for (const auto& o : response.objects()) { if (is_cancelled()) { done = true; break; } std::string_view name = o.name(); if (!Contains(options_.range, name)) { if (KeyRange::CompareKeyAndExclusiveMax( name, options_.range.exclusive_max) >= 0) { done = true; break; } continue; } if (options_.strip_prefix_length) { name = name.substr(options_.strip_prefix_length); } execution::set_value(receiver_, ListEntry{ std::string(name), ListEntry::checked_size(o.size()), }); } if (!done && !response.next_page_token().empty()) { request.set_page_token(response.next_page_token()); response.Clear(); attempt_ = 0; Retry(); return; } execution::set_done(receiver_); } }; struct DeleteRangeListReceiver { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; Promise<void> promise_; FutureCallbackRegistration cancel_registration_; void set_starting(AnyCancelReceiver cancel) { cancel_registration_ = promise_.ExecuteWhenNotNeeded(std::move(cancel)); } void set_value(ListEntry entry) { assert(!entry.key.empty()); if (!entry.key.empty()) { LinkError(promise_, driver_->Delete(std::move(entry.key))); } } void set_error(absl::Status error) { SetDeferredResult(promise_, std::move(error)); promise_ = Promise<void>(); } void set_done() { promise_ = Promise<void>(); } void set_stopping() { cancel_registration_.Unregister(); driver_ = {}; } }; Future<kvstore::ReadResult> GcsGrpcKeyValueStore::Read(Key key, ReadOptions options) { gcs_grpc_metrics.read.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid blob object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal) || !IsValidStorageGeneration(options.generation_conditions.if_not_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> GcsGrpcKeyValueStore::ReadImpl( Key&& key, ReadOptions&& options) { gcs_grpc_metrics.batch_read.Increment(); auto op = PromiseFuturePair<ReadResult>::Make(); auto task = internal::MakeIntrusivePtr<ReadTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key); return std::move(op.future); } Future<TimestampedStorageGeneration> GcsGrpcKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { gcs_grpc_metrics.write.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid blob object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } auto op = PromiseFuturePair<TimestampedStorageGeneration>::Make(); if (!value) { auto task = internal::MakeIntrusivePtr<DeleteTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key); } else { auto task = internal::MakeIntrusivePtr<WriteTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key, *std::move(value)); } return std::move(op.future); } void GcsGrpcKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { gcs_grpc_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } auto task = internal::MakeIntrusivePtr<ListTask>( internal::IntrusivePtr<GcsGrpcKeyValueStore>(this), std::move(options), std::move(receiver)); task->Start(); } Future<const void> GcsGrpcKeyValueStore::DeleteRange(KeyRange range) { gcs_grpc_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); auto op = PromiseFuturePair<void>::Make(tensorstore::MakeResult()); ListOptions list_options; list_options.range = std::move(range); ListImpl(list_options, DeleteRangeListReceiver{ internal::IntrusivePtr<GcsGrpcKeyValueStore>(this), std::move(op.promise)}); return std::move(op.future); } Future<kvstore::DriverPtr> GcsGrpcKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<GcsGrpcKeyValueStore>(); driver->spec_ = data_; driver->bucket_ = absl::StrFormat("projects/_/buckets/%s", data_.bucket); std::string endpoint = data_.endpoint; if (endpoint.empty()) { endpoint = "dns: } auto channel_credentials = GetCredentialsForEndpoint(endpoint, driver->call_credentials_fn_); driver->storage_stub_pool_ = GetSharedStorageStubPool( endpoint, data_.num_channels, std::move(channel_credentials)); if (driver->spec_.wait_for_connection > absl::ZeroDuration()) { driver->storage_stub_pool_->WaitForConnected( driver->spec_.wait_for_connection); } return driver; } Result<kvstore::Spec> ParseGcsGrpcUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == kUriScheme); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } if (!IsValidBucketName(parsed.authority)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GCS bucket name: ", QuoteString(parsed.authority))); } auto decoded_path = parsed.path.empty() ? std::string() : internal::PercentDecode(parsed.path.substr(1)); auto driver_spec = internal::MakeIntrusivePtr<GcsGrpcKeyValueStoreSpec>(); driver_spec->data_.bucket = std::string(parsed.authority); driver_spec->data_.user_project = Context::Resource<GcsUserProjectResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<internal_storage_gcs::GcsRequestRetries>::DefaultSpec(); driver_spec->data_.data_copy_concurrency = Context::Resource<DataCopyConcurrencyResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(decoded_path)}; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::GcsGrpcKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::GcsGrpcKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{kUriScheme, tensorstore::ParseGcsGrpcUrl}; }
#include <stddef.h> #include <cstring> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/support/sync_stream.h" #include "tensorstore/context.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/internal/grpc/grpc_mock.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/gcs_grpc/mock_storage_service.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/proto/parse_text_proto_or_die.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "google/storage/v2/storage.pb.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::protobuf_matchers::EqualsProto; using ::tensorstore::CompletionNotifyingReceiver; using ::tensorstore::Context; using ::tensorstore::KeyRange; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::ParseTextProtoOrDie; using ::tensorstore::StorageGeneration; using ::tensorstore::grpc_mocker::MockGrpcServer; using ::tensorstore::internal::AbslStatusToGrpcStatus; using ::tensorstore::internal::FlatCordBuilder; using ::tensorstore_grpc::MockStorage; using ::testing::_; using ::testing::AtLeast; using ::testing::DoAll; using ::testing::Return; using ::testing::SetArgPointee; using ::google::storage::v2::DeleteObjectRequest; using ::google::storage::v2::ListObjectsRequest; using ::google::storage::v2::ListObjectsResponse; using ::google::storage::v2::ReadObjectRequest; using ::google::storage::v2::ReadObjectResponse; using ::google::storage::v2::WriteObjectRequest; using ::google::storage::v2::WriteObjectResponse; class GcsGrpcTest : public testing::Test { public: tensorstore::KvStore OpenStore() { ABSL_LOG(INFO) << "Using " << mock_service_.server_address(); return kvstore::Open({{"driver", "gcs_grpc"}, {"endpoint", mock_service_.server_address()}, {"bucket", "bucket"}, {"timeout", "100ms"}}) .value(); } MockStorage& mock() { return *mock_service_.service(); } tensorstore::grpc_mocker::MockGrpcServer<MockStorage> mock_service_; }; TEST_F(GcsGrpcTest, Read) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); auto start = absl::Now(); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object()).result()); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value, "1234"); EXPECT_GT(result.stamp.time, start); EXPECT_EQ(result.stamp.generation, StorageGeneration::FromUint64(2)); } TEST_F(GcsGrpcTest, ReadRetry) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); ::testing::Sequence s1; EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(2) .InSequence(s1) .WillRepeatedly(testing::Return( AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")))); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .InSequence(s1) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); auto start = absl::Now(); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object()).result()); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value, "1234"); EXPECT_GT(result.stamp.time, start); EXPECT_EQ(result.stamp.generation, StorageGeneration::FromUint64(2)); } TEST_F(GcsGrpcTest, ReadWithOptions) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_not_match: 3 if_generation_match: 1 read_offset: 1 read_limit: 9 )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromUint64(3); options.generation_conditions.if_equal = StorageGeneration::FromUint64(1); options.staleness_bound = absl::InfiniteFuture(); options.byte_range = OptionalByteRangeRequest{1, 10}; auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object(), options).result()); } TEST_F(GcsGrpcTest, Write) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject(_, _, _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd")) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteRetry) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: 'bucket' generation: 1 } )pb"); ::testing::Sequence s1; EXPECT_CALL(mock(), WriteObject) .InSequence(s1) .WillOnce(testing::Return( AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")))); EXPECT_CALL(mock(), WriteObject) .InSequence(s1) .WillOnce(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; if (reader->Read(&req)) { requests.push_back(req); } return AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")); })); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .InSequence(s1) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd")) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(2)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteEmpty) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: 'projects/_/buckets/bucket' generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord()).result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 0 } checksummed_data { crc32c: 0 } object_checksums { crc32c: 0 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteWithOptions) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd"), {StorageGeneration::FromUint64(3)}) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } if_generation_match: 3 object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteMultipleRequests) { WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'bigly' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); std::vector<WriteObjectRequest> requests; EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { size_t len = req.checksummed_data().content().size(); req.mutable_checksummed_data()->set_content( absl::StrFormat("size: %d", len)); requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); FlatCordBuilder cord_builder(16 + 2 * 1048576); memset(cord_builder.data(), 0x37, cord_builder.size()); absl::Cord data = std::move(cord_builder).Build(); data.Append("abcd"); EXPECT_EQ(data.size(), 2097172); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), data).result()); ASSERT_THAT(requests, testing::SizeIs(testing::Ge(2))); EXPECT_THAT( tensorstore::span(&requests[requests.size() - 2], 2), testing::ElementsAre( EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "bigly" bucket: "projects/_/buckets/bucket" } object_size: 2097172 } checksummed_data { content: "size: 2097152", crc32c: 2470751355 } write_offset: 0 )pb"), EqualsProto<WriteObjectRequest>(R"pb( checksummed_data { content: "size: 20", crc32c: 2394860217 } object_checksums { crc32c: 1181131586 } finish_write: true write_offset: 2097152 )pb"))); } TEST_F(GcsGrpcTest, WriteNullopt) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_match: 0 )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, expected_request.object(), std::nullopt, {StorageGeneration::NoValue()}) .result()); } TEST_F(GcsGrpcTest, Delete) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Delete(store, expected_request.object()).result()); } TEST_F(GcsGrpcTest, DeleteWithOptions) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_match: 2 )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Delete(store, expected_request.object(), {StorageGeneration::FromUint64(2)}) .result()); } TEST_F(GcsGrpcTest, DeleteRange) { ListObjectsRequest request1 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 lexicographic_start: 'a/c' lexicographic_end: 'a/d' )pb"); ListObjectsResponse response1 = ParseTextProtoOrDie(R"pb( objects { name: 'a/c' } objects { name: 'a/ce' } )pb"); DeleteObjectRequest request2 = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'a/c' )pb"); DeleteObjectRequest request3 = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'a/ce' )pb"); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request1), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response1), Return(grpc::Status::OK))); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(request2), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(request3), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_EXPECT_OK( kvstore::DeleteRange(store, KeyRange::Prefix("a/c")).result()); } TEST_F(GcsGrpcTest, List) { ListObjectsRequest request1 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 )pb"); ListObjectsRequest request2 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 page_token: 'next-page-token' )pb"); ListObjectsResponse response1 = ParseTextProtoOrDie(R"pb( objects { name: 'a' } objects { name: 'b' } next_page_token: 'next-page-token' )pb"); ListObjectsResponse response2 = ParseTextProtoOrDie(R"pb( objects { name: 'c' } )pb"); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request1), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response1), Return(grpc::Status::OK))); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request2), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response2), Return(grpc::Status::OK))); auto store = OpenStore(); absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( tensorstore::kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a", "set_value: b", "set_value: c", "set_done", "set_stopping")); } TEST(GcsGrpcSpecTest, InvalidSpec) { auto context = Context::Default(); EXPECT_THAT(kvstore::Open({{"driver", "gcs_grpc"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", "gcs_grpc"}, {"bucket", "bucket:xyz"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "a\tb"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsGrpcUrlTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "abc"}}, "gcs_grpc: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "abc def"}}, "gcs_grpc: } TEST(GcsGrpcUrlTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Invalid GCS bucket name: \"bucket:xyz\"")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_grpc/gcs_grpc.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_grpc/gcs_grpc_test.cc
4f887a6430414cd6088e1743555015b10f116d50
43b2a04f-8127-459d-866c-5f33d8aa9a42
cpp
google/arolla
proto_input_loader
arolla/io/proto/proto_input_loader.cc
arolla/io/proto/proto_input_loader_test.cc
#include "arolla/io/proto/proto_input_loader.h" #include <algorithm> #include <cstddef> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/types/span.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "arolla/io/input_loader.h" #include "arolla/io/proto/reflection/reader.h" #include "arolla/io/proto_types/types.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/qtype.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { using proto::ProtoTypeReader; using proto::StringFieldType; absl::StatusOr<std::unique_ptr<ProtoTypeReader>> CreateReaderWithStringType( absl::Span<const google::protobuf::FieldDescriptor* const> fields, std::vector<proto::ProtoFieldAccessInfo> access_infos, StringFieldType string_type) { auto repeated_it = std::find_if( access_infos.begin(), access_infos.end(), [](proto::ProtoFieldAccessInfo v) { return std::holds_alternative<proto::RepeatedFieldAccess>(v); }); if (repeated_it == access_infos.end()) { if (!access_infos.empty() && std::holds_alternative<proto::RepeatedFieldSizeAccess>( access_infos.back())) { return proto::ProtoTypeReader::CreateDenseArrayShapeReader( fields, std::move(access_infos), string_type); } else { return proto::ProtoTypeReader::CreateOptionalReader( fields, std::move(access_infos), string_type); } } else { return proto::ProtoTypeReader::CreateDenseArrayReader( fields, std::move(access_infos), string_type); } } absl::StatusOr<std::pair<std::string, proto::ProtoFieldAccessInfo>> ParseProtopathElement(absl::string_view path_element) { bool is_size_element = absl::ConsumeSuffix(&path_element, "@size"); if (!absl::StrContains(path_element, '[') && !absl::StrContains(path_element, ']')) { if (is_size_element) { return std::pair{std::string(path_element), proto::RepeatedFieldSizeAccess{}}; } else { return std::pair{std::string(path_element), proto::ProtoFieldAccessInfo{}}; } } if (is_size_element) { return absl::FailedPreconditionError(absl::StrFormat( "@size accessor does not accept field access by index, got %s", path_element)); } std::vector<absl::string_view> splits = absl::StrSplit(path_element, absl::ByAnyChar("[]"), absl::SkipEmpty()); auto error = [&]() { return absl::FailedPreconditionError(absl::StrCat( "cannot parse access by index protopath element: ", path_element)); }; if (splits.size() != 2) { return error(); } std::string field_name(splits[0]); size_t idx = static_cast<size_t>(-1); if (!absl::SimpleAtoi(splits[1], &idx)) { return error(); } if (absl::StrFormat("%s[%d]", field_name, idx) != path_element) { return error(); } return std::pair{field_name, proto::RepeatedFieldIndexAccess{idx}}; } absl::StatusOr<std::unique_ptr<proto::ProtoTypeReader>> ParseProtopathToReader( const google::protobuf::Descriptor* const descr, absl::string_view protopath, proto::StringFieldType string_type) { if (!absl::ConsumePrefix(&protopath, "/")) { return absl::FailedPreconditionError(absl::StrFormat( "protopath must start with '/', got: \"%s\"", protopath)); } std::vector<std::string> elements = absl::StrSplit(protopath, '/'); if (elements.empty()) { return absl::FailedPreconditionError( absl::StrFormat("empty protopath: %s", protopath)); } if (elements.back() == "@size" && elements.size() > 1) { elements.pop_back(); elements.back().append("@size"); } std::vector<const google::protobuf::FieldDescriptor*> fields; std::vector<proto::ProtoFieldAccessInfo> access_infos; const google::protobuf::FieldDescriptor* previous_field = nullptr; for (absl::string_view path_element : elements) { ASSIGN_OR_RETURN((auto [field_name, access_info]), ParseProtopathElement(path_element)); const google::protobuf::Descriptor* current_descr; if (previous_field != nullptr) { current_descr = previous_field->message_type(); if (current_descr == nullptr) { return absl::FailedPreconditionError(absl::StrFormat( "unexpected type of the field `%s` in the protopath " "`%s`: expected a message", previous_field->name(), protopath)); } } else { current_descr = descr; } const google::protobuf::FieldDescriptor* field_descriptor = current_descr->FindFieldByName(field_name); if (field_descriptor == nullptr) { return absl::FailedPreconditionError(absl::StrFormat( "unknown field `%s` in the message `%s` in the protopath `%s`.", field_name, current_descr->full_name(), protopath)); } if (field_descriptor->enum_type() != nullptr || field_descriptor->is_extension()) { return absl::FailedPreconditionError(absl::StrFormat( "unsupported type `%s` of the field `%s` in the protopath `%s`.", field_descriptor->type_name(), field_descriptor->name(), protopath)); } if (field_descriptor->is_repeated() && std::holds_alternative<proto::RegularFieldAccess>(access_info)) { access_info = proto::RepeatedFieldAccess{}; } fields.push_back(field_descriptor); access_infos.push_back(access_info); previous_field = field_descriptor; } bool is_size_protopath = std::holds_alternative<proto::RepeatedFieldSizeAccess>( access_infos.back()); if (previous_field->message_type() != nullptr && !is_size_protopath) { return absl::FailedPreconditionError(absl::StrCat( "unexpected type of the last field in protopath `%s`", protopath)); } return CreateReaderWithStringType(fields, std::move(access_infos), string_type); } } ProtoFieldsLoader::ProtoFieldsLoader(ProtoFieldsLoader::PrivateConstructorTag, const google::protobuf::Descriptor* descr, proto::StringFieldType string_type) : descr_(descr), string_type_(string_type) {} absl::StatusOr<std::unique_ptr<InputLoader<google::protobuf::Message>>> ProtoFieldsLoader::Create(const google::protobuf::Descriptor* descr, proto::StringFieldType string_type) { return std::make_unique<ProtoFieldsLoader>(PrivateConstructorTag{}, descr, string_type); } absl::Nullable<const QType*> ProtoFieldsLoader::GetQTypeOf( absl::string_view name) const { ASSIGN_OR_RETURN(const auto& reader, ParseProtopathToReader(descr_, name, string_type_), nullptr); return reader->qtype(); } std::vector<std::string> ProtoFieldsLoader::SuggestAvailableNames() const { return {}; } absl::StatusOr<BoundInputLoader<google::protobuf::Message>> ProtoFieldsLoader::BindImpl( const absl::flat_hash_map<std::string, TypedSlot>& output_slots) const { std::vector<ProtoTypeReader::BoundReadFn> readers; for (const auto& [name, slot] : output_slots) { ASSIGN_OR_RETURN(const auto& reader, ParseProtopathToReader(descr_, name, string_type_)); if (reader->qtype() != slot.GetType()) { return absl::FailedPreconditionError( absl::StrFormat("invalid type for slot %s: expected %s, got %s", name, slot.GetType()->name(), reader->qtype()->name())); } ASSIGN_OR_RETURN(auto read_fn, reader->BindReadFn(slot)); readers.push_back(read_fn); } return BoundInputLoader<google::protobuf::Message>( [descr_(this->descr_), readers_(std::move(readers))]( const google::protobuf::Message& m, FramePtr frame, RawBufferFactory*) -> absl::Status { if (descr_ != m.GetDescriptor()) { return absl::FailedPreconditionError( "message must have the same descriptor as provided during " "construction of ProtoFieldsLoader"); } for (const auto& r : readers_) { r(m, frame); } return absl::OkStatus(); }); } }
#include "arolla/io/proto/proto_input_loader.h" #include <memory> #include <optional> #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "google/protobuf/message.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/io/input_loader.h" #include "arolla/io/proto_types/types.h" #include "arolla/io/testing/matchers.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/naming/table.h" #include "arolla/proto/testing/test.pb.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" namespace arolla { namespace { using ::arolla::testing::InputLoaderSupports; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::IsNull; template <typename T> class ProtoLoaderTest : public ::testing::Test { public: using StringType = T; }; using StringTypes = ::testing::Types<Text, Bytes>; TYPED_TEST_SUITE(ProtoLoaderTest, StringTypes); TYPED_TEST(ProtoLoaderTest, LoadScalars) { using StringType = TypeParam; proto::StringFieldType string_type = std::is_same_v<StringType, Text> ? proto::StringFieldType::kText : proto::StringFieldType::kBytes; ASSERT_OK_AND_ASSIGN( auto input_loader_ptr, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor(), string_type)); const InputLoader<google::protobuf::Message>& input_loader = *input_loader_ptr; using OInt = ::arolla::OptionalValue<int>; using OBytes = ::arolla::OptionalValue<Bytes>; using OText = ::arolla::OptionalValue<StringType>; auto oi32 = GetQType<OInt>(); auto obytes = GetQType<OBytes>(); auto otxt = GetQType<OText>(); std::string x_def_name(naming::TablePath().Column("x").FullName()); std::string inner_a_def_name( naming::TablePath("inner").Column("a").FullName()); std::string inner_inner2_z_def_name( naming::TablePath("inner").Child("inner2").Column("z").FullName()); std::string str_def_name(naming::TablePath().Column("str").FullName()); std::string raw_bytes_def_name( naming::TablePath().Column("raw_bytes").FullName()); EXPECT_THAT(input_loader, InputLoaderSupports({{x_def_name, oi32}, {inner_a_def_name, oi32}, {inner_inner2_z_def_name, oi32}, {str_def_name, otxt}, {raw_bytes_def_name, obytes}})); FrameLayout::Builder layout_builder; auto x_def_slot = layout_builder.AddSlot<OInt>(); auto inner_a_def_slot = layout_builder.AddSlot<OInt>(); auto inner_inner2_z_def_slot = layout_builder.AddSlot<OInt>(); auto str_def_slot = layout_builder.AddSlot<OText>(); auto raw_bytes_def_slot = layout_builder.AddSlot<OBytes>(); ASSERT_OK_AND_ASSIGN( auto bound_input_loader, input_loader.Bind({ {x_def_name, TypedSlot::FromSlot(x_def_slot)}, {inner_a_def_name, TypedSlot::FromSlot(inner_a_def_slot)}, {inner_inner2_z_def_name, TypedSlot::FromSlot(inner_inner2_z_def_slot)}, {str_def_name, TypedSlot::FromSlot(str_def_slot)}, {raw_bytes_def_name, TypedSlot::FromSlot(raw_bytes_def_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); FramePtr frame = alloc.frame(); ::testing_namespace::Root r; r.set_x(19); r.set_str("3"); r.set_raw_bytes("37"); r.mutable_inner()->set_a(57); r.mutable_inner()->mutable_inner2()->set_z(2); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_EQ(frame.Get(x_def_slot), 19); EXPECT_EQ(frame.Get(inner_a_def_slot), 57); EXPECT_EQ(frame.Get(inner_inner2_z_def_slot), 2); EXPECT_EQ(frame.Get(str_def_slot), StringType("3")); EXPECT_EQ(frame.Get(raw_bytes_def_slot), arolla::Bytes("37")); r.clear_x(); r.clear_str(); r.clear_inner(); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_EQ(frame.Get(x_def_slot), std::nullopt); EXPECT_EQ(frame.Get(inner_a_def_slot), std::nullopt); EXPECT_EQ(frame.Get(inner_inner2_z_def_slot), std::nullopt); EXPECT_EQ(frame.Get(str_def_slot), std::nullopt); } TEST(ProtoFieldsLoaderTest, ProtopathIndexAccess) { ASSERT_OK_AND_ASSIGN( auto input_loader, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor())); using oint = ::arolla::OptionalValue<int>; auto oi32 = GetQType<oint>(); std::string ys_def_name( naming::TablePath().Column(naming::ArrayAccess("ys", 0)).FullName()); std::string inners_a_def_name(naming::TablePath() .Child(naming::ArrayAccess("inners", 0)) .Column("a") .FullName()); std::string inners_as_def_name(naming::TablePath() .Child(naming::ArrayAccess("inners", 1)) .Column(naming::ArrayAccess("as", 0)) .FullName()); EXPECT_THAT(input_loader, InputLoaderSupports({{ys_def_name, oi32}, {inners_a_def_name, oi32}, {inners_as_def_name, oi32}})); FrameLayout::Builder layout_builder; auto ys_def_slot = layout_builder.AddSlot<oint>(); auto inners_a_def_slot = layout_builder.AddSlot<oint>(); auto inners_as_def_slot = layout_builder.AddSlot<oint>(); ASSERT_OK_AND_ASSIGN( auto bound_input_loader, input_loader->Bind({ {ys_def_name, TypedSlot::FromSlot(ys_def_slot)}, {inners_a_def_name, TypedSlot::FromSlot(inners_a_def_slot)}, {inners_as_def_name, TypedSlot::FromSlot(inners_as_def_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); FramePtr frame = alloc.frame(); ::testing_namespace::Root r; r.add_ys(19); r.add_inners()->set_a(17); r.add_inners()->add_as(57); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_EQ(frame.Get(ys_def_slot), 19); EXPECT_EQ(frame.Get(inners_a_def_slot), 17); EXPECT_EQ(frame.Get(inners_as_def_slot), 57); r.clear_ys(); r.clear_inners(); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_EQ(frame.Get(ys_def_slot), std::nullopt); EXPECT_EQ(frame.Get(inners_a_def_slot), std::nullopt); EXPECT_EQ(frame.Get(inners_as_def_slot), std::nullopt); } TEST(ProtoFieldsLoaderTest, ProtopathRepeatedAccess) { ASSERT_OK_AND_ASSIGN( auto input_loader, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor())); using OInt = ::arolla::OptionalValue<int>; using DAInt = arolla::DenseArray<int>; auto dai32 = GetDenseArrayQType<int>(); std::string ys_def_name(naming::TablePath().Column("ys").FullName()); std::string inners_a_def_name( naming::TablePath().Child("inners").Column("a").FullName()); std::string inners_as_def_name( naming::TablePath().Child("inners").Column("as").FullName()); EXPECT_THAT(input_loader, InputLoaderSupports({{ys_def_name, dai32}, {inners_a_def_name, dai32}, {inners_as_def_name, dai32}})); FrameLayout::Builder layout_builder; auto ys_def_slot = layout_builder.AddSlot<DAInt>(); auto inners_a_def_slot = layout_builder.AddSlot<DAInt>(); auto inners_as_def_slot = layout_builder.AddSlot<DAInt>(); ASSERT_OK_AND_ASSIGN( auto bound_input_loader, input_loader->Bind({ {ys_def_name, TypedSlot::FromSlot(ys_def_slot)}, {inners_a_def_name, TypedSlot::FromSlot(inners_a_def_slot)}, {inners_as_def_name, TypedSlot::FromSlot(inners_as_def_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); FramePtr frame = alloc.frame(); ::testing_namespace::Root r; r.add_ys(19); r.add_ys(3); auto inners_0 = r.add_inners(); inners_0->set_a(17); inners_0->add_as(57); inners_0->add_as(37); r.add_inners(); auto inners_2 = r.add_inners(); inners_2->set_a(3); inners_2->add_as(17); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(ys_def_slot), ElementsAre(OInt{19}, OInt{3})); EXPECT_THAT(frame.Get(inners_a_def_slot), ElementsAre(OInt{17}, std::nullopt, OInt{3})); EXPECT_THAT(frame.Get(inners_as_def_slot), ElementsAre(OInt{57}, OInt{37}, OInt{17})); r.clear_ys(); r.clear_inners(); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(ys_def_slot), IsEmpty()); EXPECT_THAT(frame.Get(inners_a_def_slot), IsEmpty()); EXPECT_THAT(frame.Get(inners_as_def_slot), IsEmpty()); } TEST(SizeAccessLoaderTest, ProtopathRepeatedSizeAccess) { ASSERT_OK_AND_ASSIGN( auto input_loader, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor())); using Size = proto::arolla_size_t; using VSize = ::arolla::DenseArray<Size>; auto root_size = GetQType<DenseArrayShape>(); auto v_size = GetDenseArrayQType<Size>(); std::string ys_size_name(naming::TablePath().Size("ys").FullName()); std::string inners_size_name(naming::TablePath().Size("inners").FullName()); std::string inners_as_size_name( naming::TablePath().Child("inners").Size("as").FullName()); EXPECT_THAT(*input_loader, InputLoaderSupports({{ys_size_name, root_size}, {inners_size_name, root_size}, {inners_as_size_name, v_size}})); FrameLayout::Builder layout_builder; auto ys_size_slot = layout_builder.AddSlot<DenseArrayShape>(); auto inners_size_slot = layout_builder.AddSlot<DenseArrayShape>(); auto inners_as_size_slot = layout_builder.AddSlot<VSize>(); ASSERT_OK_AND_ASSIGN( auto bound_input_loader, input_loader->Bind({ {ys_size_name, TypedSlot::FromSlot(ys_size_slot)}, {inners_size_name, TypedSlot::FromSlot(inners_size_slot)}, {inners_as_size_name, TypedSlot::FromSlot(inners_as_size_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); FramePtr frame = alloc.frame(); ::testing_namespace::Root r; r.add_ys(19); r.add_ys(3); auto inners_0 = r.add_inners(); inners_0->add_as(57); inners_0->add_as(37); r.add_inners(); auto inners_2 = r.add_inners(); inners_2->add_as(17); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(ys_size_slot), Eq(DenseArrayShape{.size = 2})); EXPECT_THAT(frame.Get(inners_size_slot), Eq(DenseArrayShape{.size = 3})); EXPECT_THAT(frame.Get(inners_as_size_slot), ElementsAre(2, 0, 1)); r.clear_ys(); r.clear_inners(); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(ys_size_slot), Eq(DenseArrayShape{.size = 0})); EXPECT_THAT(frame.Get(inners_size_slot), Eq(DenseArrayShape{.size = 0})); EXPECT_THAT(frame.Get(inners_as_size_slot), IsEmpty()); } TYPED_TEST(ProtoLoaderTest, LoadDenseArrays) { using StringType = TypeParam; proto::StringFieldType string_type = std::is_same_v<StringType, Text> ? proto::StringFieldType::kText : proto::StringFieldType::kBytes; ASSERT_OK_AND_ASSIGN( auto input_loader_ptr, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor(), string_type)); const InputLoader<google::protobuf::Message>& input_loader = *input_loader_ptr; using OText = ::arolla::OptionalValue<StringType>; using OBytes = ::arolla::OptionalValue<Bytes>; using DAText = ::arolla::DenseArray<StringType>; using DABytes = ::arolla::DenseArray<Bytes>; std::string str_name(naming::TablePath().Column("repeated_str").FullName()); std::string bytes_name( naming::TablePath().Column("repeated_raw_bytes").FullName()); EXPECT_THAT(input_loader, InputLoaderSupports({{str_name, GetQType<DAText>()}, {bytes_name, GetQType<DABytes>()}})); FrameLayout::Builder layout_builder; auto str_slot = layout_builder.AddSlot<DAText>(); auto bytes_slot = layout_builder.AddSlot<DABytes>(); ASSERT_OK_AND_ASSIGN(auto bound_input_loader, input_loader.Bind({ {str_name, TypedSlot::FromSlot(str_slot)}, {bytes_name, TypedSlot::FromSlot(bytes_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); FramePtr frame = alloc.frame(); ::testing_namespace::Root r; *r.add_repeated_str() = "19"; *r.add_repeated_str() = "3"; *r.add_repeated_raw_bytes() = "3"; *r.add_repeated_raw_bytes() = "19"; ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(str_slot), ElementsAre(OText{StringType{"19"}}, OText{StringType{"3"}})); EXPECT_THAT(frame.Get(bytes_slot), ElementsAre(OBytes{Bytes{"3"}}, OBytes{Bytes{"19"}})); r.clear_repeated_str(); r.clear_repeated_raw_bytes(); ASSERT_OK(bound_input_loader(r, frame)); EXPECT_THAT(frame.Get(str_slot), IsEmpty()); EXPECT_THAT(frame.Get(bytes_slot), IsEmpty()); } TEST(SizeAccessErrorsLoaderTest, CreateFromProtopathsErrors) { ASSERT_OK_AND_ASSIGN( auto input_loader_ptr, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor())); EXPECT_THAT(input_loader_ptr->GetQTypeOf(""), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("x"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/i_am_not_here"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/x[:]"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/x[0]"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/x/y"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/ys/x"), IsNull()); for (auto ppath : {"/ys[]", "/ys[-1]", "/ys[a]", "/ys[0x0]", "/ys[\"0\"]", "/ys[00]", "/ys[ 0 ]"}) { EXPECT_THAT(input_loader_ptr->GetQTypeOf(ppath), IsNull()) << "ppath=" << ppath; } } TEST(SizeAccessErrorsLoaderTest, CreateFromSizeProtopathsErrors) { ASSERT_OK_AND_ASSIGN( auto input_loader_ptr, ProtoFieldsLoader::Create(::testing_namespace::Root::descriptor())); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/i_am_not_here/@size"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/@size"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/x/@size"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/ys[0]/@size"), IsNull()); EXPECT_THAT(input_loader_ptr->GetQTypeOf("/inners/@size/a"), IsNull()); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/proto/proto_input_loader.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/proto/proto_input_loader_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
5c088239-3540-4667-9d39-2d5bbb9476af
cpp
google/quiche
quic_time
quiche/quic/core/quic_time.cc
quiche/quic/core/quic_time_test.cc
#include "quiche/quic/core/quic_time.h" #include <cinttypes> #include <cstdlib> #include <limits> #include <string> #include "absl/strings/str_cat.h" namespace quic { std::string QuicTime::Delta::ToDebuggingValue() const { constexpr int64_t kMillisecondInMicroseconds = 1000; constexpr int64_t kSecondInMicroseconds = 1000 * kMillisecondInMicroseconds; int64_t absolute_value = std::abs(time_offset_); if (absolute_value >= kSecondInMicroseconds && absolute_value % kSecondInMicroseconds == 0) { return absl::StrCat(time_offset_ / kSecondInMicroseconds, "s"); } if (absolute_value >= kMillisecondInMicroseconds && absolute_value % kMillisecondInMicroseconds == 0) { return absl::StrCat(time_offset_ / kMillisecondInMicroseconds, "ms"); } return absl::StrCat(time_offset_, "us"); } uint64_t QuicWallTime::ToUNIXSeconds() const { return microseconds_ / 1000000; } uint64_t QuicWallTime::ToUNIXMicroseconds() const { return microseconds_; } bool QuicWallTime::IsAfter(QuicWallTime other) const { return microseconds_ > other.microseconds_; } bool QuicWallTime::IsBefore(QuicWallTime other) const { return microseconds_ < other.microseconds_; } bool QuicWallTime::IsZero() const { return microseconds_ == 0; } QuicTime::Delta QuicWallTime::AbsoluteDifference(QuicWallTime other) const { uint64_t d; if (microseconds_ > other.microseconds_) { d = microseconds_ - other.microseconds_; } else { d = other.microseconds_ - microseconds_; } if (d > static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) { d = std::numeric_limits<int64_t>::max(); } return QuicTime::Delta::FromMicroseconds(d); } QuicWallTime QuicWallTime::Add(QuicTime::Delta delta) const { uint64_t microseconds = microseconds_ + delta.ToMicroseconds(); if (microseconds < microseconds_) { microseconds = std::numeric_limits<uint64_t>::max(); } return QuicWallTime(microseconds); } QuicWallTime QuicWallTime::Subtract(QuicTime::Delta delta) const { uint64_t microseconds = microseconds_ - delta.ToMicroseconds(); if (microseconds > microseconds_) { microseconds = 0; } return QuicWallTime(microseconds); } }
#include "quiche/quic/core/quic_time.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { class QuicTimeDeltaTest : public QuicTest {}; TEST_F(QuicTimeDeltaTest, Zero) { EXPECT_TRUE(QuicTime::Delta::Zero().IsZero()); EXPECT_FALSE(QuicTime::Delta::Zero().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::FromMilliseconds(1).IsZero()); } TEST_F(QuicTimeDeltaTest, Infinite) { EXPECT_TRUE(QuicTime::Delta::Infinite().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::Zero().IsInfinite()); EXPECT_FALSE(QuicTime::Delta::FromMilliseconds(1).IsInfinite()); } TEST_F(QuicTimeDeltaTest, FromTo) { EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), QuicTime::Delta::FromMicroseconds(1000)); EXPECT_EQ(QuicTime::Delta::FromSeconds(1), QuicTime::Delta::FromMilliseconds(1000)); EXPECT_EQ(QuicTime::Delta::FromSeconds(1), QuicTime::Delta::FromMicroseconds(1000000)); EXPECT_EQ(1, QuicTime::Delta::FromMicroseconds(1000).ToMilliseconds()); EXPECT_EQ(2, QuicTime::Delta::FromMilliseconds(2000).ToSeconds()); EXPECT_EQ(1000, QuicTime::Delta::FromMilliseconds(1).ToMicroseconds()); EXPECT_EQ(1, QuicTime::Delta::FromMicroseconds(1000).ToMilliseconds()); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(2000).ToMicroseconds(), QuicTime::Delta::FromSeconds(2).ToMicroseconds()); } TEST_F(QuicTimeDeltaTest, Add) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2000), QuicTime::Delta::Zero() + QuicTime::Delta::FromMilliseconds(2)); } TEST_F(QuicTimeDeltaTest, Subtract) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1000), QuicTime::Delta::FromMilliseconds(2) - QuicTime::Delta::FromMilliseconds(1)); } TEST_F(QuicTimeDeltaTest, Multiply) { int i = 2; EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), QuicTime::Delta::FromMilliseconds(2) * i); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), i * QuicTime::Delta::FromMilliseconds(2)); double d = 2; EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), QuicTime::Delta::FromMilliseconds(2) * d); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(4000), d * QuicTime::Delta::FromMilliseconds(2)); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(5), QuicTime::Delta::FromMicroseconds(9) * 0.5); EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), QuicTime::Delta::FromMicroseconds(12) * 0.2); } TEST_F(QuicTimeDeltaTest, Max) { EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2000), std::max(QuicTime::Delta::FromMicroseconds(1000), QuicTime::Delta::FromMicroseconds(2000))); } TEST_F(QuicTimeDeltaTest, NotEqual) { EXPECT_TRUE(QuicTime::Delta::FromSeconds(0) != QuicTime::Delta::FromSeconds(1)); EXPECT_FALSE(QuicTime::Delta::FromSeconds(0) != QuicTime::Delta::FromSeconds(0)); } TEST_F(QuicTimeDeltaTest, DebuggingValue) { const QuicTime::Delta one_us = QuicTime::Delta::FromMicroseconds(1); const QuicTime::Delta one_ms = QuicTime::Delta::FromMilliseconds(1); const QuicTime::Delta one_s = QuicTime::Delta::FromSeconds(1); EXPECT_EQ("1s", one_s.ToDebuggingValue()); EXPECT_EQ("3s", (3 * one_s).ToDebuggingValue()); EXPECT_EQ("1ms", one_ms.ToDebuggingValue()); EXPECT_EQ("3ms", (3 * one_ms).ToDebuggingValue()); EXPECT_EQ("1us", one_us.ToDebuggingValue()); EXPECT_EQ("3us", (3 * one_us).ToDebuggingValue()); EXPECT_EQ("3001us", (3 * one_ms + one_us).ToDebuggingValue()); EXPECT_EQ("3001ms", (3 * one_s + one_ms).ToDebuggingValue()); EXPECT_EQ("3000001us", (3 * one_s + one_us).ToDebuggingValue()); } class QuicTimeTest : public QuicTest { protected: MockClock clock_; }; TEST_F(QuicTimeTest, Initialized) { EXPECT_FALSE(QuicTime::Zero().IsInitialized()); EXPECT_TRUE((QuicTime::Zero() + QuicTime::Delta::FromMicroseconds(1)) .IsInitialized()); } TEST_F(QuicTimeTest, CopyConstruct) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1234); EXPECT_NE(time_1, QuicTime(QuicTime::Zero())); EXPECT_EQ(time_1, QuicTime(time_1)); } TEST_F(QuicTimeTest, CopyAssignment) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1234); QuicTime time_2 = QuicTime::Zero(); EXPECT_NE(time_1, time_2); time_2 = time_1; EXPECT_EQ(time_1, time_2); } TEST_F(QuicTimeTest, Add) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); QuicTime::Delta diff = time_2 - time_1; EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), diff); EXPECT_EQ(1000, diff.ToMicroseconds()); EXPECT_EQ(1, diff.ToMilliseconds()); } TEST_F(QuicTimeTest, Subtract) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), time_2 - time_1); } TEST_F(QuicTimeTest, SubtractDelta) { QuicTime time = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1), time - QuicTime::Delta::FromMilliseconds(1)); } TEST_F(QuicTimeTest, Max) { QuicTime time_1 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1); QuicTime time_2 = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_EQ(time_2, std::max(time_1, time_2)); } TEST_F(QuicTimeTest, MockClock) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); QuicTime now = clock_.ApproximateNow(); QuicTime time = QuicTime::Zero() + QuicTime::Delta::FromMicroseconds(1000); EXPECT_EQ(now, time); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); now = clock_.ApproximateNow(); EXPECT_NE(now, time); time = time + QuicTime::Delta::FromMilliseconds(1); EXPECT_EQ(now, time); } TEST_F(QuicTimeTest, LE) { const QuicTime zero = QuicTime::Zero(); const QuicTime one = zero + QuicTime::Delta::FromSeconds(1); EXPECT_TRUE(zero <= zero); EXPECT_TRUE(zero <= one); EXPECT_TRUE(one <= one); EXPECT_FALSE(one <= zero); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_time.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_time_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
4e13516c-178e-4cf2-b24e-2d400d9d8e92
cpp
tensorflow/tensorflow
sparse_dense_binary_op_shared
tensorflow/core/kernels/sparse_dense_binary_op_shared.cc
tensorflow/core/kernels/sparse_dense_binary_op_shared_test.cc
#define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/cwise_ops.h" #include "tensorflow/core/kernels/cwise_ops_common.h" #include "tensorflow/core/util/bcast.h" using Eigen::TensorRef; using tensorflow::gtl::ArraySlice; namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; template <typename Device, typename T, typename Functor> class SparseDenseBinaryOpShared : public OpKernel { public: explicit SparseDenseBinaryOpShared(OpKernelConstruction *ctx) : OpKernel(ctx) {} void Compute(OpKernelContext *ctx) override { const Tensor *indices_t, *values_t, *shape_t, *dense_t; OP_REQUIRES_OK(ctx, ctx->input("sp_indices", &indices_t)); OP_REQUIRES_OK(ctx, ctx->input("sp_values", &values_t)); OP_REQUIRES_OK(ctx, ctx->input("sp_shape", &shape_t)); OP_REQUIRES_OK(ctx, ctx->input("dense", &dense_t)); OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(indices_t->shape()), errors::InvalidArgument( "Input sp_indices should be a matrix but received shape: ", indices_t->shape().DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(values_t->shape()) && TensorShapeUtils::IsVector(shape_t->shape()), errors::InvalidArgument( "Inputs sp_values and sp_shape should be vectors " "but received shapes: ", values_t->shape().DebugString(), " and ", shape_t->shape().DebugString())); OP_REQUIRES( ctx, TensorShapeUtils::IsVector(shape_t->shape()), errors::InvalidArgument("Input sp_shape must be a vector. Got: ", shape_t->shape().DebugString())); OP_REQUIRES( ctx, values_t->dim_size(0) == indices_t->dim_size(0), errors::InvalidArgument( "The first dimension of values and indices should match. (", values_t->dim_size(0), " vs. ", indices_t->dim_size(0), ")")); OP_REQUIRES( ctx, shape_t->shape().dim_size(0) == indices_t->shape().dim_size(1), errors::InvalidArgument( "Number of dimensions must match second dimension of indices. ", "Got ", shape_t->shape().dim_size(0), " dimensions, indices shape: ", indices_t->shape().DebugString())); OP_REQUIRES(ctx, shape_t->NumElements() > 0, errors::InvalidArgument( "The shape argument requires at least one element.")); const auto indices_mat = indices_t->matrix<int64_t>(); const auto shape_vec = shape_t->vec<int64_t>(); TensorShape lhs_shape; OP_REQUIRES_OK(ctx, TensorShape::BuildTensorShape(shape_vec, &lhs_shape)); const auto lhs_dims = BCast::FromShape(lhs_shape); const auto rhs_dims = BCast::FromShape(dense_t->shape()); BCast b(lhs_dims, rhs_dims, false); auto VecGreaterEq = [](absl::Span<const int64_t> lhs, absl::Span<const int64_t> rhs) { if (lhs.size() < rhs.size()) return false; for (size_t i = 0; i < rhs.size(); ++i) { if (lhs[lhs.size() - 1 - i] < rhs[rhs.size() - 1 - i]) return false; } return true; }; OP_REQUIRES(ctx, VecGreaterEq(lhs_dims, rhs_dims) && b.IsValid(), errors::InvalidArgument( "SparseDenseBinaryOpShared broadcasts dense to sparse " "only; got incompatible shapes: [", absl::StrJoin(lhs_dims, ","), "] vs. [", absl::StrJoin(rhs_dims, ","), "]")); Tensor *output_values = nullptr; Tensor dense_gathered; const int64_t nnz = indices_t->dim_size(0); OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({nnz}), &output_values)); OP_REQUIRES_OK( ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({nnz}), &dense_gathered)); bool op_is_div = false; if (absl::StrContains(ctx->op_kernel().type_string_view(), "Div")) { op_is_div = true; } auto dense_gathered_flat = dense_gathered.flat<T>(); const int ndims = lhs_dims.size(); switch (ndims) { #define CASE(NDIM) \ case NDIM: { \ TensorRef<Eigen::Tensor<const T, NDIM, Eigen::RowMajor>> rhs_ref = \ dense_t->shaped<T, NDIM>(b.y_reshape()) \ .broadcast(BCast::ToIndexArray<NDIM>(b.y_bcast())); \ Eigen::array<Eigen::DenseIndex, NDIM> idx; \ bool indices_valid = true; \ for (int i = 0; i < nnz; ++i) { \ for (int d = 0; d < NDIM; ++d) { \ idx[d] = internal::SubtleMustCopy(indices_mat(i, d)); \ if (!FastBoundsCheck(idx[d], rhs_ref.dimension(d))) { \ indices_valid = false; \ } \ } \ OP_REQUIRES( \ ctx, indices_valid, \ errors::InvalidArgument("Provided indices are out-of-bounds w.r.t. " \ "dense side with broadcasted shape")); \ dense_gathered_flat(i) = rhs_ref.coeff(idx); \ if (op_is_div) { \ OP_REQUIRES(ctx, dense_gathered_flat(i) != T{0}, \ errors::InvalidArgument( \ "SparseDenseCwiseDiv cannot divide by zero," \ "but input dense tensor contains zero ")); \ } \ } \ break; \ } CASE(1); CASE(2); CASE(3); CASE(4); CASE(5); default: OP_REQUIRES( ctx, false, errors::InvalidArgument("Only tensors with ranks between 1 and 5 " "are currently supported. Tensor rank: ", ndims)); #undef CASE } output_values->flat<T>().device(ctx->eigen_device<Device>()) = values_t->flat<T>().binaryExpr(dense_gathered_flat, typename Functor::func()); } }; #define REGISTER_KERNELS(T) \ REGISTER_KERNEL_BUILDER( \ Name("SparseDenseCwiseMul").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ SparseDenseBinaryOpShared<CPUDevice, T, functor::mul<T>>) \ \ REGISTER_KERNEL_BUILDER( \ Name("SparseDenseCwiseDiv").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ SparseDenseBinaryOpShared<CPUDevice, T, functor::div<T>>) \ REGISTER_KERNEL_BUILDER( \ Name("SparseDenseCwiseAdd").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ SparseDenseBinaryOpShared<CPUDevice, T, functor::add<T>>) TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNELS); #undef REGISTER_KERNELS }
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { static void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } class SparseDenseCDivTest : public OpsTestBase { protected: template <typename T> void MakeOp() { DataType value_type = tensorflow::DataTypeToEnum<T>::value; TF_ASSERT_OK(NodeDefBuilder("cdiv", "SparseDenseCwiseDiv") .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Attr("T", value_type) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; class SparseDenseCMulTest : public OpsTestBase { protected: template <typename T> void MakeOp() { DataType value_type = tensorflow::DataTypeToEnum<T>::value; TF_ASSERT_OK(NodeDefBuilder("cmul", "SparseDenseCwiseMul") .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Attr("T", value_type) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SparseDenseCDivTest, DoNotBroadcastSparse_FewerDims) { MakeOp<float>(); AddInputFromArray<int64_t>(TensorShape({1, 1}), {0}); AddInputFromArray<float>(TensorShape({1}), {1618}); AddInputFromArray<int64_t>(TensorShape({1}), {1}); AddInputFromArray<float>(TensorShape({2, 1}), {17, 19}); ExpectHasSubstr(RunOpKernel().ToString(), "broadcasts dense to sparse only"); } TEST_F(SparseDenseCDivTest, DoNotBroadcastSparse_SameDims) { MakeOp<float>(); AddInputFromArray<int64_t>(TensorShape({1, 2}), {0, 0}); AddInputFromArray<float>(TensorShape({1}), {1618}); AddInputFromArray<int64_t>(TensorShape({2}), {1, 1}); AddInputFromArray<float>(TensorShape({2, 1}), {17, 19}); ExpectHasSubstr(RunOpKernel().ToString(), "broadcasts dense to sparse only"); } TEST_F(SparseDenseCDivTest, SameShape) { MakeOp<float>(); const auto indices_shape = TensorShape({4, 2}); std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; const absl::Span<const int64_t> indices(in); std::initializer_list<int64_t> sh{3, 2}; const absl::Span<const int64_t> shape(sh); Tensor dense(DT_FLOAT, TensorShape(shape)); auto dense_flat = dense.flat<float>(); dense_flat.setConstant(1.); AddInputFromArray<int64_t>(indices_shape, indices); AddInputFromArray<float>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<int64_t>(TensorShape({2}), shape); AddInputFromArray<float>(TensorShape(shape), dense_flat); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({4})); test::FillValues<float>(&expected, {1, 2, 3, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseDenseCDivTest, BroadcastDenseSameDims) { MakeOp<float>(); const auto indices_shape = TensorShape({4, 2}); std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; const absl::Span<const int64_t> indices(in); std::initializer_list<int64_t> sh{3, 2}; const absl::Span<const int64_t> shape(sh); Tensor dense(DT_FLOAT, TensorShape({3, 1})); auto dense_flat = dense.flat<float>(); dense_flat.setConstant(1.); AddInputFromArray<int64_t>(indices_shape, indices); AddInputFromArray<float>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<int64_t>(TensorShape({2}), shape); AddInputFromArray<float>(TensorShape({3, 1}), dense_flat); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({4})); test::FillValues<float>(&expected, {1, 2, 3, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseDenseCDivTest, BroadcastDenseFewerDims) { MakeOp<float>(); const auto indices_shape = TensorShape({4, 2}); std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; const absl::Span<const int64_t> indices(in); std::initializer_list<int64_t> sh{3, 2}; const absl::Span<const int64_t> shape(sh); Tensor dense(DT_FLOAT, TensorShape({2})); auto dense_flat = dense.flat<float>(); dense_flat.setConstant(1.); AddInputFromArray<int64_t>(indices_shape, indices); AddInputFromArray<float>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<int64_t>(TensorShape({2}), shape); AddInputFromArray<float>(TensorShape({2}), dense_flat); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({4})); test::FillValues<float>(&expected, {1, 2, 3, 4}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseDenseCMulTest, BroadcastDense) { MakeOp<float>(); const auto indices_shape = TensorShape({4, 2}); std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; const absl::Span<const int64_t> indices(in); std::initializer_list<int64_t> sh{3, 2}; const absl::Span<const int64_t> shape(sh); Tensor dense(DT_FLOAT, TensorShape({2})); auto dense_flat = dense.flat<float>(); dense_flat(0) = 0.5; dense_flat(1) = 0; AddInputFromArray<int64_t>(indices_shape, indices); AddInputFromArray<float>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<int64_t>(TensorShape({2}), shape); AddInputFromArray<float>(TensorShape({2}), dense_flat); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({4})); test::FillValues<float>(&expected, {0, 1, 1.5, 0}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } static Graph* SparseMatCMulDenseMat(Graph* g, Node* sp_indices, Node* sp_vals, Node* sp_shape, Node* dense) { Node* ret; TF_CHECK_OK( NodeBuilder(g->NewName("SparseDenseCwiseMul"), "SparseDenseCwiseMul") .Input(sp_indices) .Input(sp_vals) .Input(sp_shape) .Input(dense) .Finalize(g, &ret)); return g; } static Node* MakeTensor(Graph* g, int B, int M, int N) { Tensor data(DT_FLOAT, TensorShape({B, M, N})); data.flat<float>().setRandom(); return test::graph::Constant(g, data); } struct ST { Node* indices; Node* vals; Node* shape; }; static ST MakeSparseTensor(Graph* g, int B, int M, int N, int nnz_inner) { const int total_nnz = B * M * nnz_inner; const int kNumDims = 3; Tensor indices(DT_INT64, TensorShape({total_nnz, kNumDims})); Tensor vals(DT_FLOAT, TensorShape({total_nnz})); Tensor shape(DT_INT64, TensorShape({kNumDims})); vals.flat<float>().setRandom(); test::FillValues(&shape, absl::Span<const int64_t>({B, M, N})); auto indices_mat = indices.matrix<int64_t>(); int nnz_cnt = 0; std::unordered_set<int> picked; std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dist(0, N - 1); for (int i = 0; i < B; ++i) { for (int j = 0; j < M; ++j) { for (int k = 0; k < nnz_inner; ++k) { indices_mat(nnz_cnt, 0) = i; indices_mat(nnz_cnt, 1) = j; int inner = dist(gen); while (picked.count(inner) == 1) { inner = dist(gen); } picked.insert(inner); indices_mat(nnz_cnt, 2) = inner; ++nnz_cnt; } } } return ST{test::graph::Constant(g, indices), test::graph::Constant(g, vals), test::graph::Constant(g, shape)}; } #define BM_SparseMatCMulDenseMatArgs(N, NNZ_INNER) \ static void BM_SparseMatCMulDenseMat_##N##_##NNZ_INNER( \ ::testing::benchmark::State& state) { \ Graph* g = new Graph(OpRegistry::Global()); \ Node* dense = MakeTensor(g, 8, 4, N); \ ST sp = MakeSparseTensor(g, 8, 4, N, NNZ_INNER); \ \ test::Benchmark( \ "cpu", SparseMatCMulDenseMat(g, sp.indices, sp.vals, sp.shape, dense), \ false) \ .Run(state); \ state.SetItemsProcessed( \ static_cast<int64_t>(state.iterations() * 8 * 4 * N * 2)); \ } \ BENCHMARK(BM_SparseMatCMulDenseMat_##N##_##NNZ_INNER) BM_SparseMatCMulDenseMatArgs(1048576, 1); BM_SparseMatCMulDenseMatArgs(1048576, 8); BM_SparseMatCMulDenseMatArgs(1048576, 32); BM_SparseMatCMulDenseMatArgs(262144, 1); BM_SparseMatCMulDenseMatArgs(262144, 8); BM_SparseMatCMulDenseMatArgs(262144, 32); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_dense_binary_op_shared_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a43301bc-e07c-4b0a-982c-f19e66c6fd34
cpp
google/cel-cpp
type_check_issue
checker/type_check_issue.cc
checker/type_check_issue_test.cc
#include "checker/type_check_issue.h" #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "common/source.h" namespace cel { namespace { absl::string_view SeverityString(TypeCheckIssue::Severity severity) { switch (severity) { case TypeCheckIssue::Severity::kInformation: return "INFORMATION"; case TypeCheckIssue::Severity::kWarning: return "WARNING"; case TypeCheckIssue::Severity::kError: return "ERROR"; case TypeCheckIssue::Severity::kDeprecated: return "DEPRECATED"; default: return "SEVERITY_UNSPECIFIED"; } } } std::string TypeCheckIssue::ToDisplayString(const Source& source) const { return absl::StrCat( absl::StrFormat("%s: %s:%d:%d: %s", SeverityString(severity_), source.description(), location_.line, location_.column, message_), source.DisplayErrorLocation(location_)); } }
#include "checker/type_check_issue.h" #include "common/source.h" #include "internal/testing.h" namespace cel { namespace { TEST(TypeCheckIssueTest, DisplayString) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("test{\n\tfield1: 123\n}")); TypeCheckIssue issue = TypeCheckIssue::CreateError(2, 2, "test error"); EXPECT_EQ(issue.ToDisplayString(*source), "ERROR: <input>:2:2: test error\n" " | field1: 123\n" " | ..^"); } TEST(TypeCheckIssueTest, DisplayStringNoPosition) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("test{\n\tfield1: 123\n}")); TypeCheckIssue issue = TypeCheckIssue::CreateError(-1, -1, "test error"); EXPECT_EQ(issue.ToDisplayString(*source), "ERROR: <input>:-1:-1: test error"); } TEST(TypeCheckIssueTest, DisplayStringDeprecated) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("test{\n\tfield1: 123\n}")); TypeCheckIssue issue = TypeCheckIssue(TypeCheckIssue::Severity::kDeprecated, {-1, -1}, "test error 2"); EXPECT_EQ(issue.ToDisplayString(*source), "DEPRECATED: <input>:-1:-1: test error 2"); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/type_check_issue.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/type_check_issue_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e1211064-e34b-4b2f-a04e-4c5792219b55
cpp
google/tensorstore
str_cat
tensorstore/util/str_cat.h
tensorstore/util/str_cat_test.cc
#ifndef TENSORSTORE_UTIL_STR_CAT_H_ #define TENSORSTORE_UTIL_STR_CAT_H_ #include <cstddef> #include <ostream> #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "absl/strings/str_cat.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_strcat { template <typename... T, typename F> constexpr bool Requires(F) { return std::is_invocable_v<F, T...>; } template <typename T> auto ToAlphaNumOrString(const T& x); template <typename T> std::string StringifyUsingOstream(const T& x) { std::ostringstream ostr; ostr << x; return ostr.str(); } template <typename... T> std::string StringifyTuple(const std::tuple<T...>& x) { return std::apply( [](const auto&... item) { std::string result = "{"; size_t i = 0; (absl::StrAppend(&result, ToAlphaNumOrString(item), (++i == sizeof...(item) ? "}" : ", ")), ...); return result; }, x); } template <typename A, typename B> std::string StringifyPair(const std::pair<A, B>& x) { return absl::StrCat("{", ToAlphaNumOrString(x.first), ", ", ToAlphaNumOrString(x.second), "}"); } template <typename Iterator> std::string StringifyContainer(Iterator begin, Iterator end) { std::string result = "{"; if (begin != end) { absl::StrAppend(&result, ToAlphaNumOrString(*begin++)); } for (; begin != end; ++begin) { absl::StrAppend(&result, ", ", ToAlphaNumOrString(*begin)); } absl::StrAppend(&result, "}"); return result; } template <typename T> auto ToAlphaNumOrString(const T& x) { if constexpr (std::is_same_v<T, std::nullptr_t>) { return "null"; } else if constexpr (std::is_convertible_v<T, absl::AlphaNum> && !std::is_enum_v<T>) { return x; } else if constexpr (internal::IsOstreamable<T>) { return StringifyUsingOstream(x); } else if constexpr (Requires<const T>( [](auto&& v) -> decltype(StringifyPair(v)) {})) { return StringifyPair(x); } else if constexpr (Requires<const T>( [](auto&& v) -> decltype(StringifyTuple(v)) {})) { return StringifyTuple(x); } else if constexpr (Requires<const T>( [](auto&& v) -> decltype(v.begin(), v.end()) {})) { return StringifyContainer(x.begin(), x.end()); } else if constexpr (std::is_enum_v<T>) { using I = typename std::underlying_type<T>::type; return static_cast<I>(x); } else { return StringifyUsingOstream(x); } } } template <typename Element, std::ptrdiff_t N> std::enable_if_t<internal::IsOstreamable<Element>, std::ostream&> operator<<( std::ostream& os, ::tensorstore::span<Element, N> s) { os << "{"; std::ptrdiff_t size = s.size(); for (std::ptrdiff_t i = 0; i < size; ++i) { if (i != 0) os << ", "; os << s[i]; } return os << "}"; } template <typename... Arg> std::string StrCat(const Arg&... arg) { return absl::StrCat(internal_strcat::ToAlphaNumOrString(arg)...); } template <typename... Arg> void StrAppend(std::string* result, const Arg&... arg) { return absl::StrAppend(result, internal_strcat::ToAlphaNumOrString(arg)...); } } #endif
#include "tensorstore/util/str_cat.h" #include <complex> #include <map> #include <optional> #include <ostream> #include <sstream> #include <string> #include <tuple> #include <utility> #include <gtest/gtest.h> #include "tensorstore/util/span.h" namespace { using ::tensorstore::internal_strcat::StringifyUsingOstream; enum class OstreamableEnum { value = 0 }; enum class PlainEnum { value = 0 }; std::ostream& operator<<(std::ostream& os, OstreamableEnum e) { return os << "enum"; } TEST(ToStringUsingOstreamTest, Basic) { EXPECT_EQ("hello", StringifyUsingOstream("hello")); EXPECT_EQ("1", StringifyUsingOstream(1)); EXPECT_EQ("(1,2)", StringifyUsingOstream(std::complex<float>(1, 2))); } TEST(StrAppendTest, Basic) { std::string result = "X"; tensorstore::StrAppend(&result, "a", std::complex<float>(1, 2), 3); EXPECT_EQ("Xa(1,2)3", result); } TEST(StrCat, Basic) { EXPECT_EQ("a(1,2)3", tensorstore::StrCat("a", std::complex<float>(1, 2), 3)); char a = 'a'; EXPECT_EQ("a", tensorstore::StrCat(a)); } TEST(StrCat, Enum) { EXPECT_EQ("enum", tensorstore::StrCat(OstreamableEnum::value)); EXPECT_EQ("0", tensorstore::StrCat(PlainEnum::value)); } TEST(StrCat, Null) { EXPECT_EQ("null", tensorstore::StrCat(nullptr)); } TEST(StrCat, Tuple) { EXPECT_EQ("{1, 2, abc}", tensorstore::StrCat(std::make_tuple(1, 2.0, "abc"))); } TEST(StrCat, Pair) { EXPECT_EQ("{2, abc}", tensorstore::StrCat(std::make_pair(2.0, "abc"))); } TEST(StrCat, Container) { std::vector<int> x{1, 2, 3}; EXPECT_EQ("{1, 2, 3}", tensorstore::StrCat(x)); EXPECT_EQ("{1, 2, 3}", tensorstore::StrCat(tensorstore::span(x))); std::map<std::string, int> y{{"a", 1}, {"b", 2}}; EXPECT_EQ("{{a, 1}, {b, 2}}", tensorstore::StrCat(y)); } TEST(StrCat, Nested) { std::vector<std::pair<int, int>> x{{1, 2}, {2, 3}}; EXPECT_EQ("{{1, 2}, {2, 3}}", tensorstore::StrCat(x)); std::pair<std::pair<int, int>, std::pair<int, int>> y{{1, 2}, {2, 3}}; EXPECT_EQ("{{1, 2}, {2, 3}}", tensorstore::StrCat(y)); } TEST(SpanTest, Ostream) { std::ostringstream ostr; ostr << tensorstore::span({1, 2, 3}); EXPECT_EQ("{1, 2, 3}", ostr.str()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/str_cat.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/str_cat_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8af32f24-845c-498c-bf76-f9bf36338851
cpp
tensorflow/tensorflow
batch_dataset_op
tensorflow/core/kernels/data/batch_dataset_op.cc
tensorflow/core/kernels/data/batch_dataset_op_test.cc
#include "tensorflow/core/kernels/data/batch_dataset_op.h" #include <algorithm> #include <cstdlib> #include <functional> #include <optional> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/util/batch_util.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { constexpr const char* const BatchDatasetOp::kDatasetType; constexpr const char* const BatchDatasetOp::kInputDataset; constexpr const char* const BatchDatasetOp::kBatchSize; constexpr const char* const BatchDatasetOp::kDropRemainder; constexpr const char* const BatchDatasetOp::kParallelCopy; constexpr const char* const BatchDatasetOp::kOutputTypes; constexpr const char* const BatchDatasetOp::kOutputShapes; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kBatchDataset[] = "BatchDataset"; class BatchDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, int64_t batch_size, bool drop_remainder, bool parallel_copy, const DatasetBase* input, int op_version) : DatasetBase(DatasetContext(ctx)), batch_size_(batch_size), reserve_size_(drop_remainder ? batch_size : std::min<int64_t>(batch_size, 1 << 16)), drop_remainder_(drop_remainder), parallel_copy_(parallel_copy), input_(input), op_version_(op_version), traceme_metadata_( {{"batch_size", strings::Printf("%lld", static_cast<long long>(batch_size))}, {"drop_remainder", drop_remainder ? "true" : "false"}, {"parallel_copy", parallel_copy ? "true" : "false"}}) { input_->Ref(); const auto& input_shapes = input_->output_shapes(); output_shapes_.reserve(input_shapes.size()); for (const auto& input_shape : input_shapes) { if (drop_remainder_ || input_->Cardinality() == kInfiniteCardinality) { output_shapes_.emplace_back( PartialTensorShape({batch_size_}).Concatenate(input_shape)); } else { output_shapes_.emplace_back( PartialTensorShape({-1}).Concatenate(input_shape)); } } random_indexing_compatible_ = absl::OkStatus(); if (!drop_remainder_) { random_indexing_compatible_ = absl::FailedPreconditionError(absl::StrCat( type_string(), " does not support global shuffling with `drop_remainder=False`.")); } else if (input_ != nullptr) { random_indexing_compatible_ = input_->RandomIndexingCompatible(); } } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { name_utils::IteratorPrefixParams params; params.op_version = op_version_; return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix, params)}); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.op_version = op_version_; params.set_args(batch_size_); return name_utils::DatasetDebugString(kDatasetType, params); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t n = input_->Cardinality(options); if (n == kInfiniteCardinality || n == kUnknownCardinality) { return n; } return n / batch_size_ + (n % batch_size_ == 0 || drop_remainder_ ? 0 : 1); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { const int64 cardinality = Cardinality(); if (index < 0 || index >= cardinality) { return errors::OutOfRange("Index out of range [0, ", cardinality, "):", index); } int batch_start_index = batch_size_ * index; std::vector<std::vector<Tensor>> batch_elements; int input_cardinality = input_->Cardinality(); for (int i = batch_start_index; i < batch_start_index + batch_size_ && i < input_cardinality; ++i) { std::vector<Tensor> batch_element_tuple; TF_RETURN_IF_ERROR(input_->Get(ctx, i, &batch_element_tuple)); batch_elements.emplace_back(std::move(batch_element_tuple)); } TF_RETURN_IF_ERROR(CopyBatch(AnyContext(ctx), std::move(batch_elements), parallel_copy_, out_tensors)); return absl::OkStatus(); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* batch_size = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(batch_size_, &batch_size)); Node* drop_remainder = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(drop_remainder_, &drop_remainder)); AttrValue parallel_copy; b->BuildAttrValue(parallel_copy_, &parallel_copy); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, batch_size, drop_remainder}, {{kParallelCopy, parallel_copy}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { tsl::mutex_lock l(mu_); return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { std::vector<std::vector<Tensor>> batch_elements; { mutex_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } batch_elements.reserve(dataset()->reserve_size_); *end_of_sequence = false; IteratorContextWithIndexMapper ctx_with_index_mapper(ctx, this); for (int i = 0; i < dataset()->batch_size_ && !*end_of_sequence; ++i) { std::vector<Tensor> batch_element_tuple; TF_RETURN_IF_ERROR(input_impl_->GetNext(ctx_with_index_mapper.Get(), &batch_element_tuple, end_of_sequence)); if (!*end_of_sequence) { batch_elements.emplace_back(std::move(batch_element_tuple)); } else { input_impl_.reset(); } } ctx_with_index_mapper.MergeCheckpoint(); } if (batch_elements.empty()) { DCHECK(*end_of_sequence); return absl::OkStatus(); } if (dataset()->drop_remainder_ && batch_elements.size() < dataset()->batch_size_) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(CopyBatch(AnyContext(ctx), std::move(batch_elements), dataset()->parallel_copy_, out_tensors)); *end_of_sequence = false; return absl::OkStatus(); } IndexMapperFn GetIndexMapper( IndexMapperFn parent_index_mapper) const override { int64_t batch_size = dataset()->batch_size_; return [parent_index_mapper, batch_size](size_t element_position) -> absl::StatusOr<size_t> { size_t batch_element_position = element_position / batch_size; size_t input_element_offset = element_position % batch_size; TF_ASSIGN_OR_RETURN(size_t shuffled_element_position, parent_index_mapper(batch_element_position)); return shuffled_element_position * batch_size + input_element_offset; }; } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), dataset()->batch_size_); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (ctx->restored_element_count().has_value()) { IteratorContext::Params params(ctx); params.restored_element_count = *ctx->restored_element_count() * dataset()->batch_size_; IteratorContext ctx_copy(params); if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(&ctx_copy, reader, input_impl_)); ctx->MergeCheckpoint(ctx_copy.checkpoint()); } else { input_impl_.reset(); } return absl::OkStatus(); } if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return dataset()->traceme_metadata_; } private: mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); }; const int64_t batch_size_; const int64_t reserve_size_; const bool drop_remainder_; const bool parallel_copy_; const DatasetBase* const input_; const int op_version_; std::vector<PartialTensorShape> output_shapes_; absl::Status random_indexing_compatible_; const TraceMeMetadata traceme_metadata_; }; BatchDatasetOp::BatchDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), op_version_(ctx->def().op() == kBatchDataset ? 1 : 2) { if (ctx->HasAttr(kParallelCopy)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kParallelCopy, &parallel_copy_)); } } void BatchDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t batch_size = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kBatchSize, &batch_size)); OP_REQUIRES(ctx, batch_size > 0, errors::InvalidArgument("Batch size must be greater than zero.")); bool drop_remainder = false; if (op_version_ > 1) { OP_REQUIRES_OK( ctx, ParseScalarArgument<bool>(ctx, kDropRemainder, &drop_remainder)); } *output = new Dataset(ctx, batch_size, drop_remainder, parallel_copy_, input, op_version_); } namespace { REGISTER_KERNEL_BUILDER(Name("BatchDataset").Device(DEVICE_CPU), BatchDatasetOp); REGISTER_KERNEL_BUILDER(Name("BatchDatasetV2").Device(DEVICE_CPU), BatchDatasetOp); } } }
#include "tensorflow/core/kernels/data/batch_dataset_op.h" #include <string> #include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "batch_dataset"; class BatchDatasetOpTest : public DatasetOpsTestBase {}; BatchDatasetParams BatchDatasetParams1() { return BatchDatasetParams(RangeDatasetParams(0, 12, 1), 4, false, true, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams BatchDatasetParams2() { return BatchDatasetParams(RangeDatasetParams(0, 12, 1), 4, true, false, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams BatchDatasetParams3() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 3, false, false, {DT_INT64}, {PartialTensorShape({-1})}, kNodeName); } BatchDatasetParams BatchDatasetParams4() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 3, true, true, {DT_INT64}, {PartialTensorShape({3})}, kNodeName); } BatchDatasetParams BatchDatasetParams5() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 12, true, true, {DT_INT64}, {PartialTensorShape({12})}, kNodeName); } BatchDatasetParams BatchDatasetParams6() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), 12, false, true, {DT_INT64}, {PartialTensorShape({-1})}, kNodeName); } BatchDatasetParams BatchDatasetParams7() { return BatchDatasetParams(RangeDatasetParams(0, 0, 1), 4, false, false, {DT_INT64}, {PartialTensorShape({4})}, kNodeName); } BatchDatasetParams InvalidBatchSizeBatchDatasetParams() { return BatchDatasetParams(RangeDatasetParams(0, 10, 1), -1, false, false, {DT_INT64}, {PartialTensorShape({3})}, kNodeName); } std::vector<GetNextTestCase<BatchDatasetParams>> GetNextTestCases() { return {{BatchDatasetParams1(), CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams2(), CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams3(), {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8}), CreateTensor<int64_t>(TensorShape({1}), {9})}}, {BatchDatasetParams4(), CreateTensors<int64_t>(TensorShape({3}), {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}})}, {BatchDatasetParams5(), {}}, {BatchDatasetParams6(), CreateTensors<int64_t>(TensorShape({10}), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}})}, {BatchDatasetParams7(), {}}}; } ITERATOR_GET_NEXT_TEST_P(BatchDatasetOpTest, BatchDatasetParams, GetNextTestCases()) TEST_F(BatchDatasetOpTest, DatasetNodeName) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(batch_dataset_params.node_name())); } TEST_F(BatchDatasetOpTest, DatasetTypeString) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); name_utils::OpNameParams params; params.op_version = batch_dataset_params.op_version(); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(BatchDatasetOp::kDatasetType, params))); } TEST_F(BatchDatasetOpTest, DatasetOutputDtypes) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } std::vector<DatasetOutputShapesTestCase<BatchDatasetParams>> DatasetOutputShapesTestCases() { return {{BatchDatasetParams1(), {PartialTensorShape({4})}}, {BatchDatasetParams2(), {PartialTensorShape({4})}}, {BatchDatasetParams3(), {PartialTensorShape({-1})}}, {BatchDatasetParams4(), {PartialTensorShape({3})}}, {BatchDatasetParams5(), {PartialTensorShape({12})}}, {BatchDatasetParams6(), {PartialTensorShape({-1})}}, {BatchDatasetParams7(), {PartialTensorShape({4})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(BatchDatasetOpTest, BatchDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<BatchDatasetParams>> CardinalityTestCases() { return { {BatchDatasetParams1(), 3}, {BatchDatasetParams2(), 3}, {BatchDatasetParams3(), 4}, {BatchDatasetParams4(), 3}, {BatchDatasetParams5(), 0}, {BatchDatasetParams6(), 1}, {BatchDatasetParams7(), 0}}; } DATASET_CARDINALITY_TEST_P(BatchDatasetOpTest, BatchDatasetParams, CardinalityTestCases()) TEST_F(BatchDatasetOpTest, IteratorOutputDtypes) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } std::vector<IteratorOutputShapesTestCase<BatchDatasetParams>> IteratorOutputShapesTestCases() { return {{BatchDatasetParams1(), {PartialTensorShape({4})}}, {BatchDatasetParams2(), {PartialTensorShape({4})}}, {BatchDatasetParams3(), {PartialTensorShape({-1})}}, {BatchDatasetParams4(), {PartialTensorShape({3})}}, {BatchDatasetParams5(), {PartialTensorShape({12})}}, {BatchDatasetParams6(), {PartialTensorShape({-1})}}, {BatchDatasetParams7(), {PartialTensorShape({4})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(BatchDatasetOpTest, BatchDatasetParams, IteratorOutputShapesTestCases()) TEST_F(BatchDatasetOpTest, IteratorOutputPrefix) { auto batch_dataset_params = BatchDatasetParams1(); TF_ASSERT_OK(Initialize(batch_dataset_params)); name_utils::IteratorPrefixParams params; params.op_version = batch_dataset_params.op_version(); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( BatchDatasetOp::kDatasetType, batch_dataset_params.iterator_prefix(), params))); } std::vector<IteratorSaveAndRestoreTestCase<BatchDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{BatchDatasetParams1(), {0, 1, 5}, CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams2(), {0, 1, 5}, CreateTensors<int64_t>( TensorShape({4}), {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}})}, {BatchDatasetParams3(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8}), CreateTensor<int64_t>(TensorShape({1}), {9})}}, {BatchDatasetParams4(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({3}), {0, 1, 2}), CreateTensor<int64_t>(TensorShape({3}), {3, 4, 5}), CreateTensor<int64_t>(TensorShape({3}), {6, 7, 8})}}, {BatchDatasetParams5(), {0, 1, 5}, {}}, {BatchDatasetParams6(), {0, 1, 5}, {CreateTensor<int64_t>(TensorShape({10}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9})}}, {BatchDatasetParams7(), {0, 1, 5}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(BatchDatasetOpTest, BatchDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(BatchDatasetOpTest, InvalidBatchSize) { auto batch_dataset_params = InvalidBatchSizeBatchDatasetParams(); EXPECT_EQ(Initialize(batch_dataset_params).code(), absl::StatusCode::kInvalidArgument); } REGISTER_OP("BatchDatasetOpTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")); static void add_identity_nodes(Node* node, Graph& graph, std::vector<Node*>& identity_nodes) { for (int i = 0; i < node->num_outputs(); i++) { Node* new_node; std::string name = absl::StrCat("Identity", i); TF_EXPECT_OK(NodeBuilder(name, "Identity") .Attr("T", node->output_type(i)) .Input(node, i) .Finalize(&graph, &new_node)); identity_nodes.push_back(new_node); } } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } TEST(BatchDatsetOpTest, TypeInference) { Graph graph(OpRegistry::Global()); Node* input_dataset; Node* batch_size; Node* drop_remainder; Node* batch_dataset_v2; FullTypeDef input_dataset_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_RAGGED args { type_id: TFT_STRING } } } })pb", &input_dataset_t)); TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_dataset", "Const") .Attr("value", tensor_proto) .Attr("dtype", DT_VARIANT) .Finalize(&graph, &input_dataset)); (*input_dataset->mutable_def()->mutable_experimental_type()) = input_dataset_t; TF_EXPECT_OK(NodeBuilder("batch_size", "BatchDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &batch_size)); TF_EXPECT_OK(NodeBuilder("drop_remainder", "BatchDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_BOOL) .Finalize(&graph, &drop_remainder)); TF_EXPECT_OK(NodeBuilder("BatchDatasetV2", "BatchDatasetV2") .Attr("output_types", {DT_VARIANT}) .Attr("output_shapes", {TensorShape({1})}) .Input(input_dataset) .Input(batch_size) .Input(drop_remainder) .Finalize(&graph, &batch_dataset_v2)); std::vector<Node*> identity_nodes; add_identity_nodes(batch_dataset_v2, graph, identity_nodes); TF_EXPECT_OK(type_inference(graph)); EXPECT_TRUE(full_type::IsEqual(identity_nodes[0]->def().experimental_type(), input_dataset_t)) << "fulltype is\n" << identity_nodes[0]->def().experimental_type().DebugString() << "\nexpected\n" << input_dataset_t.DebugString(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/batch_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/batch_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b4f270fd-bf69-449f-b2f8-d9f027296279
cpp
tensorflow/tensorflow
value_inference
third_party/xla/xla/hlo/builder/value_inference.cc
third_party/xla/xla/tests/value_inference_test.cc
#include "xla/hlo/builder/value_inference.h" #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { Literal CreatePredLiteral(bool pred, const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; const auto& reference_shape_tuple_shapes = reference_shape.tuple_shapes(); sub_literals.reserve(reference_shape_tuple_shapes.size()); for (const Shape& shape : reference_shape_tuple_shapes) { sub_literals.emplace_back(CreatePredLiteral(pred, shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateR0(pred); } Literal literal = LiteralUtil::CreateR0(pred); Literal literal_broadcast = literal.Broadcast(ShapeUtil::ChangeElementType(reference_shape, PRED), {}) .value(); return literal_broadcast; } Literal CreateS64Literal(int64_t value, const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; const auto& reference_shape_tuple_shapes = reference_shape.tuple_shapes(); sub_literals.reserve(reference_shape_tuple_shapes.size()); for (const Shape& shape : reference_shape_tuple_shapes) { sub_literals.emplace_back(CreateS64Literal(value, shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateToken(); } Literal literal = LiteralUtil::CreateR0<int64_t>(value); return literal .Broadcast(ShapeUtil::ChangeElementType(reference_shape, S64), {}) .value(); } Literal CreateGarbageLiteral(const Shape& reference_shape) { if (reference_shape.IsTuple()) { std::vector<Literal> sub_literals; for (const Shape& shape : reference_shape.tuple_shapes()) { sub_literals.emplace_back(CreateGarbageLiteral(shape)); } return Literal::MoveIntoTuple(absl::MakeSpan(sub_literals)); } PrimitiveType element_type = reference_shape.element_type(); if (element_type == TOKEN) { return LiteralUtil::CreateToken(); } Literal literal = LiteralUtil::One(element_type); return literal.Broadcast(reference_shape, {}).value(); } struct HloProtoEvaluator { explicit HloProtoEvaluator(HloEvaluator& evaluator, HloInstructionProto inst) : evaluator(evaluator), inst(std::move(inst)), module("EmptyModuleForEvaluation", HloModuleConfig()) {} HloProtoEvaluator& WithComputation( std::unique_ptr<HloComputation> new_computation) { computation = new_computation.get(); computation->ClearUniqueIdInternal(); for (HloInstruction* inst : computation->instructions()) { inst->ClearUniqueIdInternal(); } module.AddEmbeddedComputation(std::move(new_computation)); return *this; } HloProtoEvaluator& WithPrimitiveType(PrimitiveType new_primitive_type) { primitive_type = new_primitive_type; return *this; } HloProtoEvaluator& WithOpCode(HloOpcode new_opcode) { opcode = new_opcode; return *this; } HloProtoEvaluator& WithOperands(absl::Span<Literal> operands) { this->operands = operands; return *this; } HloProtoEvaluator& WithSubshape(ShapeIndex shape_index) { this->shape_index = std::move(shape_index); return *this; } absl::StatusOr<Literal> Evaluate() { HloComputation::Builder builder("EmptyComputation"); absl::flat_hash_map<int64_t, HloInstruction*> operand_map; for (int64_t i = 0; i < inst.operand_ids_size(); ++i) { int64_t operand_handle = inst.operand_ids(i); std::unique_ptr<HloInstruction> operand = HloInstruction::CreateConstant(operands[i].Clone()); operand_map[operand_handle] = operand.get(); builder.AddInstruction(std::move(operand)); } if (primitive_type.has_value()) { *inst.mutable_shape() = ShapeUtil::ChangeElementType( Shape(inst.shape()), primitive_type.value()) .ToProto(); } if (opcode.has_value()) { *inst.mutable_opcode() = std::string(HloOpcodeString(opcode.value())); } absl::flat_hash_map<int64_t, HloComputation*> computation_map; if (inst.called_computation_ids_size() != 0) { TF_RET_CHECK(inst.called_computation_ids_size() == 1 && computation != nullptr) << inst.DebugString(); computation_map[inst.called_computation_ids(0)] = computation; } TF_ASSIGN_OR_RETURN( auto new_instruction, HloInstruction::CreateFromProto(inst, operand_map, computation_map)); new_instruction->ClearUniqueIdInternal(); builder.AddInstruction(std::move(new_instruction)); auto computation = builder.Build(); module.AddEntryComputation(std::move(computation)); if (shape_index.empty()) { return evaluator.Evaluate(module.entry_computation()->root_instruction()); } else { TF_ASSIGN_OR_RETURN( auto result, evaluator.Evaluate(module.entry_computation()->root_instruction())); return result.SubLiteral(this->shape_index); } } HloEvaluator& evaluator; HloInstructionProto inst; HloModule module; absl::Span<Literal> operands; ShapeIndex shape_index = {}; HloComputation* computation = nullptr; std::optional<PrimitiveType> primitive_type = std::nullopt; std::optional<HloOpcode> opcode = std::nullopt; }; enum PostorderDFSNodeType { kConstantValue = 0, kConstantUpperBound, kConstantLowerBound, kValueIsDynamic, kBoundIsDynamic, }; std::string PostorderDFSNodeTypeToString(PostorderDFSNodeType type) { switch (type) { case kConstantValue: return "kConstantValue"; case kConstantUpperBound: return "kConstantUpperBound"; case kConstantLowerBound: return "kConstantLowerBound"; case kValueIsDynamic: return "kValueIsDynamic"; case kBoundIsDynamic: return "kBoundIsDynamic"; } } struct InferenceContext { explicit InferenceContext(ShapeIndex shape_index, std::vector<int64_t> caller_operand_handles) : shape_index(std::move(shape_index)), caller_operand_handles(std::move(caller_operand_handles)) {} ShapeIndex shape_index; std::vector<int64_t> caller_operand_handles; }; struct PostorderDFSDep { explicit PostorderDFSDep(int64_t handle, PostorderDFSNodeType type, InferenceContext context, std::string annotation) : handle(handle), type(type), context(std::move(context)), annotation(std::move(annotation)) {} int64_t handle; PostorderDFSNodeType type; InferenceContext context; std::string annotation; }; using Visit = std::function<absl::StatusOr<Literal>(absl::Span<Literal>)>; using Visit0D = std::function<absl::StatusOr<Literal>()>; using Visit1D = std::function<absl::StatusOr<Literal>(Literal)>; using Visit2D = std::function<absl::StatusOr<Literal>(Literal, Literal)>; struct [[nodiscard]] PostorderDFSNode { PostorderDFSNode& AddDependency(int64_t handle, PostorderDFSNodeType type, InferenceContext context, std::string annotation = "") { dependencies.emplace_back(handle, type, std::move(context), std::move(annotation)); return *this; } PostorderDFSNode& AddVisit(const Visit& visit) { this->visit = visit; return *this; } PostorderDFSNode& AddVisit(const Visit0D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(); }; return *this; } PostorderDFSNode& AddVisit(const Visit1D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(std::move(literals[0])); }; return *this; } PostorderDFSNode& AddVisit(const Visit2D& visit) { this->visit = [visit](absl::Span<Literal> literals) { return visit(std::move(literals[0]), std::move(literals[1])); }; return *this; } std::vector<PostorderDFSDep> dependencies; Visit visit; }; using HandleToInstruction = std::function<absl::StatusOr<const HloInstructionProto*>(int64_t)>; using HandleToComputation = std::function<const HloComputationProto*(int64_t)>; struct PostorderDFSVisitor { PostorderDFSVisitor(HloEvaluator& evaluator, HandleToInstruction handle_to_instruction, HandleToComputation handle_to_computation) : evaluator(evaluator), handle_to_instruction(handle_to_instruction), handle_to_computation(handle_to_computation) {} absl::StatusOr<PostorderDFSNode> AnalyzeUpperBound(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeLowerBound(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeIsDynamic(int64_t handle, PostorderDFSNodeType type, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeConstant(int64_t handle, InferenceContext context); absl::StatusOr<PostorderDFSNode> AnalyzeConstantValueFallback( int64_t handle, PostorderDFSNodeType type, InferenceContext context); absl::StatusOr<Literal> PostOrderDFSVisit(int64_t handle, PostorderDFSNodeType type); bool IsValueEffectiveInteger(int64_t handle) { const HloInstructionProto* instr = handle_to_instruction(handle).value(); if (primitive_util::IsIntegralType(instr->shape().element_type())) { return true; } HloOpcode opcode = StringToHloOpcode(instr->opcode()).value(); if (opcode != HloOpcode::kConvert) { return false; } const HloInstructionProto* parent = handle_to_instruction(instr->operand_ids(0)).value(); if (primitive_util::IsIntegralType(parent->shape().element_type())) { return true; } return false; } bool IsInstructionOverLimit(const HloInstructionProto* proto, const InferenceContext& context) { auto subshape = std::make_unique<Shape>( ShapeUtil::GetSubshape(Shape(proto->shape()), context.shape_index)); if (subshape->IsArray() && ShapeUtil::ElementsIn(*subshape) > kLargeShapeElementLimit) { return true; } HloOpcode opcode = StringToHloOpcode(proto->opcode()).value(); for (int64_t operand_id : proto->operand_ids()) { const HloInstructionProto* operand = handle_to_instruction(operand_id).value(); auto operand_shape = std::make_unique<Shape>(operand->shape()); if (operand_shape->IsArray() && ShapeUtil::ElementsIn(*operand_shape) > kLargeShapeElementLimit && opcode != HloOpcode::kGetDimensionSize && opcode != HloOpcode::kSetDimensionSize) { return true; } } return false; } struct CacheKey { CacheKey(int64_t handle, InferenceContext context, PostorderDFSNodeType type) : handle(handle), context(context), type(type) {} int64_t handle; InferenceContext context; PostorderDFSNodeType type; template <typename H> friend H AbslHashValue(H h, const CacheKey& key) { h = H::combine(std::move(h), key.handle); h = H::combine(std::move(h), key.context.shape_index.ToString()); h = H::combine(std::move(h), VectorString(key.context.caller_operand_handles)); h = H::combine(std::move(h), key.type); return h; } friend bool operator==(const CacheKey& lhs, const CacheKey& rhs) { return lhs.handle == rhs.handle && lhs.context.shape_index == rhs.context.shape_index && lhs.context.caller_operand_handles == rhs.context.caller_operand_handles && lhs.type == rhs.type; } }; HloEvaluator& evaluator; absl::flat_hash_map<CacheKey, Literal> evaluated; HandleToInstruction handle_to_instruction; HandleToComputation handle_to_computation; static constexpr int64_t kLargeShapeElementLimit = 1000 * 1000; }; PostorderDFSNode CreateAllDynamicResult(const Shape& shape, const PostorderDFSNodeType& type) { return PostorderDFSNode().AddVisit( [shape, type](absl::Span<Literal>) -> Literal { if (type == PostorderDFSNodeType::kConstantValue || type == PostorderDFSNodeType::kConstantUpperBound || type == PostorderDFSNodeType::kConstantLowerBound) { return CreateGarbageLiteral(shape); } else { return CreatePredLiteral(true, shape); } }); } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeConstantValueFallback(int64_t handle, PostorderDFSNodeType type, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); PostorderDFSNode result; for (auto operand_id : root->operand_ids()) { InferenceContext dep_context = context; dep_context.shape_index = {}; result.AddDependency(operand_id, type, dep_context); } switch (opcode) { case HloOpcode::kRng: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kRngBitGenerator: case HloOpcode::kCustomCall: case HloOpcode::kWhile: case HloOpcode::kSend: case HloOpcode::kRecv: case HloOpcode::kSendDone: case HloOpcode::kRecvDone: case HloOpcode::kParameter: { if (opcode == HloOpcode::kParameter && !context.caller_operand_handles.empty()) { int64_t caller_operand = context.caller_operand_handles.back(); context.caller_operand_handles.pop_back(); return result.AddDependency(caller_operand, type, context) .AddVisit([](Literal literal) { return literal; }); } return CreateAllDynamicResult(subshape, type); } case HloOpcode::kSubtract: case HloOpcode::kCos: case HloOpcode::kSin: case HloOpcode::kTan: case HloOpcode::kNegate: case HloOpcode::kAbs: case HloOpcode::kDivide: case HloOpcode::kGetDimensionSize: { return InvalidArgument( "AnalyzeConstantValueFallback can't handle opcode: %s", root->opcode()); } case HloOpcode::kCall: { auto node = PostorderDFSNode(); auto* call_proto = root; if (call_proto->operand_ids_size() != 1) { return CreateAllDynamicResult(subshape, type); } int64_t called_root = handle_to_computation(call_proto->called_computation_ids(0)) ->root_id(); InferenceContext call_context = context; call_context.caller_operand_handles.push_back(call_proto->operand_ids(0)); node.AddDependency(called_root, PostorderDFSNodeType::kConstantValue, call_context, "callee's root instruction"); return node.AddVisit([](Literal operand) -> absl::StatusOr<Literal> { return std::move(operand); }); } case HloOpcode::kConditional: { auto node = PostorderDFSNode(); auto* conditional_proto = root; InferenceContext predicate_context = context; predicate_context.shape_index = {}; node.AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kConstantValue, predicate_context) .AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kValueIsDynamic, predicate_context); const int64_t branch_size = conditional_proto->called_computation_ids_size(); for (int64_t i = 0; i < branch_size; ++i) { int64_t branch_root = handle_to_computation(conditional_proto->called_computation_ids(i)) ->root_id(); InferenceContext branch_context = context; branch_context.caller_operand_handles.push_back( conditional_proto->operand_ids(i + 1)); node.AddDependency(branch_root, PostorderDFSNodeType::kConstantValue, branch_context); } return node.AddVisit( [](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { int64_t pred_is_dynamic = operands[1].Get<bool>({}); if (pred_is_dynamic) { return std::move(operands[2]); } else { int64_t branch_index = 0; if (operands[0].shape().element_type() == PRED) { if (operands[0].Get<bool>({})) { branch_index = 0; } else { branch_index = 1; } } else { branch_index = operands[0].GetIntegralAsS64({}).value(); } const int64_t branch_dynamism_index = 2 + branch_index; return std::move(operands[branch_dynamism_index]); } }); } case HloOpcode::kGetTupleElement: { int64_t operand_handle = root->operand_ids(0); PostorderDFSNode result; context.shape_index.push_front(root->tuple_index()); return PostorderDFSNode() .AddDependency(operand_handle, type, context) .AddVisit([](Literal operand) { return operand; }); } case HloOpcode::kReduce: case HloOpcode::kSort: case HloOpcode::kScatter: case HloOpcode::kReduceWindow: { const HloComputationProto* computation_proto = handle_to_computation(root->called_computation_ids(0)); return result.AddVisit( [root, computation_proto, context, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN( auto computation, HloComputation::CreateFromProto(*computation_proto, {})); return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithComputation(std::move(computation)) .WithSubshape(context.shape_index) .Evaluate(); }); } default: { if (opcode == HloOpcode::kTuple && !context.shape_index.empty()) { int64_t tuple_operand_index = context.shape_index.front(); InferenceContext tuple_operand_context = context; tuple_operand_context.shape_index.pop_front(); return PostorderDFSNode() .AddDependency(root->operand_ids(tuple_operand_index), type, tuple_operand_context) .AddVisit([](Literal operand) { return operand; }); } return result.AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeUpperBound( int64_t handle, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); if (IsInstructionOverLimit(root, context)) { return CreateAllDynamicResult(subshape, PostorderDFSNodeType::kConstantUpperBound); } switch (opcode) { case HloOpcode::kGetDimensionSize: { int64_t dimension = root->dimensions(0); int64_t operand_handle = root->operand_ids(0); const HloInstructionProto* operand_proto = handle_to_instruction(operand_handle).value(); return PostorderDFSNode().AddVisit( [operand_proto, dimension]() -> absl::StatusOr<Literal> { return LiteralUtil::CreateR0<int32_t>( operand_proto->shape().dimensions(dimension)); }); } case HloOpcode::kAbs: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit([this](Literal lower_bound, Literal upper_bound) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN(auto lower_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, lower_bound)); TF_ASSIGN_OR_RETURN(auto upper_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, upper_bound)); return evaluator.EvaluateElementwiseBinaryOp( HloOpcode::kMaximum, lower_bound_abs, upper_bound_abs); }); } case HloOpcode::kSort: { auto dfs = PostorderDFSNode(); InferenceContext dep_context = context; dep_context.shape_index = {}; if (!context.shape_index.empty()) { dfs.AddDependency(root->operand_ids(context.shape_index[0]), PostorderDFSNodeType::kConstantUpperBound, dep_context); } else { for (int64_t i = 0; i < root->operand_ids_size(); ++i) { dfs.AddDependency(root->operand_ids(i), PostorderDFSNodeType::kConstantUpperBound, dep_context); } } return dfs.AddVisit( [root, context](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { std::vector<Literal> results; results.reserve(operands.size()); for (int64_t i = 0; i < operands.size(); ++i) { auto max = LiteralUtil::MaxElement(operands[i]); results.emplace_back( max.Broadcast(operands[i].shape(), {}).value()); } if (ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index) .IsTuple()) { return LiteralUtil::MakeTupleOwned(std::move(results)); } else { return std::move(results[0]); } }); } case HloOpcode::kNegate: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddVisit([this](Literal lower_bound) -> absl::StatusOr<Literal> { return evaluator.EvaluateElementwiseUnaryOp(HloOpcode::kNegate, lower_bound); }); } case HloOpcode::kSubtract: case HloOpcode::kDivide: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kConstantLowerBound, context) .AddVisit([root, opcode, this]( Literal upper_bound, Literal lower_bound) -> absl::StatusOr<Literal> { if (opcode == HloOpcode::kDivide && this->IsValueEffectiveInteger(root->operand_ids(1))) { auto zero = LiteralUtil::Zero(lower_bound.shape().element_type()); zero = zero.Broadcast(lower_bound.shape(), {}).value(); TF_ASSIGN_OR_RETURN( auto lower_bound_is_zero, evaluator.EvaluateElementwiseCompareOp( ComparisonDirection::kEq, lower_bound, zero)); auto one = LiteralUtil::One(lower_bound.shape().element_type()); one = one.Broadcast(lower_bound.shape(), {}).value(); TF_ASSIGN_OR_RETURN( lower_bound, evaluator.EvaluateElementwiseTernaryOp( HloOpcode::kSelect, lower_bound_is_zero, one, lower_bound)); } std::vector<Literal> new_operands; new_operands.emplace_back(std::move(upper_bound)); new_operands.emplace_back(std::move(lower_bound)); return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(absl::MakeSpan(new_operands)) .Evaluate(); }); } case HloOpcode::kCustomCall: { if (root->custom_call_target() == "SetBound") { return PostorderDFSNode().AddVisit([root]() -> absl::StatusOr<Literal> { if (root->literal().shape().element_type() == TUPLE) { return Literal::CreateFromProto(root->literal().tuple_literals(0)); } else { return Literal::CreateFromProto(root->literal()); } }); } else if (root->custom_call_target() == "Sharding") { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit([](Literal operand) { return operand; }); } return InvalidArgument( "Upper-bound inferencing on custom call %s is not supported", root->DebugString()); } case HloOpcode::kGather: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kConstantValue, context) .AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } default: return AnalyzeConstantValueFallback( handle, PostorderDFSNodeType::kConstantUpperBound, context); } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeLowerBound( int64_t handle, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); if (IsInstructionOverLimit(root, context)) { return CreateAllDynamicResult(subshape, PostorderDFSNodeType::kConstantLowerBound); } switch (opcode) { case HloOpcode::kGetDimensionSize: { int64_t dimension = root->dimensions(0); int64_t operand_handle = root->operand_ids(0); TF_ASSIGN_OR_RETURN(const HloInstructionProto* operand_proto, handle_to_instruction(operand_handle)); return PostorderDFSNode().AddVisit( [dimension, operand_proto]() -> absl::StatusOr<Literal> { if (operand_proto->shape().is_dynamic_dimension(dimension)) { return LiteralUtil::CreateR0<int32_t>(0); } else { return LiteralUtil::CreateR0<int32_t>( operand_proto->shape().dimensions(dimension)); } }); } case HloOpcode::kAbs: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit([this](Literal lower_bound, Literal upper_bound) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN(auto lower_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, lower_bound)); TF_ASSIGN_OR_RETURN(auto upper_bound_abs, evaluator.EvaluateElementwiseUnaryOp( HloOpcode::kAbs, upper_bound)); return evaluator.EvaluateElementwiseBinaryOp( HloOpcode::kMinimum, lower_bound_abs, upper_bound_abs); }); } case HloOpcode::kNegate: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit([this](Literal upper_bound) -> absl::StatusOr<Literal> { return evaluator.EvaluateElementwiseUnaryOp(HloOpcode::kNegate, upper_bound); }); } case HloOpcode::kSubtract: case HloOpcode::kDivide: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kConstantUpperBound, context) .AddVisit( [root, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } case HloOpcode::kGather: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantLowerBound, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kConstantValue, context) .AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } default: return AnalyzeConstantValueFallback( handle, PostorderDFSNodeType::kConstantLowerBound, context); } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeConstant( int64_t handle, InferenceContext context) { TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); HloOpcode opcode = StringToHloOpcode(root->opcode()).value(); Shape subshape = ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index); if (IsInstructionOverLimit(root, context)) { return CreateAllDynamicResult(subshape, PostorderDFSNodeType::kConstantValue); } switch (opcode) { case HloOpcode::kGetDimensionSize: { int64_t dimension = root->dimensions(0); int64_t operand_handle = root->operand_ids(0); TF_ASSIGN_OR_RETURN(const HloInstructionProto* operand_proto, handle_to_instruction(operand_handle)); return PostorderDFSNode().AddVisit( [operand_proto, dimension, root]() -> absl::StatusOr<Literal> { if (operand_proto->shape().is_dynamic_dimension(dimension)) { return CreateGarbageLiteral(Shape(root->shape())); } else { return LiteralUtil::CreateR0<int32_t>( operand_proto->shape().dimensions(dimension)); } }); } case HloOpcode::kSubtract: case HloOpcode::kCos: case HloOpcode::kSin: case HloOpcode::kNegate: case HloOpcode::kAbs: case HloOpcode::kDivide: { PostorderDFSNode result; for (auto operand_id : root->operand_ids()) { result.AddDependency(operand_id, PostorderDFSNodeType::kConstantValue, context); } return result.AddVisit( [root, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .Evaluate(); }); } case HloOpcode::kCustomCall: { if (root->custom_call_target() == "SetBound") { return PostorderDFSNode().AddVisit([root]() -> absl::StatusOr<Literal> { if (root->literal().shape().element_type() == TUPLE) { return Literal::CreateFromProto(root->literal().tuple_literals(0)); } else { return Literal::CreateFromProto(root->literal()); } }); } else if (root->custom_call_target() == "Sharding") { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantValue, context) .AddVisit([](Literal operand) { return operand; }); } else { return PostorderDFSNode().AddVisit( [root, context](absl::Span<Literal>) { return CreateGarbageLiteral(ShapeUtil::GetSubshape( Shape(root->shape()), context.shape_index)); }); } } case HloOpcode::kSort: { PostorderDFSNode result; InferenceContext dep_context = context; dep_context.shape_index = {}; for (auto operand_id : root->operand_ids()) { result.AddDependency(operand_id, PostorderDFSNodeType::kConstantValue, dep_context); } const HloComputationProto* computation_proto = handle_to_computation(root->called_computation_ids(0)); return result.AddVisit( [root, context, computation_proto, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { TF_ASSIGN_OR_RETURN( auto computation, HloComputation::CreateFromProto(*computation_proto, {})); return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithComputation(std::move(computation)) .WithSubshape(context.shape_index) .Evaluate(); }); } default: return AnalyzeConstantValueFallback( handle, PostorderDFSNodeType::kConstantValue, context); } } absl::StatusOr<PostorderDFSNode> PostorderDFSVisitor::AnalyzeIsDynamic( int64_t handle, PostorderDFSNodeType type, InferenceContext context) { TF_RETURN_IF_ERROR(handle_to_instruction(handle).status()); TF_RET_CHECK(handle_to_instruction(handle).value()); VLOG(1) << "Analyzing IsDynamic on " << handle_to_instruction(handle).value()->DebugString(); if (IsInstructionOverLimit(handle_to_instruction(handle).value(), context)) { return CreateAllDynamicResult( ShapeUtil::GetSubshape( Shape(handle_to_instruction(handle).value()->shape()), context.shape_index), type); } TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, handle_to_instruction(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(root->opcode())); PostorderDFSNode result; for (auto operand_id : root->operand_ids()) { InferenceContext dep_context = context; dep_context.shape_index = {}; result.AddDependency(operand_id, type, dep_context); } switch (opcode) { case HloOpcode::kGetDimensionSize: { int64_t dimension = root->dimensions(0); int64_t operand_handle = root->operand_ids(0); TF_ASSIGN_OR_RETURN(const HloInstructionProto* operand_proto, handle_to_instruction(operand_handle)); return PostorderDFSNode().AddVisit( [operand_proto, dimension, type]() -> absl::StatusOr<Literal> { if (type == PostorderDFSNodeType::kBoundIsDynamic) { return LiteralUtil::CreateR0<bool>(false); } return LiteralUtil::CreateR0<bool>( operand_proto->shape().is_dynamic_dimension(dimension)); }); } case HloOpcode::kSort: { auto dfs = PostorderDFSNode(); InferenceContext dep_context = context; dep_context.shape_index = {}; for (int64_t i = 0; i < root->operand_ids_size(); ++i) { dfs.AddDependency(root->operand_ids(i), type, dep_context); } return dfs.AddVisit([root, context, type](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { bool all_operands_values_static = true; for (int64_t i = 0; i < operands.size(); ++i) { all_operands_values_static &= operands[i].IsAll(0); } if (type == PostorderDFSNodeType::kValueIsDynamic) { return CreatePredLiteral(!all_operands_values_static, ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index)); } CHECK(type == PostorderDFSNodeType::kBoundIsDynamic); if (!context.shape_index.empty()) { int64_t index = context.shape_index[0]; bool all_values_static = operands[index].IsAll(0); return CreatePredLiteral(!all_values_static, operands[index].shape()); } std::vector<Literal> results; results.reserve(operands.size()); for (int64_t i = 0; i < operands.size(); ++i) { bool all_values_static = operands[i].IsAll(0); results.emplace_back( CreatePredLiteral(!all_values_static, operands[i].shape())); } if (!ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index) .IsTuple()) { return std::move(results[0]); } return LiteralUtil::MakeTupleOwned(std::move(results)); }); } case HloOpcode::kSetDimensionSize: return result.AddVisit([root, type](absl::Span<Literal> operands) { bool any_dynamic_operand = absl::c_any_of( operands, [](Literal& operand) { return !operand.IsAll(0); }); return CreatePredLiteral( type == PostorderDFSNodeType::kValueIsDynamic && any_dynamic_operand, ShapeUtil::MakeStaticShape(Shape(root->shape()))); }); case HloOpcode::kDynamicSlice: { return result.AddVisit([root](absl::Span<Literal> operands) { bool any_dynamic_operand = absl::c_any_of( operands, [](Literal& operand) { return !operand.IsAll(0); }); return CreatePredLiteral(any_dynamic_operand, Shape(root->shape())); }); } case HloOpcode::kAbs: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kBitcast: case HloOpcode::kCeil: case HloOpcode::kCollectivePermuteDone: case HloOpcode::kCos: case HloOpcode::kClz: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kImag: case HloOpcode::kIsFinite: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kNot: case HloOpcode::kNegate: case HloOpcode::kPopulationCount: case HloOpcode::kReal: case HloOpcode::kRsqrt: case HloOpcode::kLogistic: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kConvert: case HloOpcode::kSqrt: case HloOpcode::kCbrt: case HloOpcode::kTan: case HloOpcode::kTanh: { return result.AddVisit([](Literal operand) { return operand; }); } case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kDivide: case HloOpcode::kComplex: case HloOpcode::kMaximum: case HloOpcode::kMinimum: case HloOpcode::kMultiply: case HloOpcode::kPower: case HloOpcode::kRemainder: case HloOpcode::kSubtract: case HloOpcode::kCompare: case HloOpcode::kAnd: case HloOpcode::kOr: case HloOpcode::kXor: case HloOpcode::kShiftLeft: case HloOpcode::kShiftRightArithmetic: case HloOpcode::kShiftRightLogical: { return result.AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithPrimitiveType(PRED) .WithOpCode(HloOpcode::kOr) .Evaluate(); }); } case HloOpcode::kTuple: case HloOpcode::kTranspose: case HloOpcode::kSlice: case HloOpcode::kBroadcast: case HloOpcode::kReverse: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kPad: { if (opcode == HloOpcode::kTuple && !context.shape_index.empty()) { int64_t tuple_operand_index = context.shape_index.front(); InferenceContext tuple_operand_context = context; tuple_operand_context.shape_index.pop_front(); return PostorderDFSNode() .AddDependency(root->operand_ids(tuple_operand_index), type, tuple_operand_context) .AddVisit([](Literal operand) { return operand; }); } return result.AddVisit([root, this](absl::Span<Literal> operands) { return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithPrimitiveType(PRED) .Evaluate(); }); } case HloOpcode::kCall: { auto node = PostorderDFSNode(); auto* call_proto = root; if (call_proto->operand_ids_size() != 1) { return CreateAllDynamicResult( Shape(handle_to_instruction(handle).value()->shape()), type); } int64_t call_root = handle_to_computation(call_proto->called_computation_ids(0)) ->root_id(); InferenceContext branch_context = context; branch_context.caller_operand_handles.push_back( call_proto->operand_ids(0)); node.AddDependency(call_root, PostorderDFSNodeType::kValueIsDynamic, branch_context, "callee's root instruction"); return node.AddVisit( [context](Literal operand) -> absl::StatusOr<Literal> { return operand; }); } case HloOpcode::kConditional: { auto node = PostorderDFSNode(); auto* conditional_proto = root; InferenceContext predicate_context = context; predicate_context.shape_index = {}; node.AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kConstantValue, predicate_context) .AddDependency(conditional_proto->operand_ids(0), PostorderDFSNodeType::kValueIsDynamic, predicate_context); const int64_t branch_size = conditional_proto->called_computation_ids_size(); for (int64_t i = 0; i < branch_size; ++i) { int64_t branch_root = handle_to_computation(conditional_proto->called_computation_ids(i)) ->root_id(); InferenceContext branch_context = context; branch_context.caller_operand_handles.push_back( conditional_proto->operand_ids(i + 1)); node.AddDependency(branch_root, PostorderDFSNodeType::kConstantValue, branch_context, absl::StrFormat("branch %lld's value", i)) .AddDependency(branch_root, PostorderDFSNodeType::kValueIsDynamic, branch_context, absl::StrFormat("branch %lld's dynamism", i)); } return node.AddVisit([root, branch_size, context](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { int64_t pred_is_dynamic = operands[1].Get<bool>({}); auto result = CreatePredLiteral( true, ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index)); if (pred_is_dynamic) { VLOG(1) << "predict is dynamic value" << result.ToString(); result.MutableEachCell<bool>( [&](absl::Span<const int64_t> indices, bool value) { std::string branch_value = operands[2].GetAsString(indices, {}); for (int64_t i = 0; i < branch_size; ++i) { const int64_t branch_value_index = 2 + 2 * i; const int64_t branch_dynamism_index = 2 + 2 * i + 1; auto branch_is_dynamic = operands[branch_dynamism_index].Get<bool>(indices); if (branch_is_dynamic) { return true; } if (branch_value != operands[branch_value_index].GetAsString(indices, {})) { return true; } } return false; }); return result; } else { VLOG(1) << "predict is constant value"; int64_t branch_index = 0; if (operands[0].shape().element_type() == PRED) { if (operands[0].Get<bool>({})) { branch_index = 0; } else { branch_index = 1; } } else { branch_index = operands[0].GetIntegralAsS64({}).value(); } const int64_t branch_dynamism_index = 2 + 2 * branch_index + 1; return std::move(operands[branch_dynamism_index]); } }); } case HloOpcode::kGetTupleElement: { int64_t operand_handle = root->operand_ids(0); PostorderDFSNode result; context.shape_index.push_front(root->tuple_index()); return PostorderDFSNode() .AddDependency(operand_handle, type, context) .AddVisit([](Literal operand) { return operand; }); } case HloOpcode::kReduce: { return result.AddVisit( [root, context, this](absl::Span<Literal> operands) { Shape root_shape = Shape(root->shape()); Shape scalar_shape = ShapeUtil::MakeScalarShape(xla::PRED); std::unique_ptr<HloComputation> reduce_or; if (root_shape.IsTuple()) { HloComputation::Builder b("reduce_or"); auto accum = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<bool>(false))); for (int i = 0; i < root_shape.tuple_shapes_size(); ++i) { auto lhs = b.AddInstruction( HloInstruction::CreateParameter(i, scalar_shape, "lhs")); auto rhs = b.AddInstruction(HloInstruction::CreateParameter( i + root_shape.tuple_shapes_size(), scalar_shape, "rhs")); accum = b.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kOr, accum, lhs)); accum = b.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kOr, accum, rhs)); } std::vector<HloInstruction*> results( root_shape.tuple_shapes_size(), accum); b.AddInstruction(HloInstruction::CreateTuple(results)); reduce_or = b.Build(); } else { HloComputation::Builder b("reduce_or"); auto lhs = b.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto rhs = b.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); b.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kOr, lhs, rhs)); reduce_or = b.Build(); } return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(operands) .WithPrimitiveType(PRED) .WithComputation(std::move(reduce_or)) .WithSubshape(context.shape_index) .Evaluate(); }); } case HloOpcode::kConstant: case HloOpcode::kIota: { return result.AddVisit( [root]() { return CreatePredLiteral(false, Shape(root->shape())); }); } case HloOpcode::kParameter: { if (opcode == HloOpcode::kParameter && !context.caller_operand_handles.empty()) { int64_t caller_operand = context.caller_operand_handles.back(); context.caller_operand_handles.pop_back(); return result.AddDependency(caller_operand, type, context) .AddVisit([](Literal literal) { return literal; }); } return result.AddVisit([root, context]() { return CreatePredLiteral( true, ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index)); }); } case HloOpcode::kSelect: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kConstantValue, context) .AddDependency(root->operand_ids(0), PostorderDFSNodeType::kValueIsDynamic, context) .AddDependency(root->operand_ids(1), type, context) .AddDependency(root->operand_ids(2), type, context) .AddVisit([root](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { OptionalLiteral optional_selector_literal(std::move(operands[0]), std::move(operands[1])); Literal lhs = std::move(operands[2]); Literal rhs = std::move(operands[3]); auto result = CreatePredLiteral(true, Shape(root->shape())); result.MutableEachCell<bool>( [&](absl::Span<const int64_t> indices, bool value) { std::optional<bool> optional_selector = optional_selector_literal.Get<bool>(indices); bool lhs_value = lhs.Get<bool>(indices); bool rhs_value = rhs.Get<bool>(indices); if (optional_selector.has_value()) { if (*optional_selector) { return lhs_value; } else { return rhs_value; } } else { return true; } }); return result; }); } case HloOpcode::kGather: { return PostorderDFSNode() .AddDependency(root->operand_ids(0), type, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kConstantValue, context) .AddDependency(root->operand_ids(1), PostorderDFSNodeType::kValueIsDynamic, context) .AddVisit( [root, this](absl::Span<Literal> operands) -> absl::StatusOr<Literal> { OptionalLiteral optional_selector_literal( std::move(operands[1]), std::move(operands[2])); if (!optional_selector_literal.AllValid()) { return CreatePredLiteral(true, Shape(root->shape())); } std::vector<Literal> new_operands; new_operands.emplace_back(std::move(operands[0])); new_operands.emplace_back( optional_selector_literal.GetValue()->Clone()); return std::make_unique<HloProtoEvaluator>(evaluator, *root) ->WithOperands(absl::MakeSpan(new_operands)) .WithPrimitiveType(PRED) .Evaluate(); }); } case HloOpcode::kCustomCall: { if (root->custom_call_target() == "SetBound") { return PostorderDFSNode().AddVisit([type, root]() -> absl::StatusOr<Literal> { if (type == PostorderDFSNodeType::kBoundIsDynamic) { return CreatePredLiteral(false, Shape(root->shape())); } else { if (root->literal().shape().element_type() == TUPLE) { return Literal::CreateFromProto( root->literal().tuple_literals(1)); } else if (type == PostorderDFSNodeType::kValueIsDynamic) { return CreatePredLiteral(true, Shape(root->shape())); } else { return Literal::CreateFromProto(root->literal()); } } }); } else if (root->custom_call_target() == "Sharding") { return result.AddVisit([](Literal operand) { return operand; }); } else { return InvalidArgument( "Dynamic inferencing on custom call %s is not supported", root->DebugString()); } break; } case HloOpcode::kRecv: case HloOpcode::kRecvDone: case HloOpcode::kSend: case HloOpcode::kSendDone: case HloOpcode::kWhile: { return PostorderDFSNode().AddVisit([root, context]() -> absl::StatusOr<Literal> { return CreatePredLiteral( true, ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index)); }); break; } default: return PostorderDFSNode().AddVisit([root, context]() -> absl::StatusOr<Literal> { return CreatePredLiteral( true, ShapeUtil::GetSubshape(Shape(root->shape()), context.shape_index)); }); } } absl::StatusOr<Literal> PostorderDFSVisitor::PostOrderDFSVisit( int64_t handle, PostorderDFSNodeType type) { enum VisitState { kUnvisited = 0, kVisiting, kVisited, }; int64_t unique_id = 0; struct WorkItem { explicit WorkItem(int64_t handle, InferenceContext context, PostorderDFSNodeType type, VisitState state, int64_t id) : handle(handle), context(std::move(context)), type(type), state(state), id(id) {} int64_t handle; InferenceContext context; PostorderDFSNodeType type; VisitState state; Visit visit; int64_t id; std::vector<CacheKey> dependencies; CacheKey GetCacheKey() { return CacheKey(handle, context, type); } }; std::vector<WorkItem> stack; WorkItem root(handle, InferenceContext({}, {}), type, kUnvisited, unique_id++); stack.push_back(root); while (!stack.empty()) { WorkItem& item = stack.back(); VLOG(1) << "stack top shape index: " << item.context.shape_index.ToString(); if (VLOG_IS_ON(1)) { TF_RETURN_IF_ERROR(handle_to_instruction(item.handle).status()); VLOG(1) << "stack top " << handle_to_instruction(item.handle).value()->DebugString(); } if (item.state == kVisiting) { VLOG(1) << "visiting"; std::vector<Literal> literals; literals.reserve(item.dependencies.size()); for (CacheKey& dep_key : item.dependencies) { TF_RET_CHECK(evaluated.contains(dep_key)); literals.emplace_back(evaluated.at(dep_key).Clone()); } VLOG(1) << "Start visiting with dependency type: " << PostorderDFSNodeTypeToString(item.type); TF_ASSIGN_OR_RETURN(auto literal, item.visit(absl::MakeSpan(literals))); VLOG(1) << "End visiting: " << literal.ToString(); evaluated[item.GetCacheKey()] = std::move(literal); stack.pop_back(); continue; } VLOG(1) << "unvisited"; if (evaluated.contains(item.GetCacheKey())) { stack.pop_back(); continue; } item.state = kVisiting; PostorderDFSNode node; switch (item.type) { case PostorderDFSNodeType::kConstantValue: { VLOG(1) << "constant value"; TF_ASSIGN_OR_RETURN(node, AnalyzeConstant(item.handle, item.context)); break; } case PostorderDFSNodeType::kConstantLowerBound: { VLOG(1) << "constant lower bound"; TF_ASSIGN_OR_RETURN(node, AnalyzeLowerBound(item.handle, item.context)); break; } case PostorderDFSNodeType::kConstantUpperBound: { VLOG(1) << "constant upper bound"; TF_ASSIGN_OR_RETURN(node, AnalyzeUpperBound(item.handle, item.context)); break; } case PostorderDFSNodeType::kBoundIsDynamic: case PostorderDFSNodeType::kValueIsDynamic: { VLOG(1) << "value is dynamic"; TF_ASSIGN_OR_RETURN( node, AnalyzeIsDynamic(item.handle, item.type, item.context)); break; } } item.visit = node.visit; const int64_t current_item_id = stack.size() - 1; for (const PostorderDFSDep& dep : node.dependencies) { TF_ASSIGN_OR_RETURN(auto dependency_inst, handle_to_instruction(dep.handle)); VLOG(1) << "dependency " << dep.annotation << "::" << dependency_inst->DebugString() << "index" << dep.context.shape_index << " stack size:" << stack.size(); stack.emplace_back(dep.handle, dep.context, dep.type, kUnvisited, unique_id++); stack[current_item_id].dependencies.push_back(stack.back().GetCacheKey()); } } VLOG(1) << "done" << evaluated[root.GetCacheKey()].ToString(); return evaluated[root.GetCacheKey()].Clone(); } absl::StatusOr<Literal> ValueInference::AnalyzeIsDynamic(XlaOp op) { PostorderDFSVisitor visitor( evaluator_, [&](int64_t handle) { return builder_->LookUpInstructionByHandle(handle); }, [&](int64_t handle) { return &(builder_->embedded_[handle]); }); auto result = visitor.PostOrderDFSVisit( op.handle(), PostorderDFSNodeType::kValueIsDynamic); return result; } absl::StatusOr<std::optional<int64_t>> ValueInference::CseOpHandle( int64_t handle) { TF_ASSIGN_OR_RETURN(auto inst, builder_->LookUpInstructionByHandle(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(inst->opcode())); if (opcode != HloOpcode::kGetDimensionSize) { return {std::nullopt}; } int64_t hash = absl::HashOf(inst->operand_ids(0), inst->dimensions(0)); auto lookup = cse_map_.find(hash); if (lookup == cse_map_.end()) { cse_map_[hash] = handle; return {std::nullopt}; } TF_ASSIGN_OR_RETURN(auto equivalent_op, builder_->LookUpInstructionByHandle(lookup->second)); if (equivalent_op->opcode() != inst->opcode() || equivalent_op->operand_ids(0) != inst->operand_ids(0) || equivalent_op->dimensions(0) != inst->dimensions(0)) { return {std::nullopt}; } int64_t cse = lookup->second; if (handle != cse) { return {cse}; } return {std::nullopt}; } absl::StatusOr<Literal> ValueInference::SimplifyOp(int64_t handle) { TF_ASSIGN_OR_RETURN(auto cse_handle, CseOpHandle(handle)); if (cse_handle) { return SimplifyOp(*cse_handle); } TF_ASSIGN_OR_RETURN(auto* inst, builder_->LookUpInstructionByHandle(handle)); TF_ASSIGN_OR_RETURN(HloOpcode opcode, StringToHloOpcode(inst->opcode())); std::vector<Literal> operands; auto output_shape = std::make_unique<const Shape>(inst->shape()); switch (opcode) { case HloOpcode::kSlice: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kBroadcast: { for (auto operand_id : inst->operand_ids()) { TF_ASSIGN_OR_RETURN(auto literal, SimplifyOp(operand_id)); operands.emplace_back(std::move(literal)); } return std::make_unique<HloProtoEvaluator>(evaluator_, *inst) ->WithOperands(absl::MakeSpan(operands)) .WithPrimitiveType(S64) .Evaluate(); } case HloOpcode::kConvert: { auto operand = builder_->LookUpInstructionByHandle(inst->operand_ids(0)).value(); if (Shape::Equal()(*output_shape, Shape(operand->shape()))) { return SimplifyOp(inst->operand_ids(0)); } else { return CreateS64Literal(-1, *output_shape); } } case HloOpcode::kAdd: { if (output_shape->rank() == 0) { TF_ASSIGN_OR_RETURN(auto lhs, SimplifyOp(inst->operand_ids(0))); TF_ASSIGN_OR_RETURN(auto rhs, SimplifyOp(inst->operand_ids(1))); int64_t lhs_handle = lhs.Get<int64_t>({}); int64_t rhs_handle = rhs.Get<int64_t>({}); if (lhs_handle == -1 || rhs_handle == -1) { return CreateS64Literal(-1, *output_shape); } std::function<std::optional<int64_t>(int64_t, int64_t)> can_be_optimized; can_be_optimized = [this, &can_be_optimized]( int64_t lhs, int64_t rhs) -> std::optional<int64_t> { auto rhs_inst = builder_->LookUpInstructionByHandle(rhs).value(); HloOpcode rhs_opcode = StringToHloOpcode(rhs_inst->opcode()).value(); if (rhs_opcode == HloOpcode::kSubtract) { auto sub_lhs_handle = SimplifyOp(rhs_inst->operand_ids(0)).value().Get<int64_t>({}); auto sub_rhs_handle = SimplifyOp(rhs_inst->operand_ids(1)).value().Get<int64_t>({}); if (sub_rhs_handle == lhs) { return sub_lhs_handle; } } auto lhs_inst = builder_->LookUpInstructionByHandle(lhs).value(); HloOpcode lhs_opcode = StringToHloOpcode(lhs_inst->opcode()).value(); if (lhs_opcode == HloOpcode::kAdd) { auto add_lhs_handle = SimplifyOp(lhs_inst->operand_ids(0)).value().Get<int64_t>({}); auto add_rhs_handle = SimplifyOp(lhs_inst->operand_ids(1)).value().Get<int64_t>({}); if (auto optimized = can_be_optimized(add_lhs_handle, rhs)) { return Add(XlaOp(add_rhs_handle, builder_), XlaOp(optimized.value(), builder_)) .handle(); } if (auto optimized = can_be_optimized(add_rhs_handle, rhs)) { return Add(XlaOp(add_lhs_handle, builder_), XlaOp(optimized.value(), builder_)) .handle(); } } return std::nullopt; }; if (auto optimized = can_be_optimized(lhs_handle, rhs_handle)) { return LiteralUtil::CreateR0<int64_t>(optimized.value()); } if (auto optimized = can_be_optimized(rhs_handle, lhs_handle)) { return LiteralUtil::CreateR0<int64_t>(optimized.value()); } XlaOp new_sum = Add(XlaOp(lhs_handle, builder_), XlaOp(rhs_handle, builder_)); return LiteralUtil::CreateR0<int64_t>(new_sum.handle()); } else { return CreateS64Literal(-1, *output_shape); } } default: { if (ShapeUtil::IsScalar(*output_shape)) { return LiteralUtil::CreateR0<int64_t>(handle); } else { return CreateS64Literal(-1, *output_shape); } } } } absl::StatusOr<OptionalLiteral> ValueInference::AnalyzeConstant( XlaOp op, ValueInferenceMode mode) { TF_RETURN_IF_ERROR(builder_->LookUpInstructionByHandle(op.handle()).status()); PostorderDFSVisitor visitor( evaluator_, [&](int64_t handle) { return builder_->LookUpInstructionByHandle(handle); }, [&](int64_t handle) { return &(builder_->embedded_[handle]); }); TF_ASSIGN_OR_RETURN(Shape op_shape, builder_->GetShape(op)); int64_t handle = op.handle(); if (ShapeUtil::IsScalar(builder_->GetShape(op).value())) { TF_ASSIGN_OR_RETURN(auto result, SimplifyOp(handle)); auto optimized_handle = result.Get<int64_t>({}); if (optimized_handle != -1) { handle = optimized_handle; } } switch (mode) { case ValueInferenceMode::kLowerBound: { TF_ASSIGN_OR_RETURN(Literal mask, visitor.PostOrderDFSVisit( handle, PostorderDFSNodeType::kBoundIsDynamic)); if (mask.IsAll(1)) { return OptionalLiteral(CreateGarbageLiteral(op_shape), std::move(mask)); } TF_ASSIGN_OR_RETURN( Literal value, visitor.PostOrderDFSVisit(handle, PostorderDFSNodeType::kConstantLowerBound)); return OptionalLiteral(std::move(value), std::move(mask)); } case ValueInferenceMode::kUpperBound: { TF_ASSIGN_OR_RETURN(Literal mask, visitor.PostOrderDFSVisit( handle, PostorderDFSNodeType::kBoundIsDynamic)); if (mask.IsAll(1)) { return OptionalLiteral(CreateGarbageLiteral(op_shape), std::move(mask)); } TF_ASSIGN_OR_RETURN( Literal value, visitor.PostOrderDFSVisit(handle, PostorderDFSNodeType::kConstantUpperBound)); return OptionalLiteral(std::move(value), std::move(mask)); } case ValueInferenceMode::kValue: { TF_ASSIGN_OR_RETURN(Literal mask, visitor.PostOrderDFSVisit( handle, PostorderDFSNodeType::kValueIsDynamic)); if (mask.IsAll(1)) { return OptionalLiteral(CreateGarbageLiteral(op_shape), std::move(mask)); } TF_ASSIGN_OR_RETURN(Literal value, visitor.PostOrderDFSVisit( handle, PostorderDFSNodeType::kConstantValue)); return OptionalLiteral(std::move(value), std::move(mask)); } } } }
#include "xla/hlo/builder/value_inference.h" #include <memory> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/client/client_library.h" #include "xla/client/global_data.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/prng.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class ValueInferenceTest : public ::testing::Test { public: std::string TestName() const { return ::testing::UnitTest::GetInstance()->current_test_info()->name(); } }; class DynamismInferenceTest : public ValueInferenceTest { public: explicit DynamismInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<Literal> ComputeDynamismLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { TF_RETURN_IF_ERROR(builder->first_error()); ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal_slice, value_inference.AnalyzeIsDynamic(operand)); return literal_slice.Clone(); } absl::StatusOr<bool> ComputeDynamismScalar(XlaOp operand, XlaBuilder* builder, ShapeIndex index = {}) { TF_ASSIGN_OR_RETURN(auto literal, ComputeDynamismLiteral(operand, builder, nullptr)); return literal.Get<bool>({}, index); } se::Platform* platform_; }; TEST_F(DynamismInferenceTest, ScalarInt32Literal) { XlaBuilder b(TestName()); auto computation = ConstantR0<int32_t>(&b, 42); auto value = ComputeDynamismScalar(computation, &b); ASSERT_TRUE(value.ok()) << value.status(); EXPECT_EQ(value.value(), false); } TEST_F(DynamismInferenceTest, Iota) { XlaBuilder b(TestName()); auto computation = Iota(&b, S32, 2); EXPECT_FALSE(ComputeDynamismLiteral(computation, &b).value().Get<bool>({0})); } TEST_F(DynamismInferenceTest, TupleSimple) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto tuple = Tuple(&b, {c, p}); EXPECT_EQ(ComputeDynamismScalar(tuple, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, TupleGteKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto tuple = Tuple(&b, {c, p}); auto gte0 = GetTupleElement(tuple, 0); auto gte1 = GetTupleElement(tuple, 1); auto tuple_2 = Tuple(&b, {gte0, gte1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, PredValueUsedTwice) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto pred = Eq(c, p); auto result = Select(pred, p, c); EXPECT_EQ(ComputeDynamismScalar(result, &b, {}).value(), true); } TEST_F(DynamismInferenceTest, ReduceUsedTwice) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2}), "p0"); auto zero = ConstantR0<int32_t>(&b, 0); XlaComputation add_s32 = CreateScalarAddComputation(S32, &b); auto reduce = Reduce(p, zero, add_s32, {0}); auto pred = Eq(c, reduce); auto result = Select(pred, reduce, c); EXPECT_EQ(ComputeDynamismScalar(result, &b, {}).value(), true); } TEST_F(DynamismInferenceTest, VariadicReduce) { XlaBuilder b(TestName()); auto c = ConstantR2<int32_t>(&b, {{0, 0}}); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {1, 2}), "p0"); auto half_dynamic = ConcatInDim(&b, {c, p}, 0); XlaBuilder reduce_add("reduce_add"); auto p0 = Parameter(&reduce_add, 0, ShapeUtil::MakeScalarShape(S32), "p"); auto p1 = Parameter(&reduce_add, 1, ShapeUtil::MakeScalarShape(S32), "p"); auto p2 = Parameter(&reduce_add, 2, ShapeUtil::MakeScalarShape(S32), "p"); auto p3 = Parameter(&reduce_add, 3, ShapeUtil::MakeScalarShape(S32), "p"); auto reduce_result = p0; reduce_result = Add(reduce_result, p1); reduce_result = Add(reduce_result, p2); reduce_result = Add(reduce_result, p3); Tuple(&reduce_add, {reduce_result, reduce_result}); auto init = ConstantR0<int32_t>(&b, 0); auto variadic_reduce = Reduce(&b, {half_dynamic, half_dynamic}, {init, init}, reduce_add.Build().value(), {1}); auto result = GetTupleElement(variadic_reduce, 0); EXPECT_FALSE(ComputeDynamismLiteral(result, &b).value().Get<bool>({0})); EXPECT_TRUE(ComputeDynamismLiteral(result, &b).value().Get<bool>({1})); } TEST_F(DynamismInferenceTest, DynamicSelectorWithMixedValues) { XlaBuilder b(TestName()); auto constant_pred = ConstantR1<bool>(&b, {true}); auto dynamic_pred = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {1}), "p0"); auto concat = ConcatInDim(&b, {constant_pred, dynamic_pred}, 0); auto constant_values = ConstantR1<bool>(&b, {true, true}); auto result = Select(concat, constant_values, constant_values); EXPECT_FALSE(ComputeDynamismLiteral(result, &b).value().Get<bool>({0})); EXPECT_TRUE(ComputeDynamismLiteral(result, &b).value().Get<bool>({1})); } TEST_F(DynamismInferenceTest, ConcatSliceReshapeKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto concat = ConcatScalars(&b, {c, p}); auto slice0 = SliceInDim(concat, 0, 1, 1, 0); auto reshape0 = Reshape(slice0, {}); auto slice1 = SliceInDim(concat, 1, 2, 1, 0); auto reshape1 = Reshape(slice1, {}); auto tuple_2 = Tuple(&b, {reshape0, reshape1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, ParameterIsDynamic) { XlaBuilder b(TestName()); auto computation = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto value = ComputeDynamismScalar(computation, &b); ASSERT_TRUE(value.ok()) << value.status(); EXPECT_EQ(value.value(), true); } TEST_F(DynamismInferenceTest, UnaryOpKeepsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto neg0 = Neg(c); auto neg1 = Neg(p); auto tuple_2 = Tuple(&b, {neg0, neg1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, ParameterWithToken) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeTupleShape({ShapeUtil::MakeTokenShape(), ShapeUtil::MakeScalarShape(S32)}), "p0"); EXPECT_EQ(ComputeDynamismScalar(p, &b, {0}).value(), true); EXPECT_EQ(ComputeDynamismScalar(p, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, BinaryOpsOrsDynamism) { XlaBuilder b(TestName()); auto c = ConstantR0<int32_t>(&b, 42); auto p = Parameter(&b, 0, ShapeUtil::MakeScalarShape(S32), "p0"); auto add1 = Add(c, c); auto add2 = Add(p, c); auto tuple_2 = Tuple(&b, {add1, add2}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), false); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), true); } TEST_F(DynamismInferenceTest, GetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto tuple_2 = Tuple(&b, {gds0, gds1}); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {0}).value(), true); EXPECT_EQ(ComputeDynamismScalar(tuple_2, &b, {1}).value(), false); } TEST_F(DynamismInferenceTest, DynamicSliceWithConstantOperands) { XlaBuilder b(TestName()); auto constant = ConstantR1<int32_t>(&b, {0, 1, 2, 3}); auto slice_start = ConstantR0(&b, 1); auto dynamic_slice = DynamicSlice(constant, {slice_start}, {1}); EXPECT_FALSE( ComputeDynamismLiteral(dynamic_slice, &b).value().Get<bool>({0})); } TEST_F(DynamismInferenceTest, GatherWithCommonParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto operand1 = Parameter(&b, 0, indices_shape, "p1"); auto operand2 = Parameter(&b, 1, indices_shape, "p2"); auto indices = Sub(operand1, operand2); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(operand1, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, GatherWithConstantParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto data_operand = ConstantR1<int32_t>(&b, {1, 2}); auto indices = ConstantR1<int32_t>(&b, {1, 2}); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(data_operand, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, GatherWithSharedConstantParent) { XlaBuilder b(TestName()); Shape indices_shape = ShapeUtil::MakeShape(S32, {2}); auto operand1 = ConstantR1<int32_t>(&b, {1, 2}); auto operand2 = ConstantR1<int32_t>(&b, {1, 2}); auto indices = Sub(operand1, operand2); GatherDimensionNumbers dim_numbers; dim_numbers.add_offset_dims(1); dim_numbers.add_start_index_map(0); dim_numbers.set_index_vector_dim(1); auto gather = Gather(operand1, indices, dim_numbers, {1}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gather, &b).value().Get<bool>({0, 0})); } TEST_F(DynamismInferenceTest, InferThroughPad) { XlaBuilder b(TestName()); auto operand1 = ConstantR1<int32_t>(&b, {1, 2}); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); PaddingConfig padding_config; padding_config.add_dimensions()->set_edge_padding_high(1); auto pad = Pad(operand1, parameter, padding_config); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({0})); EXPECT_FALSE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({1})); EXPECT_TRUE(ComputeDynamismLiteral(pad, &b).value().Get<bool>({2})); } TEST_F(DynamismInferenceTest, InferThroughConditionalBranchesAreSame) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 1)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Parameter(&false_builder, 0, s32_shape, "cond_param"); Tuple(&false_builder, {ConstantR0<int32_t>(&false_builder, 1)}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "p0"); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(parameter, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughCall) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); XlaBuilder call_builder("call"); Parameter(&call_builder, 0, s32_shape, "call_param"); auto call_computation = call_builder.Build().value(); XlaBuilder b(TestName()); auto constant = ConstantR0<int32_t>(&b, 3); auto call = Call(&b, call_computation, {constant}); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_EQ(ComputeDynamismScalar(call, &b, {}).value(), false); } TEST_F(DynamismInferenceTest, InferThroughConditionalBranchesAreNotSame) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 1)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Parameter(&false_builder, 0, s32_shape, "cond_param"); Tuple(&false_builder, {ConstantR0<int32_t>(&false_builder, 2)}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto parameter = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "p0"); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(parameter, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughConditionalPredIsConstantTrueBranch) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 0)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Tuple(&false_builder, {Parameter(&false_builder, 0, s32_shape, "cond_param")}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto pred = ConstantR0<bool>(&b, true); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(pred, constant, true_computation, constant, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, InferThroughConditionalPredIsConstantFalseBranch) { auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder true_builder("true"); Parameter(&true_builder, 0, s32_shape, "cond_param"); Tuple(&true_builder, {ConstantR0<int32_t>(&true_builder, 0)}); auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); Tuple(&false_builder, {Parameter(&false_builder, 0, s32_shape, "cond_param")}); auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto param = Parameter(&b, 0, s32_shape, "param"); auto pred = ConstantR0<bool>(&b, false); auto constant = ConstantR0<int32_t>(&b, 0); auto cond = Conditional(pred, constant, true_computation, param, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_TRUE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } TEST_F(DynamismInferenceTest, ArgumentForwardingNestedTuple) { auto pred_shape = ShapeUtil::MakeShape(PRED, {}); auto s32_shape = ShapeUtil::MakeShape(S32, {}); auto tuple_shape = ShapeUtil::MakeTupleShape({pred_shape, s32_shape}); auto cond_shape = ShapeUtil::MakeTupleShape({s32_shape}); XlaBuilder inner_true_builder("inner_true"); Parameter(&inner_true_builder, 0, s32_shape, "cond_param"); Tuple(&inner_true_builder, {ConstantR0<int32_t>(&inner_true_builder, 0)}); auto inner_true_computation = inner_true_builder.Build().value(); XlaBuilder inner_false_builder("inner_false"); Tuple(&inner_false_builder, {Parameter(&inner_false_builder, 0, s32_shape, "cond_param")}); auto inner_false_computation = inner_false_builder.Build().value(); XlaBuilder true_builder("true"); { auto param = Parameter(&true_builder, 0, tuple_shape, "param"); auto op = GetTupleElement(param, 1); auto pred = GetTupleElement(param, 0); Conditional(pred, op, inner_true_computation, op, inner_false_computation); } auto true_computation = true_builder.Build().value(); XlaBuilder false_builder("false"); { auto param = Parameter(&false_builder, 0, tuple_shape, "param"); auto op = GetTupleElement(param, 1); auto pred = GetTupleElement(param, 0); Conditional(pred, op, inner_true_computation, op, inner_false_computation); } auto false_computation = false_builder.Build().value(); XlaBuilder b(TestName()); auto constant = ConstantR0<int32_t>(&b, 0); auto pred = Parameter(&b, 0, pred_shape, "param"); auto param = Tuple(&b, {pred, constant}); auto cond = Conditional(pred, param, true_computation, param, false_computation); auto gte = GetTupleElement(cond, 0); ASSERT_TRUE(b.first_error().ok()) << b.first_error().message(); EXPECT_FALSE(ComputeDynamismLiteral(gte, &b).value().Get<bool>({})); } class UpperBoundInferenceTest : public ValueInferenceTest { public: explicit UpperBoundInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<OptionalLiteral> ComputeUpperBoundLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal, value_inference.AnalyzeConstant( operand, ValueInferenceMode::kUpperBound)); return literal; } se::Platform* platform_; }; TEST_F(UpperBoundInferenceTest, GetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto tuple_2 = Tuple(&b, {gds0, gds1}); EXPECT_EQ(ComputeUpperBoundLiteral(tuple_2, &b).value().Get<int32_t>({}, {0}), 2); EXPECT_EQ(ComputeUpperBoundLiteral(tuple_2, &b).value().Get<int32_t>({}, {1}), 3); } TEST_F(UpperBoundInferenceTest, GetDimensionSizeSub) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto sub = Sub(gds1, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(sub, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, GetDimensionSizeDiv) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, false}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto div = Div(gds1, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(div, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, SumSubtract) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto sub = Sub(gds1, gds0); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); auto add2 = Add(gds1, gds0); auto add3 = Add(sub, add2); EXPECT_EQ(ComputeUpperBoundLiteral(add3, &b).value().Get<int32_t>({}), 6); } TEST_F(UpperBoundInferenceTest, SumSubtractWithDataShuffling) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto broadcast = Broadcast(gds0, {1, 10}); auto convert = ConvertElementType(broadcast, S32); auto slice = SliceInDim(convert, 0, 1, 1, 1); gds0 = Reshape(slice, {}); auto sub = Sub(gds1, gds0); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); auto add2 = Add(gds1, gds0); auto add3 = Add(sub, add2); EXPECT_EQ(ComputeUpperBoundLiteral(add3, &b).value().Get<int32_t>({}), 6); } TEST_F(UpperBoundInferenceTest, SumSubtractEquivalentGetDimensionSize) { XlaBuilder b(TestName()); auto p = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2, 3}, {true, true}), "p0"); auto gds0 = GetDimensionSize(p, 0); auto gds1 = GetDimensionSize(p, 1); auto gds2 = GetDimensionSize(p, 0); auto sub = Sub(gds1, gds2); auto add = Add(sub, gds0); EXPECT_EQ(ComputeUpperBoundLiteral(add, &b).value().Get<int32_t>({}), 3); } TEST_F(UpperBoundInferenceTest, ParamCantInferBound) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {2}, {true}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}, {}), "p1"); auto gds = GetDimensionSize(p0, 0); auto sub = Div(gds, p1); EXPECT_FALSE( ComputeUpperBoundLiteral(sub, &b).value().Get<int32_t>({}).has_value()); } TEST_F(UpperBoundInferenceTest, KeyValueSort) { XlaBuilder comparator_b("comparator"); auto p0 = Parameter(&comparator_b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); auto p1 = Parameter(&comparator_b, 1, ShapeUtil::MakeShape(S32, {}), "p1"); Parameter(&comparator_b, 2, ShapeUtil::MakeShape(S32, {}), "p2"); Parameter(&comparator_b, 3, ShapeUtil::MakeShape(S32, {}), "p3"); Compare(p0, p1, ComparisonDirection::kGe); TF_ASSERT_OK_AND_ASSIGN(auto comparator, comparator_b.Build()); int64_t elem_count = 17; XlaBuilder b(TestName()); auto param = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {elem_count}), "p0"); auto iota = Iota(&b, S32, elem_count); auto sort = Sort({param, iota}, comparator); auto gte = GetTupleElement(sort, 1); for (int64_t i = 0; i < elem_count; ++i) { auto result_first_elem = ComputeUpperBoundLiteral(gte, &b).value().Get<int32_t>({i}); EXPECT_TRUE(result_first_elem.has_value()); EXPECT_EQ(result_first_elem.value(), elem_count - 1); } } class ConstValueInferenceTest : public ValueInferenceTest { public: explicit ConstValueInferenceTest(se::Platform* platform = nullptr) : platform_(platform) {} absl::StatusOr<OptionalLiteral> ComputeConstantValueLiteral( XlaOp operand, XlaBuilder* builder, Layout* output_layout = nullptr) { ValueInference value_inference(builder); TF_ASSIGN_OR_RETURN(auto literal, value_inference.AnalyzeConstant( operand, ValueInferenceMode::kValue)); return literal; } se::Platform* platform_; }; TEST_F(ConstValueInferenceTest, ConstValuePassThroughSetBound) { XlaBuilder b(TestName()); auto p0 = ConstantR0<int32_t>(&b, 32); Shape shape = ShapeUtil::MakeShape(S32, {}); xla::Literal dynamism = xla::LiteralUtil::CreateR0<bool>(false); xla::Literal bound = xla::LiteralUtil::CreateR0<int32_t>(32); xla::Literal tuple = xla::LiteralUtil::MakeTupleOwned(std::move(bound), std::move(dynamism)); auto set_bound = CustomCall(&b, "SetBound", {p0}, shape, "", false, {}, &tuple); auto result = ComputeConstantValueLiteral(set_bound, &b).value().Get<int32_t>({}); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), 32); } TEST_F(ConstValueInferenceTest, ParamaterValuePassThroughSetBound) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {}), "p0"); Shape shape = ShapeUtil::MakeShape(S32, {}); xla::Literal dynamism = xla::LiteralUtil::CreateR0<bool>(false); xla::Literal bound = xla::LiteralUtil::CreateR0<int32_t>(32); xla::Literal tuple = xla::LiteralUtil::MakeTupleOwned(std::move(bound), std::move(dynamism)); auto set_bound = CustomCall(&b, "SetBound", {p0}, shape, "", false, {}, &tuple); auto result = ComputeConstantValueLiteral(set_bound, &b).value().Get<int32_t>({}); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value(), 32); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/value_inference.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/value_inference_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
14261d17-de12-429d-884e-9463414a1834
cpp
tensorflow/tensorflow
resize_bilinear_op
tensorflow/core/kernels/image/resize_bilinear_op.cc
tensorflow/core/kernels/image/resize_bilinear_op_test.cc
#define EIGEN_USE_THREADS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define EIGEN_USE_GPU #endif #include "tensorflow/core/kernels/image/resize_bilinear_op.h" #ifdef __SSE4_1__ #include <xmmintrin.h> #endif #include <memory> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/cast_op.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/image_resizer_state.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; template <typename Device, typename T> class ResizeBilinearOp : public OpKernel { public: explicit ResizeBilinearOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_)); OP_REQUIRES_OK( context, context->GetAttr("half_pixel_centers", &half_pixel_centers_)); } void Compute(OpKernelContext* context) override { ImageResizerState st(align_corners_, half_pixel_centers_); st.ValidateAndCreateOutput(context); if (!context->status().ok()) return; if (st.output->NumElements() == 0) return; typename TTypes<T, 4>::ConstTensor image_data( context->input(0).tensor<T, 4>()); TTypes<float, 4>::Tensor output_data = st.output->tensor<float, 4>(); functor::ResizeBilinear<Device, T>()( context->eigen_device<Device>(), image_data, st.height_scale, st.width_scale, half_pixel_centers_, output_data); } private: bool align_corners_; bool half_pixel_centers_; }; namespace { struct CachedInterpolation { int64_t lower; int64_t upper; float lerp; }; template <typename Scaler> inline void compute_interpolation_weights(const Scaler scaler, const int64_t out_size, const int64_t in_size, const float scale, CachedInterpolation* interpolation) { interpolation[out_size].lower = 0; interpolation[out_size].upper = 0; for (int64_t i = out_size - 1; i >= 0; --i) { const float in = scaler(i, scale); const float in_f = std::floor(in); interpolation[i].lower = std::max(static_cast<int64_t>(in_f), static_cast<int64_t>(0)); interpolation[i].upper = std::min(static_cast<int64_t>(std::ceil(in)), in_size - 1); interpolation[i].lerp = in - in_f; } } inline float compute_lerp(const float top_left, const float top_right, const float bottom_left, const float bottom_right, const float x_lerp, const float y_lerp) { const float top = top_left + (top_right - top_left) * x_lerp; const float bottom = bottom_left + (bottom_right - bottom_left) * x_lerp; return top + (bottom - top) * y_lerp; } #ifdef __SSE4_1__ inline __m128 compute_lerp_v(const __m128 top_left, const __m128 top_right, const __m128 bottom_left, const __m128 bottom_right, const __m128 x_lerp, const __m128 y_lerp) { const __m128 top = _mm_add_ps(top_left, _mm_mul_ps(_mm_sub_ps(top_right, top_left), x_lerp)); const __m128 bottom = _mm_add_ps( bottom_left, _mm_mul_ps(_mm_sub_ps(bottom_right, bottom_left), x_lerp)); return _mm_add_ps(top, _mm_mul_ps(_mm_sub_ps(bottom, top), y_lerp)); } #endif template <typename T> void ResizeLineChannels(const T* const ys_input_lower_ptr, const T* const ys_input_upper_ptr, const CachedInterpolation* const xs, const float ys_lerp, const int64_t out_width, float* out_y, const int channels) { for (int64_t x = 0; x < out_width; ++x) { const int64_t xs_lower = xs[x].lower; const int64_t xs_upper = xs[x].upper; const float xs_lerp = xs[x].lerp; for (int c = 0; c < channels; ++c) { const float top_left(ys_input_lower_ptr[xs_lower + c]); const float top_right(ys_input_lower_ptr[xs_upper + c]); const float bottom_left(ys_input_upper_ptr[xs_lower + c]); const float bottom_right(ys_input_upper_ptr[xs_upper + c]); out_y[x * channels + c] = compute_lerp(top_left, top_right, bottom_left, bottom_right, xs_lerp, ys_lerp); } } } #ifdef __SSE4_1__ template <typename T> inline __m128 load_3xfloat_v(T* values) { return _mm_set_ps(0.0f, static_cast<float>(values[2]), static_cast<float>(values[1]), static_cast<float>(values[0])); } template <> inline __m128 load_3xfloat_v(float* values) { return _mm_loadu_ps(values); } template <typename T> void ResizeLine3ChannelsVector(const T* const ys_input_lower_ptr, const T* const ys_input_upper_ptr, const CachedInterpolation* const xs, const float ys_lerp, const int64_t out_width, float* out_y) { const __m128 ys_lerp_v = _mm_set1_ps(ys_lerp); int64_t x = 0; for (x = 0; x < out_width - 1; ++x) { const int64_t xs_lower = xs[x].lower; const int64_t xs_upper = xs[x].upper; const __m128 xs_lerp_v = _mm_set1_ps(xs[x].lerp); const __m128 top_left_v = load_3xfloat_v(ys_input_lower_ptr + xs_lower); const __m128 top_right_v = load_3xfloat_v(ys_input_lower_ptr + xs_upper); const __m128 bottom_left_v = load_3xfloat_v(ys_input_upper_ptr + xs_lower); const __m128 bottom_right_v = load_3xfloat_v(ys_input_upper_ptr + xs_upper); _mm_storeu_ps(out_y + x * 3, compute_lerp_v(top_left_v, top_right_v, bottom_left_v, bottom_right_v, xs_lerp_v, ys_lerp_v)); } ResizeLineChannels(ys_input_lower_ptr, ys_input_upper_ptr, xs + out_width - 1, ys_lerp, 1, out_y + (out_width - 1) * 3, 3); } #endif template <typename T> void resize_image( typename TTypes<T, 4>::ConstTensor images, const int batch_size, const int64_t in_height, const int64_t in_width, const int64_t out_height, const int64_t out_width, const int channels, const std::vector<CachedInterpolation>& xs, const std::vector<CachedInterpolation>& ys, typename TTypes<float, 4>::Tensor output) TF_ATTRIBUTE_NOINLINE; template <typename T> void resize_image(typename TTypes<T, 4>::ConstTensor images, const int batch_size, const int64_t in_height, const int64_t in_width, const int64_t out_height, const int64_t out_width, const int channels, const std::vector<CachedInterpolation>& xs_vec, const std::vector<CachedInterpolation>& ys, typename TTypes<float, 4>::Tensor output) { const int64_t in_row_size = in_width * channels; const int64_t in_batch_num_values = in_height * in_row_size; const int64_t out_row_size = out_width * channels; const T* input_b_ptr = images.data(); const CachedInterpolation* xs = xs_vec.data(); if (channels == 3) { float* output_y_ptr = output.data(); for (int b = 0; b < batch_size; ++b) { for (int64_t y = 0; y < out_height; ++y) { const T* ys_input_lower_ptr = input_b_ptr + ys[y].lower * in_row_size; const T* ys_input_upper_ptr = input_b_ptr + ys[y].upper * in_row_size; #ifdef __SSE4_1__ ResizeLine3ChannelsVector(ys_input_lower_ptr, ys_input_upper_ptr, xs, ys[y].lerp, out_width, output_y_ptr); #else ResizeLineChannels(ys_input_lower_ptr, ys_input_upper_ptr, xs, ys[y].lerp, out_width, output_y_ptr, 3); #endif output_y_ptr += out_row_size; } input_b_ptr += in_batch_num_values; } } else { float* output_y_ptr = output.data(); for (int b = 0; b < batch_size; ++b) { for (int64_t y = 0; y < out_height; ++y) { const T* ys_input_lower_ptr = input_b_ptr + ys[y].lower * in_row_size; const T* ys_input_upper_ptr = input_b_ptr + ys[y].upper * in_row_size; ResizeLineChannels(ys_input_lower_ptr, ys_input_upper_ptr, xs, ys[y].lerp, out_width, output_y_ptr, channels); output_y_ptr += out_row_size; } input_b_ptr += in_batch_num_values; } } } template <typename Device, typename T> struct CastFloatTo { void operator()(const Device& d, typename TTypes<float>::ConstFlat input, typename TTypes<T>::Flat output) { output.device(d) = input.template cast<T>(); } }; template <typename T> struct CastFloatTo<GPUDevice, T> { void operator()(const GPUDevice& d, typename TTypes<float>::ConstFlat input, typename TTypes<T>::Flat output) { functor::CastFunctor<GPUDevice, T, float> cast; cast(d, output, input); } }; } namespace functor { template <typename T> struct ResizeBilinear<CPUDevice, T> { void operator()(const CPUDevice& d, typename TTypes<T, 4>::ConstTensor images, const float height_scale, const float width_scale, bool half_pixel_centers, typename TTypes<float, 4>::Tensor output) { const int batch_size = images.dimension(0); const int64_t in_height = images.dimension(1); const int64_t in_width = images.dimension(2); const int channels = images.dimension(3); const int64_t out_height = output.dimension(1); const int64_t out_width = output.dimension(2); if (out_height == in_height && out_width == in_width) { output = images.template cast<float>(); return; } std::vector<CachedInterpolation> ys(out_height + 1); std::vector<CachedInterpolation> xs(out_width + 1); if (half_pixel_centers) { compute_interpolation_weights(HalfPixelScaler(), out_height, in_height, height_scale, ys.data()); compute_interpolation_weights(HalfPixelScaler(), out_width, in_width, width_scale, xs.data()); } else { compute_interpolation_weights(LegacyScaler(), out_height, in_height, height_scale, ys.data()); compute_interpolation_weights(LegacyScaler(), out_width, in_width, width_scale, xs.data()); } for (int i = 0; i < xs.size(); ++i) { xs[i].lower *= channels; xs[i].upper *= channels; } resize_image<T>(images, batch_size, in_height, in_width, out_height, out_width, channels, xs, ys, output); } }; } template <typename Device, typename T> class ResizeBilinearOpGrad : public OpKernel { public: explicit ResizeBilinearOpGrad(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_)); OP_REQUIRES_OK( context, context->GetAttr("half_pixel_centers", &half_pixel_centers_)); } void Compute(OpKernelContext* context) override { ImageResizerGradientState st(align_corners_, half_pixel_centers_); st.ValidateAndCreateOutput(context); if (!context->status().ok()) return; TTypes<float, 4>::ConstTensor input_grad = context->input(0).tensor<float, 4>(); if (!std::is_same<T, Eigen::half>::value && !std::is_same<T, Eigen::bfloat16>::value) { typename TTypes<T, 4>::Tensor output_grad(st.output->tensor<T, 4>()); functor::ResizeBilinearGrad<Device, T>()( context->eigen_device<Device>(), input_grad, st.height_scale, st.width_scale, half_pixel_centers_, output_grad); } else { Tensor output_grad; OP_REQUIRES_OK(context, context->allocate_temp( DT_FLOAT, st.output->shape(), &output_grad)); functor::ResizeBilinearGrad<Device, float>()( context->eigen_device<Device>(), input_grad, st.height_scale, st.width_scale, half_pixel_centers_, output_grad.tensor<float, 4>()); const Tensor& output_grad_const = output_grad; CastFloatTo<Device, T>{}(context->template eigen_device<Device>(), output_grad_const.template flat<float>(), st.output->template flat<T>()); } } private: bool align_corners_; bool half_pixel_centers_; }; namespace functor { template <typename T> struct ResizeBilinearGrad<CPUDevice, T> { template <typename Scaler> void ResizeGradCore(const Scaler& scaler, typename TTypes<float, 4>::ConstTensor input_grad, const float height_scale, const float width_scale, typename TTypes<T, 4>::Tensor output_grad) { const Eigen::Index batch = output_grad.dimension(0); const Eigen::Index original_height = output_grad.dimension(1); const Eigen::Index original_width = output_grad.dimension(2); const Eigen::Index channels = output_grad.dimension(3); const Eigen::Index resized_height = input_grad.dimension(1); const Eigen::Index resized_width = input_grad.dimension(2); output_grad.setZero(); for (Eigen::Index b = 0; b < batch; ++b) { for (Eigen::Index y = 0; y < resized_height; ++y) { const float in_y = scaler(y, height_scale); const Eigen::Index top_y_index = std::max(static_cast<Eigen::Index>(floorf(in_y)), static_cast<Eigen::Index>(0)); const Eigen::Index bottom_y_index = std::min( static_cast<Eigen::Index>(ceilf(in_y)), original_height - 1); const float y_lerp = in_y - floorf(in_y); const float inverse_y_lerp = (1.0f - y_lerp); for (Eigen::Index x = 0; x < resized_width; ++x) { const float in_x = scaler(x, width_scale); const Eigen::Index left_x_index = std::max(static_cast<Eigen::Index>(floorf(in_x)), static_cast<Eigen::Index>(0)); const Eigen::Index right_x_index = std::min( static_cast<Eigen::Index>(ceilf(in_x)), original_width - 1); const float x_lerp = in_x - floorf(in_x); const float inverse_x_lerp = (1.0f - x_lerp); for (Eigen::Index c = 0; c < channels; ++c) { output_grad(b, top_y_index, left_x_index, c) += T(input_grad(b, y, x, c) * inverse_y_lerp * inverse_x_lerp); output_grad(b, top_y_index, right_x_index, c) += T(input_grad(b, y, x, c) * inverse_y_lerp * x_lerp); output_grad(b, bottom_y_index, left_x_index, c) += T(input_grad(b, y, x, c) * y_lerp * inverse_x_lerp); output_grad(b, bottom_y_index, right_x_index, c) += T(input_grad(b, y, x, c) * y_lerp * x_lerp); } } } } } void operator()(const CPUDevice& d, typename TTypes<float, 4>::ConstTensor input_grad, const float height_scale, const float width_scale, const bool half_pixel_centers, typename TTypes<T, 4>::Tensor output_grad) { if (half_pixel_centers) { return ResizeGradCore(HalfPixelScaler(), input_grad, height_scale, width_scale, output_grad); } else { return ResizeGradCore(LegacyScaler(), input_grad, height_scale, width_scale, output_grad); } } }; } #define REGISTER_KERNEL(T) \ REGISTER_KERNEL_BUILDER(Name("ResizeBilinear") \ .Device(DEVICE_CPU) \ .TypeConstraint<T>("T") \ .HostMemory("size"), \ ResizeBilinearOp<CPUDevice, T>); TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL); #undef REGISTER_KERNEL #define REGISTER_GRAD_KERNEL(T) \ REGISTER_KERNEL_BUILDER( \ Name("ResizeBilinearGrad").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ ResizeBilinearOpGrad<CPUDevice, T>); TF_CALL_half(REGISTER_GRAD_KERNEL); TF_CALL_float(REGISTER_GRAD_KERNEL); TF_CALL_double(REGISTER_GRAD_KERNEL); TF_CALL_bfloat16(REGISTER_GRAD_KERNEL); #undef REGISTER_GRAD_KERNEL #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_KERNEL(T) \ REGISTER_KERNEL_BUILDER(Name("ResizeBilinear") \ .Device(DEVICE_GPU) \ .TypeConstraint<T>("T") \ .HostMemory("size"), \ ResizeBilinearOp<GPUDevice, T>); TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNEL); #undef REGISTER_KERNEL #define REGISTER_GRAD_KERNEL(T) \ REGISTER_KERNEL_BUILDER( \ Name("ResizeBilinearGrad").Device(DEVICE_GPU).TypeConstraint<T>("T"), \ ResizeBilinearOpGrad<GPUDevice, T>); TF_CALL_GPU_NUMBER_TYPES(REGISTER_GRAD_KERNEL); #undef REGISTER_GRAD_KERNEL #endif }
#include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { enum class TestDevice { CPU, GPU }; class ResizeBilinearOpTestBase : public OpsTestBase, public ::testing::WithParamInterface<TestDevice> { protected: explicit ResizeBilinearOpTestBase() : align_corners_(false), half_pixel_centers_(false) {} void SetUp() override { if (GetParam() == TestDevice::GPU) { std::unique_ptr<Device> device_gpu( DeviceFactory::NewDevice("GPU", {}, "/job:a/replica:0/task:0")); SetDevice(DEVICE_GPU, std::move(device_gpu)); } TF_EXPECT_OK(NodeDefBuilder("resize_bilinear_op", "ResizeBilinear") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("align_corners", align_corners_) .Attr("half_pixel_centers", half_pixel_centers_) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } const Tensor* SetRandomImageInput(const TensorShape& shape) { inputs_.clear(); CHECK_EQ(shape.dims(), 4) << "All images must have 4 dimensions."; bool is_ref = IsRefType(input_types_[inputs_.size()]); Tensor* input = new Tensor(allocator(), DataTypeToEnum<float>::v(), shape); input->flat<float>().setRandom(); tensors_.push_back(input); if (is_ref) { CHECK_EQ(RemoveRefType(input_types_[inputs_.size()]), DataTypeToEnum<float>::v()); inputs_.push_back({&lock_for_refs_, input}); } else { CHECK_EQ(input_types_[inputs_.size()], DataTypeToEnum<float>::v()); inputs_.push_back({nullptr, input}); } return input; } void ResizeBilinearBaseline(TTypes<float, 4>::ConstTensor images, TTypes<float, 4>::Tensor output) { const int batch = images.dimension(0); const int64_t in_height = images.dimension(1); const int64_t in_width = images.dimension(2); const int channels = images.dimension(3); ASSERT_EQ(batch, output.dimension(0)); ASSERT_EQ(channels, output.dimension(3)); const int64_t out_height = output.dimension(1); const int64_t out_width = output.dimension(2); const float height_scale = in_height / static_cast<float>(out_height); const float width_scale = in_width / static_cast<float>(out_width); for (int b = 0; b < batch; ++b) { for (int64_t y = 0; y < out_height; ++y) { const float in_y = half_pixel_centers_ ? (static_cast<float>(y) + 0.5f) * height_scale - 0.5f : y * height_scale; const int64_t top_y_index = std::max(static_cast<int64_t>(floorf(in_y)), static_cast<int64_t>(0)); const int64_t bottom_y_index = std::min(static_cast<int64_t>(ceilf(in_y)), in_height - 1); const float y_lerp = in_y - std::floor(in_y); for (int64_t x = 0; x < out_width; ++x) { const float in_x = half_pixel_centers_ ? (static_cast<float>(x) + 0.5f) * width_scale - 0.5f : x * width_scale; const int64_t left_x_index = std::max( static_cast<int64_t>(floorf(in_x)), static_cast<int64_t>(0)); const int64_t right_x_index = std::min(static_cast<int64_t>(ceilf(in_x)), in_width - 1); const float x_lerp = in_x - std::floor(in_x); for (int c = 0; c < channels; ++c) { const float top_left = images(b, top_y_index, left_x_index, c); const float top_right = images(b, top_y_index, right_x_index, c); const float bottom_left = images(b, bottom_y_index, left_x_index, c); const float bottom_right = images(b, bottom_y_index, right_x_index, c); const float top = top_left + (top_right - top_left) * x_lerp; const float bottom = bottom_left + (bottom_right - bottom_left) * x_lerp; output(b, y, x, c) = top + (bottom - top) * y_lerp; } } } } } void TestResize(int batch_size, int input_width, int input_height, int channels, int output_width, int output_height) { const TensorShape shape({batch_size, input_width, input_height, channels}); const Tensor* input = SetRandomImageInput(shape); AddInputFromArray<int32>(TensorShape({2}), {output_width, output_height}); TF_ASSERT_OK(RunOpKernel()); std::unique_ptr<Tensor> expected(new Tensor( allocator(), DataTypeToEnum<float>::v(), TensorShape({batch_size, output_width, output_height, channels}))); ResizeBilinearBaseline(input->tensor<float, 4>(), expected->tensor<float, 4>()); test::ExpectClose(*expected, *GetOutput(0), 4e-5); } void RunManyRandomTests(int channels) { for (int batch_size : {1, 2, 5}) { for (int in_w : {2, 4, 7, 20, 165}) { for (int in_h : {1, 3, 5, 8, 100, 233}) { for (int target_height : {1, 2, 3, 50, 113}) { for (int target_width : {target_height, target_height / 2 + 1}) { TestResize(batch_size, in_w, in_h, channels, target_width, target_height); } } } } } } bool align_corners_; bool half_pixel_centers_; }; class ResizeBilinearOpTest : public ResizeBilinearOpTestBase { public: ResizeBilinearOpTest() {} }; class ResizeBilinearHalfPixelCentersOpTest : public ResizeBilinearOpTestBase { public: ResizeBilinearHalfPixelCentersOpTest() { half_pixel_centers_ = true; } }; class ResizeBilinearOpAlignCornersTest : public ResizeBilinearOpTestBase { public: ResizeBilinearOpAlignCornersTest() { align_corners_ = true; } }; TEST_P(ResizeBilinearOpTest, TestResizeRandomDataSeveralInputsSizes1Channel) { RunManyRandomTests(1); } TEST_P(ResizeBilinearOpTest, TestResizeRandomDataSeveralInputsSizes3Channels) { RunManyRandomTests(3); } TEST_P(ResizeBilinearOpTest, TestResizeRandomDataSeveralInputsSizes4Channels) { RunManyRandomTests(4); } TEST_P(ResizeBilinearOpTest, TestBilinear2x2To1x1) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {1, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 1, 1})); test::FillValues<float>(&expected, {1.0}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinearRandom2x2To1x1) { const Tensor* input = SetRandomImageInput(TensorShape({1, 2, 2, 1})); AddInputFromArray<int32>(TensorShape({2}), {1, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); std::unique_ptr<Tensor> expected(new Tensor( allocator(), DataTypeToEnum<float>::v(), TensorShape({1, 1, 1, 1}))); ResizeBilinearBaseline(input->tensor<float, 4>(), expected->tensor<float, 4>()); EXPECT_EQ(input->flat<float>()(0), output->flat<float>()(0)); test::ExpectClose(*expected, *output); } TEST_P(ResizeBilinearOpAlignCornersTest, TestBilinearAlignCorners2x2To1x1) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {1, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 1, 1})); test::FillValues<float>(&expected, {1.0}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear2x2To3x3) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3, 3, 1})); test::FillValues<float>(&expected, {1, 5.0f / 3, 2, 7.0f / 3, 3, 10.0f / 3, 3, 11.0f / 3, 4}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpAlignCornersTest, TestBilinearAlignCorners2x2To3x3) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3, 3, 1})); test::FillValues<float>(&expected, {1, 1.5, 2, 2, 2.5, 3, 3, 3.5, 4}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear3x3To2x2) { AddInputFromArray<float>(TensorShape({1, 3, 3, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<int32>(TensorShape({2}), {2, 2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 2, 2, 1})); test::FillValues<float>(&expected, {1, 2.5, 5.5, 7}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpAlignCornersTest, TestBilinearAlignCorners3x3To2x2) { AddInputFromArray<float>(TensorShape({1, 3, 3, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<int32>(TensorShape({2}), {2, 2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 2, 2, 1})); test::FillValues<float>(&expected, {1, 3, 7, 9}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear3x3To4x4) { AddInputFromArray<float>(TensorShape({1, 3, 3, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray<int32>(TensorShape({2}), {4, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 4, 4, 1})); test::FillValues<float>(&expected, {1, 1.75, 2.5, 3, 3.25, 4, 4.75, 5.25, 5.5, 6.25, 7, 7.5, 7, 7.75, 8.5, 9}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear4x4To3x3) { AddInputFromArray<float>( TensorShape({1, 4, 4, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3, 3, 1})); test::FillValues<float>(&expected, {1, 7.0f/3, 11.0f/3, 19.0f/3, 23.0f/3, 27.0f/3, 35.0f/3, 39.0f/3, 43.0f/3}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearHalfPixelCentersOpTest, TestDownsamples) { TestResize(4, 298, 297, 3, 61, 71); } TEST_P(ResizeBilinearHalfPixelCentersOpTest, TestUpsamples) { TestResize(4, 61, 71, 3, 298, 297); } TEST_P(ResizeBilinearOpAlignCornersTest, TestBilinearAlignCorners4x4To3x3) { AddInputFromArray<float>( TensorShape({1, 4, 4, 1}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3, 3, 1})); test::FillValues<float>(&expected, { 1, 2.5, 4, 7, 8.5, 10, 13, 14.5, 16}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear2x2To3x3Batch2) { AddInputFromArray<float>(TensorShape({2, 2, 2, 1}), {1, 2, 3, 4, 1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3, 3, 1})); test::FillValues<float>(&expected, {1, 5.0f/3, 2, 7.0f/3, 3, 10.0f/3, 3, 11.0f/3, 4, 1, 5.0f/3, 2, 7.0f/3, 3, 10.0f/3, 3, 11.0f/3, 4 }); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear2x2x2To3x3x2) { AddInputFromArray<float>(TensorShape({1, 2, 2, 2}), {1, -1, 2, -2, 3, -3, 4, -4}); AddInputFromArray<int32>(TensorShape({2}), {3, 3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3, 3, 2})); test::FillValues<float>(&expected, { 1, -1, 5.0f/3, -5.0f/3, 2, -2, 7.0f/3, -7.0f/3, 3, -3, 10.0f/3, -10.0f/3, 3, -3, 11.0f/3, -11.0f/3, 4, -4 }); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, TestBilinear2x2To4x4) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {4, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 4, 4, 1})); test::FillValues<float>(&expected, {1, 1.5, 2, 2, 2, 2.5, 3, 3, 3, 3.5, 4, 4, 3, 3.5, 4, 4}); test::ExpectClose(expected, *GetOutput(0)); } TEST_P(ResizeBilinearOpTest, Test1_1c) { TestResize(1, 183, 299, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test1_3c) { TestResize(1, 183, 299, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, Test2_1c) { TestResize(1, 141, 186, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test2_3c) { TestResize(1, 141, 186, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, Test3_1c) { TestResize(1, 749, 603, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test3_3c) { TestResize(1, 749, 603, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, Test4_1c) { TestResize(1, 299, 299, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test4_3c) { TestResize(1, 299, 299, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, Test5_1c) { TestResize(1, 298, 297, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test5_3c) { TestResize(1, 298, 297, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, Test6_1c) { TestResize(1, 304, 303, 1, 299, 299); } TEST_P(ResizeBilinearOpTest, Test6_3c) { TestResize(1, 304, 303, 3, 299, 299); } TEST_P(ResizeBilinearOpTest, TestInvalidOutputSize) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {0, 0}); Status s = RunOpKernel(); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE( absl::StrContains(s.message(), "output dimensions must be positive")) << s; } TEST_P(ResizeBilinearOpTest, TestInvalidInputShape) { AddInputFromArray<float>(TensorShape({2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2}), {4, 4}); Status s = RunOpKernel(); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), "input must be 4-dimensional")) << s; } TEST_P(ResizeBilinearOpTest, TestInvalidSizeDim) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({2, 1}), {4, 4}); Status s = RunOpKernel(); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), "shape_t must be 1-dimensional")) << s; } TEST_P(ResizeBilinearOpTest, TestInvalidSizeElements) { AddInputFromArray<float>(TensorShape({1, 2, 2, 1}), {1, 2, 3, 4}); AddInputFromArray<int32>(TensorShape({3}), {4, 4, 1}); Status s = RunOpKernel(); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), "shape_t must have two elements")) << s; } INSTANTIATE_TEST_SUITE_P(ResizeBilinearOpTestCpu, ResizeBilinearOpTest, ::testing::Values(TestDevice::CPU)); INSTANTIATE_TEST_SUITE_P(ResizeBilinearHalfPixelCentersOpTestCpu, ResizeBilinearHalfPixelCentersOpTest, ::testing::Values(TestDevice::CPU)); INSTANTIATE_TEST_SUITE_P(ResizeBilinearOpAlignCornersTestCpu, ResizeBilinearOpAlignCornersTest, ::testing::Values(TestDevice::CPU)); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM INSTANTIATE_TEST_SUITE_P(ResizeBilinearOpTestGpu, ResizeBilinearOpTest, ::testing::Values(TestDevice::GPU)); INSTANTIATE_TEST_SUITE_P(ResizeBilinearHalfPixelCentersOpTestGpu, ResizeBilinearHalfPixelCentersOpTest, ::testing::Values(TestDevice::GPU)); INSTANTIATE_TEST_SUITE_P(ResizeBilinearOpAlignCornersTestGpu, ResizeBilinearOpAlignCornersTest, ::testing::Values(TestDevice::GPU)); #endif class ResizeBM : public ResizeBilinearOpTest { public: void TestBody() override {} void SetUpBenchmark(int input_width, int input_height, int num_channels, int output_width, int output_height) { TF_EXPECT_OK(NodeDefBuilder("resize_bilinear_op", "ResizeBilinear") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("align_corners", align_corners_) .Attr("half_pixel_centers", half_pixel_centers_) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); const TensorShape shape( { 1, input_width, input_height, num_channels}); SetRandomImageInput(shape); AddInputFromArray<int32>(TensorShape({2}), {output_width, output_height}); } using ResizeBilinearOpTest::RunOpKernel; }; #ifdef PLATFORM_GOOGLE void BM_Resize(benchmark::State& state) { ResizeBM bench; bench.SetUpBenchmark(640, 480, 3, 1024, 768); for (const auto _ : state) { CHECK(bench.RunOpKernel().ok()); } } BENCHMARK(BM_Resize); #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/resize_bilinear_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/resize_bilinear_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3467b85c-9553-47ea-8c9c-3ebd61a23de5
cpp
tensorflow/tensorflow
stablehlo_gather
tensorflow/lite/kernels/stablehlo_gather.cc
tensorflow/lite/kernels/stablehlo_gather_test.cc
#include <algorithm> #include <cstdint> #include <memory> #include <vector> #include "Eigen/Core" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/tensor_slice_util.h" namespace tflite { namespace ops { namespace builtin { namespace stablehlo_gather { namespace { constexpr int kOperandTensor = 0; constexpr int kStartIndicesTensor = 1; constexpr int kOutputTensor = 0; using TfLiteIntArrayUniquePtr = std::unique_ptr<TfLiteIntArray, decltype(&TfLiteIntArrayFree)>; template <typename IndexType> TfLiteStatus ClipStartingIndex(const RuntimeShape& operand_shape, const int64_t* slice_sizes, int num_slice_sizes, Index<IndexType>& starting_index) { if (operand_shape.DimensionsCount() != starting_index.size() || operand_shape.DimensionsCount() != num_slice_sizes) { return kTfLiteError; } for (int dim = 0; dim < starting_index.size(); ++dim) { starting_index[dim] = std::min((int64_t)starting_index[dim], operand_shape.Dims(dim) - slice_sizes[dim]); } return kTfLiteOk; } static std::vector<int64_t> GetCollapsedSliceShape( const int64_t* slice_sizes, int num_slice_sizes, const int64_t* collapsed_slice_dims, int num_collapsed_slice_dims) { std::vector<int64_t> result(num_slice_sizes - num_collapsed_slice_dims); int result_ctr = 0; for (int dim = 0; dim < num_slice_sizes; dim++) { if (!ArrayContains(collapsed_slice_dims, num_collapsed_slice_dims, dim)) { result[result_ctr] = slice_sizes[dim]; result_ctr++; } } return result; } static TfLiteIntArrayUniquePtr GetResultShape( int64_t result_rank, const TfLiteStablehloGatherParams* data, const RuntimeShape& start_indices_shape) { TfLiteIntArrayUniquePtr result = TfLiteIntArrayUniquePtr( TfLiteIntArrayCreate(result_rank), &TfLiteIntArrayFree); int result_ctr = 0; std::vector<int64_t> collapsed_slice_shape = GetCollapsedSliceShape( data->slice_sizes, data->num_slice_sizes, data->collapsed_slice_dims, data->num_collapsed_slice_dims); int64_t slice_shape_ctr = 0; int64_t start_indices_shape_ctr = 0; for (int64_t dim = 0; dim < result_rank; dim++) { if (ArrayContains(data->offset_dims, data->num_offset_dims, dim)) { result->data[result_ctr] = collapsed_slice_shape[slice_shape_ctr]; slice_shape_ctr++; } else { if (start_indices_shape_ctr == data->index_vector_dim) { start_indices_shape_ctr++; } result->data[result_ctr] = start_indices_shape.Dims(start_indices_shape_ctr); start_indices_shape_ctr++; } result_ctr++; } return result; } template <typename IndexType> TfLiteStatus SetBatchAndOffsetIndices(const Index<IndexType>& result_index, const int64_t* offset_dims, int num_offset_dims, Index<IndexType>& batch_index, Index<IndexType>& offset_index) { int offset_index_ctr = 0; int batch_index_ctr = 0; for (int result_dim = 0; result_dim < result_index.size(); ++result_dim) { if (ArrayContains(offset_dims, num_offset_dims, result_dim)) { if (offset_index_ctr >= num_offset_dims) { return kTfLiteError; } offset_index[offset_index_ctr] = result_index[result_dim]; offset_index_ctr++; } else { if (batch_index_ctr >= result_index.size() - num_offset_dims) { return kTfLiteError; } batch_index[batch_index_ctr] = result_index[result_dim]; batch_index_ctr++; } } return kTfLiteOk; } template <typename IndexType, typename DataType> TfLiteStatus EvalWithTypes(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* operand; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kOperandTensor, &operand)); int operand_rank = operand->dims->size; RuntimeShape operand_shape = GetTensorShape(operand); const TfLiteTensor* start_indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kStartIndicesTensor, &start_indices)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteStablehloGatherParams* data = reinterpret_cast<TfLiteStablehloGatherParams*>(node->builtin_data); RuntimeShape start_indices_shape = GetTensorShape(start_indices); int result_rank = output->dims->size; RuntimeShape result_runtime_shape(result_rank, output->dims->data); Index<IndexType> result_index = Index<IndexType>(result_rank, 0); int64_t num_batch_dims = result_rank - data->num_offset_dims; Index<IndexType> batch_index(num_batch_dims); Index<IndexType> offset_index(data->num_offset_dims); do { TF_LITE_ENSURE_OK( context, SetBatchAndOffsetIndices(result_index, data->offset_dims, data->num_offset_dims, batch_index, offset_index)); Index<IndexType> starting_index_vector = ReadIndexVector(start_indices, start_indices_shape, batch_index, data->index_vector_dim); Index<IndexType> final_starting_index; ScatterIndex(starting_index_vector, data->start_index_map, data->num_start_index_map, operand_rank, &final_starting_index); TF_LITE_ENSURE_OK( context, ClipStartingIndex(operand_shape, data->slice_sizes, data->num_slice_sizes, final_starting_index)); Index<IndexType> full_offset_index; ExpandDims(offset_index, data->collapsed_slice_dims, data->num_collapsed_slice_dims, &full_offset_index); Index<IndexType> operand_lookup_index = AddIndices(final_starting_index, full_offset_index); const DataType* operand_data = GetTensorData<DataType>(operand); IndexType flat_operand_index = TensorIndexToFlat(operand_lookup_index.data(), operand_lookup_index.size(), GetTensorShape(operand)); DataType looked_up_value = operand_data[flat_operand_index]; DataType* result_data = GetTensorData<DataType>(output); IndexType flat_result_index = TensorIndexToFlat( result_index.data(), result_index.size(), GetTensorShape(output)); result_data[flat_result_index] = looked_up_value; } while (NextIndex(result_rank, result_runtime_shape.DimsData(), result_index.data())); return TfLiteStatus::kTfLiteOk; } template <typename IndexType> TfLiteStatus EvalWithIndexType(TfLiteContext* context, TfLiteNode* node, TfLiteType index_type, TfLiteType data_type) { switch (data_type) { case kTfLiteFloat16: return EvalWithTypes<IndexType, Eigen::half>(context, node); case kTfLiteFloat32: return EvalWithTypes<IndexType, float>(context, node); case kTfLiteFloat64: return EvalWithTypes<IndexType, double>(context, node); case kTfLiteInt8: return EvalWithTypes<IndexType, int8_t>(context, node); case kTfLiteInt16: return EvalWithTypes<IndexType, int16_t>(context, node); case kTfLiteInt32: return EvalWithTypes<IndexType, int32_t>(context, node); case kTfLiteInt64: return EvalWithTypes<IndexType, int64_t>(context, node); case kTfLiteUInt8: return EvalWithTypes<IndexType, uint8_t>(context, node); case kTfLiteUInt16: return EvalWithTypes<IndexType, uint16_t>(context, node); case kTfLiteUInt32: return EvalWithTypes<IndexType, uint32_t>(context, node); case kTfLiteUInt64: return EvalWithTypes<IndexType, uint64_t>(context, node); default: TF_LITE_KERNEL_LOG( context, "(Index Type: %s, Data Type: %s) currently not supported.\n", TfLiteTypeGetName(index_type), TfLiteTypeGetName(data_type)); return TfLiteStatus::kTfLiteError; } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* operand; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kOperandTensor, &operand)); const TfLiteTensor* start_indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kStartIndicesTensor, &start_indices)); TfLiteType index_type = start_indices->type; TfLiteType data_type = operand->type; if (index_type == kTfLiteInt32) { return EvalWithIndexType<int32_t>(context, node, index_type, data_type); } else if (index_type == kTfLiteInt64) { return EvalWithIndexType<int64_t>(context, node, index_type, data_type); } else { TF_LITE_KERNEL_LOG(context, "(Index Type: %s) currently not supported.\n", TfLiteTypeGetName(index_type)); return TfLiteStatus::kTfLiteError; } } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* operand; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kOperandTensor, &operand)); const TfLiteTensor* start_indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kStartIndicesTensor, &start_indices)); TfLiteType index_type = start_indices->type; if (index_type != kTfLiteInt32 && index_type != kTfLiteInt64) { TF_LITE_KERNEL_LOG(context, "(Index Type: %s) currently not supported.\n", TfLiteTypeGetName(index_type)); return TfLiteStatus::kTfLiteError; } TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteStablehloGatherParams* data = reinterpret_cast<TfLiteStablehloGatherParams*>(node->builtin_data); RuntimeShape start_indices_shape = GetTensorShape(start_indices); TfLiteIntArrayUniquePtr result_shape = GetResultShape(output->dims->size, data, start_indices_shape); TF_LITE_ENSURE_STATUS( context->ResizeTensor(context, output, result_shape.release())); return TfLiteStatus::kTfLiteOk; } } TfLiteRegistration* Register_STABLEHLO_GATHER() { static TfLiteRegistration r = {nullptr, nullptr, stablehlo_gather::Prepare, stablehlo_gather::Eval}; return &r; } } } }
#include <cstdint> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class StablehloGatherOpModel : public SingleOpModel { public: StablehloGatherOpModel(const TensorData& input, const TensorData& indices, const TfLiteStablehloGatherParams& params) { input_ = AddInput(input); indices_ = AddInput(indices); output_ = AddOutput(TensorData(input.type, {2, 3, 2, 2})); SetBuiltinOp( BuiltinOperator_STABLEHLO_GATHER, BuiltinOptions2_StablehloGatherOptions, CreateStablehloGatherOptions( builder_, builder_.CreateVector( std::vector(params.offset_dims, params.offset_dims + params.num_offset_dims)), builder_.CreateVector(std::vector( params.collapsed_slice_dims, params.collapsed_slice_dims + params.num_collapsed_slice_dims)), builder_.CreateVector(std::vector( params.start_index_map, params.start_index_map + params.num_start_index_map)), params.index_vector_dim, builder_.CreateVector( std::vector(params.slice_sizes, params.slice_sizes + params.num_slice_sizes)), params.indices_are_sorted) .Union()); BuildInterpreter({GetShape(input_), GetShape(indices_)}); } template <typename T> void SetInput(std::initializer_list<T> data) { PopulateTensor<T>(input_, data); } template <typename T> void SetIndices(std::initializer_list<T> data) { PopulateTensor<T>(indices_, data); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } protected: int input_; int indices_; int output_; }; TEST(StablehloScatterOpTest, GathersSlices) { TfLiteStablehloGatherParams params = { {2, 3}, 2, {0}, 1, {1, 0}, 2, 2, {1, 2, 2}, 3, false }; StablehloGatherOpModel model({TensorType_FLOAT32, {3, 4, 2}}, {TensorType_INT64, {2, 3, 2}}, params); model.SetInput<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); model.SetIndices<int64_t>({0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 2}); ASSERT_EQ(model.Invoke(), kTfLiteOk); std::vector<float> expected_values = {1, 2, 3, 4, 3, 4, 5, 6, 13, 14, 15, 16, 9, 10, 11, 12, 11, 12, 13, 14, 17, 18, 19, 20}; EXPECT_THAT(model.GetOutput<float>(), ElementsAreArray(expected_values)); } TEST(StablehloScatterOpTest, ClipsStartingIndices) { TfLiteStablehloGatherParams params = { {2, 3}, 2, {0}, 1, {1, 0}, 2, 2, {1, 2, 2}, 3, false }; StablehloGatherOpModel model({TensorType_FLOAT32, {3, 4, 2}}, {TensorType_INT64, {2, 3, 2}}, params); model.SetInput<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); model.SetIndices<int64_t>({0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 9}); ASSERT_EQ(model.Invoke(), kTfLiteOk); std::vector<float> expected_values = {1, 2, 3, 4, 3, 4, 5, 6, 13, 14, 15, 16, 9, 10, 11, 12, 11, 12, 13, 14, 17, 18, 19, 20}; EXPECT_THAT(model.GetOutput<float>(), ElementsAreArray(expected_values)); } TEST(StablehloScatterOpTest, WorksWithDynamicShapes) { TfLiteStablehloGatherParams params = { {2, 3}, 2, {0}, 1, {1, 0}, 2, 2, {1, 2, 2}, 3, false }; TensorData indices_tensor = {TensorType_INT64, {2, 3, 2}, 0.0f, 0.0f, 0.0f, 0, false, {}, {}, 0, {}, {}, {}, {}, {{-1, -1, 2}}}; StablehloGatherOpModel model({TensorType_FLOAT32, {3, 4, 2}}, indices_tensor, params); model.SetInput<float>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); model.SetIndices<int64_t>({0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 9}); ASSERT_EQ(model.Invoke(), kTfLiteOk); std::vector<float> expected_values = {1, 2, 3, 4, 3, 4, 5, 6, 13, 14, 15, 16, 9, 10, 11, 12, 11, 12, 13, 14, 17, 18, 19, 20}; EXPECT_THAT(model.GetOutput<float>(), ElementsAreArray(expected_values)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_gather.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_gather_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1fc6fda9-8140-4f7a-9e71-44fa235ca800
cpp
abseil/abseil-cpp
commandlineflag
absl/flags/internal/commandlineflag.cc
absl/flags/commandlineflag_test.cc
#include "absl/flags/internal/commandlineflag.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { FlagStateInterface::~FlagStateInterface() = default; } ABSL_NAMESPACE_END }
#include "absl/flags/commandlineflag.h" #include <memory> #include <string> #include "gtest/gtest.h" #include "absl/flags/config.h" #include "absl/flags/flag.h" #include "absl/flags/internal/private_handle_accessor.h" #include "absl/flags/reflection.h" #include "absl/flags/usage_config.h" #include "absl/memory/memory.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" ABSL_FLAG(int, int_flag, 201, "int_flag help"); ABSL_FLAG(std::string, string_flag, "dflt", absl::StrCat("string_flag", " help")); ABSL_RETIRED_FLAG(bool, bool_retired_flag, false, "bool_retired_flag help"); ABSL_FLAG(int, int_flag2, 201, ""); ABSL_FLAG(std::string, string_flag2, "dflt", ""); namespace { namespace flags = absl::flags_internal; class CommandLineFlagTest : public testing::Test { protected: static void SetUpTestSuite() { absl::FlagsUsageConfig default_config; default_config.normalize_filename = &CommandLineFlagTest::NormalizeFileName; absl::SetFlagsUsageConfig(default_config); } void SetUp() override { #if ABSL_FLAGS_STRIP_NAMES GTEST_SKIP() << "This test requires flag names to be present"; #endif flag_saver_ = absl::make_unique<absl::FlagSaver>(); } void TearDown() override { flag_saver_.reset(); } private: static std::string NormalizeFileName(absl::string_view fname) { #ifdef _WIN32 std::string normalized(fname); std::replace(normalized.begin(), normalized.end(), '\\', '/'); fname = normalized; #endif return std::string(fname); } std::unique_ptr<absl::FlagSaver> flag_saver_; }; TEST_F(CommandLineFlagTest, TestAttributesAccessMethods) { auto* flag_01 = absl::FindCommandLineFlag("int_flag"); ASSERT_TRUE(flag_01); EXPECT_EQ(flag_01->Name(), "int_flag"); EXPECT_EQ(flag_01->Help(), "int_flag help"); EXPECT_TRUE(!flag_01->IsRetired()); EXPECT_TRUE(flag_01->IsOfType<int>()); EXPECT_TRUE(!flag_01->IsOfType<bool>()); EXPECT_TRUE(!flag_01->IsOfType<std::string>()); EXPECT_TRUE(absl::EndsWith(flag_01->Filename(), "absl/flags/commandlineflag_test.cc")) << flag_01->Filename(); auto* flag_02 = absl::FindCommandLineFlag("string_flag"); ASSERT_TRUE(flag_02); EXPECT_EQ(flag_02->Name(), "string_flag"); EXPECT_EQ(flag_02->Help(), "string_flag help"); EXPECT_TRUE(!flag_02->IsRetired()); EXPECT_TRUE(flag_02->IsOfType<std::string>()); EXPECT_TRUE(!flag_02->IsOfType<bool>()); EXPECT_TRUE(!flag_02->IsOfType<int>()); EXPECT_TRUE(absl::EndsWith(flag_02->Filename(), "absl/flags/commandlineflag_test.cc")) << flag_02->Filename(); } TEST_F(CommandLineFlagTest, TestValueAccessMethods) { absl::SetFlag(&FLAGS_int_flag2, 301); auto* flag_01 = absl::FindCommandLineFlag("int_flag2"); ASSERT_TRUE(flag_01); EXPECT_EQ(flag_01->CurrentValue(), "301"); EXPECT_EQ(flag_01->DefaultValue(), "201"); absl::SetFlag(&FLAGS_string_flag2, "new_str_value"); auto* flag_02 = absl::FindCommandLineFlag("string_flag2"); ASSERT_TRUE(flag_02); EXPECT_EQ(flag_02->CurrentValue(), "new_str_value"); EXPECT_EQ(flag_02->DefaultValue(), "dflt"); } TEST_F(CommandLineFlagTest, TestParseFromCurrentValue) { std::string err; auto* flag_01 = absl::FindCommandLineFlag("int_flag"); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "11", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 11); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "-123", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom( *flag_01, "xyz", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123); EXPECT_EQ(err, "Illegal value 'xyz' specified for flag 'int_flag'"); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom( *flag_01, "A1", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123); EXPECT_EQ(err, "Illegal value 'A1' specified for flag 'int_flag'"); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "0x10", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 16); EXPECT_FALSE( flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "011", flags::SET_FLAGS_VALUE, flags::kCommandLine, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 11); EXPECT_TRUE(flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01)); EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom( *flag_01, "", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(err, "Illegal value '' specified for flag 'int_flag'"); auto* flag_02 = absl::FindCommandLineFlag("string_flag"); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_02, "xyz", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), "xyz"); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_02, "", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), ""); } TEST_F(CommandLineFlagTest, TestParseFromDefaultValue) { std::string err; auto* flag_01 = absl::FindCommandLineFlag("int_flag"); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "111", flags::SET_FLAGS_DEFAULT, flags::kProgrammaticChange, err)); EXPECT_EQ(flag_01->DefaultValue(), "111"); auto* flag_02 = absl::FindCommandLineFlag("string_flag"); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_02, "abc", flags::SET_FLAGS_DEFAULT, flags::kProgrammaticChange, err)); EXPECT_EQ(flag_02->DefaultValue(), "abc"); } TEST_F(CommandLineFlagTest, TestParseFromIfDefault) { std::string err; auto* flag_01 = absl::FindCommandLineFlag("int_flag"); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "22", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange, err)) << err; EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 22); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "33", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 22); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "201", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err)); EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom( *flag_01, "33", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange, err)); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 201); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/commandlineflag.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/commandlineflag_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
60745d33-3a8b-4264-9983-da7112c95926
cpp
tensorflow/tensorflow
signature_runner
tensorflow/lite/core/signature_runner.cc
tensorflow/lite/core/signature_runner_test.cc
#include "tensorflow/lite/core/signature_runner.h" #include <vector> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/internal/signature_def.h" namespace tflite { namespace impl { SignatureRunner::SignatureRunner(const internal::SignatureDef* signature_def, Subgraph* subgraph) : signature_def_(signature_def), subgraph_(subgraph) { for (const auto& it : signature_def_->inputs) { input_names_.push_back(it.first.c_str()); } for (const auto& it : signature_def_->outputs) { output_names_.push_back(it.first.c_str()); } } TfLiteTensor* SignatureRunner::input_tensor(const char* input_name) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return nullptr; } return subgraph_->tensor(it->second); } const TfLiteTensor* SignatureRunner::output_tensor( const char* output_name) const { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return nullptr; } return subgraph_->tensor(it->second); } TfLiteStatus SignatureRunner::SetInputBufferHandle( const char* input_name, TfLiteBufferHandle buffer_handle, TfLiteDelegate* delegate, bool release_existing_buffer_handle) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->SetBufferHandle(it->second, buffer_handle, delegate, release_existing_buffer_handle); } TfLiteStatus SignatureRunner::SetOutputBufferHandle( const char* output_name, TfLiteBufferHandle buffer_handle, TfLiteDelegate* delegate, bool release_existing_buffer_handle) { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return kTfLiteError; } return subgraph_->SetBufferHandle(it->second, buffer_handle, delegate, release_existing_buffer_handle); } TfLiteStatus SignatureRunner::ResizeInputTensor( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensor(it->second, new_size); } TfLiteStatus SignatureRunner::ResizeInputTensorStrict( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensorStrict(it->second, new_size); } TfLiteStatus SignatureRunner::Invoke() { if (subgraph_->continue_invocation_) (void)subgraph_->continue_invocation_->test_and_set(); TF_LITE_ENSURE_STATUS(subgraph_->Invoke()); if (!allow_buffer_handle_output_) { for (int tensor_index : subgraph_->outputs()) { TF_LITE_ENSURE_STATUS( subgraph_->EnsureTensorDataIsReadable(tensor_index)); } } return kTfLiteOk; } TfLiteStatus SignatureRunner::SetCustomAllocationForInputTensor( const char* input_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } TfLiteStatus SignatureRunner::SetCustomAllocationForOutputTensor( const char* output_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } } }
#include "tensorflow/lite/core/signature_runner.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace impl { namespace { TEST(SignatureRunnerTest, TestMultiSignatures) { TestErrorReporter reporter; auto model = FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/multi_signatures.bin", &reporter); ASSERT_TRUE(model); ops::builtin::BuiltinOpResolver resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> interpreter; ASSERT_EQ(builder(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); std::vector<const std::string*> signature_defs = interpreter->signature_keys(); ASSERT_EQ(signature_defs.size(), 2); ASSERT_EQ(*(signature_defs[0]), "add"); ASSERT_EQ(*(signature_defs[1]), "sub"); ASSERT_EQ(interpreter->GetSignatureRunner("dummy"), nullptr); SignatureRunner* add_runner = interpreter->GetSignatureRunner(signature_defs[0]->c_str()); ASSERT_NE(add_runner, nullptr); ASSERT_EQ(add_runner->signature_key(), "add"); const std::vector<const char*>& input_names = add_runner->input_names(); const std::vector<const char*>& output_names = add_runner->output_names(); ASSERT_EQ(input_names.size(), 1); ASSERT_EQ(std::string(input_names[0]), "x"); ASSERT_EQ(output_names.size(), 1); ASSERT_EQ(std::string(output_names[0]), "output_0"); ASSERT_EQ(add_runner->ResizeInputTensor("x", {2}), kTfLiteOk); ASSERT_EQ(add_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* add_input = add_runner->input_tensor("x"); ASSERT_EQ(add_runner->input_tensor("dummy"), nullptr); const TfLiteTensor* add_output = add_runner->output_tensor("output_0"); ASSERT_EQ(add_runner->output_tensor("dummy"), nullptr); ASSERT_NE(add_input, nullptr); ASSERT_NE(add_output, nullptr); add_input->data.f[0] = 2; add_input->data.f[1] = 4; ASSERT_EQ(add_runner->Invoke(), kTfLiteOk); ASSERT_EQ(add_output->data.f[0], 4); ASSERT_EQ(add_output->data.f[1], 6); SignatureRunner* sub_runner = interpreter->GetSignatureRunner("sub"); ASSERT_NE(sub_runner, nullptr); ASSERT_EQ(sub_runner->signature_key(), "sub"); const std::vector<const char*>& input_names2 = sub_runner->input_names(); const std::vector<const char*>& output_names2 = sub_runner->output_names(); ASSERT_EQ(input_names2.size(), 1); ASSERT_EQ(std::string(input_names2[0]), "x"); ASSERT_EQ(output_names2.size(), 1); ASSERT_EQ(std::string(output_names2[0]), "output_0"); ASSERT_EQ(sub_runner->ResizeInputTensor("x", {3}), kTfLiteOk); ASSERT_EQ(sub_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* sub_input = sub_runner->input_tensor("x"); const TfLiteTensor* sub_output = sub_runner->output_tensor("output_0"); ASSERT_NE(sub_input, nullptr); ASSERT_NE(sub_output, nullptr); sub_input->data.f[0] = 2; sub_input->data.f[1] = 4; sub_input->data.f[2] = 6; ASSERT_EQ(sub_runner->Invoke(), kTfLiteOk); ASSERT_EQ(sub_output->data.f[0], -1); ASSERT_EQ(sub_output->data.f[1], 1); ASSERT_EQ(sub_output->data.f[2], 3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/signature_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/signature_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e05e458f-6e23-4833-bf54-9723da543bec
cpp
google/quiche
moq_chat
quiche/quic/moqt/tools/moq_chat.h
quiche/quic/moqt/tools/moq_chat_test.cc
#ifndef QUICHE_QUIC_MOQT_TOOLS_MOQ_CHAT_H #define QUICHE_QUIC_MOQT_TOOLS_MOQ_CHAT_H #include <string> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "quiche/quic/moqt/moqt_messages.h" namespace moqt { class MoqChatStrings { public: explicit MoqChatStrings(absl::string_view chat_id) : chat_id_(chat_id) {} static constexpr absl::string_view kBasePath = "moq-chat"; static constexpr absl::string_view kParticipantPath = "participant"; static constexpr absl::string_view kCatalogPath = "catalog"; static constexpr absl::string_view kCatalogHeader = "version=1\n"; bool IsValidPath(absl::string_view path) const { return path == absl::StrCat("/", kBasePath); } std::string GetUsernameFromFullTrackName( FullTrackName full_track_name) const { if (full_track_name.tuple().size() != 2) { return ""; } if (!full_track_name.tuple()[1].empty()) { return ""; } std::vector<absl::string_view> elements = absl::StrSplit(full_track_name.tuple()[0], '/'); if (elements.size() != 4 || elements[0] != kBasePath || elements[1] != chat_id_ || elements[2] != kParticipantPath) { return ""; } return std::string(elements[3]); } FullTrackName GetFullTrackNameFromUsername(absl::string_view username) const { return FullTrackName{absl::StrCat(kBasePath, "/", chat_id_, "/", kParticipantPath, "/", username), ""}; } FullTrackName GetCatalogName() const { return FullTrackName{absl::StrCat(kBasePath, "/", chat_id_), absl::StrCat("/", kCatalogPath)}; } private: const std::string chat_id_; }; } #endif
#include "quiche/quic/moqt/tools/moq_chat.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/common/platform/api/quiche_test.h" namespace moqt { namespace { class MoqChatStringsTest : public quiche::test::QuicheTest { public: MoqChatStrings strings_{"chat-id"}; }; TEST_F(MoqChatStringsTest, IsValidPath) { EXPECT_TRUE(strings_.IsValidPath("/moq-chat")); EXPECT_FALSE(strings_.IsValidPath("moq-chat")); EXPECT_FALSE(strings_.IsValidPath("/moq-cha")); EXPECT_FALSE(strings_.IsValidPath("/moq-chats")); EXPECT_FALSE(strings_.IsValidPath("/moq-chat/")); } TEST_F(MoqChatStringsTest, GetUsernameFromFullTrackName) { EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participant/user", ""}), "user"); } TEST_F(MoqChatStringsTest, GetUsernameFromFullTrackNameInvalidInput) { EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"/moq-chat/chat-id/participant/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participant/user/", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-cha/chat-id/participant/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-i/participant/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participan/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participant/foo/user", ""}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participant/user", "foo"}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"moq-chat/chat-id/participant/user"}), ""); EXPECT_EQ(strings_.GetUsernameFromFullTrackName( FullTrackName{"foo", "moq-chat/chat-id/participant/user", ""}), ""); } TEST_F(MoqChatStringsTest, GetFullTrackNameFromUsername) { EXPECT_EQ(strings_.GetFullTrackNameFromUsername("user"), FullTrackName("moq-chat/chat-id/participant/user", "")); } TEST_F(MoqChatStringsTest, GetCatalogName) { EXPECT_EQ(strings_.GetCatalogName(), FullTrackName("moq-chat/chat-id", "/catalog")); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/tools/moq_chat.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/tools/moq_chat_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
e063e2c6-efc4-4009-a05a-2335b45ae426
cpp
tensorflow/tensorflow
ragged_tensor_to_tensor_op
tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc
tensorflow/core/kernels/ragged_tensor_to_tensor_op_test.cc
#define EIGEN_USE_THREADS #include <stddef.h> #include <algorithm> #include <string> #include <vector> #include "tensorflow/core/framework/kernel_def_builder.h" #include "tensorflow/core/framework/numeric_types.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/broadcast_to_op.h" #include "tensorflow/core/kernels/list_kernels.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/bfloat16.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/bcast.h" #include "tensorflow/core/util/ragged_to_dense_util.h" namespace tensorflow { namespace { typedef Eigen::ThreadPoolDevice CPUDevice; using ::std::vector; const int kShapeInputIndex = 0; const int kValueInputIndex = 1; const int kDefaultValueInputIndex = 2; const int kFirstPartitionInputIndex = 3; template <typename INDEX_TYPE> class RaggedTensorToTensorBaseOp : public OpKernel { public: typedef typename ::tensorflow::TTypes<const INDEX_TYPE>::Flat RowPartitionTensor; explicit RaggedTensorToTensorBaseOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, GetRowPartitionTypes<OpKernelConstruction>( context, &row_partition_types_)); ragged_rank_ = GetRaggedRank(row_partition_types_); } RowPartitionType GetRowPartitionTypeByDimension(int dimension) { if (row_partition_types_[0] == RowPartitionType::FIRST_DIM_SIZE) { return row_partition_types_[dimension + 1]; } else { return row_partition_types_[dimension]; } } RowPartitionTensor GetRowPartitionTensor(OpKernelContext* c, int dimension) { if (row_partition_types_[0] == RowPartitionType::FIRST_DIM_SIZE) { return c->input(dimension + 1 + kFirstPartitionInputIndex) .flat<INDEX_TYPE>(); } else { return c->input(dimension + kFirstPartitionInputIndex).flat<INDEX_TYPE>(); } } Status GetMaxWidth(OpKernelContext* c, int dimension, INDEX_TYPE* result) { const RowPartitionTensor row_partition_tensor = GetRowPartitionTensor(c, dimension - 1); switch (GetRowPartitionTypeByDimension(dimension - 1)) { case RowPartitionType::VALUE_ROWIDS: *result = GetMaxWidthValueRowID(row_partition_tensor); return absl::OkStatus(); case RowPartitionType::ROW_SPLITS: *result = GetMaxWidthRowSplit(row_partition_tensor); return absl::OkStatus(); default: return errors::InvalidArgument( "Cannot handle partition type ", RowPartitionTypeToString( GetRowPartitionTypeByDimension(dimension - 1))); } } static INDEX_TYPE GetMaxWidthRowSplit(const RowPartitionTensor& row_split) { const INDEX_TYPE tensor_length = row_split.size(); if (tensor_length == 0 || tensor_length == 1) { return 0; } INDEX_TYPE max_width = 0; for (INDEX_TYPE i = 0; i < tensor_length - 1; ++i) { const INDEX_TYPE current_width = row_split(i + 1) - row_split(i); if (current_width > max_width) { max_width = current_width; } } return max_width; } static INDEX_TYPE GetMaxWidthValueRowID( const RowPartitionTensor& value_rowids) { const INDEX_TYPE index_length = value_rowids.size(); if (index_length == 0) { return 0; } INDEX_TYPE first_equal_index = 0; INDEX_TYPE first_equal_index_value = value_rowids(0); INDEX_TYPE max_width = 0; for (INDEX_TYPE i = 1; i < index_length; ++i) { const INDEX_TYPE value = value_rowids(i); if (value != first_equal_index_value) { first_equal_index_value = value; max_width = std::max(i - first_equal_index, max_width); first_equal_index = i; } } return std::max(index_length - first_equal_index, max_width); } Status CalculateOutputSize(INDEX_TYPE first_dim, OpKernelContext* c, vector<INDEX_TYPE>* result) { TensorShapeProto value_shape_proto; c->input(kValueInputIndex).shape().AsProto(&value_shape_proto); TensorShapeProto default_value_shape_proto; c->input(kDefaultValueInputIndex) .shape() .AsProto(&default_value_shape_proto); TensorShapeProto output_shape_proto; TF_RETURN_IF_ERROR(ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); TensorShapeProto shape_proto; { PartialTensorShape partial_tensor_shape; TF_RETURN_IF_ERROR(TensorShapeFromTensor(c->input(kShapeInputIndex), &partial_tensor_shape)); partial_tensor_shape.AsProto(&shape_proto); } TF_RETURN_IF_ERROR(CombineRaggedTensorToTensorShapes( ragged_rank_, shape_proto, value_shape_proto, &output_shape_proto)); result->reserve(output_shape_proto.dim_size()); for (const TensorShapeProto::Dim& dim : output_shape_proto.dim()) { result->push_back(dim.size()); } if ((*result)[0] < 0) { (*result)[0] = first_dim; } for (int i = 1; i <= ragged_rank_; ++i) { if ((*result)[i] < 0) { TF_RETURN_IF_ERROR(GetMaxWidth(c, i, &(*result)[i])); } } return absl::OkStatus(); } void CalculateFirstParentOutputIndex(INDEX_TYPE first_dimension, INDEX_TYPE output_index_multiplier, INDEX_TYPE first_dimension_output, vector<INDEX_TYPE>* result) { const INDEX_TYPE min_dimension = std::min(first_dimension, first_dimension_output); result->reserve(first_dimension); int current_output_index = 0; for (INDEX_TYPE i = 0; i < min_dimension; ++i, current_output_index += output_index_multiplier) { result->push_back(current_output_index); } for (INDEX_TYPE i = min_dimension; i < first_dimension; ++i) { result->push_back(-1); } DCHECK_EQ(result->size(), first_dimension); } Status CalculateOutputIndexRowSplit( const RowPartitionTensor& row_split, const vector<INDEX_TYPE>& parent_output_index, INDEX_TYPE output_index_multiplier, INDEX_TYPE output_size, vector<INDEX_TYPE>* result) { INDEX_TYPE row_split_size = row_split.size(); if (row_split_size > 0) { result->reserve(row_split(row_split_size - 1)); } for (INDEX_TYPE i = 0; i < row_split_size - 1; ++i) { INDEX_TYPE row_length = row_split(i + 1) - row_split(i); INDEX_TYPE real_length = std::min(output_size, row_length); INDEX_TYPE parent_output_index_current = parent_output_index[i]; if (parent_output_index_current == -1) { real_length = 0; } for (INDEX_TYPE j = 0; j < real_length; ++j) { result->push_back(parent_output_index_current); parent_output_index_current += output_index_multiplier; } for (INDEX_TYPE j = 0; j < row_length - real_length; ++j) { result->push_back(-1); } } if (row_split_size > 0 && result->size() != row_split(row_split_size - 1)) { return errors::InvalidArgument("Invalid row split size."); } return absl::OkStatus(); } Status CalculateOutputIndexValueRowID( const RowPartitionTensor& value_rowids, const vector<INDEX_TYPE>& parent_output_index, INDEX_TYPE output_index_multiplier, INDEX_TYPE output_size, vector<INDEX_TYPE>* result) { const INDEX_TYPE index_size = value_rowids.size(); result->reserve(index_size); if (index_size == 0) { return absl::OkStatus(); } INDEX_TYPE current_output_column = 0; INDEX_TYPE current_value_rowid = value_rowids(0); if (current_value_rowid >= parent_output_index.size()) { return errors::InvalidArgument( "Got current_value_rowid=", current_value_rowid, " which is not less than ", parent_output_index.size()); } INDEX_TYPE current_output_index = parent_output_index[current_value_rowid]; result->push_back(current_output_index); for (INDEX_TYPE i = 1; i < index_size; ++i) { INDEX_TYPE next_value_rowid = value_rowids(i); if (next_value_rowid == current_value_rowid) { if (current_output_index >= 0) { ++current_output_column; if (current_output_column < output_size) { current_output_index += output_index_multiplier; } else { current_output_index = -1; } } } else { current_output_column = 0; current_value_rowid = next_value_rowid; if (next_value_rowid >= parent_output_index.size()) { return errors::InvalidArgument( "Got next_value_rowid=", next_value_rowid, " which is not less than ", parent_output_index.size()); } current_output_index = parent_output_index[next_value_rowid]; } result->push_back(current_output_index); } if (result->size() != value_rowids.size()) { return errors::InvalidArgument("Invalid row ids."); } return absl::OkStatus(); } Status CalculateOutputIndex(OpKernelContext* context, int dimension, const vector<INDEX_TYPE>& parent_output_index, INDEX_TYPE output_index_multiplier, INDEX_TYPE output_size, vector<INDEX_TYPE>* result) { const RowPartitionTensor row_partition_tensor = GetRowPartitionTensor(context, dimension); auto partition_type = GetRowPartitionTypeByDimension(dimension); switch (partition_type) { case RowPartitionType::VALUE_ROWIDS: return CalculateOutputIndexValueRowID( row_partition_tensor, parent_output_index, output_index_multiplier, output_size, result); case RowPartitionType::ROW_SPLITS: if (row_partition_tensor.size() - 1 > parent_output_index.size()) { return errors::InvalidArgument( "Row partition size is greater than output size: ", row_partition_tensor.size() - 1, " > ", parent_output_index.size()); } return CalculateOutputIndexRowSplit( row_partition_tensor, parent_output_index, output_index_multiplier, output_size, result); default: return errors::InvalidArgument( "Unsupported partition type:", RowPartitionTypeToString(partition_type)); } } Status GetFirstDimensionSize(OpKernelContext* context, INDEX_TYPE* result) { const Tensor first_partition_tensor = context->input(kFirstPartitionInputIndex); if (row_partition_types_.empty()) { return errors::InvalidArgument("No row_partition_types given."); } const RowPartitionType first_partition_type = row_partition_types_[0]; switch (first_partition_type) { case RowPartitionType::FIRST_DIM_SIZE: *result = first_partition_tensor.scalar<INDEX_TYPE>()(); return absl::OkStatus(); case RowPartitionType::VALUE_ROWIDS: return errors::InvalidArgument( "Cannot handle VALUE_ROWIDS in first dimension."); case RowPartitionType::ROW_SPLITS: *result = first_partition_tensor.shape().dim_size(0) - 1; return absl::OkStatus(); default: return errors::InvalidArgument( "Cannot handle type ", RowPartitionTypeToString(first_partition_type)); } } void Compute(OpKernelContext* context) override { INDEX_TYPE first_dimension; const Tensor first_partition_tensor = context->input(kFirstPartitionInputIndex); OP_REQUIRES(context, first_partition_tensor.NumElements() > 0, errors::InvalidArgument("Invalid first partition input. Tensor " "requires at least one element.")); OP_REQUIRES_OK(context, GetFirstDimensionSize(context, &first_dimension)); vector<INDEX_TYPE> output_size; OP_REQUIRES_OK(context, CalculateOutputSize(first_dimension, context, &output_size)); vector<INDEX_TYPE> multiplier; multiplier.resize(ragged_rank_ + 1); multiplier[multiplier.size() - 1] = 1; for (int i = multiplier.size() - 2; i >= 0; --i) { multiplier[i] = multiplier[i + 1] * output_size[i + 1]; } TensorShape output_shape; OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(output_size, &output_shape)); Tensor* output_tensor = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor)); const INDEX_TYPE full_size = multiplier[0] * output_size[0]; if (full_size > 0) { vector<INDEX_TYPE> output_index, new_output_index; int nvals = context->input(kValueInputIndex).shape().dim_size(0); output_index.reserve(nvals); new_output_index.reserve(nvals); CalculateFirstParentOutputIndex(first_dimension, multiplier[0], output_size[0], &output_index); for (int i = 1; i <= ragged_rank_; ++i) { OP_REQUIRES_OK(context, CalculateOutputIndex( context, i - 1, output_index, multiplier[i], output_size[i], &new_output_index)); output_index.swap(new_output_index); new_output_index.clear(); } SetOutput(context, ragged_rank_, output_index, output_tensor); } } virtual void SetOutput(OpKernelContext* context, int ragged_rank, const vector<INDEX_TYPE>& output_index, Tensor* output_tensor) = 0; private: vector<RowPartitionType> row_partition_types_; int ragged_rank_; }; template <typename VALUE_TYPE, typename INDEX_TYPE> void slow_copy_array(VALUE_TYPE* dst, const VALUE_TYPE* src, INDEX_TYPE size) { for (INDEX_TYPE index = 0; index < size; ++index) { dst[index] = src[index]; } } template <typename VALUE_TYPE, typename INDEX_TYPE> void copy_array(VALUE_TYPE* dst, const VALUE_TYPE* src, INDEX_TYPE size) { memcpy(dst, src, size * sizeof(VALUE_TYPE)); } template <> void copy_array<tstring, int64_t>(tstring* dst, const tstring* src, int64_t size) { slow_copy_array(dst, src, size); } template <> void copy_array<tstring, int32>(tstring* dst, const tstring* src, int32_t size) { slow_copy_array(dst, src, size); } template <> void copy_array<Eigen::half, int64_t>(Eigen::half* dst, const Eigen::half* src, int64_t size) { slow_copy_array(dst, src, size); } template <> void copy_array<Eigen::half, int32>(Eigen::half* dst, const Eigen::half* src, int32_t size) { slow_copy_array(dst, src, size); } template <typename VALUE_TYPE, typename INDEX_TYPE> class RaggedTensorToTensorOp : public RaggedTensorToTensorBaseOp<INDEX_TYPE> { public: explicit RaggedTensorToTensorOp(OpKernelConstruction* context) : RaggedTensorToTensorBaseOp<INDEX_TYPE>(context) {} void SetOutput(OpKernelContext* context, int ragged_rank, const vector<INDEX_TYPE>& output_index, Tensor* output_tensor) override { if (output_tensor->NumElements() == 0) return; const auto& values_tensor = context->input(kValueInputIndex); const VALUE_TYPE* values_base = values_tensor.flat<VALUE_TYPE>().data(); const auto& default_value_tensor = context->input(kDefaultValueInputIndex); VALUE_TYPE* output_base = output_tensor->flat<VALUE_TYPE>().data(); TensorShape element_shape = output_tensor->shape(); element_shape.RemoveDimRange(0, ragged_rank + 1); int value_element_size = element_shape.num_elements(); size_t output_index_size = output_index.size(); const VALUE_TYPE* default_value = default_value_tensor.flat<VALUE_TYPE>().data(); Tensor bcast_default; if (default_value_tensor.NumElements() != value_element_size && default_value_tensor.NumElements() != 1) { const auto& src_shape = default_value_tensor.shape(); BCast bcast(BCast::FromShape(src_shape), BCast::FromShape(element_shape), true); OP_REQUIRES(context, bcast.IsValid(), errors::InvalidArgument("Error broadcasting default_value")); OP_REQUIRES_OK(context, context->allocate_temp(default_value_tensor.dtype(), element_shape, &bcast_default)); const CPUDevice& device = context->eigen_device<CPUDevice>(); functor::BroadcastTo<CPUDevice, VALUE_TYPE>()( device, context, bcast_default, element_shape, default_value_tensor, src_shape, bcast); default_value = bcast_default.flat<VALUE_TYPE>().data(); } INDEX_TYPE src_start = 0; INDEX_TYPE dst_start = 0; INDEX_TYPE dst_end = 0; for (int src_i = 0; src_i <= output_index_size; ++src_i) { INDEX_TYPE dst_i = src_i < output_index_size ? output_index[src_i] : -1; if (dst_i == dst_end) { ++dst_end; continue; } if (dst_start < dst_end) { const VALUE_TYPE* src = values_base + src_start * value_element_size; VALUE_TYPE* dst = output_base + dst_start * value_element_size; INDEX_TYPE nvals = (dst_end - dst_start) * value_element_size; copy_array<VALUE_TYPE, INDEX_TYPE>(dst, src, nvals); } if (src_i >= output_index_size) { size_t output_size = output_tensor->NumElements(); dst_i = output_size / value_element_size; } if (dst_i > dst_end) { if (default_value_tensor.NumElements() == 1) { std::fill(output_base + dst_end * value_element_size, output_base + dst_i * value_element_size, *default_value); dst_end = dst_i; } else { while (dst_i > dst_end) { VALUE_TYPE* dst = output_base + dst_end * value_element_size; copy_array<VALUE_TYPE, INDEX_TYPE>(dst, default_value, value_element_size); ++dst_end; } } } if (dst_i < 0) { src_start = src_i + 1; dst_start = dst_end; } else { src_start = src_i; dst_start = dst_end; dst_end = dst_start + 1; } } } }; #define REGISTER_CPU_KERNEL_INDEX_TYPE(value_type, index_type) \ REGISTER_KERNEL_BUILDER(Name("RaggedTensorToTensor") \ .Device(DEVICE_CPU) \ .TypeConstraint<value_type>("T") \ .TypeConstraint<index_type>("Tindex"), \ RaggedTensorToTensorOp<value_type, index_type>); #define REGISTER_CPU_KERNEL(value_type) \ REGISTER_CPU_KERNEL_INDEX_TYPE(value_type, int64_t); \ REGISTER_CPU_KERNEL_INDEX_TYPE(value_type, tensorflow::int32); TF_CALL_POD_TYPES(REGISTER_CPU_KERNEL); TF_CALL_string(REGISTER_CPU_KERNEL); TF_CALL_QUANTIZED_TYPES(REGISTER_CPU_KERNEL); TF_CALL_quint16(REGISTER_CPU_KERNEL); TF_CALL_qint16(REGISTER_CPU_KERNEL); #undef REGISTER_CPU_KERNEL } }
#include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { template <typename VALUE_TYPE> struct ShapeAndValues { TensorShape shape; std::vector<VALUE_TYPE> values; }; template <typename VALUE_TYPE> ShapeAndValues<VALUE_TYPE> createVector(const std::vector<VALUE_TYPE>& values) { TensorShape shape({static_cast<int64_t>(values.size())}); return {shape, values}; } template <typename VALUE_TYPE> ShapeAndValues<VALUE_TYPE> createScalar(const VALUE_TYPE& values) { TensorShape shape({}); return {shape, {values}}; } class RaggedTensorToTensorOpTest : public ::tensorflow::OpsTestBase { protected: template <typename VALUE_TYPE, typename INDEX_TYPE> void BuildRaggedTensorToTensorGraph( const TensorShape& shape, const std::vector<string>& row_partition_types, const ShapeAndValues<VALUE_TYPE>& values, const ShapeAndValues<VALUE_TYPE>& default_value, const std::vector<ShapeAndValues<INDEX_TYPE>>& row_partition_tensors) { const auto& value_dtype = DataTypeToEnum<VALUE_TYPE>::v(); const auto& index_dtype = DataTypeToEnum<INDEX_TYPE>::v(); int num_row_partition_tensors = row_partition_tensors.size(); TF_ASSERT_OK( NodeDefBuilder("tested_op", "RaggedTensorToTensor") .Attr("T", value_dtype) .Attr("Tindex", index_dtype) .Attr("num_row_partition_tensors", num_row_partition_tensors) .Attr("row_partition_types", row_partition_types) .Input(FakeInput(index_dtype)) .Input(FakeInput(value_dtype)) .Input(FakeInput(value_dtype)) .Input(FakeInput(num_row_partition_tensors, index_dtype)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); { std::vector<INDEX_TYPE> shape_as_vector; for (const auto& dim : shape.dim_sizes()) { shape_as_vector.push_back(dim); } ShapeAndValues<INDEX_TYPE> shape_as_tensor = createVector(shape_as_vector); AddInputFromArray<INDEX_TYPE>(shape_as_tensor.shape, shape_as_tensor.values); } AddInputFromArray<VALUE_TYPE>(values.shape, values.values); AddInputFromArray<VALUE_TYPE>(default_value.shape, default_value.values); for (const auto& row_partition_tensor : row_partition_tensors) { AddInputFromArray<INDEX_TYPE>(row_partition_tensor.shape, row_partition_tensor.values); } } }; TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({4, 4}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), {createScalar<int32>(4), createVector<int32>({0, 0, 0, 2, 2, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({.1, .2, .3, 1.5, 1.5, 1.5, 1.5, 1.5, .4, .5, .6, .7, .8, .9, 1.5, 1.5}, TensorShape({4, 4})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensorRowSplits) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({4, 4}), {"ROW_SPLITS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), {createVector<int32>({0, 3, 3, 7, 9})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({.1, .2, .3, 1.5, 1.5, 1.5, 1.5, 1.5, .4, .5, .6, .7, .8, .9, 1.5, 1.5}, TensorShape({4, 4})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_3DParams) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({5, 2, 3}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS", "VALUE_ROWIDS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), { createScalar<int32>(5), createVector<int32>({0, 1, 1, 3, 3, 4}), createVector<int32>({1, 1, 2, 3, 3, 4, 4, 4, 5}), } ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .1, .2, 1.5, .3, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .4, .5, 1.5, .6, .7, .8, .9, 1.5, 1.5, 1.5, 1.5, 1.5}, TensorShape({5, 2, 3})), 0.1); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_3DParamsRowSplits) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({5, 2, 3}), {"ROW_SPLITS", "ROW_SPLITS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), { createVector<int32>({0, 1, 3, 3, 5, 6}), createVector<int32>({0, 0, 2, 3, 5, 8, 9}), } ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .1, .2, 1.5, .3, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .4, .5, 1.5, .6, .7, .8, .9, 1.5, 1.5, 1.5, 1.5, 1.5}, TensorShape({5, 2, 3})), 0.1); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_3DParamsRowSplits2) { BuildRaggedTensorToTensorGraph<int64_t, int64_t>( TensorShape({3, 2, 3}), {"ROW_SPLITS", "ROW_SPLITS"}, createVector<int64_t>({0, 1, 2, 3}), createScalar<int64_t>(5), { createVector<int64_t>({0, 2, 2, 3}), createVector<int64_t>({0, 3, 3, 4}), } ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>( *GetOutput(0), test::AsTensor<int64_t>( {0, 1, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5}, TensorShape({3, 2, 3}))); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_4DParams) { BuildRaggedTensorToTensorGraph<int32, int32>( TensorShape({4, 2, 3, 2}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS", "VALUE_ROWIDS", "VALUE_ROWIDS"}, createVector<int32>({1, 2, 3, 4, 5, 6, 7, 8}), createScalar<int32>(15), {createScalar<int32>(5), createVector<int32>({0, 1, 1}), createVector<int32>({1, 1, 1, 2}), createVector<int32>({0, 0, 1, 1, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int32>( *GetOutput(0), test::AsTensor<int32>( {15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}, TensorShape({4, 2, 3, 2}))); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_4DParamsRowSplit) { BuildRaggedTensorToTensorGraph<int32, int32>( TensorShape({4, 2, 3, 2}), {"ROW_SPLITS", "ROW_SPLITS", "ROW_SPLITS"}, createVector<int32>({1, 2, 3, 4, 5, 6, 7, 8}), createScalar<int32>(15), {createVector<int32>({0, 1, 3}), createVector<int32>({0, 0, 3, 4}), createVector<int32>({0, 2, 4, 6, 8})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int32>( *GetOutput(0), test::AsTensor<int32>( {15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}, TensorShape({4, 2, 3, 2}))); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensorContractExpanded) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({3, 5}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), {createScalar<int32>(4), createVector<int32>({0, 0, 0, 2, 2, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({.1, .2, .3, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .4, .5, .6, .7, 1.5}, TensorShape({3, 5})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensorContractExpandedDense) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({3, 5, 2}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS"}, ShapeAndValues<float>{TensorShape({9, 2}), {.1, 1.1, .2, 1.2, .3, 1.3, .4, 1.4, .5, 1.5, .6, 1.6, .7, 1.7, .8, 1.8, .9, 1.9}}, createScalar<float>(1.5), {createScalar<int32>(4), createVector<int32>({0, 0, 0, 2, 2, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>( {.1, 1.1, .2, 1.2, .3, 1.3, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, .4, 1.4, .5, 1.5, .6, 1.6, .7, 1.7, 1.5, 1.5}, TensorShape({3, 5, 2})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensorConstrained) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({3, 3}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), {createScalar<int32>(4), createVector<int32>({0, 0, 0, 2, 2, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>(*GetOutput(0), test::AsTensor<float>( { .1, .2, .3, 1.5, 1.5, 1.5, .4, .5, .6 }, TensorShape({3, 3})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_3DParamsConstrained) { BuildRaggedTensorToTensorGraph<float, int32>( TensorShape({4, 1, 2}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS", "VALUE_ROWIDS"}, createVector<float>({.1, .2, .3, .4, .5, .6, .7, .8, .9}), createScalar<float>(1.5), { createScalar<int32>(5), createVector<int32>({0, 1, 1, 3, 3, 4}), createVector<int32>({1, 1, 2, 3, 3, 4, 4, 4, 5}), } ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorNear<float>( *GetOutput(0), test::AsTensor<float>({1.5, 1.5, .1, .2, 1.5, 1.5, .4, .5}, TensorShape({4, 1, 2})), 0.01); } TEST_F(RaggedTensorToTensorOpTest, RaggedTensorToTensor_4DParamsConstrained) { BuildRaggedTensorToTensorGraph<int32, int32>( TensorShape({2, 2, 2, 2}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS", "VALUE_ROWIDS", "VALUE_ROWIDS"}, createVector<int32>({1, 2, 3, 4, 5, 6, 7, 8}), createScalar<int32>(15), {createScalar<int32>(5), createVector<int32>({0, 1, 1}), createVector<int32>({1, 1, 1, 2}), createVector<int32>({0, 0, 1, 1, 2, 2, 3, 3})} ); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int32>(*GetOutput(0), test::AsTensor<int32>( { 15, 15, 15, 15, 15, 15, 15, 15, 1, 2, 3, 4, 7, 8, 15, 15, }, TensorShape({2, 2, 2, 2}))); } TEST_F(RaggedTensorToTensorOpTest, ShapeWrongDimensions) { BuildRaggedTensorToTensorGraph<int32, int32>( TensorShape({10, 7, 10, 20}), {"FIRST_DIM_SIZE", "VALUE_ROWIDS", "VALUE_ROWIDS"}, createVector<int32>({1, 2, 3, 4}), createScalar<int32>(15), {createScalar<int32>(5), createVector<int32>({0, 1, 1}), createVector<int32>({1, 1, 1, 2})} ); EXPECT_EQ(errors::IsInvalidArgument(RunOpKernel()), true); } class RaggedTensorToTensorOpUnknownShapeTest : public ::tensorflow::OpsTestBase { protected: std::unique_ptr<ShapeInferenceTestOp> op_; void SetAttributes(const absl::Span<const string> row_partition_types, int num_row_partition_tensors) { op_ = std::make_unique<ShapeInferenceTestOp>("RaggedTensorToTensor"); SetAttrValue(row_partition_types, &((*op_->node_def.mutable_attr())["row_partition_types"])); (*op_->node_def.mutable_attr())["num_row_partition_tensors"].set_i( num_row_partition_tensors); } }; TEST_F(RaggedTensorToTensorOpUnknownShapeTest, ValueRowIDs) { SetAttributes(absl::Span<const string>{"FIRST_DIM_SIZE", "VALUE_ROWIDS"}, 2); INFER_OK(*op_, "?;?;?;?;?", "?"); INFER_OK(*op_, "?;[6];[];[];[6]", "[?,?]"); INFER_OK(*op_, "?;[6];?;[];[6]", "[?,?]"); INFER_OK(*op_, "?;?;[];[];[6]", "?"); INFER_OK(*op_, "?;[6];?;[];[6]", "[?,?]"); INFER_OK(*op_, "?;[6,2];?;[];[6]", "[?,?,2]"); INFER_OK(*op_, "?;[6,2];[2];[];[6]", "[?,?,2]"); INFER_OK(*op_, "?;[6,2,7];[2,7];[];[6]", "[?,?,2,7]"); INFER_ERROR( "default_value.shape=[3] and rt_input.flat_values.shape=[6,2] " "are incompatible", *op_, "?;[6,2];[3];[];[6]"); INFER_ERROR( "default_value.shape=[2,2] and rt_input.flat_values.shape=" "[6,2,1,2] are incompatible", *op_, "?;[6,2,1,2];[2,2];[];[6]"); INFER_ERROR("must be a vector", *op_, "?;[6];[];[];[3,6]"); INFER_ERROR("must be a scalar", *op_, "?;[6];[];[7];[3]"); } TEST_F(RaggedTensorToTensorOpUnknownShapeTest, RowSplits) { SetAttributes(absl::Span<const string>{"ROW_SPLITS"}, 1); INFER_OK(*op_, "?;?;?;?", "?"); INFER_OK(*op_, "?;[3];[];[6]", "[?,?]"); INFER_OK(*op_, "?;?;?;?", "?"); INFER_OK(*op_, "?;[3,2];[2];[6]", "[?,?,2]"); INFER_OK(*op_, "?;[3,2,7];[2,7];[6]", "[?,?,2,7]"); INFER_OK(*op_, "?;[3,2,7];[2,7];[6]", "[?,?,2,7]"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_tensor_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7efae547-41ee-469e-b08b-82b375f6c277
cpp
tensorflow/tensorflow
label_image
tensorflow/lite/examples/label_image/label_image.cc
tensorflow/lite/examples/label_image/label_image_test.cc
#include "tensorflow/lite/examples/label_image/label_image.h" #include <fcntl.h> #include <getopt.h> #include <sys/time.h> #include <sys/types.h> #include <sys/uio.h> #include <unistd.h> #include <cstdio> #include <cstdlib> #include <fstream> #include <iomanip> #include <iostream> #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/examples/label_image/bitmap_helpers.h" #include "tensorflow/lite/examples/label_image/get_top_n.h" #include "tensorflow/lite/examples/label_image/log.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/optional_debug_tools.h" #include "tensorflow/lite/profiling/profile_buffer.h" #include "tensorflow/lite/profiling/profiler.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace label_image { double get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); } using TfLiteDelegatePtr = tflite::Interpreter::TfLiteDelegatePtr; using ProvidedDelegateList = tflite::tools::ProvidedDelegateList; class DelegateProviders { public: DelegateProviders() : delegate_list_util_(&params_) { delegate_list_util_.AddAllDelegateParams(); delegate_list_util_.AppendCmdlineFlags(flags_); params_.RemoveParam("help"); delegate_list_util_.RemoveCmdlineFlag(flags_, "help"); } bool InitFromCmdlineArgs(int* argc, const char** argv) { return Flags::Parse(argc, argv, flags_); } void MergeSettingsIntoParams(const Settings& s) { if (s.gl_backend) { if (!params_.HasParam("use_gpu")) { LOG(WARN) << "GPU delegate execution provider isn't linked or GPU " "delegate isn't supported on the platform!"; } else { params_.Set<bool>("use_gpu", true); if (params_.HasParam("gpu_inference_for_sustained_speed")) { params_.Set<bool>("gpu_inference_for_sustained_speed", true); } params_.Set<bool>("gpu_precision_loss_allowed", s.allow_fp16); } } if (s.accel) { if (!params_.HasParam("use_nnapi")) { LOG(WARN) << "NNAPI delegate execution provider isn't linked or NNAPI " "delegate isn't supported on the platform!"; } else { params_.Set<bool>("use_nnapi", true); params_.Set<bool>("nnapi_allow_fp16", s.allow_fp16); } } if (s.hexagon_delegate) { if (!params_.HasParam("use_hexagon")) { LOG(WARN) << "Hexagon delegate execution provider isn't linked or " "Hexagon delegate isn't supported on the platform!"; } else { params_.Set<bool>("use_hexagon", true); params_.Set<bool>("hexagon_profiling", s.profiling); } } if (s.xnnpack_delegate) { if (!params_.HasParam("use_xnnpack")) { LOG(WARN) << "XNNPACK delegate execution provider isn't linked or " "XNNPACK delegate isn't supported on the platform!"; } else { params_.Set<bool>("use_xnnpack", true); params_.Set<int32_t>("num_threads", s.number_of_threads); } } } std::vector<ProvidedDelegateList::ProvidedDelegate> CreateAllDelegates() const { return delegate_list_util_.CreateAllRankedDelegates(); } std::string GetHelpMessage(const std::string& cmdline) const { return Flags::Usage(cmdline, flags_); } private: tflite::tools::ToolParams params_; ProvidedDelegateList delegate_list_util_; std::vector<tflite::Flag> flags_; }; TfLiteStatus ReadLabelsFile(const string& file_name, std::vector<string>* result, size_t* found_label_count) { std::ifstream file(file_name); if (!file) { LOG(ERROR) << "Labels file " << file_name << " not found"; return kTfLiteError; } result->clear(); string line; while (std::getline(file, line)) { result->push_back(line); } *found_label_count = result->size(); const int padding = 16; while (result->size() % padding) { result->emplace_back(); } return kTfLiteOk; } void PrintProfilingInfo(const profiling::ProfileEvent* e, uint32_t subgraph_index, uint32_t op_index, TfLiteRegistration registration) { LOG(INFO) << std::fixed << std::setw(10) << std::setprecision(3) << (e->elapsed_time) / 1000.0 << ", Subgraph " << std::setw(3) << std::setprecision(3) << subgraph_index << ", Node " << std::setw(3) << std::setprecision(3) << op_index << ", OpCode " << std::setw(3) << std::setprecision(3) << registration.builtin_code << ", " << EnumNameBuiltinOperator( static_cast<BuiltinOperator>(registration.builtin_code)); } void RunInference(Settings* settings, const DelegateProviders& delegate_providers) { if (!settings->model_name.c_str()) { LOG(ERROR) << "no model file name"; exit(-1); } std::unique_ptr<tflite::FlatBufferModel> model; std::unique_ptr<tflite::Interpreter> interpreter; model = tflite::FlatBufferModel::BuildFromFile(settings->model_name.c_str()); if (!model) { LOG(ERROR) << "Failed to mmap model " << settings->model_name; exit(-1); } settings->model = model.get(); LOG(INFO) << "Loaded model " << settings->model_name; model->error_reporter(); LOG(INFO) << "resolved reporter"; tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder(*model, resolver)(&interpreter); if (!interpreter) { LOG(ERROR) << "Failed to construct interpreter"; exit(-1); } interpreter->SetAllowFp16PrecisionForFp32(settings->allow_fp16); if (settings->verbose) { LOG(INFO) << "tensors size: " << interpreter->tensors_size(); LOG(INFO) << "nodes size: " << interpreter->nodes_size(); LOG(INFO) << "inputs: " << interpreter->inputs().size(); LOG(INFO) << "input(0) name: " << interpreter->GetInputName(0); int t_size = interpreter->tensors_size(); for (int i = 0; i < t_size; i++) { if (interpreter->tensor(i)->name) LOG(INFO) << i << ": " << interpreter->tensor(i)->name << ", " << interpreter->tensor(i)->bytes << ", " << interpreter->tensor(i)->type << ", " << interpreter->tensor(i)->params.scale << ", " << interpreter->tensor(i)->params.zero_point; } } if (settings->number_of_threads != -1) { interpreter->SetNumThreads(settings->number_of_threads); } int image_width = 224; int image_height = 224; int image_channels = 3; std::vector<uint8_t> in = read_bmp(settings->input_bmp_name, &image_width, &image_height, &image_channels, settings); int input = interpreter->inputs()[0]; if (settings->verbose) LOG(INFO) << "input: " << input; const std::vector<int> inputs = interpreter->inputs(); const std::vector<int> outputs = interpreter->outputs(); if (settings->verbose) { LOG(INFO) << "number of inputs: " << inputs.size(); LOG(INFO) << "number of outputs: " << outputs.size(); } auto profiler = std::make_unique<profiling::Profiler>( settings->max_profiling_buffer_entries); interpreter->SetProfiler(profiler.get()); auto delegates = delegate_providers.CreateAllDelegates(); for (auto& delegate : delegates) { const auto delegate_name = delegate.provider->GetName(); if (interpreter->ModifyGraphWithDelegate(std::move(delegate.delegate)) != kTfLiteOk) { LOG(ERROR) << "Failed to apply " << delegate_name << " delegate."; exit(-1); } else { LOG(INFO) << "Applied " << delegate_name << " delegate."; } } if (interpreter->AllocateTensors() != kTfLiteOk) { LOG(ERROR) << "Failed to allocate tensors!"; exit(-1); } if (settings->verbose) PrintInterpreterState(interpreter.get()); TfLiteIntArray* dims = interpreter->tensor(input)->dims; int wanted_height = dims->data[1]; int wanted_width = dims->data[2]; int wanted_channels = dims->data[3]; settings->input_type = interpreter->tensor(input)->type; switch (settings->input_type) { case kTfLiteFloat32: resize<float>(interpreter->typed_tensor<float>(input), in.data(), image_height, image_width, image_channels, wanted_height, wanted_width, wanted_channels, settings); break; case kTfLiteInt8: resize<int8_t>(interpreter->typed_tensor<int8_t>(input), in.data(), image_height, image_width, image_channels, wanted_height, wanted_width, wanted_channels, settings); break; case kTfLiteUInt8: resize<uint8_t>(interpreter->typed_tensor<uint8_t>(input), in.data(), image_height, image_width, image_channels, wanted_height, wanted_width, wanted_channels, settings); break; default: LOG(ERROR) << "cannot handle input type " << interpreter->tensor(input)->type << " yet"; exit(-1); } if (settings->profiling) profiler->StartProfiling(); for (int i = 0; i < settings->number_of_warmup_runs; i++) { if (interpreter->Invoke() != kTfLiteOk) { LOG(ERROR) << "Failed to invoke tflite!"; exit(-1); } } struct timeval start_time, stop_time; gettimeofday(&start_time, nullptr); for (int i = 0; i < settings->loop_count; i++) { if (interpreter->Invoke() != kTfLiteOk) { LOG(ERROR) << "Failed to invoke tflite!"; exit(-1); } } gettimeofday(&stop_time, nullptr); LOG(INFO) << "invoked"; LOG(INFO) << "average time: " << (get_us(stop_time) - get_us(start_time)) / (settings->loop_count * 1000) << " ms"; if (settings->profiling) { profiler->StopProfiling(); auto profile_events = profiler->GetProfileEvents(); for (int i = 0; i < profile_events.size(); i++) { auto subgraph_index = profile_events[i]->extra_event_metadata; auto op_index = profile_events[i]->event_metadata; const auto subgraph = interpreter->subgraph(subgraph_index); const auto node_and_registration = subgraph->node_and_registration(op_index); const TfLiteRegistration registration = node_and_registration->second; PrintProfilingInfo(profile_events[i], subgraph_index, op_index, registration); } } const float threshold = 0.001f; std::vector<std::pair<float, int>> top_results; int output = interpreter->outputs()[0]; TfLiteIntArray* output_dims = interpreter->tensor(output)->dims; auto output_size = output_dims->data[output_dims->size - 1]; switch (interpreter->tensor(output)->type) { case kTfLiteFloat32: get_top_n<float>(interpreter->typed_output_tensor<float>(0), output_size, settings->number_of_results, threshold, &top_results, settings->input_type); break; case kTfLiteInt8: get_top_n<int8_t>(interpreter->typed_output_tensor<int8_t>(0), output_size, settings->number_of_results, threshold, &top_results, settings->input_type); break; case kTfLiteUInt8: get_top_n<uint8_t>(interpreter->typed_output_tensor<uint8_t>(0), output_size, settings->number_of_results, threshold, &top_results, settings->input_type); break; default: LOG(ERROR) << "cannot handle output type " << interpreter->tensor(output)->type << " yet"; exit(-1); } std::vector<string> labels; size_t label_count; if (ReadLabelsFile(settings->labels_file_name, &labels, &label_count) != kTfLiteOk) exit(-1); for (const auto& result : top_results) { const float confidence = result.first; const int index = result.second; LOG(INFO) << confidence << ": " << index << " " << labels[index]; } interpreter.reset(); } void display_usage(const DelegateProviders& delegate_providers) { LOG(INFO) << "\n" << delegate_providers.GetHelpMessage("label_image") << "\t--accelerated, -a: [0|1] use Android NNAPI or not\n" << "\t--allow_fp16, -f: [0|1], allow running fp32 models with fp16 or " "not\n" << "\t--count, -c: loop interpreter->Invoke() for certain times\n" << "\t--gl_backend, -g: [0|1]: use GL GPU Delegate on Android\n" << "\t--hexagon_delegate, -j: [0|1]: use Hexagon Delegate on Android\n" << "\t--input_mean, -b: input mean\n" << "\t--input_std, -s: input standard deviation\n" << "\t--image, -i: image_name.bmp\n" << "\t--labels, -l: labels for the model\n" << "\t--tflite_model, -m: model_name.tflite\n" << "\t--profiling, -p: [0|1], profiling or not\n" << "\t--num_results, -r: number of results to show\n" << "\t--threads, -t: number of threads\n" << "\t--verbose, -v: [0|1] print more information\n" << "\t--warmup_runs, -w: number of warmup runs\n" << "\t--xnnpack_delegate, -x [0:1]: xnnpack delegate\n" << "\t--help, -h: Print this help message\n"; } int Main(int argc, char** argv) { DelegateProviders delegate_providers; bool parse_result = delegate_providers.InitFromCmdlineArgs( &argc, const_cast<const char**>(argv)); if (!parse_result) { display_usage(delegate_providers); return EXIT_FAILURE; } Settings s; int c; while (true) { static struct option long_options[] = { {"accelerated", required_argument, nullptr, 'a'}, {"allow_fp16", required_argument, nullptr, 'f'}, {"count", required_argument, nullptr, 'c'}, {"verbose", required_argument, nullptr, 'v'}, {"image", required_argument, nullptr, 'i'}, {"labels", required_argument, nullptr, 'l'}, {"tflite_model", required_argument, nullptr, 'm'}, {"profiling", required_argument, nullptr, 'p'}, {"threads", required_argument, nullptr, 't'}, {"input_mean", required_argument, nullptr, 'b'}, {"input_std", required_argument, nullptr, 's'}, {"num_results", required_argument, nullptr, 'r'}, {"max_profiling_buffer_entries", required_argument, nullptr, 'e'}, {"warmup_runs", required_argument, nullptr, 'w'}, {"gl_backend", required_argument, nullptr, 'g'}, {"hexagon_delegate", required_argument, nullptr, 'j'}, {"xnnpack_delegate", required_argument, nullptr, 'x'}, {"help", no_argument, nullptr, 'h'}, {nullptr, 0, nullptr, 0}}; int option_index = 0; c = getopt_long(argc, argv, "a:b:c:d:e:f:g:i:j:l:m:p:r:s:t:v:w:x:h", long_options, &option_index); if (c == -1) break; switch (c) { case 'a': s.accel = strtol(optarg, nullptr, 10); break; case 'b': s.input_mean = strtod(optarg, nullptr); break; case 'c': s.loop_count = strtol(optarg, nullptr, 10); break; case 'e': s.max_profiling_buffer_entries = strtol(optarg, nullptr, 10); break; case 'f': s.allow_fp16 = strtol(optarg, nullptr, 10); break; case 'g': s.gl_backend = strtol(optarg, nullptr, 10); break; case 'i': s.input_bmp_name = optarg; break; case 'j': s.hexagon_delegate = optarg; break; case 'l': s.labels_file_name = optarg; break; case 'm': s.model_name = optarg; break; case 'p': s.profiling = strtol(optarg, nullptr, 10); break; case 'r': s.number_of_results = strtol(optarg, nullptr, 10); break; case 's': s.input_std = strtod(optarg, nullptr); break; case 't': s.number_of_threads = strtol( optarg, nullptr, 10); break; case 'v': s.verbose = strtol(optarg, nullptr, 10); break; case 'w': s.number_of_warmup_runs = strtol(optarg, nullptr, 10); break; case 'x': s.xnnpack_delegate = strtol(optarg, nullptr, 10); break; case 'h': case '?': display_usage(delegate_providers); exit(-1); default: exit(-1); } } delegate_providers.MergeSettingsIntoParams(s); RunInference(&s, delegate_providers); return 0; } } } int main(int argc, char** argv) { return tflite::label_image::Main(argc, argv); }
#include "tensorflow/lite/examples/label_image/label_image.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/examples/label_image/bitmap_helpers.h" #include "tensorflow/lite/examples/label_image/get_top_n.h" namespace tflite { namespace label_image { TEST(LabelImageTest, GraceHopper) { std::string lena_file = "tensorflow/lite/examples/label_image/testdata/" "grace_hopper.bmp"; int height, width, channels; Settings s; s.input_type = kTfLiteUInt8; std::vector<uint8_t> input = read_bmp(lena_file, &width, &height, &channels, &s); ASSERT_EQ(height, 606); ASSERT_EQ(width, 517); ASSERT_EQ(channels, 3); std::vector<uint8_t> output(606 * 517 * 3); resize<uint8_t>(output.data(), input.data(), 606, 517, 3, 214, 214, 3, &s); ASSERT_EQ(output[0], 0x15); ASSERT_EQ(output[214 * 214 * 3 - 1], 0x11); } TEST(LabelImageTest, GetTopN) { uint8_t in[] = {1, 1, 2, 2, 4, 4, 16, 32, 128, 64}; std::vector<std::pair<float, int>> top_results; get_top_n<uint8_t>(in, 10, 5, 0.025, &top_results, kTfLiteUInt8); ASSERT_EQ(top_results.size(), 4); ASSERT_EQ(top_results[0].second, 8); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/examples/label_image/label_image.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/examples/label_image/label_image_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
923ae6f7-74bb-4941-b236-d1ca0cc1e804
cpp
google/tensorstore
metadata
tensorstore/internal/metrics/metadata.cc
tensorstore/internal/metrics/metadata_test.cc
#include "tensorstore/internal/metrics/metadata.h" #include <cstddef> #include <string_view> #include "absl/base/optimization.h" #include "absl/strings/ascii.h" namespace tensorstore { namespace internal_metrics { bool IsValidMetricName(std::string_view name) { if (name.size() < 2) return false; if (name[0] != '/') return false; if (name[name.size() - 1] == '/') return false; if (!absl::ascii_isalpha(name[1])) return false; size_t last_slash = 0; for (size_t i = 1; i < name.size(); i++) { const auto ch = name[i]; if (ch == '/') { if (i - last_slash == 1) return false; if (i - last_slash > 63) return false; last_slash = i; } else if (ch != '_' && !absl::ascii_isalnum(ch)) { return false; } } return true; } bool IsValidMetricLabel(std::string_view name) { if (name.empty()) return false; if (!absl::ascii_isalpha(name[0])) return false; for (auto ch : name) { if (ch != '_' && !absl::ascii_isalnum(ch)) { return false; } } return true; } std::string_view UnitsToString(Units units) { switch (units) { case Units::kUnknown: return {}; case Units::kSeconds: return "seconds"; case Units::kMilliseconds: return "milliseconds"; case Units::kMicroseconds: return "microseconds"; case Units::kNanoseconds: return "nanoseconds"; case Units::kBits: return "bits"; case Units::kBytes: return "bytes"; case Units::kKilobytes: return "kilobytes"; case Units::kMegabytes: return "megabytes"; } ABSL_UNREACHABLE(); } } }
#include "tensorstore/internal/metrics/metadata.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::internal_metrics::IsValidMetricLabel; using ::tensorstore::internal_metrics::IsValidMetricName; using ::tensorstore::internal_metrics::Units; using ::tensorstore::internal_metrics::UnitsToString; TEST(MetadataTest, IsValidMetricName) { EXPECT_FALSE(IsValidMetricName("")); EXPECT_FALSE(IsValidMetricName("/")); EXPECT_FALSE(IsValidMetricName(" EXPECT_FALSE(IsValidMetricName("/foo/")); EXPECT_FALSE(IsValidMetricName("/foo EXPECT_FALSE(IsValidMetricName("/_foo")); EXPECT_FALSE(IsValidMetricName("/foo%")); EXPECT_FALSE(IsValidMetricName("/foo%")); EXPECT_FALSE(IsValidMetricName("/foo.bar")); EXPECT_FALSE(IsValidMetricName("foo_1")); EXPECT_TRUE(IsValidMetricName("/foo/1_bar/Baz")); } TEST(MetadataTest, IsValidMetricLabel) { EXPECT_FALSE(IsValidMetricLabel("")); EXPECT_FALSE(IsValidMetricLabel("/")); EXPECT_FALSE(IsValidMetricLabel("1_bar")); EXPECT_FALSE(IsValidMetricLabel("_bar")); EXPECT_FALSE(IsValidMetricLabel("foo/bar")); EXPECT_FALSE(IsValidMetricLabel("foo-bar")); EXPECT_FALSE(IsValidMetricLabel("foo.bar")); EXPECT_TRUE(IsValidMetricLabel("a")); EXPECT_TRUE(IsValidMetricLabel("foB_1")); } TEST(MetadataTest, UnitsToString) { EXPECT_THAT(UnitsToString(Units::kUnknown), ::testing::IsEmpty()); EXPECT_THAT(UnitsToString(Units::kSeconds), ::testing::Eq("seconds")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/metrics/metadata.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/metrics/metadata_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f03b26a7-efe8-47dd-867f-fb78537061cf
cpp
tensorflow/tensorflow
tf_rendezvous_c_api
tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api.h
tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api_test.cc
#ifndef TENSORFLOW_CORE_COMMON_RUNTIME_NEXT_PLUGGABLE_DEVICE_C_TF_RENDEZVOUS_C_API_H_ #define TENSORFLOW_CORE_COMMON_RUNTIME_NEXT_PLUGGABLE_DEVICE_C_TF_RENDEZVOUS_C_API_H_ #include <stdint.h> #include "tensorflow/c/c_api_macros.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor.h" #ifdef __cplusplus extern "C" { #endif typedef struct TF_DeviceContext TF_DeviceContext; typedef struct TFDevice_AllocatorAttributes { uint32_t value; int32_t scope_id; } TFDevice_AllocatorAttributes; typedef struct TFE_CancellationManager TFE_CancellationManager; typedef struct TF_RendezvousArgsStruct { TF_DeviceContext* device_context; TFDevice_AllocatorAttributes alloc_attrs; TFE_CancellationManager* cancellation_manager; } TF_RendezvousArgsStruct; typedef struct TF_RendezvousParsedKey { char* full_key; uint32_t full_key_size; } TF_RendezvousParsedKey; typedef struct TF_RendezvousSend_Params { const TF_RendezvousParsedKey* key; const TF_RendezvousArgsStruct* args; TF_Tensor* tensor; bool is_dead; TF_Status* status; } TF_RendezvousSend_Params; typedef void (*TF_RendezvousSend_Function)(void*, TF_RendezvousSend_Params*); typedef struct TF_RendezvousDoneCallback_Params { void* context; const TF_Status* status; const TF_Tensor* tensor; bool is_dead; } TF_RendezvousDoneCallback_Params; typedef void (*TF_RendezvousDoneCallback_Function)( void*, TF_RendezvousDoneCallback_Params*); typedef struct TF_RendezvousDoneCallbackImpl { void* context; TF_RendezvousDoneCallback_Function callback; } TF_RendezvousDoneCallbackImpl; typedef struct TF_RendezvousAsyncRecv_Params { void* context; const TF_RendezvousParsedKey* key; const TF_RendezvousArgsStruct* args; TF_RendezvousDoneCallbackImpl on_done; } TF_RendezvousAsyncRecv_Params; typedef void (*TF_RendezvousAsyncRecv_Function)(void*, TF_RendezvousAsyncRecv_Params*); typedef void (*TF_RendezvousStartAbort_Function)(void* context, const TF_Status*); typedef struct TF_RendezvousThunk { void* rendezvous; TF_RendezvousSend_Function send_func; TF_RendezvousAsyncRecv_Function async_recv_func; TF_RendezvousStartAbort_Function start_abort_func; } TF_RendezvousThunk; #ifdef __cplusplus } #endif #endif
#include "tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/notification.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api_helper.h" #include "tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api_internal.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/status.h" namespace tensorflow { namespace { Tensor CreateTestTensor() { Tensor t(DT_INT8, TensorShape({10, 20})); for (int64_t a = 0; a < t.shape().dim_size(0); a++) { for (int64_t b = 0; b < t.shape().dim_size(1); b++) { t.matrix<int8>()(a, b) = static_cast<int8>((a + 1) * (b + 1)); } } return t; } class FakeAllocator : public Allocator { public: std::string Name() override { return "fake"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return port::AlignedMalloc(num_bytes, alignment); } void DeallocateRaw(void* ptr) override { return port::AlignedFree(ptr); } }; class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return allocator_.get(); } static std::unique_ptr<Device> Make(absl::string_view name, absl::string_view type) { DeviceAttributes device_attributes; device_attributes.set_name(std::string(name)); device_attributes.set_device_type(std::string(type)); return std::unique_ptr<Device>(new FakeDevice(device_attributes)); } private: std::unique_ptr<FakeAllocator> allocator_ = std::make_unique<FakeAllocator>(); }; class FakeDeviceManager : public DeviceMgr { public: void ListDeviceAttributes( std::vector<DeviceAttributes>* devices) const override { devices->clear(); } std::vector<Device*> ListDevices() const override { return std::vector<Device*>(); } std::string DebugString() const override { return ""; } std::string DeviceMappingString() const override { return ""; } absl::Status LookupDevice(StringPiece name, Device** device) const override { *device = fake_device_.get(); return absl::OkStatus(); } bool ContainsDevice(int64_t device_incarnation) const override { return false; } void ClearContainers(absl::Span<const string> containers) const override {} int NumDeviceType(const string& type) const override { return 0; } int NumDevices() const override { return 0; } Device* HostCPU() const override { return nullptr; } private: std::unique_ptr<Device> fake_device_ = FakeDevice::Make("/cpu:0", "fake"); }; class TestDeviceContext : public DeviceContext { public: void CopyCPUTensorToDevice(const Tensor* cpu_tensor, Device* device, Tensor* device_tensor, StatusCallback done, bool sync_dst_compute) const override { Tensor test_tensor = CreateTestTensor(); test::ExpectTensorEqual<int8>(test_tensor, *cpu_tensor); done(absl::OkStatus()); } void CopyDeviceTensorToCPU(const Tensor* device_tensor, absl::string_view tensor_name, Device* device, Tensor* cpu_tensor, StatusCallback done) override { *cpu_tensor = CreateTestTensor(); done(absl::OkStatus()); } void CopyTensorInSameDevice(const Tensor* input_tensor, Device* device, Tensor* output_tensor, tsl::StatusCallback done) const override { done(absl::InternalError("TPU->TPU copy not implemented.")); } }; std::string CreateRendezvousKey(bool to_host) { const std::string task_prefix = "/job:worker/replica:0/task:0"; const std::string src_device = to_host ? "/device:TPU:0" : "/device:CPU:0"; const std::string dst_device = to_host ? "/device:CPU:0" : "/device:TPU:0"; const std::string rendezvous_key_base = "rendezvous_key_base"; return Rendezvous::CreateKey(absl::StrCat(task_prefix, src_device), 1, absl::StrCat(task_prefix, dst_device), rendezvous_key_base, FrameAndIter(0, 0)); } TEST(RendezvousCAPI, DeviceToHost) { auto device_manager = std::make_unique<FakeDeviceManager>(); core::RefCountPtr<Rendezvous> rendezvous = core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_manager.get())); core::RefCountPtr<TestDeviceContext> device_context = core::RefCountPtr<TestDeviceContext>(new TestDeviceContext()); std::string key = CreateRendezvousKey(true); Rendezvous::ParsedKey parsed_key; TF_ASSERT_OK(Rendezvous::ParseKey(key, &parsed_key)); TF_RendezvousThunk* thunk = ToC(rendezvous.get()); std::unique_ptr<tensorflow::RendezvousInterface> thunk_rendezvous = FromC(thunk); Rendezvous::Args send_args; send_args.device_context = device_context.get(); TF_CHECK_OK(thunk_rendezvous->Send(parsed_key, send_args, Tensor(), false)); Tensor result; absl::Notification callback_done; Rendezvous::Args recv_args; recv_args.device_context = device_context.get(); recv_args.alloc_attrs.set_on_host(true); rendezvous->RecvAsync(parsed_key, recv_args, [&](const absl::Status& status, const RefCountedIntraProcessRendezvous::Args&, const RefCountedIntraProcessRendezvous::Args&, const Tensor& tensor, const bool) { TF_ASSERT_OK(status); result = tensor; callback_done.Notify(); }); callback_done.WaitForNotification(); Tensor test_tensor = CreateTestTensor(); test::ExpectTensorEqual<int8>(test_tensor, result); Destroy(thunk); delete thunk; } TEST(RendezvousCAPI, HostToDevice) { auto device_manager = std::make_unique<FakeDeviceManager>(); core::RefCountPtr<Rendezvous> rendezvous = core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_manager.get())); core::RefCountPtr<TestDeviceContext> device_context = core::RefCountPtr<TestDeviceContext>(new TestDeviceContext()); std::string key = CreateRendezvousKey(false); Rendezvous::ParsedKey parsed_key; TF_ASSERT_OK(Rendezvous::ParseKey(key, &parsed_key)); TF_RendezvousThunk* thunk = ToC(rendezvous.get()); std::unique_ptr<tensorflow::RendezvousInterface> thunk_rendezvous = FromC(thunk); Rendezvous::Args recv_args; recv_args.device_context = device_context.get(); Tensor result; absl::Notification callback_done; thunk_rendezvous->RecvAsync(parsed_key, recv_args, [&](const absl::Status& status, const RefCountedIntraProcessRendezvous::Args&, const RefCountedIntraProcessRendezvous::Args&, const Tensor& tensor, const bool) { TF_ASSERT_OK(status); result = tensor; callback_done.Notify(); }); Rendezvous::Args send_args; send_args.device_context = device_context.get(); send_args.alloc_attrs.set_on_host(true); Tensor test_tensor = CreateTestTensor(); TF_CHECK_OK(rendezvous->Send(parsed_key, send_args, test_tensor, false)); callback_done.WaitForNotification(); Destroy(thunk); delete thunk; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c/tf_rendezvous_c_api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f6d26ff3-c6e3-4c5f-9e01-90b52242a5cb
cpp
tensorflow/tensorflow
batch_norm_op
tensorflow/compiler/tf2xla/kernels/batch_norm_op.cc
tensorflow/core/kernels/batch_norm_op_test.cc
#include <algorithm> #include <numeric> #include <string> #include <vector> #include "tensorflow/compiler/tf2xla/kernels/relu_op.h" #include "tensorflow/compiler/tf2xla/mlir_xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/util.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { namespace { class FusedBatchNormOp : public XlaOpKernel { public: explicit FusedBatchNormOp(OpKernelConstruction* ctx) : FusedBatchNormOp(ctx, false) {} FusedBatchNormOp(OpKernelConstruction* ctx, bool is_batch_norm_ex) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("epsilon", &epsilon_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("is_training", &is_training_)); OP_REQUIRES_OK( ctx, ctx->GetAttr("exponential_avg_factor", &exponential_avg_factor_)); string data_format_str; OP_REQUIRES_OK(ctx, ctx->GetAttr("data_format", &data_format_str)); OP_REQUIRES( ctx, FormatFromString(data_format_str, &data_format_), errors::InvalidArgument("Invalid data format: ", data_format_str)); if (is_batch_norm_ex) { int num_side_inputs; OP_REQUIRES_OK(ctx, ctx->GetAttr("num_side_inputs", &num_side_inputs)); OP_REQUIRES(ctx, num_side_inputs >= 0 && num_side_inputs <= 1, errors::InvalidArgument( "FusedBatchNormEx supports at most 1 side input.")); add_side_input_ = (num_side_inputs == 1); string activation_mode; OP_REQUIRES_OK(ctx, ctx->GetAttr("activation_mode", &activation_mode)); OP_REQUIRES(ctx, activation_mode == "Identity" || activation_mode == "Relu", errors::InvalidArgument( "Unsupported FusedBatchNormEx activation mode: ", activation_mode)); apply_relu_ = (activation_mode == "Relu"); } else { add_side_input_ = false; apply_relu_ = false; } is_on_gpu_ = ctx->device_type().type_string() == DEVICE_GPU_XLA_JIT; } void Compile(XlaOpKernelContext* ctx) override { CompileImpl(ctx); } protected: virtual void CompileImpl(XlaOpKernelContext* ctx) { xla::XlaBuilder* const b = ctx->builder(); xla::PrimitiveType input_type; OP_REQUIRES_OK(ctx, DataTypeToPrimitiveType(ctx->input_type(0), &input_type)); xla::PrimitiveType scale_type; OP_REQUIRES_OK(ctx, DataTypeToPrimitiveType(ctx->input_type(1), &scale_type)); xla::XlaOp input = ctx->Input(0); TensorShape input_shape = ctx->InputShape(0); int feature_index = GetTensorFeatureDimIndex(input_shape.dims(), data_format_); input = xla::ConvertElementType(input, scale_type); if (is_training_) { xla::XlaOp output = xla::BatchNormTraining( input, ctx->Input(1), ctx->Input(2), epsilon_, feature_index); xla::XlaOp converted = xla::ConvertElementType(xla::GetTupleElement(output, 0), input_type); if (add_side_input_ && apply_relu_) { ctx->SetOutput(0, xla::Relu(xla::Add(ctx->Input(5), converted))); } else if (apply_relu_) { ctx->SetOutput(0, xla::Relu(converted)); } else { ctx->SetOutput(0, converted); } xla::XlaOp variance = xla::GetTupleElement(output, 2); int total_input_size = ctx->InputShape(0).num_elements(); int total_scale_size = ctx->InputShape(1).num_elements(); int sample_size = total_scale_size > 0 ? total_input_size / total_scale_size : 0; int sample_size_minus_one = std::max(1, sample_size - 1); double factor = static_cast<double>(sample_size) / static_cast<double>(sample_size_minus_one); constexpr int kVarianceOutputIndex = 2; xla::XlaOp corrected = xla::Mul(variance, xla::ScalarLike(variance, factor)); if (input_shape.num_elements() == 0) { auto status_or_output_shape = b->GetShape(corrected); OP_REQUIRES_OK(ctx, status_or_output_shape.status()); ctx->SetOutput(1, xla::GetTupleElement(output, 1)); ctx->SetOutput( kVarianceOutputIndex, xla::Broadcast( xla::NanValue(b, ctx->output_xla_type(kVarianceOutputIndex)), status_or_output_shape.value().dimensions())); } else { if (exponential_avg_factor_ == 1.0f) { ctx->SetOutput(1, xla::GetTupleElement(output, 1)); ctx->SetOutput(2, corrected); } else { xla::XlaOp old_mean = ctx->Input(3); xla::XlaOp alpha = xla::ScalarLike(old_mean, 1.0f - exponential_avg_factor_); xla::XlaOp beta = xla::ScalarLike(old_mean, exponential_avg_factor_); xla::XlaOp new_running_mean = xla::Add(xla::Mul(old_mean, alpha), xla::Mul(xla::GetTupleElement(output, 1), beta)); ctx->SetOutput(1, new_running_mean); xla::XlaOp old_variance = ctx->Input(4); xla::XlaOp new_running_variance = xla::Add( xla::Mul(old_variance, alpha), xla::Mul(corrected, beta)); ctx->SetOutput(2, new_running_variance); } } ctx->SetOutput(3, xla::GetTupleElement(output, 1)); if (is_on_gpu_) { ctx->SetOutput(4, xla::Rsqrt(xla::Add( variance, xla::ScalarLike(variance, epsilon_)))); } else { ctx->SetOutput(4, variance); } } else { xla::XlaOp output = xla::BatchNormInference( input, ctx->Input(1), ctx->Input(2), ctx->Input(3), ctx->Input(4), epsilon_, feature_index); xla::XlaOp converted = xla::ConvertElementType(output, input_type); if (add_side_input_ && apply_relu_) { ctx->SetOutput(0, xla::Relu(xla::Add(ctx->Input(5), converted))); } else if (apply_relu_) { ctx->SetOutput(0, xla::Relu(converted)); } else { ctx->SetOutput(0, converted); } ctx->SetOutput(1, ctx->Input(3)); ctx->SetOutput(2, ctx->Input(4)); ctx->SetOutput(3, ctx->Input(3)); ctx->SetOutput(4, ctx->Input(4)); } } private: float epsilon_; TensorFormat data_format_; bool is_training_; float exponential_avg_factor_; bool add_side_input_; bool apply_relu_; bool is_on_gpu_; }; class FusedBatchNormOpV3 : public FusedBatchNormOp { public: explicit FusedBatchNormOpV3(OpKernelConstruction* ctx) : FusedBatchNormOp(ctx) {} void Compile(XlaOpKernelContext* ctx) override { FusedBatchNormOp::CompileImpl(ctx); if (!ctx->status().ok()) { return; } ctx->SetConstantOutput(5, Tensor()); } }; class FusedBatchNormOpEx : public FusedBatchNormOp { public: explicit FusedBatchNormOpEx(OpKernelConstruction* ctx) : FusedBatchNormOp(ctx, true) {} void Compile(XlaOpKernelContext* ctx) override { FusedBatchNormOp::CompileImpl(ctx); if (!ctx->status().ok()) { return; } ctx->SetConstantOutput(5, Tensor()); } }; REGISTER_XLA_OP(Name("FusedBatchNorm"), FusedBatchNormOp); REGISTER_XLA_OP(Name("FusedBatchNormV2"), FusedBatchNormOp); REGISTER_XLA_OP(Name("FusedBatchNormV3"), MlirXlaOpKernel); REGISTER_XLA_OP(Name("_FusedBatchNormEx"), FusedBatchNormOpEx); class FusedBatchNormGradOp : public XlaOpKernel { public: explicit FusedBatchNormGradOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("epsilon", &epsilon_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("is_training", &is_training_)); string data_format_str; OP_REQUIRES_OK(ctx, ctx->GetAttr("data_format", &data_format_str)); OP_REQUIRES( ctx, FormatFromString(data_format_str, &data_format_), errors::InvalidArgument("Invalid data format: ", data_format_str)); is_on_gpu_ = ctx->device_type().type_string() == DEVICE_GPU_XLA_JIT; } void Compile(XlaOpKernelContext* ctx) override { xla::XlaBuilder* const b = ctx->builder(); DataType input_dtype = ctx->input_type(0); DataType scale_dtype = ctx->input_type(2); auto grad_backprop = XlaHelpers::ConvertElementType(ctx->Input(0), scale_dtype); auto activations = XlaHelpers::ConvertElementType(ctx->Input(1), scale_dtype); auto scale = ctx->Input(2); auto mean = ctx->Input(3); auto var = ctx->Input(4); const int input_dims = ctx->InputShape(0).dims(); const int feature_index = GetTensorFeatureDimIndex(input_dims, data_format_); xla::XlaOp x_backprop; xla::XlaOp scale_backprop; xla::XlaOp offset_backprop; if (is_training_) { if (is_on_gpu_) { xla::XlaOp one = xla::ScalarLike(var, 1.0f); xla::XlaOp epsilon = xla::ScalarLike(var, epsilon_); var = xla::Sub(one / (var * var), epsilon); } xla::XlaOp output = xla::BatchNormGrad(activations, scale, mean, var, grad_backprop, epsilon_, feature_index); x_backprop = xla::GetTupleElement(output, 0); scale_backprop = xla::GetTupleElement(output, 1); offset_backprop = xla::GetTupleElement(output, 2); } else { std::vector<int64_t> reduction_dims(input_dims - 1); std::iota(reduction_dims.begin(), reduction_dims.begin() + feature_index, 0); std::iota(reduction_dims.begin() + feature_index, reduction_dims.end(), feature_index + 1); const DataType accumulation_type = XlaHelpers::SumAccumulationType(scale_dtype); auto converted = XlaHelpers::ConvertElementType(grad_backprop, accumulation_type); auto reduce = xla::Reduce(converted, XlaHelpers::Zero(b, accumulation_type), *ctx->GetOrCreateAdd(accumulation_type), reduction_dims); offset_backprop = XlaHelpers::ConvertElementType(reduce, scale_dtype); auto epsilon = XlaHelpers::FloatLiteral(b, scale_dtype, epsilon_); auto scratch1 = xla::Rsqrt(xla::Add(var, epsilon)); auto mul = xla::Mul(grad_backprop, xla::Sub(activations, mean, {feature_index})); converted = XlaHelpers::ConvertElementType(mul, accumulation_type); reduce = xla::Reduce(converted, XlaHelpers::Zero(b, accumulation_type), *ctx->GetOrCreateAdd(accumulation_type), reduction_dims); auto scratch2 = XlaHelpers::ConvertElementType(reduce, scale_dtype); x_backprop = xla::Mul(grad_backprop, xla::Mul(scratch1, scale), {feature_index}); scale_backprop = xla::Mul(scratch1, scratch2); } ctx->SetOutput(0, XlaHelpers::ConvertElementType(x_backprop, input_dtype)); ctx->SetOutput(1, scale_backprop); ctx->SetOutput(2, offset_backprop); ctx->SetConstantOutput(3, Tensor()); ctx->SetConstantOutput(4, Tensor()); } private: TensorFormat data_format_; float epsilon_; bool is_training_; bool is_on_gpu_; }; REGISTER_XLA_OP(Name("FusedBatchNormGrad"), FusedBatchNormGradOp); REGISTER_XLA_OP(Name("FusedBatchNormGradV2"), FusedBatchNormGradOp); REGISTER_XLA_OP(Name("FusedBatchNormGradV3"), MlirXlaOpKernel); } }
#include <vector> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { template <typename T> struct BatchNormOpTest : public OpsTestBase { static constexpr auto TValueType = DataTypeToEnum<T>::value; void run_me() { TF_EXPECT_OK( NodeDefBuilder("batch_norm_op", "BatchNormWithGlobalNormalization") .Input(FakeInput(TValueType)) .Input(FakeInput(TValueType)) .Input(FakeInput(TValueType)) .Input(FakeInput(TValueType)) .Input(FakeInput(TValueType)) .Attr("scale_after_normalization", false) .Attr("variance_epsilon", 0.001) .Finalize(node_def())); TF_EXPECT_OK(InitOpWithGraphVersion(8)); AddInputFromList<T>(TensorShape({1, 1, 6, 2}), {1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6}); AddInputFromList<T>(TensorShape({2}), {10, 20}); AddInputFromList<T>(TensorShape({2}), {0.25, 0.5}); AddInputFromList<T>(TensorShape({2}), {0.1, 0.6}); AddInputFromList<T>(TensorShape({2}), {0.0, 0.0}); TF_ASSERT_OK(RunOpKernel()); double atol = TValueType == DT_FLOAT ? 0.01 : 0.1; Tensor expected(allocator(), TValueType, TensorShape({1, 1, 6, 2})); test::FillValues<T>(&expected, {-17.86f, -22.00f, -15.87f, -20.59f, -13.87f, -19.18f, -21.86f, -33.31f, -23.85f, -34.72f, -25.85f, -36.13f}); test::ExpectTensorNear<T>(expected, *GetOutput(0), atol); } }; TYPED_TEST_SUITE_P(BatchNormOpTest); TYPED_TEST_P(BatchNormOpTest, Simple) { this->run_me(); } REGISTER_TYPED_TEST_SUITE_P(BatchNormOpTest, Simple); using DataTypes = ::testing::Types<float, Eigen::half>; INSTANTIATE_TYPED_TEST_SUITE_P(Test, BatchNormOpTest, DataTypes); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/batch_norm_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batch_norm_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a0b74122-fd6d-4716-ae45-35839fa3648e
cpp
tensorflow/tensorflow
leaky_relu
tensorflow/lite/kernels/internal/reference/leaky_relu.h
tensorflow/lite/delegates/xnnpack/leaky_relu_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LEAKY_RELU_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LEAKY_RELU_H_ #include <algorithm> #include <limits> #include "tensorflow/lite/kernels/internal/common.h" namespace tflite { namespace reference_ops { inline void LeakyRelu(const tflite::LeakyReluParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& output_shape, float* output_data) { const int flat_size = MatchingFlatSize(input_shape, output_shape); for (int i = 0; i < flat_size; ++i) { const float val = input_data[i]; output_data[i] = val > 0 ? val : val * params.alpha; } } template <typename T> inline void QuantizeLeakyRelu(const LeakyReluParams& params, const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& output_shape, T* output_data) { const int flat_size = MatchingFlatSize(input_shape, output_shape); static const int32_t quantized_min = std::numeric_limits<T>::min(); static const int32_t quantized_max = std::numeric_limits<T>::max(); for (int i = 0; i < flat_size; ++i) { const int32_t input_value = input_data[i] - params.input_offset; int32_t unclamped_output; if (input_value >= 0) { unclamped_output = params.output_offset + MultiplyByQuantizedMultiplier( input_value, params.output_multiplier_identity, params.output_shift_identity); } else { unclamped_output = params.output_offset + MultiplyByQuantizedMultiplier( input_value, params.output_multiplier_alpha, params.output_shift_alpha); } const T clamped_output = std::min(quantized_max, std::max(quantized_min, unclamped_output)); output_data[i] = static_cast<T>(clamped_output); } } } } #endif
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/leaky_relu_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(LeakyRelu, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); LeakyReluTester() .Shape({batch, height, width, channels}) .Test(xnnpack_delegate.get()); } TEST(LeakyRelu, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); LeakyReluTester() .Shape({batch, width, channels}) .Test(xnnpack_delegate.get()); } TEST(LeakyRelu, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); LeakyReluTester().Shape({batch, channels}).Test(xnnpack_delegate.get()); } TEST(LeakyRelu, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); LeakyReluTester().Shape({batch}).Test(xnnpack_delegate.get()); } TEST(LeakyRelu, NegativeSlope) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); LeakyReluTester() .Shape({batch, height, width, channels}) .NegativeSlope(-0.75f) .Test(xnnpack_delegate.get()); } TEST(LeakyRelu, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); LeakyReluTester() .Shape({batch, height, width, channels}) .Test(xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/reference/leaky_relu.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/leaky_relu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f3ed1296-aa66-4676-b427-1b02afef8845
cpp
tensorflow/tensorflow
replicate_constants_pass
tensorflow/core/common_runtime/replicate_constants_pass.cc
tensorflow/core/common_runtime/replicate_constants_pass_test.cc
#include "tensorflow/core/common_runtime/replicate_constants_pass.h" #include <algorithm> #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { constexpr int64_t kMaxSize = 16; void SetUniqueName(Graph* graph, Node* node) { node->set_name(graph->NewName(absl::StrCat(node->name(), "/replicate"))); } bool HasControlOut(Node* node) { auto control_out_it = std::find_if(node->out_edges().begin(), node->out_edges().end(), [](const auto& e) { return e->IsControlEdge(); }); return control_out_it != node->out_edges().end(); } bool HasCpuDevice(const Node* node) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(node->assigned_device_name(), &device)) return false; return device.type == "CPU"; } Status DeviceNameToCpuDeviceNameWithDeviceId(const string& device_name, string* host_device_name) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(device_name, &device)) { return absl::InternalError( absl::StrCat("Could not parse device name ", device_name)); } if (flags::Global().enable_aggressive_constant_replication.value() && device.type == "CPU") { *host_device_name = device_name; } else { device.type = "CPU"; device.has_type = true; device.id = 0; device.has_id = true; *host_device_name = DeviceNameUtils::ParsedNameToString(device); } return absl::OkStatus(); } Status GetDestinationCpuDevice(const Node* dst, std::string* device) { if (!dst->has_assigned_device_name()) return absl::AbortedError( absl::StrCat("Node name: ", dst->name(), " has no assigned device.")); return DeviceNameToCpuDeviceNameWithDeviceId(dst->assigned_device_name(), device); } Status GetSuccessorEdges( Node* node, absl::btree_map<std::string, std::vector<const Edge*>>& device_to_edges) { for (const auto& edge : node->out_edges()) { const Node* dst = edge->dst(); std::string device; TF_RETURN_IF_ERROR(GetDestinationCpuDevice(dst, &device)); if (!device_to_edges.count(device)) device_to_edges.insert({device, {}}); device_to_edges[device].push_back(edge); } return absl::OkStatus(); } void ReplicateToEachDevice( Graph* graph, Node* node, absl::btree_map<std::string, std::vector<const Edge*>>& device_to_edges) { for (const auto& pair : device_to_edges) { Node* copy = graph->CopyNode(node); SetUniqueName(graph, copy); const std::string device = pair.first; copy->set_assigned_device_name(device); for (const Edge* edge : pair.second) { graph->AddEdge(copy, edge->src_output(), edge->dst(), edge->dst_input()); } for (Node* src : node->in_nodes()) { graph->AddControlEdge(src, copy, true); } } graph->RemoveNode(node); } } Status ReplicateConstantsPass::Run( const GraphOptimizationPassOptions& options) { VLOG(1) << "replicate_constants_pass will replicate constants with " "number-of-elements <= " << kMaxSize; if (options.graph == nullptr) { VLOG(1) << "No graph in replicate_constants_pass."; return absl::OkStatus(); } Graph* graph = options.graph->get(); if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("before_replicate_constants_pass", *graph, options.flib_def); } int64_t min_skipped = std::numeric_limits<int64_t>::max(); int64_t max_skipped = std::numeric_limits<int64_t>::min(); for (Node* node : graph->nodes()) { if (!node->IsConstant()) continue; if (node->out_edges().size() <= 1) continue; if (HasControlOut(node)) continue; const TensorProto* value = nullptr; TF_RETURN_IF_ERROR(GetNodeAttr(node->attrs(), "value", &value)); TF_ASSIGN_OR_RETURN(TensorShape shape, TensorShape::BuildTensorShape(value->tensor_shape())); if (shape.num_elements() > kMaxSize) { min_skipped = std::min(min_skipped, shape.num_elements()); max_skipped = std::max(max_skipped, shape.num_elements()); continue; } if (!node->has_assigned_device_name()) continue; if (!HasCpuDevice(node)) continue; absl::btree_map<std::string, std::vector<const Edge*>> device_to_edges; TF_RETURN_IF_ERROR(GetSuccessorEdges(node, device_to_edges)); if (device_to_edges.size() <= 1) continue; ReplicateToEachDevice(graph, node, device_to_edges); } if (min_skipped != std::numeric_limits<int64_t>::max()) { VLOG(1) << "replicate_constants_pass skipped replicating constants with " "number of elements in the range " << min_skipped << " to " << max_skipped << "."; } if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("after_replicate_constants_pass", *graph, options.flib_def); } return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, 3, ReplicateConstantsPass); }
#include "tensorflow/core/common_runtime/replicate_constants_pass.h" #include <memory> #include <string> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace tensorflow { const char kCpu0[] = "/job:tpu_host_worker/replica:0/task:0/device:CPU:0"; const char kCpu1[] = "/job:tpu_host_worker/replica:0/task:1/device:CPU:0"; const char kTpu00[] = "/job:tpu_host_worker/replica:0/task:0/device:TPU:0"; const char kTpu01[] = "/job:tpu_host_worker/replica:0/task:0/device:TPU:1"; const char kTpu10[] = "/job:tpu_host_worker/replica:0/task:1/device:TPU:0"; const char kTpu11[] = "/job:tpu_host_worker/replica:0/task:1/device:TPU:1"; Node* GetNode(const Graph& graph, const std::string& name) { for (Node* node : graph.nodes()) { if (node->name() == name) return node; } CHECK(false) << "Unknown node name: " << name; return nullptr; } Node* GetPredecessor(Node* node) { auto it = node->in_nodes().begin(); CHECK(it != node->in_nodes().end()) << "No predecessor for " << node->name() << "\n"; return *it; } bool IsEdge(Node* src, Node* dst) { for (Node* node : src->out_nodes()) { if (node == dst) return true; } return false; } TEST(ReplicateConstantsPassTest, TestSmallConstant) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_EQ(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_EQ(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestLargeConstant) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestControlOut) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const0"), 1.0f, TensorShape({})); Output ctrl_succ = ops::Const(scope.WithOpName("ctrl_succ"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const0")->set_assigned_device_name(kCpu0); GetNode(*graph, "ctrl_succ")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); graph->AddControlEdge(GetNode(*graph, "const0"), GetNode(*graph, "ctrl_succ")); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestTpuConst) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const0"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const0")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst0")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst1")->set_assigned_device_name(kTpu10); GetNode(*graph, "dst2")->set_assigned_device_name(kTpu10); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestSmallAndLargeConstants) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output small = ops::Const(scope.WithOpName("small"), 1.0f, TensorShape({})); Output large = ops::Const(scope.WithOpName("large"), {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f}); ops::Add dst0(scope.WithOpName("dst0"), small, large); ops::Add dst1(scope.WithOpName("dst1"), small, large); ops::Add dst2(scope.WithOpName("dst2"), small, large); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "small")->set_assigned_device_name(kCpu0); GetNode(*graph, "large")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* small0 = GetNode(*graph, "small/replicate/_0"); Node* small1 = GetNode(*graph, "small/replicate/_1"); Node* large = GetNode(*graph, "large"); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(small0->assigned_device_name(), kCpu0); EXPECT_EQ(small1->assigned_device_name(), kCpu1); EXPECT_EQ(large->assigned_device_name(), kCpu0); EXPECT_EQ(dst0->assigned_device_name(), kCpu0); EXPECT_EQ(dst1->assigned_device_name(), kCpu1); EXPECT_EQ(dst1->assigned_device_name(), kCpu1); EXPECT_TRUE(IsEdge(small0, dst0)); EXPECT_TRUE(IsEdge(large, dst0)); EXPECT_TRUE(IsEdge(small1, dst1)); EXPECT_TRUE(IsEdge(large, dst1)); EXPECT_TRUE(IsEdge(small1, dst2)); EXPECT_TRUE(IsEdge(large, dst2)); } TEST(ReplicateConstantsPassTest, TestTpuDestinations) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), 1.0f, TensorShape({})); ops::Negate dst00(scope.WithOpName("dst00"), const0); ops::Negate dst01(scope.WithOpName("dst01"), const0); ops::Negate dst10(scope.WithOpName("dst10"), const0); ops::Negate dst11(scope.WithOpName("dst11"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst00")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst01")->set_assigned_device_name(kTpu01); GetNode(*graph, "dst10")->set_assigned_device_name(kTpu10); GetNode(*graph, "dst11")->set_assigned_device_name(kTpu11); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* const0 = GetNode(*graph, "const/replicate/_0"); Node* const1 = GetNode(*graph, "const/replicate/_1"); Node* dst00 = GetNode(*graph, "dst00"); Node* dst01 = GetNode(*graph, "dst01"); Node* dst10 = GetNode(*graph, "dst10"); Node* dst11 = GetNode(*graph, "dst11"); EXPECT_EQ(const0->assigned_device_name(), kCpu0); EXPECT_EQ(const1->assigned_device_name(), kCpu1); EXPECT_TRUE(IsEdge(const0, dst00)); EXPECT_TRUE(IsEdge(const0, dst01)); EXPECT_TRUE(IsEdge(const1, dst10)); EXPECT_TRUE(IsEdge(const1, dst11)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/replicate_constants_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/replicate_constants_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0038681c-5490-4984-af4b-34301d2f6652
cpp
google/cel-cpp
arena_string
common/internal/arena_string.h
common/arena_string_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_ARENA_STRING_H_ #define THIRD_PARTY_CEL_CPP_COMMON_INTERNAL_ARENA_STRING_H_ #include "absl/strings/string_view.h" namespace cel::common_internal { class ArenaString final { public: ArenaString() = default; ArenaString(const ArenaString&) = default; ArenaString& operator=(const ArenaString&) = default; explicit ArenaString(absl::string_view content) : content_(content) {} typename absl::string_view::size_type size() const { return content_.size(); } typename absl::string_view::const_pointer data() const { return content_.data(); } operator absl::string_view() const { return content_; } private: absl::string_view content_; }; } #endif
#include "common/arena_string.h" #include "absl/hash/hash.h" #include "absl/hash/hash_testing.h" #include "absl/strings/string_view.h" #include "internal/testing.h" namespace cel { namespace { using ::testing::Eq; using ::testing::Ge; using ::testing::Gt; using ::testing::IsEmpty; using ::testing::Le; using ::testing::Lt; using ::testing::Ne; using ::testing::SizeIs; TEST(ArenaString, Default) { ArenaString string; EXPECT_THAT(string, IsEmpty()); EXPECT_THAT(string, SizeIs(0)); EXPECT_THAT(string, Eq(ArenaString())); } TEST(ArenaString, Iterator) { ArenaString string = ArenaString::Static("Hello World!"); auto it = string.cbegin(); EXPECT_THAT(*it++, Eq('H')); EXPECT_THAT(*it++, Eq('e')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('o')); EXPECT_THAT(*it++, Eq(' ')); EXPECT_THAT(*it++, Eq('W')); EXPECT_THAT(*it++, Eq('o')); EXPECT_THAT(*it++, Eq('r')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('d')); EXPECT_THAT(*it++, Eq('!')); EXPECT_THAT(it, Eq(string.cend())); } TEST(ArenaString, ReverseIterator) { ArenaString string = ArenaString::Static("Hello World!"); auto it = string.crbegin(); EXPECT_THAT(*it++, Eq('!')); EXPECT_THAT(*it++, Eq('d')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('r')); EXPECT_THAT(*it++, Eq('o')); EXPECT_THAT(*it++, Eq('W')); EXPECT_THAT(*it++, Eq(' ')); EXPECT_THAT(*it++, Eq('o')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('l')); EXPECT_THAT(*it++, Eq('e')); EXPECT_THAT(*it++, Eq('H')); EXPECT_THAT(it, Eq(string.crend())); } TEST(ArenaString, RemovePrefix) { ArenaString string = ArenaString::Static("Hello World!"); string.remove_prefix(6); EXPECT_EQ(string, "World!"); } TEST(ArenaString, RemoveSuffix) { ArenaString string = ArenaString::Static("Hello World!"); string.remove_suffix(7); EXPECT_EQ(string, "Hello"); } TEST(ArenaString, Equal) { EXPECT_THAT(ArenaString::Static("1"), Eq(ArenaString::Static("1"))); } TEST(ArenaString, NotEqual) { EXPECT_THAT(ArenaString::Static("1"), Ne(ArenaString::Static("2"))); } TEST(ArenaString, Less) { EXPECT_THAT(ArenaString::Static("1"), Lt(ArenaString::Static("2"))); } TEST(ArenaString, LessEqual) { EXPECT_THAT(ArenaString::Static("1"), Le(ArenaString::Static("1"))); } TEST(ArenaString, Greater) { EXPECT_THAT(ArenaString::Static("2"), Gt(ArenaString::Static("1"))); } TEST(ArenaString, GreaterEqual) { EXPECT_THAT(ArenaString::Static("1"), Ge(ArenaString::Static("1"))); } TEST(ArenaString, ImplementsAbslHashCorrectly) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( {ArenaString::Static(""), ArenaString::Static("Hello World!"), ArenaString::Static("How much wood could a woodchuck chuck if a " "woodchuck could chuck wood?")})); } TEST(ArenaString, Hash) { EXPECT_EQ(absl::HashOf(ArenaString::Static("Hello World!")), absl::HashOf(absl::string_view("Hello World!"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/internal/arena_string.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/arena_string_test.cc
4552db5798fb0853b131b783d8875794334fae7f
40856a9f-870b-42bd-a43a-53b03f6a6ef2
cpp
google/cel-cpp
proto_wire
internal/proto_wire.cc
internal/proto_wire_test.cc
#include "internal/proto_wire.h" #include <limits> #include <string> #include <utility> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" namespace cel::internal { bool SkipLengthValue(absl::Cord& data, ProtoWireType type) { switch (type) { case ProtoWireType::kVarint: if (auto result = VarintDecode<uint64_t>(data); ABSL_PREDICT_TRUE(result.has_value())) { data.RemovePrefix(result->size_bytes); return true; } return false; case ProtoWireType::kFixed64: if (ABSL_PREDICT_FALSE(data.size() < 8)) { return false; } data.RemovePrefix(8); return true; case ProtoWireType::kLengthDelimited: if (auto result = VarintDecode<uint32_t>(data); ABSL_PREDICT_TRUE(result.has_value())) { if (ABSL_PREDICT_TRUE(data.size() - result->size_bytes >= result->value)) { data.RemovePrefix(result->size_bytes + result->value); return true; } } return false; case ProtoWireType::kFixed32: if (ABSL_PREDICT_FALSE(data.size() < 4)) { return false; } data.RemovePrefix(4); return true; case ProtoWireType::kStartGroup: ABSL_FALLTHROUGH_INTENDED; case ProtoWireType::kEndGroup: ABSL_FALLTHROUGH_INTENDED; default: return false; } } absl::StatusOr<ProtoWireTag> ProtoWireDecoder::ReadTag() { ABSL_DCHECK(!tag_.has_value()); auto tag = internal::VarintDecode<uint32_t>(data_); if (ABSL_PREDICT_FALSE(!tag.has_value())) { return absl::DataLossError( absl::StrCat("malformed tag encountered decoding ", message_)); } auto field = internal::DecodeProtoWireTag(tag->value); if (ABSL_PREDICT_FALSE(!field.has_value())) { return absl::DataLossError( absl::StrCat("invalid wire type or field number encountered decoding ", message_, ": ", static_cast<std::string>(data_))); } data_.RemovePrefix(tag->size_bytes); tag_.emplace(*field); return *field; } absl::Status ProtoWireDecoder::SkipLengthValue() { ABSL_DCHECK(tag_.has_value()); if (ABSL_PREDICT_FALSE(!internal::SkipLengthValue(data_, tag_->type()))) { return absl::DataLossError( absl::StrCat("malformed length or value encountered decoding field ", tag_->field_number(), " of ", message_)); } tag_.reset(); return absl::OkStatus(); } absl::StatusOr<absl::Cord> ProtoWireDecoder::ReadLengthDelimited() { ABSL_DCHECK(tag_.has_value() && tag_->type() == ProtoWireType::kLengthDelimited); auto length = internal::VarintDecode<uint32_t>(data_); if (ABSL_PREDICT_FALSE(!length.has_value())) { return absl::DataLossError( absl::StrCat("malformed length encountered decoding field ", tag_->field_number(), " of ", message_)); } data_.RemovePrefix(length->size_bytes); if (ABSL_PREDICT_FALSE(data_.size() < length->value)) { return absl::DataLossError(absl::StrCat( "out of range length encountered decoding field ", tag_->field_number(), " of ", message_, ": ", length->value)); } auto result = data_.Subcord(0, length->value); data_.RemovePrefix(length->value); tag_.reset(); return result; } absl::Status ProtoWireEncoder::WriteTag(ProtoWireTag tag) { ABSL_DCHECK(!tag_.has_value()); if (ABSL_PREDICT_FALSE(tag.field_number() == 0)) { return absl::InvalidArgumentError( absl::StrCat("invalid field number encountered encoding ", message_)); } if (ABSL_PREDICT_FALSE(!ProtoWireTypeIsValid(tag.type()))) { return absl::InvalidArgumentError( absl::StrCat("invalid wire type encountered encoding field ", tag.field_number(), " of ", message_)); } VarintEncode(static_cast<uint32_t>(tag), data_); tag_.emplace(tag); return absl::OkStatus(); } absl::Status ProtoWireEncoder::WriteLengthDelimited(absl::Cord data) { ABSL_DCHECK(tag_.has_value() && tag_->type() == ProtoWireType::kLengthDelimited); if (ABSL_PREDICT_FALSE(data.size() > std::numeric_limits<uint32_t>::max())) { return absl::InvalidArgumentError( absl::StrCat("out of range length encountered encoding field ", tag_->field_number(), " of ", message_)); } VarintEncode(static_cast<uint32_t>(data.size()), data_); data_.Append(std::move(data)); tag_.reset(); return absl::OkStatus(); } absl::Status ProtoWireEncoder::WriteLengthDelimited(absl::string_view data) { ABSL_DCHECK(tag_.has_value() && tag_->type() == ProtoWireType::kLengthDelimited); if (ABSL_PREDICT_FALSE(data.size() > std::numeric_limits<uint32_t>::max())) { return absl::InvalidArgumentError( absl::StrCat("out of range length encountered encoding field ", tag_->field_number(), " of ", message_)); } VarintEncode(static_cast<uint32_t>(data.size()), data_); data_.Append(data); tag_.reset(); return absl::OkStatus(); } }
#include "internal/proto_wire.h" #include <limits> #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "internal/testing.h" namespace cel::internal { template <typename T> inline constexpr bool operator==(const VarintDecodeResult<T>& lhs, const VarintDecodeResult<T>& rhs) { return lhs.value == rhs.value && lhs.size_bytes == rhs.size_bytes; } inline constexpr bool operator==(const ProtoWireTag& lhs, const ProtoWireTag& rhs) { return lhs.field_number() == rhs.field_number() && lhs.type() == rhs.type(); } namespace { using ::absl_testing::IsOkAndHolds; using ::testing::Eq; using ::testing::Optional; TEST(Varint, Size) { EXPECT_EQ(VarintSize(int32_t{-1}), VarintSize(std::numeric_limits<uint64_t>::max())); EXPECT_EQ(VarintSize(int64_t{-1}), VarintSize(std::numeric_limits<uint64_t>::max())); } TEST(Varint, MaxSize) { EXPECT_EQ(kMaxVarintSize<bool>, 1); EXPECT_EQ(kMaxVarintSize<int32_t>, 10); EXPECT_EQ(kMaxVarintSize<int64_t>, 10); EXPECT_EQ(kMaxVarintSize<uint32_t>, 5); EXPECT_EQ(kMaxVarintSize<uint64_t>, 10); } namespace { template <typename T> absl::Cord VarintEncode(T value) { absl::Cord cord; internal::VarintEncode(value, cord); return cord; } } TEST(Varint, Encode) { EXPECT_EQ(VarintEncode(true), "\x01"); EXPECT_EQ(VarintEncode(int32_t{1}), "\x01"); EXPECT_EQ(VarintEncode(int64_t{1}), "\x01"); EXPECT_EQ(VarintEncode(uint32_t{1}), "\x01"); EXPECT_EQ(VarintEncode(uint64_t{1}), "\x01"); EXPECT_EQ(VarintEncode(int32_t{-1}), VarintEncode(std::numeric_limits<uint64_t>::max())); EXPECT_EQ(VarintEncode(int64_t{-1}), VarintEncode(std::numeric_limits<uint64_t>::max())); EXPECT_EQ(VarintEncode(std::numeric_limits<uint32_t>::max()), "\xff\xff\xff\xff\x0f"); EXPECT_EQ(VarintEncode(std::numeric_limits<uint64_t>::max()), "\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01"); } TEST(Varint, Decode) { EXPECT_THAT(VarintDecode<bool>(absl::Cord("\x01")), Optional(Eq(VarintDecodeResult<bool>{true, 1}))); EXPECT_THAT(VarintDecode<int32_t>(absl::Cord("\x01")), Optional(Eq(VarintDecodeResult<int32_t>{1, 1}))); EXPECT_THAT(VarintDecode<int64_t>(absl::Cord("\x01")), Optional(Eq(VarintDecodeResult<int64_t>{1, 1}))); EXPECT_THAT(VarintDecode<uint32_t>(absl::Cord("\x01")), Optional(Eq(VarintDecodeResult<uint32_t>{1, 1}))); EXPECT_THAT(VarintDecode<uint64_t>(absl::Cord("\x01")), Optional(Eq(VarintDecodeResult<uint64_t>{1, 1}))); EXPECT_THAT(VarintDecode<uint32_t>(absl::Cord("\xff\xff\xff\xff\x0f")), Optional(Eq(VarintDecodeResult<uint32_t>{ std::numeric_limits<uint32_t>::max(), 5}))); EXPECT_THAT(VarintDecode<int64_t>( absl::Cord("\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01")), Optional(Eq(VarintDecodeResult<int64_t>{int64_t{-1}, 10}))); EXPECT_THAT(VarintDecode<uint64_t>( absl::Cord("\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01")), Optional(Eq(VarintDecodeResult<uint64_t>{ std::numeric_limits<uint64_t>::max(), 10}))); } namespace { template <typename T> absl::Cord Fixed64Encode(T value) { absl::Cord cord; internal::Fixed64Encode(value, cord); return cord; } template <typename T> absl::Cord Fixed32Encode(T value) { absl::Cord cord; internal::Fixed32Encode(value, cord); return cord; } } TEST(Fixed64, Encode) { EXPECT_EQ(Fixed64Encode(0.0), Fixed64Encode(uint64_t{0})); } TEST(Fixed64, Decode) { EXPECT_THAT(Fixed64Decode<double>(Fixed64Encode(0.0)), Optional(Eq(0.0))); } TEST(Fixed32, Encode) { EXPECT_EQ(Fixed32Encode(0.0f), Fixed32Encode(uint32_t{0})); } TEST(Fixed32, Decode) { EXPECT_THAT(Fixed32Decode<float>( absl::Cord(absl::string_view("\x00\x00\x00\x00", 4))), Optional(Eq(0.0))); } TEST(DecodeProtoWireTag, Uint64TooLarge) { EXPECT_THAT(DecodeProtoWireTag(uint64_t{1} << 32), Eq(absl::nullopt)); } TEST(DecodeProtoWireTag, Uint64ZeroFieldNumber) { EXPECT_THAT(DecodeProtoWireTag(uint64_t{0}), Eq(absl::nullopt)); } TEST(DecodeProtoWireTag, Uint32ZeroFieldNumber) { EXPECT_THAT(DecodeProtoWireTag(uint32_t{0}), Eq(absl::nullopt)); } TEST(DecodeProtoWireTag, Success) { EXPECT_THAT(DecodeProtoWireTag(uint64_t{1} << 3), Optional(Eq(ProtoWireTag(1, ProtoWireType::kVarint)))); EXPECT_THAT(DecodeProtoWireTag(uint32_t{1} << 3), Optional(Eq(ProtoWireTag(1, ProtoWireType::kVarint)))); } void TestSkipLengthValueSuccess(absl::Cord data, ProtoWireType type, size_t skipped) { size_t before = data.size(); EXPECT_TRUE(SkipLengthValue(data, type)); EXPECT_EQ(before - skipped, data.size()); } void TestSkipLengthValueFailure(absl::Cord data, ProtoWireType type) { EXPECT_FALSE(SkipLengthValue(data, type)); } TEST(SkipLengthValue, Varint) { TestSkipLengthValueSuccess( absl::Cord("\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01"), ProtoWireType::kVarint, 10); TestSkipLengthValueSuccess(absl::Cord("\x01"), ProtoWireType::kVarint, 1); TestSkipLengthValueFailure( absl::Cord("\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01"), ProtoWireType::kVarint); } TEST(SkipLengthValue, Fixed64) { TestSkipLengthValueSuccess( absl::Cord( absl::string_view("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 8)), ProtoWireType::kFixed64, 8); TestSkipLengthValueFailure(absl::Cord(absl::string_view("\x00", 1)), ProtoWireType::kFixed64); } TEST(SkipLengthValue, LengthDelimited) { TestSkipLengthValueSuccess(absl::Cord(absl::string_view("\x00", 1)), ProtoWireType::kLengthDelimited, 1); TestSkipLengthValueSuccess(absl::Cord(absl::string_view("\x01\x00", 2)), ProtoWireType::kLengthDelimited, 2); TestSkipLengthValueFailure(absl::Cord("\x01"), ProtoWireType::kLengthDelimited); } TEST(SkipLengthValue, Fixed32) { TestSkipLengthValueSuccess( absl::Cord(absl::string_view("\x00\x00\x00\x00", 4)), ProtoWireType::kFixed32, 4); TestSkipLengthValueFailure(absl::Cord(absl::string_view("\x00", 1)), ProtoWireType::kFixed32); } TEST(SkipLengthValue, Decoder) { { ProtoWireDecoder decoder("", absl::Cord(absl::string_view("\x0a\x00", 2))); ASSERT_TRUE(decoder.HasNext()); EXPECT_THAT( decoder.ReadTag(), IsOkAndHolds(Eq(ProtoWireTag(1, ProtoWireType::kLengthDelimited)))); EXPECT_OK(decoder.SkipLengthValue()); ASSERT_FALSE(decoder.HasNext()); } } TEST(ProtoWireEncoder, BadTag) { absl::Cord data; ProtoWireEncoder encoder("foo.Bar", data); EXPECT_TRUE(encoder.empty()); EXPECT_EQ(encoder.size(), 0); EXPECT_OK(encoder.WriteTag(ProtoWireTag(1, ProtoWireType::kVarint))); EXPECT_OK(encoder.WriteVarint(1)); encoder.EnsureFullyEncoded(); EXPECT_FALSE(encoder.empty()); EXPECT_EQ(encoder.size(), 2); EXPECT_EQ(data, "\x08\x01"); } TEST(ProtoWireEncoder, Varint) { absl::Cord data; ProtoWireEncoder encoder("foo.Bar", data); EXPECT_TRUE(encoder.empty()); EXPECT_EQ(encoder.size(), 0); EXPECT_OK(encoder.WriteTag(ProtoWireTag(1, ProtoWireType::kVarint))); EXPECT_OK(encoder.WriteVarint(1)); encoder.EnsureFullyEncoded(); EXPECT_FALSE(encoder.empty()); EXPECT_EQ(encoder.size(), 2); EXPECT_EQ(data, "\x08\x01"); } TEST(ProtoWireEncoder, Fixed32) { absl::Cord data; ProtoWireEncoder encoder("foo.Bar", data); EXPECT_TRUE(encoder.empty()); EXPECT_EQ(encoder.size(), 0); EXPECT_OK(encoder.WriteTag(ProtoWireTag(1, ProtoWireType::kFixed32))); EXPECT_OK(encoder.WriteFixed32(0.0f)); encoder.EnsureFullyEncoded(); EXPECT_FALSE(encoder.empty()); EXPECT_EQ(encoder.size(), 5); EXPECT_EQ(data, absl::string_view("\x0d\x00\x00\x00\x00", 5)); } TEST(ProtoWireEncoder, Fixed64) { absl::Cord data; ProtoWireEncoder encoder("foo.Bar", data); EXPECT_TRUE(encoder.empty()); EXPECT_EQ(encoder.size(), 0); EXPECT_OK(encoder.WriteTag(ProtoWireTag(1, ProtoWireType::kFixed64))); EXPECT_OK(encoder.WriteFixed64(0.0)); encoder.EnsureFullyEncoded(); EXPECT_FALSE(encoder.empty()); EXPECT_EQ(encoder.size(), 9); EXPECT_EQ(data, absl::string_view("\x09\x00\x00\x00\x00\x00\x00\x00\x00", 9)); } TEST(ProtoWireEncoder, LengthDelimited) { absl::Cord data; ProtoWireEncoder encoder("foo.Bar", data); EXPECT_TRUE(encoder.empty()); EXPECT_EQ(encoder.size(), 0); EXPECT_OK(encoder.WriteTag(ProtoWireTag(1, ProtoWireType::kLengthDelimited))); EXPECT_OK(encoder.WriteLengthDelimited(absl::Cord("foo"))); encoder.EnsureFullyEncoded(); EXPECT_FALSE(encoder.empty()); EXPECT_EQ(encoder.size(), 5); EXPECT_EQ(data, "\x0a\x03" "foo"); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/proto_wire.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/proto_wire_test.cc
4552db5798fb0853b131b783d8875794334fae7f
0d5029fc-e5a7-4df6-8d8f-b8c571a6e12a
cpp
tensorflow/tensorflow
writer
tensorflow/lite/tools/serialization/writer.cc
tensorflow/lite/tools/serialization/writer_test.cc
#include <iostream> #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/serialization/writer_lib.h" int main(int argc, char* argv[]) { if (argc != 3) { fprintf(stderr, "Usage: %s input_file output_file\n", argv[0]); return 1; } std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(argv[1]); std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates builtin_op_resolver; tflite::InterpreterBuilder(*model, builtin_op_resolver)(&interpreter); tflite::ModelWriter writer(interpreter.get()); writer.Write(argv[2]); return 0; }
#include <iostream> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/serialization/writer_lib.h" int main(int argc, char* argv[]) { if (argc != 2) { fprintf(stderr, "Usage: %s input_file\n", argv[0]); return 1; } std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(argv[1]); std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates builtin_op_resolver; tflite::InterpreterBuilder(*model, builtin_op_resolver)(&interpreter); tflite::ModelWriter writer(interpreter.get()); std::unique_ptr<uint8_t[]> output_buffer; size_t output_buffer_size; writer.GetBuffer(&output_buffer, &output_buffer_size); std::unique_ptr<tflite::Interpreter> new_interpreter; model = tflite::FlatBufferModel::BuildFromBuffer( reinterpret_cast<char*>(output_buffer.get()), output_buffer_size); tflite::InterpreterBuilder(*model, builtin_op_resolver)(&new_interpreter); if (new_interpreter->AllocateTensors() != kTfLiteOk) { fprintf(stderr, "AllocateTensors failed on the round-tripped model.\n"); return 1; } return 0; }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/serialization/writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c7794f54-4a87-4d2c-aa6d-221068b35fe2
cpp
tensorflow/tensorflow
reduce_dataset_op
tensorflow/core/kernels/data/reduce_dataset_op.cc
tensorflow/core/kernels/data/reduce_dataset_op_test.cc
#include "tensorflow/core/kernels/data/reduce_dataset_op.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/root_dataset.h" #include "tensorflow/core/platform/resource.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace data { namespace { const char kOutputShapes[] = "output_shapes"; const char kOutputTypes[] = "output_types"; } ReduceDatasetOp::ReduceDatasetOp(OpKernelConstruction* ctx) : HybridAsyncOpKernel(ctx, "tf_data_reduce_dataset") { FunctionMetadata::Params params; OP_REQUIRES_OK(ctx, ctx->GetAttr("use_inter_op_parallelism", &params.use_inter_op_parallelism)); params.use_default_device = false; OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, "f", params, &func_metadata_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } Status ReduceDatasetOp::DoCompute(OpKernelContext* ctx) { tsl::profiler::TraceMe traceme( [&] { return tsl::profiler::TraceMeEncode("ReduceDatasetOp::DoCompute", {{"id", ctx->step_id()}}); }, profiler::kInfo); tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); metrics::RecordTFDataFetchOp("ReduceDatasetOp"); DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(ctx->input(0), &dataset)); OpInputList inputs; TF_RETURN_IF_ERROR(ctx->input_list("initial_state", &inputs)); std::vector<Tensor> state(inputs.begin(), inputs.end()); std::unique_ptr<CapturedFunction> captured_func; TF_RETURN_IF_ERROR(CapturedFunction::Create( ctx, func_metadata_, "other_arguments", &captured_func)); IteratorContext::Params params(ctx); auto function_handle_cache = std::make_unique<FunctionHandleCache>(params.flr); params.function_handle_cache = function_handle_cache.get(); ResourceMgr resource_mgr; params.resource_mgr = &resource_mgr; CancellationManager cancellation_manager(ctx->cancellation_manager()); params.cancellation_manager = &cancellation_manager; IteratorContext iter_ctx(std::move(params)); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func; TF_RETURN_IF_ERROR( captured_func->Instantiate(&iter_ctx, &instantiated_captured_func)); std::unique_ptr<IteratorBase> iterator; if (ctx->function_library()->device()->device_type() == DEVICE_CPU) { DatasetBase* finalized_dataset = nullptr; TF_RETURN_IF_ERROR(FinalizeDataset(ctx, dataset, &finalized_dataset)); core::ScopedUnref unref(finalized_dataset); TF_RETURN_IF_ERROR(finalized_dataset->MakeIterator( &iter_ctx, nullptr, "ReduceIterator", &iterator)); } else { TF_RETURN_IF_ERROR(dataset->MakeIterator(&iter_ctx, nullptr, "ReduceIterator", &iterator)); } while (true) { if (ctx->cancellation_manager()->IsCancelled()) { return errors::Cancelled("Operation was cancelled"); } std::vector<Tensor> next_input_element; bool end_of_input; TF_RETURN_IF_ERROR( iterator->GetNext(&iter_ctx, &next_input_element, &end_of_input)); if (end_of_input) { break; } std::vector<Tensor> args; args.reserve(state.size() + next_input_element.size()); std::copy(state.begin(), state.end(), std::back_inserter(args)); std::copy(next_input_element.begin(), next_input_element.end(), std::back_inserter(args)); std::vector<Tensor> reduce_func_output; TF_RETURN_IF_ERROR(instantiated_captured_func->Run( &iter_ctx, std::move(args), &reduce_func_output, nullptr)); if (reduce_func_output.size() != state.size()) { return errors::InvalidArgument( "The number of components of the initial state and the " "reduce " "function output does not match. (initial_state=", state.size(), ", output=", reduce_func_output.size(), ")."); } std::swap(reduce_func_output, state); } TF_RETURN_IF_ERROR(VerifyTypesMatch(output_types_, state)); TF_RETURN_IF_ERROR(VerifyShapesCompatible(output_shapes_, state)); for (size_t i = 0; i < state.size(); ++i) { ctx->set_output(i, state[i]); } return absl::OkStatus(); } namespace { REGISTER_KERNEL_BUILDER(Name("ReduceDataset").Device(DEVICE_CPU), ReduceDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("ReduceDataset"); } } }
#include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "reduce_dataset"; class ReduceDatasetParams : public DatasetParams { public: template <typename T> ReduceDatasetParams(T input_dataset_params, std::vector<Tensor> initial_state, std::vector<Tensor> other_arguments, FunctionDefHelper::AttrValueWrapper func, std::vector<FunctionDef> func_lib, DataTypeVector type_state, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, bool use_inter_op_parallelism, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), initial_state_(std::move(initial_state)), other_arguments_(std::move(other_arguments)), func_(std::move(func)), func_lib_(std::move(func_lib)), type_state_(std::move(type_state)), type_arguments_(std::move(type_arguments)), use_inter_op_parallelism_(use_inter_op_parallelism) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { std::vector<Tensor> input_tensors = initial_state_; input_tensors.insert(input_tensors.end(), other_arguments_.begin(), other_arguments_.end()); return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back("input_dataset"); for (int i = 0; i < initial_state_.size(); ++i) { input_names->emplace_back(strings::StrCat("initial_state_", i)); } for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back(strings::StrCat("other_arguments_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); *attr_vector = {{"f", func_}, {"Tstate", type_state_}, {"Targuments", type_arguments_}, {"output_types", output_dtypes_}, {"output_shapes", output_shapes_}, {"use_inter_op_parallelism", use_inter_op_parallelism_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return "Reduce"; } std::vector<FunctionDef> func_lib() const override { return func_lib_; } private: std::vector<Tensor> initial_state_; std::vector<Tensor> other_arguments_; FunctionDefHelper::AttrValueWrapper func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_state_; DataTypeVector type_arguments_; bool use_inter_op_parallelism_; }; class ReduceDatasetOpTest : public DatasetOpsTestBase {}; ReduceDatasetParams ReduceDatasetParams1() { return ReduceDatasetParams( RangeDatasetParams(0, 10, 1), CreateTensors<int64_t>(TensorShape({}), {{1}}), {}, FunctionDefHelper::FunctionRef("XAddY", {{"T", DT_INT64}}), {test::function::XAddY()}, {DT_INT64}, {}, {DT_INT64}, {PartialTensorShape({})}, true, kNodeName); } ReduceDatasetParams ReduceDatasetParams2() { return ReduceDatasetParams( RangeDatasetParams(1, 10, 1), CreateTensors<int64_t>(TensorShape({}), {{1}, {1}}), {}, FunctionDefHelper::FunctionRef("XPlusOneXTimesY", {{"T", DT_INT64}}), {test::function::XPlusOneXTimesY()}, {DT_INT64, DT_INT64}, {}, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, true, kNodeName); } ReduceDatasetParams ReduceDatasetParams3() { return ReduceDatasetParams( RangeDatasetParams(0, 0, 1), CreateTensors<int64_t>(TensorShape({}), {{1}, {3}}), {}, FunctionDefHelper::FunctionRef("XAddY", {{"T", DT_INT64}}), {test::function::XAddY()}, {DT_INT64, DT_INT64}, {}, {DT_INT64, DT_INT64}, {PartialTensorShape({}), PartialTensorShape({})}, true, kNodeName); } std::vector<GetNextTestCase<ReduceDatasetParams>> GetNextTestCases() { return {{ ReduceDatasetParams1(), CreateTensors<int64_t>(TensorShape({}), {{46}})}, {ReduceDatasetParams2(), CreateTensors<int64_t>(TensorShape({}), {{10}, {1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9}})}, { ReduceDatasetParams3(), CreateTensors<int64_t>(TensorShape{}, {{1}, {3}})}}; } class ParameterizedReduceDatasetOpTest : public ReduceDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<ReduceDatasetParams>> {}; TEST_P(ParameterizedReduceDatasetOpTest, Compute) { auto test_case = GetParam(); TF_ASSERT_OK(InitializeRuntime(test_case.dataset_params)); std::vector<Tensor> output; TF_ASSERT_OK(RunDatasetOp(test_case.dataset_params, &output)); TF_EXPECT_OK( ExpectEqual(test_case.expected_outputs, output, true)); } INSTANTIATE_TEST_SUITE_P(ReduceDatasetOpTest, ParameterizedReduceDatasetOpTest, ::testing::ValuesIn(GetNextTestCases())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/reduce_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/reduce_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe2113da-8f9e-41d6-a72e-7ca1a449fdba
cpp
tensorflow/tensorflow
debug_ops
tensorflow/core/ops/debug_ops.cc
tensorflow/core/kernels/debug_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { REGISTER_OP("Copy") .Input("input: T") .Output("output: T") .Attr("T: type") .Attr("tensor_name: string = ''") .Attr("debug_ops_spec: list(string) = []") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CopyHost") .Input("input: T") .Output("output: T") .Attr("T: type") .Attr("tensor_name: string = ''") .Attr("debug_ops_spec: list(string) = []") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DebugIdentity") .Input("input: T") .Output("output: T") .Attr("T: type") .Attr("device_name: string = ''") .Attr("tensor_name: string = ''") .Attr("debug_urls: list(string) = []") .Attr("gated_grpc: bool = false") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DebugIdentityV3") .Input("input: T") .Output("output: T") .Attr("T: type") .Attr("device_name: string = ''") .Attr("tensor_name: string = ''") .Attr("io_of_node: string = ''") .Attr("is_input: bool = false") .Attr("io_index: int = -1") .SetIsStateful() .Attr("debug_urls: list(string) = []") .Attr("gated_grpc: bool = false") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DebugNanCount") .Input("input: T") .Output("output: int64") .Attr("T: type") .Attr("device_name: string = ''") .Attr("tensor_name: string = ''") .Attr("debug_urls: list(string) = []") .Attr("gated_grpc: bool = false") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("DebugNumericSummary") .Input("input: T") .Output("output: double") .Attr("T: type") .Attr("device_name: string = ''") .Attr("tensor_name: string = ''") .Attr("debug_urls: list(string) = []") .Attr("lower_bound: float = -inf") .Attr("upper_bound: float = inf") .Attr("mute_if_healthy: bool = false") .Attr("gated_grpc: bool = false") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("DebugIdentityV2") .Input("input: T") .Output("output: T") .Attr("T: type") .Attr("tfdbg_context_id: string = ''") .Attr("op_name: string = ''") .Attr("output_slot: int = -1") .Attr("tensor_debug_mode: int = -1") .Attr("debug_urls: list(string) = []") .Attr("circular_buffer_size: int = 1000") .Attr("tfdbg_run_id: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DebugNumericSummaryV2") .Input("input: T") .Output("output: output_dtype") .Attr("output_dtype: {float32, float64} = DT_FLOAT") .Attr("T: type") .Attr("tensor_debug_mode: int = -1") .Attr("tensor_id: int = -1") .SetShapeFn(shape_inference::UnknownShape); }
#include <string.h> #include <fstream> #include <vector> #include "tensorflow/core/debug/debug_io_utils.h" #include "tensorflow/core/debug/debug_node_key.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { class DebugIdentityOpTest : public OpsTestBase { protected: Status Init(DataType input_type, const std::vector<string>& debug_urls) { env_ = Env::Default(); TF_CHECK_OK(NodeDefBuilder("op", "DebugIdentity") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Attr("debug_urls", debug_urls) .Finalize(node_def())); return InitOp(); } Status Init(DataType input_type) { std::vector<string> empty_debug_urls; return Init(input_type, empty_debug_urls); } Env* env_; }; TEST_F(DebugIdentityOpTest, Int32Success_6) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({6})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(DebugIdentityOpTest, Int32Success_6_FileURLs) { const int kNumDumpDirs = 3; const string tmp_dir = testing::TmpDir(); std::vector<string> dump_roots; std::vector<string> debug_urls; for (int i = 0; i < kNumDumpDirs; ++i) { const string dump_root = strings::StrCat(tmp_dir, "_", i); dump_roots.push_back(dump_root); debug_urls.push_back(strings::StrCat("file: } uint64 wall_time = Env::Default()->NowMicros(); TF_ASSERT_OK(Init(DT_INT32, debug_urls)); AddInputFromArray<int32>(TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({6})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); for (int i = 0; i < kNumDumpDirs; ++i) { ASSERT_TRUE(env_->FileExists(dump_roots[i]).ok()); ASSERT_TRUE(env_->IsDirectory(dump_roots[i]).ok()); std::vector<string> device_roots; FileSystem* fs = nullptr; TF_ASSERT_OK(Env::Default()->GetFileSystemForFile(dump_roots[i], &fs)); std::vector<string> children; TF_ASSERT_OK(fs->GetChildren(dump_roots[i], &children)); const string kDeviceDirPrefix = strings::StrCat( DebugNodeKey::kMetadataFilePrefix, DebugNodeKey::kDeviceTag); for (const string child : children) { if (!strncmp(child.c_str(), kDeviceDirPrefix.c_str(), kDeviceDirPrefix.size())) { device_roots.push_back(io::JoinPath(dump_roots[i], child)); } } ASSERT_EQ(1, device_roots.size()); const string& device_root = device_roots[0]; TF_ASSERT_OK(Env::Default()->GetFileSystemForFile(device_root, &fs)); TF_ASSERT_OK(fs->GetChildren(device_root, &children)); int dump_files_found = 0; for (const string child : children) { dump_files_found++; const string dump_file_path = io::JoinPath(device_root, child); std::fstream ifs(dump_file_path, std::ios::in | std::ios::binary); Event event; event.ParseFromIstream(&ifs); ifs.close(); ASSERT_GE(event.wall_time(), wall_time); ASSERT_EQ(1, event.summary().value().size()); ASSERT_EQ(strings::StrCat("FakeTensor", ":", 0, ":", "DebugIdentity"), event.summary().value(0).node_name()); Tensor tensor_prime(DT_INT32); ASSERT_TRUE(tensor_prime.FromProto(event.summary().value(0).tensor())); ASSERT_EQ(TensorShape({6}), tensor_prime.shape()); for (int j = 0; j < 6; ++j) { ASSERT_EQ(j + 1, tensor_prime.flat<int32>()(j)); } } ASSERT_EQ(1, dump_files_found); int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; ASSERT_TRUE(env_->DeleteRecursively(dump_roots[i], &undeleted_files, &undeleted_dirs) .ok()); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } } TEST_F(DebugIdentityOpTest, Int32Success_2_3) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({2, 3})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(DebugIdentityOpTest, StringSuccess) { TF_ASSERT_OK(Init(DT_STRING)); AddInputFromArray<tstring>(TensorShape({6}), {"A", "b", "C", "d", "E", "f"}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_STRING, TensorShape({6})); test::FillValues<tstring>(&expected, {"A", "b", "C", "d", "E", "f"}); test::ExpectTensorEqual<tstring>(expected, *GetOutput(0)); } class DebugNanCountOpTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "DebugNanCount") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Finalize(node_def())); return InitOp(); } }; TEST_F(DebugNanCountOpTest, Float_has_NaNs) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>(TensorShape({6}), {1.1, std::numeric_limits<float>::quiet_NaN(), 3.3, std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN(), 6.6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_nan_count(allocator(), DT_INT64, TensorShape({1})); test::FillValues<int64_t>(&expected_nan_count, {3}); test::ExpectTensorEqual<int64_t>(expected_nan_count, *GetOutput(0)); } TEST_F(DebugNanCountOpTest, Float_no_NaNs) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>( TensorShape({6}), {1.1, 2.2, 3.3, std::numeric_limits<float>::infinity(), 5.5, 6.6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_nan_count(allocator(), DT_INT64, TensorShape({1})); test::FillValues<int64_t>(&expected_nan_count, {0}); test::ExpectTensorEqual<int64_t>(expected_nan_count, *GetOutput(0)); } TEST_F(DebugNanCountOpTest, Double_has_NaNs) { TF_ASSERT_OK(Init(DT_DOUBLE)); AddInputFromArray<double>(TensorShape({6}), {1.1, std::numeric_limits<double>::quiet_NaN(), 3.3, std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), 6.6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_nan_count(allocator(), DT_INT64, TensorShape({1})); test::FillValues<int64_t>(&expected_nan_count, {3}); test::ExpectTensorEqual<int64_t>(expected_nan_count, *GetOutput(0)); } TEST_F(DebugNanCountOpTest, Double_no_NaNs) { TF_ASSERT_OK(Init(DT_DOUBLE)); AddInputFromArray<double>( TensorShape({6}), {1.1, 2.2, 3.3, std::numeric_limits<double>::infinity(), 5.5, 6.6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_nan_count(allocator(), DT_INT64, TensorShape({1})); test::FillValues<int64_t>(&expected_nan_count, {0}); test::ExpectTensorEqual<int64_t>(expected_nan_count, *GetOutput(0)); } class DebugNumericSummaryOpTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "DebugNumericSummary") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Finalize(node_def())); return InitOp(); } Status InitGated(DataType input_type, const std::vector<string>& debug_urls) { TF_CHECK_OK(NodeDefBuilder("op", "DebugNumericSummary") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Attr("gated_grpc", true) .Attr("debug_urls", debug_urls) .Finalize(node_def())); return InitOp(); } #if defined(PLATFORM_GOOGLE) void ClearEnabledWatchKeys() { DebugGrpcIO::ClearEnabledWatchKeys(); } #endif }; TEST_F(DebugNumericSummaryOpTest, Float_full_house) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>( TensorShape({18}), {std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN(), 0.0f, 0.0f, 0.0f, -1.0f, -3.0f, 3.0f, 7.0f, -std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({15})); test::FillValues<double>( &expected, {1.0, 18.0, 4.0, 2.0, 2.0, 3.0, 2.0, 5.0, -3.0, 7.0, 0.85714285714, 8.97959183673, static_cast<double>(DT_FLOAT), 1.0, 18.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Double_full_house) { TF_ASSERT_OK(Init(DT_DOUBLE)); AddInputFromArray<double>( TensorShape({18}), {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN(), 0.0, 0.0, 0.0, -1.0, -3.0, 3.0, 7.0, -std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({15})); test::FillValues<double>( &expected, {1.0, 18.0, 4.0, 2.0, 2.0, 3.0, 2.0, 5.0, -3.0, 7.0, 0.85714285714, 8.97959183673, static_cast<double>(DT_DOUBLE), 1.0, 18.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Float_only_valid_values) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>(TensorShape({2, 3}), {0.0f, 0.0f, -1.0f, 3.0f, 3.0f, 7.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>( &expected, {1.0, 6.0, 0.0, 0.0, 1.0, 2.0, 3.0, 0.0, -1.0, 7.0, 2.0, 7.33333333333, static_cast<double>(DT_FLOAT), 2.0, 2.0, 3.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Float_all_Inf_or_NaN) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>(TensorShape({3, 3}), {std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN(), -std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()}); TF_ASSERT_OK(RunOpKernel()); Tensor output_tensor = *GetOutput(0); const double* output = output_tensor.template flat<double>().data(); ASSERT_NEAR(1.0, output[0], 1e-8); ASSERT_NEAR(9.0, output[1], 1e-8); ASSERT_NEAR(4.0, output[2], 1e-8); ASSERT_NEAR(2.0, output[3], 1e-8); ASSERT_NEAR(0.0, output[4], 1e-8); ASSERT_NEAR(0.0, output[5], 1e-8); ASSERT_NEAR(0.0, output[6], 1e-8); ASSERT_NEAR(3.0, output[7], 1e-8); ASSERT_EQ(std::numeric_limits<float>::infinity(), output[8]); ASSERT_EQ(-std::numeric_limits<float>::infinity(), output[9]); ASSERT_TRUE(Eigen::numext::isnan(output[10])); ASSERT_TRUE(Eigen::numext::isnan(output[11])); ASSERT_EQ(static_cast<double>(DT_FLOAT), output[12]); ASSERT_EQ(2.0, output[13]); ASSERT_EQ(3.0, output[14]); ASSERT_EQ(3.0, output[15]); } TEST_F(DebugNumericSummaryOpTest, Many_dimensions_tensor_shape) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>(TensorShape({1, 3, 1, 1, 1, 1, 1}), {std::numeric_limits<float>::quiet_NaN(), -std::numeric_limits<float>::infinity(), -8.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({21})); test::FillValues<double>(&expected, {1.0, 3.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, -8.0, -8.0, -8.0, 0.0, static_cast<double>(DT_FLOAT), 7.0, 1.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Scalar_tensor_shape) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>(TensorShape({}), {42.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({14})); test::FillValues<double>(&expected, {1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 42.0, 42.0, 42.0, 0.0, static_cast<double>(DT_FLOAT), 0.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Int16Success) { TF_ASSERT_OK(Init(DT_INT16)); AddInputFromArray<int16>(TensorShape({4, 1}), {-1, -3, 3, 7}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>(&expected, {1.0, 4.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, -3.0, 7.0, 1.5, 14.75, static_cast<double>(DT_INT16), 2.0, 4.0, 1.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Int32Success) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({2, 3}), {0, 0, -1, 3, 3, 7}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>( &expected, {1.0, 6.0, 0.0, 0.0, 1.0, 2.0, 3.0, 0.0, -1.0, 7.0, 2.0, 7.33333333333, static_cast<double>(DT_INT32), 2.0, 2.0, 3.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, Int64Success) { TF_ASSERT_OK(Init(DT_INT64)); AddInputFromArray<int64_t>(TensorShape({2, 2, 2}), {0, 0, -1, 3, 3, 7, 0, 0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({17})); test::FillValues<double>(&expected, {1.0, 8.0, 0.0, 0.0, 1.0, 4.0, 3.0, 0.0, -1.0, 7.0, 1.5, 6.25, static_cast<double>(DT_INT64), 3.0, 2.0, 2.0, 2.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, UInt8Success) { TF_ASSERT_OK(Init(DT_UINT8)); AddInputFromArray<uint8>(TensorShape({1, 5}), {0, 10, 30, 30, 70}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>(&expected, {1.0, 5.0, 0.0, 0.0, 0.0, 1.0, 4.0, 0.0, 0.0, 70.0, 28.0, 576.0, static_cast<double>(DT_UINT8), 2.0, 1.0, 5.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, BoolSuccess) { TF_ASSERT_OK(Init(DT_BOOL)); AddInputFromArray<bool>(TensorShape({2, 3}), {false, false, true, true, true, false}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>(&expected, {1.0, 6.0, 0.0, 0.0, 0.0, 3.0, 3.0, 0.0, 0.0, 1.0, 0.5, 0.25, static_cast<double>(DT_BOOL), 2.0, 2.0, 3.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } #if defined(PLATFORM_GOOGLE) TEST_F(DebugNumericSummaryOpTest, DisabledDueToEmptyEnabledSet) { ClearEnabledWatchKeys(); std::vector<string> debug_urls({"grpc: TF_ASSERT_OK(InitGated(DT_FLOAT, debug_urls)); AddInputFromArray<float>(TensorShape({2, 2}), {1.0, 3.0, 3.0, 7.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_disabled(allocator(), DT_DOUBLE, TensorShape({0})); test::ExpectTensorNear<double>(expected_disabled, *GetOutput(0), 1e-8); } TEST_F(DebugNumericSummaryOpTest, DisabledDueToNonMatchingWatchKey) { ClearEnabledWatchKeys(); DebugGrpcIO::SetDebugNodeKeyGrpcState( "grpc: EventReply::DebugOpStateChange::READ_ONLY); std::vector<string> debug_urls({"grpc: TF_ASSERT_OK(InitGated(DT_FLOAT, debug_urls)); AddInputFromArray<float>(TensorShape({2, 2}), {1.0, 3.0, 3.0, 7.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_disabled(allocator(), DT_DOUBLE, TensorShape({0})); test::ExpectTensorNear<double>(expected_disabled, *GetOutput(0), 1e-8); } #endif class DebugNumericSummaryOpCustomLowerBoundTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "DebugNumericSummary") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Attr("lower_bound", -1.2f) .Finalize(node_def())); return InitOp(); } }; TEST_F(DebugNumericSummaryOpCustomLowerBoundTest, Float_full_house) { TF_ASSERT_OK(Init(DT_FLOAT)); AddInputFromArray<float>( TensorShape({18}), {std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN(), 0.0f, 0.0f, 0.0f, -1.0f, -3.0f, 3.0f, 7.0f, -std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({15})); test::FillValues<double>( &expected, {1.0, 18.0, 4.0, 3.0, 1.0, 3.0, 2.0, 5.0, -3.0, 7.0, 0.85714285714, 8.97959183673, static_cast<double>(DT_FLOAT), 1.0, 18.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } class DebugNumericSummaryOpCustomLowerUpperBoundsTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "DebugNumericSummary") .Input(FakeInput(input_type)) .Attr("tensor_name", "FakeTensor:0") .Attr("lower_bound", -0.5f) .Attr("upper_bound", 3.6f) .Finalize(node_def())); return InitOp(); } }; TEST_F(DebugNumericSummaryOpCustomLowerUpperBoundsTest, Int32Success) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({2, 3}), {0, 0, -1, 3, 3, 7}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({16})); test::FillValues<double>( &expected, {1.0, 6.0, 0.0, 1.0, 0.0, 2.0, 2.0, 1.0, -1.0, 7.0, 2.0, 7.33333333333, static_cast<double>(DT_INT32), 2.0, 2.0, 3.0}); test::ExpectTensorNear<double>(expected, *GetOutput(0), 1e-8); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/debug_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/debug_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f0b886bd-62f2-4655-ab1b-f6fd4c08d769
cpp
tensorflow/tensorflow
xla_builder
third_party/xla/xla/hlo/builder/xla_builder.cc
third_party/xla/xla/hlo/builder/xla_builder_test.cc
#include "xla/hlo/builder/xla_builder.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <numeric> #include <optional> #include <queue> #include <set> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/comparison_util.h" #include "xla/hlo/builder/padding.h" #include "xla/hlo/builder/sharding_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/hlo.pb.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/sharding_op_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/statusor.h" namespace xla { using absl::StrCat; namespace { static const char kNameSeparator = '.'; std::string GetBaseName(const std::string& name, char separator) { auto pos = name.rfind(separator); CHECK_NE(pos, std::string::npos) << name; return name.substr(0, pos); } std::string GetFullName(const std::string& base_name, char separator, int64_t id) { const char separator_str[] = {separator, '\0'}; return StrCat(base_name, separator_str, id); } template <typename T> void SetProtoIdAndName(T* entry, const std::string& base_name, char separator, int64_t id) { entry->set_id(id); entry->set_name(GetFullName(base_name, separator, id)); } bool InstrIsSetBound(const HloInstructionProto* instr_proto) { HloOpcode opcode = StringToHloOpcode(instr_proto->opcode()).value(); if (opcode == HloOpcode::kCustomCall && instr_proto->custom_call_target() == "SetBound") { return true; } return false; } absl::Status NormalizeAndAssignSharing(HloInstructionProto* instr, const OpSharding& op_sharding) { Shape shape(instr->shape()); TF_ASSIGN_OR_RETURN(HloSharding sharding, HloSharding::FromProto(op_sharding)); sharding = sharding.NormalizeTupleSharding(shape); TF_RETURN_IF_ERROR(sharding.Validate(shape)); *instr->mutable_sharding() = sharding.ToProto(); return absl::OkStatus(); } } namespace internal { XlaOp XlaBuilderFriend::BuildAddDependency(XlaBuilder* builder, XlaOp operand, XlaOp token, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kAddDependency, {operand, token}); }); } XlaOp XlaBuilderFriend::BuildFusion( XlaBuilder* builder, absl::Span<const XlaOp> operands, absl::string_view fusion_kind, const XlaComputation& fused_computation, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; instr.set_fusion_kind(std::string(fusion_kind)); if (!output_operand_aliasing.empty()) { for (const auto& pair : output_operand_aliasing) { auto aliasing = instr.add_output_operand_aliasing(); aliasing->set_operand_index(pair.second.first); for (int64_t index : pair.second.second) { aliasing->add_operand_shape_index(index); } for (int64_t index : pair.first) { aliasing->add_output_shape_index(index); } } } std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(auto program_shape, fused_computation.GetProgramShape()); *instr.mutable_shape() = program_shape.result().ToProto(); builder->AddCalledComputation(fused_computation, &instr); return builder->AddInstruction(std::move(instr), HloOpcode::kFusion, operands); }); } std::pair<XlaOp, int64_t> XlaBuilderFriend::BuildAsyncStart( XlaBuilder* builder, absl::Span<const XlaOp> operands, std::string execution_thread, const XlaComputation& called_computation, const Shape& shape) { int64_t called_computation_id; auto start_op = builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_async_execution_thread(execution_thread); builder->AddCalledComputation(called_computation, &instr); called_computation_id = instr.called_computation_ids()[0]; return builder->AddInstruction(std::move(instr), HloOpcode::kAsyncStart, operands); }); return {start_op, called_computation_id}; } XlaOp XlaBuilderFriend::BuildAsyncUpdate(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kAsyncUpdate, {operand}); }); } XlaOp XlaBuilderFriend::BuildAsyncDone(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kAsyncDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildAllGatherStart( XlaBuilder* builder, const XlaOp operand, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { return builder->AllGatherImpl(operand, all_gather_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids, true); } XlaOp XlaBuilderFriend::BuildAllGatherDone(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kAllGatherDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildAllReduceStart( XlaBuilder* builder, XlaOp operand, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Shape>& layout, const std::optional<bool> use_global_device_ids) { return builder->AllReduceImpl(operand, computation, replica_groups, channel_id, layout, use_global_device_ids, true); } XlaOp XlaBuilderFriend::BuildAllReduceDone(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kAllReduceDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildCopyStart( XlaBuilder* builder, const XlaOp operand, std::optional<int> cross_program_prefetch_index) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; if (cross_program_prefetch_index) { instr.set_cross_program_prefetch_index(*cross_program_prefetch_index); } TF_ASSIGN_OR_RETURN(const Shape* operand_shape, builder->GetShapePtr(operand)); Shape u32 = ShapeUtil::MakeScalarShape(PrimitiveType::U32); Shape shape = ShapeUtil::MakeTupleShapeWithPtrs({operand_shape, operand_shape, &u32}); *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kCopyStart, {operand}); }); } XlaOp XlaBuilderFriend::BuildCopyDone(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kCopyDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildCollectivePermuteStart( XlaBuilder* builder, XlaOp operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<ChannelHandle>& channel_id) { return builder->CollectivePermuteImpl(operand, source_target_pairs, channel_id, true); } XlaOp XlaBuilderFriend::BuildCollectivePermuteDone(XlaBuilder* builder, const XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction( std::move(instr), HloOpcode::kCollectivePermuteDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildBitcast(XlaBuilder* builder, XlaOp operand, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kBitcast, {operand}); }); } XlaOp XlaBuilderFriend::BuildDomain(XlaBuilder* builder, XlaOp operand, const OpSharding entry, const OpSharding exit, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_domain_entry_sharding() = entry; *instr.mutable_domain_exit_sharding() = exit; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kDomain, {operand}); }); } XlaOp XlaBuilderFriend::BuildPartitionId(XlaBuilder* builder, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kPartitionId); }); } XlaOp XlaBuilderFriend::BuildSend(XlaBuilder* builder, XlaOp operand, XlaOp token, const ChannelHandle& handle, bool is_host_transfer) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto send_instr; TF_ASSIGN_OR_RETURN(const Shape* shape, builder->GetShapePtr(operand)); *send_instr.mutable_shape() = ShapeUtil::MakeTupleShape({*shape, ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeTokenShape()}) .ToProto(); send_instr.set_channel_id(handle.handle()); send_instr.set_is_host_transfer(is_host_transfer); return builder->AddInstruction(std::move(send_instr), HloOpcode::kSend, {operand, token}); }); } XlaOp XlaBuilderFriend::BuildSendDone(XlaBuilder* builder, XlaOp operand, const ChannelHandle& handle, bool is_host_transfer) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto send_done_instr; *send_done_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); send_done_instr.set_channel_id(handle.handle()); send_done_instr.set_is_host_transfer(is_host_transfer); return builder->AddInstruction(std::move(send_done_instr), HloOpcode::kSendDone, {operand}); }); } XlaOp XlaBuilderFriend::BuildRecv(XlaBuilder* builder, XlaOp token, const Shape& shape, const ChannelHandle& handle, bool is_host_transfer) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto recv_instr; *recv_instr.mutable_shape() = ShapeUtil::MakeTupleShape( {shape, ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeTokenShape()}) .ToProto(); recv_instr.set_channel_id(handle.handle()); recv_instr.set_is_host_transfer(is_host_transfer); return builder->AddInstruction(std::move(recv_instr), HloOpcode::kRecv, {token}); }); } XlaOp XlaBuilderFriend::BuildRecvDone(XlaBuilder* builder, XlaOp token, const Shape& shape, const ChannelHandle& handle, bool is_host_transfer) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto recv_done_instr; *recv_done_instr.mutable_shape() = ShapeUtil::MakeTupleShape({shape, ShapeUtil::MakeTokenShape()}) .ToProto(); recv_done_instr.set_channel_id(handle.handle()); recv_done_instr.set_is_host_transfer(is_host_transfer); return builder->AddInstruction(std::move(recv_done_instr), HloOpcode::kRecvDone, {token}); }); } XlaOp XlaBuilderFriend::BuildRngGetAndUpdateState(XlaBuilder* builder, int64_t delta, const Shape& shape) { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; instr.set_delta(delta); *instr.mutable_shape() = shape.ToProto(); return builder->AddInstruction(std::move(instr), HloOpcode::kRngGetAndUpdateState); }); } HloInstructionProto* XlaBuilderFriend::GetInstruction(XlaOp op) { return &op.builder() ->instructions_[op.builder()->handle_to_index_[op.handle_]]; } HloInstructionProto* XlaBuilderFriend::GetInstructionByHandle( XlaBuilder* builder, int64_t handle) { return &builder->instructions_[builder->handle_to_index_[handle]]; } } XlaOp operator-(XlaOp x) { return Neg(x); } XlaOp operator+(XlaOp x, XlaOp y) { return Add(x, y); } XlaOp operator-(XlaOp x, XlaOp y) { return Sub(x, y); } XlaOp operator*(XlaOp x, XlaOp y) { return Mul(x, y); } XlaOp operator/(XlaOp x, XlaOp y) { return Div(x, y); } XlaOp operator%(XlaOp x, XlaOp y) { return Rem(x, y); } XlaOp operator~(XlaOp x) { return Not(x); } XlaOp operator&(XlaOp x, XlaOp y) { return And(x, y); } XlaOp operator|(XlaOp x, XlaOp y) { return Or(x, y); } XlaOp operator^(XlaOp x, XlaOp y) { return Xor(x, y); } XlaOp operator<<(XlaOp x, XlaOp y) { return ShiftLeft(x, y); } XlaOp operator>>(XlaOp x, XlaOp y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, builder->GetShapePtr(x)); if (!ShapeUtil::ElementIsIntegral(*shape)) { return InvalidArgument( "Argument to >> operator does not have an integral type (%s).", ShapeUtil::HumanString(*shape)); } if (ShapeUtil::ElementIsSigned(*shape)) { return ShiftRightArithmetic(x, y); } else { return ShiftRightLogical(x, y); } }); } absl::StatusOr<const Shape*> XlaBuilder::GetShapePtr(XlaOp op) const { TF_RETURN_IF_ERROR(first_error_); TF_RETURN_IF_ERROR(CheckOpBuilder(op)); auto it = handle_to_index_.find(op.handle()); if (it == handle_to_index_.end()) { return InvalidArgument("No XlaOp with handle %d", op.handle()); } return instruction_shapes_.at(it->second).get(); } absl::StatusOr<Shape> XlaBuilder::GetShape(XlaOp op) const { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(op)); return *shape; } absl::StatusOr<std::vector<Shape>> XlaBuilder::GetOperandShapes( absl::Span<const XlaOp> operands) const { std::vector<Shape> operand_shapes; operand_shapes.reserve(operands.size()); for (XlaOp operand : operands) { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(operand)); operand_shapes.push_back(*shape); } return operand_shapes; } absl::StatusOr<std::optional<OpSharding>> XlaBuilder::GetOpSharding( XlaOp op) const { TF_ASSIGN_OR_RETURN(auto instr_proto, LookUpInstruction(op)); if (instr_proto->has_sharding()) { return instr_proto->sharding(); } return std::nullopt; } std::string XlaBuilder::OpToString(XlaOp op) const { std::string s; ToStringHelper(&s, 0, op.handle()); return s; } static std::string ShapeToString(const ShapeProto& shape) { if (shape.tuple_shapes_size() > 1) { return absl::StrCat( "(", absl::StrJoin(shape.tuple_shapes(), ", ", [&](std::string* s, const ShapeProto& subshape) { absl::StrAppend(s, ShapeToString(subshape)); }), ")"); } return absl::StrCat("[", absl::StrJoin(shape.dimensions(), ", "), "]"); } void XlaBuilder::ToStringHelper(std::string* out, int ident, int64_t op_handle) const { const HloInstructionProto& instr = *(LookUpInstructionByHandle(op_handle).value()); absl::StrAppend(out, std::string(ident, ' '), instr.opcode(), ", shape=", ShapeToString(instr.shape())); if (instr.has_metadata()) { absl::StrAppend(out, ", metadata={", instr.metadata().source_file(), ":", instr.metadata().source_line(), "}"); } if (instr.operand_ids_size()) { absl::StrAppend(out, "\n"); } absl::StrAppend(out, absl::StrJoin(instr.operand_ids(), "\n", [&](std::string* s, int64_t subop) { ToStringHelper(s, ident + 2, subop); })); } XlaBuilder::XlaBuilder(const std::string& computation_name) : name_(computation_name) {} XlaBuilder::~XlaBuilder() = default; XlaOp XlaBuilder::ReportError(const absl::Status& error) { CHECK(!error.ok()); if (die_immediately_on_error_) { LOG(FATAL) << "error building computation: " << error; } if (first_error_.ok()) { first_error_ = error; first_error_backtrace_.CreateCurrent(1); } return XlaOp(this); } XlaOp XlaBuilder::ReportErrorOrReturn(const absl::StatusOr<XlaOp>& op) { if (!first_error_.ok()) { return XlaOp(this); } if (!op.ok()) { return ReportError(op.status()); } return op.value(); } XlaOp XlaBuilder::ReportErrorOrReturn( absl::FunctionRef<absl::StatusOr<XlaOp>()> op_creator) { return ReportErrorOrReturn(op_creator()); } absl::StatusOr<ProgramShape> XlaBuilder::GetProgramShape( int64_t root_id) const { TF_RETURN_IF_ERROR(first_error_); TF_ASSIGN_OR_RETURN(const HloInstructionProto* root_proto, LookUpInstructionByHandle(root_id)); ProgramShape program_shape; *program_shape.mutable_result() = Shape(root_proto->shape()); const int64_t param_count = parameter_numbers_.size(); for (int64_t i = 0; i < param_count; i++) { program_shape.add_parameters(); program_shape.add_parameter_names(); } for (const HloInstructionProto& instr : instructions_) { if (instr.opcode() == HloOpcodeString(HloOpcode::kParameter)) { const int64_t index = instr.parameter_number(); TF_RET_CHECK(index >= 0 && index < param_count) << "invalid parameter number: " << index; *program_shape.mutable_parameters(index) = Shape(instr.shape()); *program_shape.mutable_parameter_names(index) = instr.name(); } } return program_shape; } absl::StatusOr<ProgramShape> XlaBuilder::GetProgramShape() const { TF_RET_CHECK(!instructions_.empty()); return GetProgramShape(instructions_.back().id()); } absl::StatusOr<ProgramShape> XlaBuilder::GetProgramShape(XlaOp root) const { if (root.builder_ != this) { return InvalidArgument("Given root operation is not in this computation."); } return GetProgramShape(root.handle()); } void XlaBuilder::IsConstantVisitor(const int64_t op_handle, int depth, absl::flat_hash_set<int64_t>* visited, bool* is_constant) const { if (visited->contains(op_handle) || !*is_constant) { return; } const HloInstructionProto& instr = *(LookUpInstructionByHandle(op_handle).value()); HloInstructionProto to_print(instr); to_print.clear_shape(); const HloOpcode opcode = StringToHloOpcode(instr.opcode()).value(); const std::string indent = absl::StrJoin(std::vector<absl::string_view>(depth, " "), ""); if (VLOG_IS_ON(2)) { VLOG(2) << indent << "Visiting:"; for (const auto& l : absl::StrSplit(to_print.DebugString(), '\n')) { VLOG(2) << indent << l; } } switch (opcode) { default: for (const int64_t operand_id : instr.operand_ids()) { IsConstantVisitor(operand_id, depth + 1, visited, is_constant); } break; case HloOpcode::kGetDimensionSize: break; case HloOpcode::kRng: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kInfeed: case HloOpcode::kOutfeed: case HloOpcode::kCall: case HloOpcode::kCustomCall: if (instr.custom_call_target() == "SetBound") { break; } [[fallthrough]]; case HloOpcode::kWhile: case HloOpcode::kScatter: case HloOpcode::kSend: case HloOpcode::kRecv: case HloOpcode::kParameter: *is_constant = false; break; case HloOpcode::kGetTupleElement: { const HloInstructionProto& operand_instr = *(LookUpInstructionByHandle(instr.operand_ids(0)).value()); if (HloOpcodeString(HloOpcode::kTuple) == operand_instr.opcode()) { IsConstantVisitor(operand_instr.operand_ids(instr.tuple_index()), depth + 1, visited, is_constant); } else { for (const int64_t operand_id : instr.operand_ids()) { IsConstantVisitor(operand_id, depth + 1, visited, is_constant); } } } } if (VLOG_IS_ON(1) && !*is_constant) { VLOG(1) << indent << "Non-constant: "; for (const auto& l : absl::StrSplit(to_print.DebugString(), '\n')) { VLOG(1) << indent << l; } } visited->insert(op_handle); } absl::Status XlaBuilder::SetInstructionFrontendAttribute(const XlaOp op, std::string attribute, std::string value) { TF_ASSIGN_OR_RETURN(auto instr_proto, LookUpMutableInstruction(op)); auto* frontend_attributes = instr_proto->mutable_frontend_attributes(); (*frontend_attributes->mutable_map())[attribute] = std::move(value); return absl::OkStatus(); } absl::Status XlaBuilder::SetInstructionSharding( XlaOp op, const std::optional<OpSharding>& sharding) { TF_ASSIGN_OR_RETURN(auto instr_proto, LookUpMutableInstruction(op)); if (!sharding.has_value()) { instr_proto->clear_sharding(); return absl::OkStatus(); } return NormalizeAndAssignSharing(instr_proto, sharding.value()); } XlaComputation XlaBuilder::BuildAndNoteError() { DCHECK(parent_builder_ != nullptr); auto build_status = Build(); if (!build_status.ok()) { parent_builder_->ReportError( AddStatus(build_status.status(), absl::StrCat("error from: ", name_))); return {}; } return std::move(build_status).value(); } absl::Status XlaBuilder::GetCurrentStatus() const { if (!first_error_.ok()) { std::string backtrace; first_error_backtrace_.Dump(tsl::DebugWriteToString, &backtrace); return AppendStatus(first_error_, backtrace); } return absl::OkStatus(); } absl::StatusOr<XlaComputation> XlaBuilder::Build( bool remove_dynamic_dimensions) { TF_RETURN_IF_ERROR(GetCurrentStatus()); return Build(instructions_.back().id(), remove_dynamic_dimensions); } absl::StatusOr<XlaComputation> XlaBuilder::Build( XlaOp root, bool remove_dynamic_dimensions) { if (root.builder_ != this) { return InvalidArgument("Given root operation is not in this computation."); } return Build(root.handle(), remove_dynamic_dimensions); } absl::StatusOr<XlaComputation> XlaBuilder::Build( int64_t root_id, bool remove_dynamic_dimensions) { TF_RETURN_IF_ERROR(GetCurrentStatus()); if (remove_dynamic_dimensions) { std::function<void(Shape*)> remove_dynamic_dimension = [&](Shape* shape) { if (shape->tuple_shapes_size() != 0) { for (int i = 0; i < shape->tuple_shapes_size(); ++i) { remove_dynamic_dimension(shape->mutable_tuple_shapes(i)); } } for (int64_t i = 0; i < shape->dimensions_size(); ++i) { shape->set_dynamic_dimension(i, false); } }; for (size_t index = 0; index < instructions_.size(); ++index) { remove_dynamic_dimension(instruction_shapes_[index].get()); *instructions_[index].mutable_shape() = instruction_shapes_[index]->ToProto(); } } HloComputationProto entry; SetProtoIdAndName(&entry, name_, kNameSeparator, GetNextId()); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, GetProgramShape(root_id)); *entry.mutable_program_shape() = program_shape.ToProto(); entry.set_root_id(root_id); for (auto& instruction : instructions_) { instruction.set_name( GetFullName(instruction.name(), kNameSeparator, instruction.id())); entry.add_instructions()->Swap(&instruction); } XlaComputation computation(entry.id()); HloModuleProto* module = computation.mutable_proto(); module->set_name(entry.name()); module->set_id(entry.id()); module->set_entry_computation_name(entry.name()); module->set_entry_computation_id(entry.id()); *module->mutable_host_program_shape() = entry.program_shape(); for (auto& e : embedded_) { module->add_computations()->Swap(&e.second); } module->add_computations()->Swap(&entry); if (!input_output_aliases_.empty() || !buffer_donors_.empty()) { TF_RETURN_IF_ERROR(PopulateInputOutputAliasAndBufferDonor( module, program_shape, input_output_aliases_, buffer_donors_)); } this->instructions_.clear(); this->instruction_shapes_.clear(); this->handle_to_index_.clear(); this->embedded_.clear(); this->parameter_numbers_.clear(); return std::move(computation); } absl::Status XlaBuilder::PopulateInputOutputAliasAndBufferDonor( HloModuleProto* module, const ProgramShape& program_shape, const std::vector<InputOutputAlias>& input_output_aliases, const absl::flat_hash_set<HloBufferDonorConfig::BufferDonor>& buffer_donors) { HloInputOutputAliasConfig io_alias_config(program_shape.result()); for (auto& alias : input_output_aliases) { if (alias.param_number >= program_shape.parameters_size()) { return InvalidArgument("Invalid parameter number %ld (total %ld)", alias.param_number, program_shape.parameters_size()); } const Shape& parameter_shape = program_shape.parameters(alias.param_number); if (!ShapeUtil::IndexIsValid(parameter_shape, alias.param_index)) { return InvalidArgument("Invalid parameter %ld index: %s", alias.param_number, alias.param_index.ToString().c_str()); } TF_RETURN_IF_ERROR(io_alias_config.SetUpAlias( alias.output_index, alias.param_number, alias.param_index, alias.kind)); } *module->mutable_input_output_alias() = io_alias_config.ToProto(); HloBufferDonorConfig buffer_donor_config; for (auto& donor : buffer_donors) { if (donor.param_number >= program_shape.parameters_size()) { return InvalidArgument("Invalid parameter number %ld (total %ld)", donor.param_number, program_shape.parameters_size()); } const Shape& parameter_shape = program_shape.parameters(donor.param_number); if (!ShapeUtil::IndexIsValid(parameter_shape, donor.param_index)) { return InvalidArgument("Invalid parameter %ld index: %s", donor.param_number, donor.param_index.ToString().c_str()); } if (io_alias_config.ParameterHasAlias(donor.param_number, donor.param_index)) { return InvalidArgument( "Parameter %ld index %s is already aliased with one output, thus it " "cannot be added as a buffer donor for any output.", donor.param_number, donor.param_index.ToString().c_str()); } TF_RETURN_IF_ERROR(buffer_donor_config.AddBufferDonor(donor.param_number, donor.param_index)); } *module->mutable_buffer_donor() = buffer_donor_config.ToProto(); return absl::OkStatus(); } XlaOp XlaBuilder::MhloDynamicReshape(XlaOp operand, XlaOp output_shape, const Shape& shape) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (operand_shape->element_type() != shape.element_type()) { return InvalidArgument( "Element type of operand %s and output %s must match", ShapeUtil::HumanString(*operand_shape), ShapeUtil::HumanString(shape)); } if (operand_shape->is_static() && shape.is_static() && ShapeUtil::ElementsIn(*operand_shape) != ShapeUtil::ElementsIn(shape)) { return InvalidArgument( "MhloDynamicReshape has mismatched element counts: from=%d (%s) " "to=%d (%s)", ShapeUtil::ElementsIn(*operand_shape), ShapeUtil::HumanString(*operand_shape), ShapeUtil::ElementsIn(shape), ShapeUtil::HumanString(shape)); } TF_ASSIGN_OR_RETURN(const Shape* output_shape_shape, GetShapePtr(output_shape)); if (output_shape_shape->dimensions(0) != shape.rank()) { return InvalidArgument( "output_shape dimension size=%d (%s) and rank of shape=%d (%s) must " "match", output_shape_shape->dimensions(0), ShapeUtil::HumanString(*output_shape_shape), shape.rank(), ShapeUtil::HumanString(shape)); } return xla::CustomCall(operand.builder(), "mhlo.dynamic_reshape", {operand, output_shape}, shape, ""); }); }; XlaOp XlaBuilder::MhloDynamicBroadcastInDim( const XlaOp operand, const XlaOp output_dimensions, absl::Span<const int64_t> broadcast_dimensions, const Shape& output_shape) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* output_dimensions_shape, GetShapePtr(output_dimensions)); if (!output_dimensions_shape->IsInteger()) { return InvalidArgument("output_dimensions must be an integer type %s", ShapeUtil::HumanString(*output_dimensions_shape)); } if (output_dimensions_shape->rank() != 1) { return InvalidArgument("output_dimensions must be rank 1 but got rank %d", output_dimensions_shape->rank()); } int64_t operand_rank = operand_shape->rank(); int64_t result_rank = output_shape.rank(); int64_t broadcast_dimensions_size = broadcast_dimensions.size(); if (broadcast_dimensions_size != operand_rank) { return InvalidArgument( "broadcast_dimensions size (%d) does not match operand rank (%d)", broadcast_dimensions_size, operand_rank); } if (result_rank < operand_rank) { return InvalidArgument("result rank (%d) is less than operand rank (%d)", result_rank, operand_rank); } for (int64_t i = 0; i != broadcast_dimensions_size; ++i) { int64_t dim_index = broadcast_dimensions[i]; if (dim_index < 0 || dim_index >= result_rank) { return InvalidArgument( "broadcast_dimensions contains invalid value %d for result with " "rank %d", dim_index, result_rank); } int64_t dim_size = operand_shape->dimensions(i); int64_t result_dim_size = output_shape.dimensions(dim_index); if (dim_size != 1 && dim_size != result_dim_size && dim_size != Shape::kUnboundedSize) { return InvalidArgument( "size of operand dimension %d (%d) is not compatible with size of " "result dimension %d (%d)", i, dim_size, dim_index, result_dim_size); } } return xla::CustomCall( operand.builder(), "mhlo.dynamic_broadcast_in_dim", {operand, output_dimensions}, output_shape, absl::StrCat("{broadcast_dimensions=[", absl::StrJoin(broadcast_dimensions, ","), "]}")); }); } absl::StatusOr<XlaOp> XlaBuilder::InDimBroadcast( const Shape& shape, XlaOp operand, absl::Span<const int64_t> broadcast_dimensions) { TF_RETURN_IF_ERROR(first_error_); HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int64_t dim : broadcast_dimensions) { instr.add_dimensions(dim); } TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_RET_CHECK(!shape.is_unbounded_dynamic()) << "broadcast op result shapes must be static"; for (int64_t i = 0; i < shape.rank(); i++) { if (auto it = absl::c_find(broadcast_dimensions, i); it != broadcast_dimensions.end()) { TF_RET_CHECK(operand_shape->is_bounded_dynamic_dimension( it - broadcast_dimensions.begin()) == shape.is_bounded_dynamic_dimension(i)) << " i: " << i << ", shape: " << ShapeUtil::HumanString(shape) << ", operand_shape: " << ShapeUtil::HumanString(*operand_shape); } else { TF_RET_CHECK(shape.is_static_dimension(i)); } } return AddInstruction(std::move(instr), HloOpcode::kBroadcast, {operand}); } absl::StatusOr<XlaOp> XlaBuilder::AddBroadcastSequence( const Shape& output_shape, XlaOp operand) { TF_RETURN_IF_ERROR(first_error_); TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); CHECK(ShapeUtil::IsScalar(*operand_shape) || operand_shape->rank() == output_shape.rank()); Shape broadcast_shape = ShapeUtil::ChangeElementType(output_shape, operand_shape->element_type()); if (ShapeUtil::IsScalar(*operand_shape)) { return InDimBroadcast(ShapeUtil::MakeStaticShape(broadcast_shape), operand, {}); } std::vector<int64_t> broadcast_dimensions; std::vector<int64_t> reshaped_dimensions; std::vector<bool> reshaped_dynamic_dimensions; for (int i = 0; i < operand_shape->rank(); i++) { if (operand_shape->dimensions(i) == output_shape.dimensions(i)) { broadcast_dimensions.push_back(i); reshaped_dimensions.push_back(operand_shape->dimensions(i)); reshaped_dynamic_dimensions.push_back( operand_shape->is_dynamic_dimension(i)); } else { TF_RET_CHECK(operand_shape->dimensions(i) == 1 && operand_shape->is_static_dimension(i)) << "An explicit broadcast sequence requires the broadcasted " "dimensions to be trivial; operand shape: " << *operand_shape << "; output_shape: " << output_shape; } broadcast_shape.set_dynamic_dimension( i, operand_shape->is_dynamic_dimension(i)); } Shape reshaped_shape = ShapeUtil::MakeShape(operand_shape->element_type(), reshaped_dimensions, reshaped_dynamic_dimensions); XlaOp reshaped_operand; { XlaScopedShardingAssignment scoped_sharding(this, std::nullopt); TF_ASSIGN_OR_RETURN( reshaped_operand, ReshapeInternal(reshaped_shape, operand, -1)); } return InDimBroadcast(broadcast_shape, reshaped_operand, broadcast_dimensions); } XlaOp XlaBuilder::UnaryOp(HloOpcode unop, XlaOp operand) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferUnaryOpShape(unop, *operand_shape)); return AddOpWithShape(unop, shape, {operand}); }); } namespace { absl::StatusOr<XlaOp> BroadcastToTargetRank( XlaOp origin, const Shape& origin_shape, const Shape& target_shape, absl::Span<const int64_t> broadcast_dimensions) { if (ShapeUtil::IsScalar(origin_shape)) { return origin; } const int64_t origin_rank = origin_shape.rank(); const int64_t target_rank = target_shape.rank(); if (origin_rank >= target_rank) { return origin; } absl::Span<const int64_t> target_dimensions = target_shape.dimensions(); std::vector<int64_t> target_size{target_dimensions.begin(), target_dimensions.end()}; for (int64_t origin_dim = 0; origin_dim < origin_rank; origin_dim++) { int64_t target_dim = broadcast_dimensions[origin_dim]; target_size[target_dim] = origin_shape.dimensions(origin_dim); } return BroadcastInDim(origin, target_size, broadcast_dimensions); } absl::StatusOr<std::vector<XlaOp>> ExtractDimensionSizesAndPadOnesToLeft( XlaBuilder* builder, XlaOp op, size_t num_dims, int pad_count) { TF_ASSIGN_OR_RETURN(const Shape* op_shape, builder->GetShapePtr(op)); std::vector<XlaOp> op_dims( pad_count, ConstantR1<int32_t>(builder, {1})); for (size_t i = 0; i < num_dims; i++) { op_dims.push_back( op_shape->is_static_dimension(i) ? ConstantR1<int32_t>( builder, {static_cast<int32_t>(op_shape->dimensions(i))}) : Reshape(GetDimensionSize(op, i), {1})); } return op_dims; } absl::StatusOr<XlaOp> BroadcastScalarToOutputShapeWithUnbounded( XlaBuilder* builder, XlaOp scalar, XlaOp output, const Shape& output_shape) { TF_ASSIGN_OR_RETURN(const Shape* scalar_shape, builder->GetShapePtr(scalar)); CHECK(ShapeUtil::IsScalar(*scalar_shape)); std::vector<XlaOp> output_sizes(output_shape.rank()); for (size_t i = 0; i < output_shape.rank(); i++) { output_sizes[i] = output_shape.is_static_dimension(i) ? ConstantR1<int32_t>( builder, {static_cast<int32_t>(output_shape.dimensions(i))}) : Reshape(GetDimensionSize(output, i), {1}); } return MhloDynamicBroadcastInDim( scalar, ConcatInDim(builder, output_sizes, 0), {}, output_shape); } absl::StatusOr<XlaOp> DegenerateBroadcastWithUnbounded( XlaBuilder* builder, XlaOp operand, XlaOp output_dimensions, const Shape& output_shape) { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, builder->GetShapePtr(operand)); std::vector<int64_t> broadcast_dimensions(operand_shape->rank()); std::iota(broadcast_dimensions.begin(), broadcast_dimensions.end(), output_shape.rank() - operand_shape->rank()); return MhloDynamicBroadcastInDim(operand, output_dimensions, broadcast_dimensions, output_shape); } struct UnboundedBroadcastResult { XlaOp lhs; XlaOp rhs; }; absl::StatusOr<UnboundedBroadcastResult> BroadcastToOutputShapeWithUnbounded( XlaBuilder* builder, XlaOp lhs, const Shape& lhs_shape, XlaOp rhs, const Shape rhs_shape, const Shape& output_shape, absl::Span<const int64_t> broadcast_dimensions) { const int64_t lhs_rank = lhs_shape.rank(); const int64_t rhs_rank = rhs_shape.rank(); const int64_t output_rank = output_shape.rank(); TF_ASSIGN_OR_RETURN(std::vector<XlaOp> lhs_dims, ExtractDimensionSizesAndPadOnesToLeft( builder, lhs, lhs_rank, output_rank - lhs_rank)); TF_ASSIGN_OR_RETURN(std::vector<XlaOp> rhs_dims, ExtractDimensionSizesAndPadOnesToLeft( builder, rhs, rhs_rank, output_rank - rhs_rank)); XlaOp output_dimensions = Max(ConcatInDim(builder, lhs_dims, 0), ConcatInDim(builder, rhs_dims, 0)); TF_ASSIGN_OR_RETURN(XlaOp lhs_result, DegenerateBroadcastWithUnbounded( builder, lhs, output_dimensions, output_shape)); TF_ASSIGN_OR_RETURN(XlaOp rhs_result, DegenerateBroadcastWithUnbounded( builder, rhs, output_dimensions, output_shape)); return UnboundedBroadcastResult{lhs_result, rhs_result}; } } XlaOp XlaBuilder::BinaryOp(HloOpcode binop, XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions, std::optional<ComparisonDirection> direction, std::optional<Comparison::Type> type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferBinaryOpShape( binop, *lhs_shape, *rhs_shape, broadcast_dimensions)); XlaOp updated_lhs = lhs; XlaOp updated_rhs = rhs; if (!lhs_shape->is_unbounded_dynamic() && !rhs_shape->is_unbounded_dynamic()) { if (lhs_shape->rank() < shape.rank()) { TF_ASSIGN_OR_RETURN(updated_lhs, BroadcastToTargetRank(lhs, *lhs_shape, shape, broadcast_dimensions)); } if (rhs_shape->rank() < shape.rank()) { TF_ASSIGN_OR_RETURN(updated_rhs, BroadcastToTargetRank(rhs, *rhs_shape, shape, broadcast_dimensions)); } TF_ASSIGN_OR_RETURN(const Shape* updated_lhs_shape, GetShapePtr(updated_lhs)); TF_ASSIGN_OR_RETURN(const Shape* updated_rhs_shape, GetShapePtr(updated_rhs)); if (!ShapeUtil::SameDimensions(shape, *updated_lhs_shape)) { TF_ASSIGN_OR_RETURN(updated_lhs, AddBroadcastSequence(shape, updated_lhs)); } if (!ShapeUtil::SameDimensions(shape, *updated_rhs_shape)) { TF_ASSIGN_OR_RETURN(updated_rhs, AddBroadcastSequence(shape, updated_rhs)); } } else { if (ShapeUtil::IsScalar(*lhs_shape) || ShapeUtil::IsScalar(*rhs_shape)) { if (ShapeUtil::IsScalar(*lhs_shape)) { TF_ASSIGN_OR_RETURN(updated_lhs, BroadcastScalarToOutputShapeWithUnbounded( this, lhs, rhs, *rhs_shape)); } if (ShapeUtil::IsScalar(*rhs_shape)) { TF_ASSIGN_OR_RETURN(updated_rhs, BroadcastScalarToOutputShapeWithUnbounded( this, rhs, lhs, *lhs_shape)); } } else { if (!ShapeUtil::SameDimensions(*lhs_shape, *rhs_shape)) { Shape output_shape = shape; output_shape.set_element_type(lhs_shape->element_type()); TF_ASSIGN_OR_RETURN(UnboundedBroadcastResult broadcast_result, BroadcastToOutputShapeWithUnbounded( this, lhs, *lhs_shape, rhs, *rhs_shape, output_shape, broadcast_dimensions)); updated_lhs = broadcast_result.lhs; updated_rhs = broadcast_result.rhs; } } } if (binop == HloOpcode::kCompare) { if (!direction.has_value()) { return InvalidArgument( "kCompare expects a ComparisonDirection, but none provided."); } if (type == std::nullopt) { return Compare(shape, updated_lhs, updated_rhs, *direction); } else { return Compare(shape, updated_lhs, updated_rhs, *direction, *type); } } if (direction.has_value()) { return InvalidArgument( "A comparison direction is provided for a non-compare opcode: %s.", HloOpcodeString(binop)); } return BinaryOpNoBroadcast(binop, shape, updated_lhs, updated_rhs); }); } XlaOp XlaBuilder::BinaryOpNoBroadcast(HloOpcode binop, const Shape& shape, XlaOp lhs, XlaOp rhs) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), binop, {lhs, rhs}); }); } absl::StatusOr<XlaOp> XlaBuilder::Compare(const Shape& shape, XlaOp lhs, XlaOp rhs, ComparisonDirection direction) { TF_ASSIGN_OR_RETURN(auto operand_shape, GetShape(lhs)); return Compare( shape, lhs, rhs, direction, Comparison::DefaultComparisonType(operand_shape.element_type())); } absl::StatusOr<XlaOp> XlaBuilder::Compare(const Shape& shape, XlaOp lhs, XlaOp rhs, ComparisonDirection direction, Comparison::Type type) { HloInstructionProto instr; instr.set_comparison_direction(ComparisonDirectionToString(direction)); instr.set_comparison_type(ComparisonTypeToString(type)); *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kCompare, {lhs, rhs}); } absl::StatusOr<XlaOp> XlaBuilder::BroadcastScalarToOutputShape(XlaOp scalar, XlaOp output) { TF_ASSIGN_OR_RETURN(const Shape* scalar_shape, GetShapePtr(scalar)); TF_ASSIGN_OR_RETURN(const Shape* output_shape, GetShapePtr(output)); XlaOp updated_output = scalar; if (output_shape->is_unbounded_dynamic()) { Shape output_shape_copy = *output_shape; output_shape_copy.set_element_type(scalar_shape->element_type()); TF_ASSIGN_OR_RETURN(updated_output, BroadcastScalarToOutputShapeWithUnbounded( this, scalar, output, output_shape_copy)); return updated_output; } TF_ASSIGN_OR_RETURN(updated_output, AddBroadcastSequence(*output_shape, updated_output)); return updated_output; } XlaOp XlaBuilder::TernaryOp(HloOpcode triop, XlaOp lhs, XlaOp rhs, XlaOp ehs) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { XlaOp updated_lhs = lhs; XlaOp updated_rhs = rhs; XlaOp updated_ehs = ehs; if (triop == HloOpcode::kSelect || triop == HloOpcode::kClamp) { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_ASSIGN_OR_RETURN(const Shape* ehs_shape, GetShapePtr(ehs)); TF_ASSIGN_OR_RETURN( std::optional<Shape> output_shape, ShapeInference::InferScalarBroadcastShape( absl::Span<const Shape>({*lhs_shape, *rhs_shape, *ehs_shape}))); if (output_shape.has_value()) { if (ShapeUtil::IsScalar(*lhs_shape)) { TF_ASSIGN_OR_RETURN( updated_lhs, BroadcastScalarToOutputShape( lhs, ShapeUtil::Equal(*output_shape, *rhs_shape) ? rhs : ehs)); } if (ShapeUtil::IsScalar(*rhs_shape)) { TF_ASSIGN_OR_RETURN( updated_rhs, BroadcastScalarToOutputShape( rhs, ShapeUtil::Equal(*output_shape, *lhs_shape) ? lhs : ehs)); } if (ShapeUtil::IsScalar(*ehs_shape)) { TF_ASSIGN_OR_RETURN( updated_ehs, BroadcastScalarToOutputShape( ehs, ShapeUtil::Equal(*output_shape, *lhs_shape) ? lhs : rhs)); } } } TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(updated_lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(updated_rhs)); TF_ASSIGN_OR_RETURN(const Shape* ehs_shape, GetShapePtr(updated_ehs)); TF_ASSIGN_OR_RETURN(const Shape inferred_shape, ShapeInference::InferTernaryOpShape( triop, *lhs_shape, *rhs_shape, *ehs_shape)); return AddOpWithShape(triop, inferred_shape, {updated_lhs, updated_rhs, updated_ehs}); }); } XlaOp XlaBuilder::ConstantLiteral(const LiteralSlice& literal) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (literal.shape().IsArray() && literal.element_count() > 1 && literal.IsAllFirst()) { Literal scalar = LiteralUtil::GetFirstScalarLiteral(literal); HloInstructionProto instr; *instr.mutable_shape() = scalar.shape().ToProto(); *instr.mutable_literal() = scalar.ToProto(); XlaOp scalar_op; { XlaScopedShardingAssignment scoped_sharding(this, std::nullopt); TF_ASSIGN_OR_RETURN( scalar_op, AddInstruction(std::move(instr), HloOpcode::kConstant)); } return Broadcast(scalar_op, literal.shape().dimensions()); } else { HloInstructionProto instr; *instr.mutable_shape() = literal.shape().ToProto(); *instr.mutable_literal() = literal.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kConstant); } }); } XlaOp XlaBuilder::Iota(const Shape& shape, int64_t iota_dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!shape.is_static()) { return InvalidArgument( "The output of iota must not have dynamic dimensions: %s", ShapeUtil::HumanString(shape)); } HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.add_dimensions(iota_dimension); return AddInstruction(std::move(instr), HloOpcode::kIota); }); } XlaOp XlaBuilder::Iota(PrimitiveType type, int64_t size) { return Iota(ShapeUtil::MakeShape(type, {size}), 0); } XlaOp XlaBuilder::Call(const XlaComputation& computation, absl::Span<const XlaOp> operands) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(const ProgramShape& called_program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferCallShape( operand_shape_ptrs, called_program_shape)); *instr.mutable_shape() = shape.ToProto(); AddCalledComputation(computation, &instr); return AddInstruction(std::move(instr), HloOpcode::kCall, operands); }); } XlaOp XlaBuilder::CompositeCall(const XlaComputation& computation, absl::Span<const XlaOp> operands, const std::string& name, std::optional<absl::string_view> attributes, std::optional<int64_t> version) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(const ProgramShape& called_program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferCallShape( operand_shape_ptrs, called_program_shape)); *instr.mutable_shape() = shape.ToProto(); AddCalledComputation(computation, &instr); instr.set_is_composite(true); TF_ASSIGN_OR_RETURN( XlaOp instruction, AddInstruction(std::move(instr), HloOpcode::kCall, operands)); TF_RETURN_IF_ERROR( SetInstructionFrontendAttribute(instruction, "composite.name", name)); TF_RETURN_IF_ERROR(SetInstructionFrontendAttribute( instruction, "composite.attributes", attributes.has_value() ? std::string(*attributes) : "{}")); TF_RETURN_IF_ERROR(SetInstructionFrontendAttribute( instruction, "composite.version", version.has_value() ? std::to_string(*version) : "0")); return instruction; }); } XlaOp XlaBuilder::Parameter( int64_t parameter_number, const Shape& shape, const std::string& name, const std::vector<bool>& replicated_at_leaf_buffers) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; if (!parameter_numbers_.insert(parameter_number).second) { return InvalidArgument("parameter %d already registered", parameter_number); } instr.set_parameter_number(parameter_number); instr.set_name(name); *instr.mutable_shape() = shape.ToProto(); if (!replicated_at_leaf_buffers.empty()) { auto replication = instr.mutable_parameter_replication(); for (bool replicated : replicated_at_leaf_buffers) { replication->add_replicated_at_leaf_buffers(replicated); } } return AddInstruction(std::move(instr), HloOpcode::kParameter); }); } XlaOp XlaBuilder::Broadcast(XlaOp operand, absl::Span<const int64_t> broadcast_sizes) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN( const Shape& shape, ShapeInference::InferBroadcastShape(*operand_shape, broadcast_sizes)); const int64_t operand_rank = operand_shape->rank(); std::vector<int64_t> dimensions(operand_rank); for (int i = 0; i < operand_rank; ++i) { dimensions[i] = i + shape.rank() - operand_rank; } return InDimBroadcast(shape, operand, dimensions); }); } XlaOp XlaBuilder::BroadcastInDim( XlaOp operand, absl::Span<const int64_t> out_dim_size, absl::Span<const int64_t> broadcast_dimensions) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(auto output_shape, ShapeUtil::MakeValidatedShape( operand_shape->element_type(), out_dim_size)); TF_RET_CHECK(!output_shape.is_unbounded_dynamic()) << "BroadcastInDim output must shape be static or bounded dynamic " << ShapeUtil::HumanString(output_shape); int64_t broadcast_rank = broadcast_dimensions.size(); if (operand_shape->rank() != broadcast_rank) { return InvalidArgument( "Size of broadcast_dimensions has to match operand's rank; operand " "rank: %lld, size of broadcast_dimensions %u.", operand_shape->rank(), broadcast_dimensions.size()); } for (int i = 0; i < broadcast_rank; i++) { const int64_t num_dims = out_dim_size.size(); if (broadcast_dimensions[i] < 0 || broadcast_dimensions[i] > num_dims) { return InvalidArgument("Broadcast dimension %lld is out of bound", broadcast_dimensions[i]); } output_shape.set_dynamic_dimension( broadcast_dimensions[i], operand_shape->is_bounded_dynamic_dimension(i)); } TF_RETURN_IF_ERROR(ShapeInference::InferBroadcastShape( *operand_shape, output_shape, broadcast_dimensions) .status()); std::vector<int64_t> in_dim_size(out_dim_size.begin(), out_dim_size.end()); std::vector<bool> in_dim_dynamic(out_dim_size.size(), false); for (int i = 0; i < broadcast_rank; i++) { in_dim_size[broadcast_dimensions[i]] = (operand_shape->is_unbounded_dynamic_dimension(i)) ? out_dim_size[broadcast_dimensions[i]] : operand_shape->dimensions(i); in_dim_dynamic[broadcast_dimensions[i]] = operand_shape->is_bounded_dynamic_dimension(i); } const auto& in_dim_shape = ShapeUtil::MakeShape( operand_shape->element_type(), in_dim_size, in_dim_dynamic); TF_ASSIGN_OR_RETURN( XlaOp in_dim_broadcast, InDimBroadcast(in_dim_shape, operand, broadcast_dimensions)); if (ShapeUtil::Equal(in_dim_shape, output_shape)) { return in_dim_broadcast; } return AddBroadcastSequence(output_shape, in_dim_broadcast); }); } absl::StatusOr<XlaOp> XlaBuilder::ReshapeInternal(const Shape& shape, XlaOp operand, int64_t inferred_dimension) { TF_RETURN_IF_ERROR(first_error_); if (shape.is_unbounded_dynamic()) { return InvalidArgument( "Reshaping with unbounded result shape is not supported."); } HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); if (inferred_dimension != -1) { instr.add_dimensions(inferred_dimension); } return AddInstruction(std::move(instr), HloOpcode::kReshape, {operand}); } XlaOp XlaBuilder::Slice(XlaOp operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferSliceShape( *operand_shape, start_indices, limit_indices, strides)); return SliceInternal(shape, operand, start_indices, limit_indices, strides); }); } absl::StatusOr<XlaOp> XlaBuilder::SliceInternal( const Shape& shape, XlaOp operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int i = 0, end = start_indices.size(); i < end; i++) { auto* slice_config = instr.add_slice_dimensions(); slice_config->set_start(start_indices[i]); slice_config->set_limit(limit_indices[i]); slice_config->set_stride(strides[i]); } return AddInstruction(std::move(instr), HloOpcode::kSlice, {operand}); } XlaOp XlaBuilder::SliceInDim(XlaOp operand, int64_t start_index, int64_t limit_index, int64_t stride, int64_t dimno) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(operand)); std::vector<int64_t> starts(shape->rank(), 0); std::vector<int64_t> limits(shape->dimensions().begin(), shape->dimensions().end()); std::vector<int64_t> strides(shape->rank(), 1); starts[dimno] = start_index; limits[dimno] = limit_index; strides[dimno] = stride; return Slice(operand, starts, limits, strides); }); } XlaOp XlaBuilder::DynamicSlice(XlaOp operand, absl::Span<const XlaOp> start_indices, absl::Span<const int64_t> slice_sizes) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<const Shape*> start_indices_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& start_indices_shapes, GetOperandShapes(start_indices)); absl::c_transform(start_indices_shapes, std::back_inserter(start_indices_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferDynamicSliceShape( *operand_shape, start_indices_shapes, slice_sizes)); return DynamicSliceInternal(shape, operand, start_indices, slice_sizes); }); } absl::StatusOr<XlaOp> XlaBuilder::DynamicSliceInternal( const Shape& shape, XlaOp operand, absl::Span<const XlaOp> start_indices, absl::Span<const int64_t> slice_sizes) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int64_t size : slice_sizes) { instr.add_dynamic_slice_sizes(size); } std::vector<XlaOp> operands = {operand}; operands.insert(operands.end(), start_indices.begin(), start_indices.end()); return AddInstruction(std::move(instr), HloOpcode::kDynamicSlice, operands); } XlaOp XlaBuilder::DynamicUpdateSlice(XlaOp operand, XlaOp update, absl::Span<const XlaOp> start_indices) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* update_shape, GetShapePtr(update)); std::vector<const Shape*> start_indices_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& start_indices_shapes, GetOperandShapes(start_indices)); absl::c_transform(start_indices_shapes, std::back_inserter(start_indices_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferDynamicUpdateSliceShape( *operand_shape, *update_shape, start_indices_shapes)); return DynamicUpdateSliceInternal(shape, operand, update, start_indices); }); } absl::StatusOr<XlaOp> XlaBuilder::DynamicUpdateSliceInternal( const Shape& shape, XlaOp operand, XlaOp update, absl::Span<const XlaOp> start_indices) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); std::vector<XlaOp> operands = {operand, update}; operands.insert(operands.end(), start_indices.begin(), start_indices.end()); return AddInstruction(std::move(instr), HloOpcode::kDynamicUpdateSlice, operands); } XlaOp XlaBuilder::ConcatInDim(absl::Span<const XlaOp> operands, int64_t dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferConcatOpShape( operand_shape_ptrs, dimension)); return ConcatInDimInternal(shape, operands, dimension); }); } absl::StatusOr<XlaOp> XlaBuilder::ConcatInDimInternal( const Shape& shape, absl::Span<const XlaOp> operands, int64_t dimension) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.add_dimensions(dimension); return AddInstruction(std::move(instr), HloOpcode::kConcatenate, operands); } XlaOp XlaBuilder::Pad(XlaOp operand, XlaOp padding_value, const PaddingConfig& padding_config) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* padding_value_shape, GetShapePtr(padding_value)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferPadShape( *operand_shape, *padding_value_shape, padding_config)); return PadInternal(shape, operand, padding_value, padding_config); }); } XlaOp XlaBuilder::PadInDim(XlaOp operand, XlaOp padding_value, int64_t dimno, int64_t pad_lo, int64_t pad_hi) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(operand)); PaddingConfig padding_config = MakeNoPaddingConfig(shape->rank()); auto* dims = padding_config.mutable_dimensions(dimno); dims->set_edge_padding_low(pad_lo); dims->set_edge_padding_high(pad_hi); return Pad(operand, padding_value, padding_config); }); } absl::StatusOr<XlaOp> XlaBuilder::PadInternal( const Shape& shape, XlaOp operand, XlaOp padding_value, const PaddingConfig& padding_config) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_padding_config() = padding_config; return AddInstruction(std::move(instr), HloOpcode::kPad, {operand, padding_value}); } XlaOp XlaBuilder::Reshape(XlaOp operand, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> new_sizes, int64_t inferred_dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape shape, ShapeInference::InferReshapeShape( *operand_shape, dimensions, new_sizes, inferred_dimension)); XlaOp transposed = IsIdentityPermutation(dimensions) ? operand : Transpose(operand, dimensions); return ReshapeInternal(shape, transposed, inferred_dimension); }); } XlaOp XlaBuilder::Reshape(XlaOp operand, absl::Span<const int64_t> new_sizes, int64_t inferred_dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(operand)); std::vector<int64_t> dimensions(shape->dimensions_size()); std::iota(dimensions.begin(), dimensions.end(), 0); return Reshape(operand, dimensions, new_sizes, inferred_dimension); }); } XlaOp XlaBuilder::Reshape(const Shape& shape, XlaOp operand, int64_t inferred_dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { return ReshapeInternal(shape, operand, inferred_dimension); }); } XlaOp XlaBuilder::DynamicReshape(XlaOp operand, absl::Span<const XlaOp> dim_sizes, absl::Span<const int64_t> new_size_bounds, const std::vector<bool>& dims_are_dynamic) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<const Shape*> dim_size_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& dim_size_shapes, GetOperandShapes(dim_sizes)); absl::c_transform(dim_size_shapes, std::back_inserter(dim_size_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(const Shape shape, ShapeInference::InferDynamicReshapeShape( *operand_shape, dim_size_shape_ptrs, new_size_bounds, dims_are_dynamic)); TF_RETURN_IF_ERROR(first_error_); std::vector<XlaOp> operands; operands.reserve(1 + dim_sizes.size()); operands.push_back(operand); for (const XlaOp& dim_size : dim_sizes) { operands.push_back(dim_size); } HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kDynamicReshape, operands); }); } XlaOp XlaBuilder::Collapse(XlaOp operand, absl::Span<const int64_t> dimensions) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (dimensions.size() <= 1) { return operand; } for (absl::Span<const int64_t>::size_type i = 1; i < dimensions.size(); ++i) { if (dimensions[i] - 1 != dimensions[i - 1]) { return InvalidArgument( "Collapsed dimensions are not in consecutive order."); } } TF_ASSIGN_OR_RETURN(const Shape* original_shape, GetShapePtr(operand)); VLOG(3) << "original shape: " << ShapeUtil::HumanString(*original_shape); VLOG(3) << "dims to collapse: " << absl::StrJoin(dimensions, ","); std::vector<int64_t> new_sizes; for (int i = 0; i < original_shape->rank(); ++i) { if (i <= dimensions.front() || i > dimensions.back()) { new_sizes.push_back(original_shape->dimensions(i)); } else { new_sizes.back() *= original_shape->dimensions(i); } } VLOG(3) << "new sizes: [" << absl::StrJoin(new_sizes, ",") << "]"; return Reshape(operand, new_sizes); }); } static absl::StatusOr<XlaComputation> PassthroughComputation( const Shape& shape) { XlaBuilder builder("dummy"); XlaOp out = Parameter(&builder, 0, shape, "p"); return builder.Build(out); } XlaOp XlaBuilder::Select(XlaOp pred, XlaOp on_true, XlaOp on_false) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* true_shape, GetShapePtr(on_true)); TF_ASSIGN_OR_RETURN(const Shape* false_shape, GetShapePtr(on_false)); TF_RET_CHECK(true_shape->IsTuple() == false_shape->IsTuple()); if (true_shape->IsTuple()) { TF_ASSIGN_OR_RETURN(XlaComputation passthrough_true, PassthroughComputation(*true_shape)); TF_ASSIGN_OR_RETURN(XlaComputation passthrough_false, PassthroughComputation(*false_shape)); return Conditional(pred, on_true, passthrough_true, on_false, passthrough_false); } return TernaryOp(HloOpcode::kSelect, pred, on_true, on_false); }); } XlaOp XlaBuilder::Tuple(absl::Span<const XlaOp> elements) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(elements)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(const Shape shape, ShapeInference::InferVariadicOpShape( HloOpcode::kTuple, operand_shape_ptrs)); return TupleInternal(shape, elements); }); } absl::StatusOr<XlaOp> XlaBuilder::TupleInternal( const Shape& shape, absl::Span<const XlaOp> elements) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kTuple, elements); } XlaOp XlaBuilder::GetTupleElement(XlaOp tuple_data, int64_t index) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* tuple_shape, GetShapePtr(tuple_data)); if (!tuple_shape->IsTuple()) { return InvalidArgument( "Operand to GetTupleElement() is not a tuple; got %s", ShapeUtil::HumanString(*tuple_shape)); } if (index < 0 || index >= ShapeUtil::TupleElementCount(*tuple_shape)) { return InvalidArgument( "GetTupleElement() index (%d) out of range for tuple shape %s", index, ShapeUtil::HumanString(*tuple_shape)); } return GetTupleElementInternal( ShapeUtil::GetTupleElementShape(*tuple_shape, index), tuple_data, index); }); } absl::StatusOr<XlaOp> XlaBuilder::GetTupleElementInternal(const Shape& shape, XlaOp tuple_data, int64_t index) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_tuple_index(index); return AddInstruction(std::move(instr), HloOpcode::kGetTupleElement, {tuple_data}); } XlaOp XlaBuilder::Dot(XlaOp lhs, XlaOp rhs, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); DotDimensionNumbers dimension_numbers; dimension_numbers.add_lhs_contracting_dimensions( lhs_shape->dimensions_size() == 1 ? 0 : 1); dimension_numbers.add_rhs_contracting_dimensions(0); return DotGeneral(lhs, rhs, dimension_numbers, precision_config, preferred_element_type); }); } XlaOp XlaBuilder::DotGeneral( XlaOp lhs, XlaOp rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferDotOpShape( *lhs_shape, *rhs_shape, dimension_numbers, preferred_element_type)); return DotGeneralInternal(shape, lhs, rhs, dimension_numbers, precision_config); }); } absl::StatusOr<XlaOp> XlaBuilder::DotGeneralInternal( const Shape& shape, XlaOp lhs, XlaOp rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_dot_dimension_numbers() = dimension_numbers; if (precision_config != nullptr) { *instr.mutable_precision_config() = *precision_config; } return AddInstruction(std::move(instr), HloOpcode::kDot, {lhs, rhs}); } XlaOp XlaBuilder::SparseDot( XlaOp lhs, XlaOp rhs, absl::Span<const XlaOp> sparse_meta, absl::Span<const SparsityDescriptor> sparsity, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferDotOpShape( *lhs_shape, *rhs_shape, dimension_numbers, preferred_element_type, sparsity)); std::vector<XlaOp> operands{lhs, rhs}; operands.insert(operands.end(), sparse_meta.begin(), sparse_meta.end()); HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_dot_dimension_numbers() = dimension_numbers; if (precision_config != nullptr) { *instr.mutable_precision_config() = *precision_config; } for (const SparsityDescriptor& descriptor : sparsity) { *instr.add_dot_sparsity() = descriptor; } return AddInstruction(std::move(instr), HloOpcode::kDot, operands); }); } absl::Status XlaBuilder::VerifyConvolution( const Shape& lhs_shape, const Shape& rhs_shape, const ConvolutionDimensionNumbers& dimension_numbers) const { if (lhs_shape.rank() != rhs_shape.rank()) { return InvalidArgument( "Convolution arguments must have same number of " "dimensions. Got: %s and %s", ShapeUtil::HumanString(lhs_shape), ShapeUtil::HumanString(rhs_shape)); } int num_dims = lhs_shape.rank(); if (num_dims < 2) { return InvalidArgument( "Convolution expects argument arrays with >= 3 dimensions. " "Got: %s and %s", ShapeUtil::HumanString(lhs_shape), ShapeUtil::HumanString(rhs_shape)); } int num_spatial_dims = num_dims - 2; const auto check_spatial_dimensions = [&](absl::string_view field_name, absl::Span<const int64_t> numbers) -> absl::Status { if (numbers.size() != num_spatial_dims) { return InvalidArgument("Expected %d elements for %s, but got %d.", num_spatial_dims, field_name, numbers.size()); } for (int i = 0; i < numbers.size(); ++i) { if (numbers[i] < 0 || numbers[i] >= num_dims) { return InvalidArgument("Convolution %s[%d] is out of bounds: %d", field_name, i, numbers[i]); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR( check_spatial_dimensions("input_spatial_dimensions", dimension_numbers.input_spatial_dimensions())); TF_RETURN_IF_ERROR( check_spatial_dimensions("kernel_spatial_dimensions", dimension_numbers.kernel_spatial_dimensions())); return check_spatial_dimensions( "output_spatial_dimensions", dimension_numbers.output_spatial_dimensions()); } XlaOp XlaBuilder::Conv(XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ConvWithGeneralDimensions( lhs, rhs, window_strides, padding, CreateDefaultConvDimensionNumbers(window_strides.size()), feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp XlaBuilder::ConvWithGeneralPadding( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ConvGeneral(lhs, rhs, window_strides, padding, CreateDefaultConvDimensionNumbers(window_strides.size()), feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp XlaBuilder::ConvWithGeneralDimensions( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_RETURN_IF_ERROR( VerifyConvolution(*lhs_shape, *rhs_shape, dimension_numbers)); std::vector<int64_t> base_area_dimensions( dimension_numbers.input_spatial_dimensions_size()); for (std::vector<int64_t>::size_type i = 0; i < base_area_dimensions.size(); ++i) { base_area_dimensions[i] = lhs_shape->dimensions(dimension_numbers.input_spatial_dimensions(i)); } std::vector<int64_t> window_dimensions( dimension_numbers.kernel_spatial_dimensions_size()); for (std::vector<int64_t>::size_type i = 0; i < window_dimensions.size(); ++i) { window_dimensions[i] = rhs_shape->dimensions(dimension_numbers.kernel_spatial_dimensions(i)); } return ConvGeneral(lhs, rhs, window_strides, MakePadding(base_area_dimensions, window_dimensions, window_strides, padding), dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type); }); } XlaOp XlaBuilder::ConvGeneral( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return ConvGeneralDilated(lhs, rhs, window_strides, padding, {}, {}, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp XlaBuilder::ConvGeneralDilated( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type, std::optional<std::vector<bool>> window_reversal) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); TF_RETURN_IF_ERROR( VerifyConvolution(*lhs_shape, *rhs_shape, dimension_numbers)); std::vector<int64_t> window_dimensions( dimension_numbers.kernel_spatial_dimensions_size()); for (std::vector<int64_t>::size_type i = 0; i < window_dimensions.size(); ++i) { window_dimensions[i] = rhs_shape->dimensions(dimension_numbers.kernel_spatial_dimensions(i)); } TF_ASSIGN_OR_RETURN(Window window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding, lhs_dilation, rhs_dilation, window_reversal)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferConvolveShape( *lhs_shape, *rhs_shape, feature_group_count, batch_group_count, window, dimension_numbers, preferred_element_type)); return ConvGeneralDilatedInternal(shape, lhs, rhs, window, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config); }); } absl::StatusOr<HloInstructionProto> XlaBuilder::DynamicConvInstruction( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { TF_ASSIGN_OR_RETURN(const Shape* lhs_shape, GetShapePtr(lhs)); TF_ASSIGN_OR_RETURN(const Shape* rhs_shape, GetShapePtr(rhs)); std::vector<int64_t> window_dimensions( dimension_numbers.kernel_spatial_dimensions_size()); for (std::vector<int64_t>::size_type i = 0; i < window_dimensions.size(); ++i) { window_dimensions[i] = rhs_shape->dimensions(dimension_numbers.kernel_spatial_dimensions(i)); } TF_ASSIGN_OR_RETURN(Window window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding, lhs_dilation, rhs_dilation)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferConvolveShape( *lhs_shape, *rhs_shape, feature_group_count, batch_group_count, window, dimension_numbers, preferred_element_type)); HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_window() = window; *instr.mutable_convolution_dimension_numbers() = dimension_numbers; instr.set_feature_group_count(feature_group_count); instr.set_batch_group_count(batch_group_count); instr.set_padding_type(padding_type); if (precision_config != nullptr) { *instr.mutable_precision_config() = *precision_config; } return std::move(instr); } XlaOp XlaBuilder::DynamicConvInputGrad( XlaOp input_sizes, XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN( HloInstructionProto instr, DynamicConvInstruction( lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type)); instr.set_custom_call_target("DynamicConvolutionInputGrad"); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, {input_sizes, lhs, rhs}); }); } XlaOp XlaBuilder::DynamicConvKernelGrad( XlaOp activations, XlaOp gradients, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN( HloInstructionProto instr, DynamicConvInstruction(activations, gradients, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type)); instr.set_custom_call_target("DynamicConvolutionKernelGrad"); instr.mutable_shape()->clear_is_dynamic_dimension(); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, {activations, gradients}); }); } XlaOp XlaBuilder::DynamicConvForward( XlaOp lhs, XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN( HloInstructionProto instr, DynamicConvInstruction( lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type)); instr.set_custom_call_target("DynamicConvolutionForward"); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, {lhs, rhs}); }); } absl::StatusOr<XlaOp> XlaBuilder::ConvGeneralDilatedInternal( const Shape& shape, XlaOp lhs, XlaOp rhs, const Window& window, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_window() = window; *instr.mutable_convolution_dimension_numbers() = dimension_numbers; instr.set_feature_group_count(feature_group_count); instr.set_batch_group_count(batch_group_count); if (precision_config != nullptr) { *instr.mutable_precision_config() = *precision_config; } return AddInstruction(std::move(instr), HloOpcode::kConvolution, {lhs, rhs}); } XlaOp XlaBuilder::Fft(XlaOp operand, const FftType fft_type, const absl::Span<const int64_t> fft_length) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferFftShape( *operand_shape, fft_type, fft_length)); return FftInternal(shape, operand, fft_type, fft_length); }); } absl::StatusOr<XlaOp> XlaBuilder::FftInternal( const Shape& shape, XlaOp operand, const FftType fft_type, const absl::Span<const int64_t> fft_length) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_fft_type(fft_type); for (int64_t i : fft_length) { instr.add_fft_length(i); } return AddInstruction(std::move(instr), HloOpcode::kFft, {operand}); } absl::StatusOr<XlaOp> XlaBuilder::TriangularSolveInternal( const Shape& shape, XlaOp a, XlaOp b, TriangularSolveOptions options) { HloInstructionProto instr; *instr.mutable_triangular_solve_options() = std::move(options); *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kTriangularSolve, {a, b}); } absl::StatusOr<XlaOp> XlaBuilder::CholeskyInternal(const Shape& shape, XlaOp a, bool lower) { HloInstructionProto instr; CholeskyOptions& options = *instr.mutable_cholesky_options(); options.set_lower(lower); *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kCholesky, {a}); } XlaOp XlaBuilder::Infeed(const Shape& shape, const std::string& config) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument("Given shape to Infeed must have a layout"); } const Shape infeed_instruction_shape = ShapeUtil::MakeTupleShape({shape, ShapeUtil::MakeTokenShape()}); *instr.mutable_shape() = infeed_instruction_shape.ToProto(); instr.set_infeed_config(config); if (shape.IsArray() && sharding() && sharding()->type() == OpSharding::OTHER) { return InvalidArgument( "Tiled sharding is not yet supported for array-shaped infeeds"); } if (sharding() && sharding()->type() == OpSharding::REPLICATED) { return InvalidArgument( "Replicated sharding is not yet supported for infeeds"); } XlaOp token; auto make_token = [&]() { HloInstructionProto token_instr; *token_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); return AddInstruction(std::move(token_instr), HloOpcode::kAfterAll, {}); }; if (sharding()) { OpSharding sharding = sharding_builder::AssignDevice(0); XlaScopedShardingAssignment scoped_sharding(this, sharding); TF_ASSIGN_OR_RETURN(token, make_token()); } else { TF_ASSIGN_OR_RETURN(token, make_token()); } XlaOp infeed; if (sharding() && sharding()->type() == OpSharding::TUPLE) { OpSharding infeed_instruction_sharding = *sharding(); *infeed_instruction_sharding.add_tuple_shardings() = sharding_builder::AssignDevice(0); XlaScopedShardingAssignment scoped_sharding(this, infeed_instruction_sharding); TF_ASSIGN_OR_RETURN(infeed, AddInstruction(std::move(instr), HloOpcode::kInfeed, {token})); } else { TF_ASSIGN_OR_RETURN(infeed, AddInstruction(std::move(instr), HloOpcode::kInfeed, {token})); } HloInstructionProto infeed_data; *infeed_data.mutable_shape() = shape.ToProto(); infeed_data.set_tuple_index(0); return AddInstruction(std::move(infeed_data), HloOpcode::kGetTupleElement, {infeed}); }); } XlaOp XlaBuilder::InfeedWithToken(XlaOp token, const Shape& shape, const std::string& config) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument("Given shape to Infeed must have a layout"); } const Shape infeed_instruction_shape = ShapeUtil::MakeTupleShape({shape, ShapeUtil::MakeTokenShape()}); if (shape.IsArray() && sharding() && sharding()->type() == OpSharding::OTHER) { return InvalidArgument( "Tiled sharding is not yet supported for array-shaped infeeds"); } if (sharding() && sharding()->type() == OpSharding::REPLICATED) { return InvalidArgument( "Replicated sharding is not yet supported for infeeds"); } return InfeedWithTokenInternal(infeed_instruction_shape, token, config); }); } absl::StatusOr<XlaOp> XlaBuilder::InfeedWithTokenInternal( const Shape& infeed_instruction_shape, XlaOp token, const std::string& config) { HloInstructionProto instr; *instr.mutable_shape() = infeed_instruction_shape.ToProto(); instr.set_infeed_config(config); return AddInstruction(std::move(instr), HloOpcode::kInfeed, {token}); } void XlaBuilder::Outfeed(XlaOp operand, const Shape& shape_with_layout, const std::string& outfeed_config) { ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); if (!LayoutUtil::HasLayout(shape_with_layout)) { return InvalidArgument("Given shape to Outfeed must have a layout"); } TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (!ShapeUtil::Compatible(*operand_shape, shape_with_layout)) { return InvalidArgument( "Outfeed shape %s must be compatible with operand shape %s", ShapeUtil::HumanStringWithLayout(shape_with_layout), ShapeUtil::HumanStringWithLayout(*operand_shape)); } *instr.mutable_outfeed_shape() = shape_with_layout.ToProto(); instr.set_outfeed_config(outfeed_config); XlaOp token; auto make_token = [&]() { HloInstructionProto token_instr; *token_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); return AddInstruction(std::move(token_instr), HloOpcode::kAfterAll, {}); }; auto make_outfeed = [&](XlaOp token) { return AddInstruction(std::move(instr), HloOpcode::kOutfeed, {operand, token}); }; if (sharding()) { XlaScopedShardingAssignment scoped_sharding( this, sharding_builder::AssignDevice(0)); TF_ASSIGN_OR_RETURN(token, make_token()); } else { TF_ASSIGN_OR_RETURN(token, make_token()); } if (sharding()) { OpSharding tuple_sharding = *sharding(); if (tuple_sharding.type() != OpSharding::TUPLE) { tuple_sharding = sharding_builder::Tuple({}); *tuple_sharding.add_tuple_shardings() = *sharding(); } *tuple_sharding.add_tuple_shardings() = sharding_builder::AssignDevice(0); XlaScopedShardingAssignment scoped_sharding(this, tuple_sharding); TF_RETURN_IF_ERROR(make_outfeed(token).status()); } else { TF_RETURN_IF_ERROR(make_outfeed(token).status()); } HloInstructionProto tuple_instr; *tuple_instr.mutable_shape() = ShapeUtil::MakeNil().ToProto(); { XlaScopedShardingAssignment scoped_sharding(this, std::nullopt); TF_ASSIGN_OR_RETURN( XlaOp empty_tuple, AddInstruction(std::move(tuple_instr), HloOpcode::kTuple, {})); return empty_tuple; } }); } XlaOp XlaBuilder::OutfeedWithToken(XlaOp operand, XlaOp token, const Shape& shape_with_layout, const std::string& outfeed_config) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!LayoutUtil::HasLayout(shape_with_layout)) { return InvalidArgument("Given shape to Outfeed must have a layout"); } TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (!ShapeUtil::Compatible(*operand_shape, shape_with_layout)) { return InvalidArgument( "Outfeed shape %s must be compatible with operand shape %s", ShapeUtil::HumanStringWithLayout(shape_with_layout), ShapeUtil::HumanStringWithLayout(*operand_shape)); } return OutfeedWithTokenInternal(operand, token, shape_with_layout, outfeed_config); }); } absl::StatusOr<XlaOp> XlaBuilder::OutfeedWithTokenInternal( XlaOp operand, XlaOp token, const Shape& shape_with_layout, const std::string& outfeed_config) { HloInstructionProto instr; *instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); *instr.mutable_outfeed_shape() = shape_with_layout.ToProto(); instr.set_outfeed_config(outfeed_config); return AddInstruction(std::move(instr), HloOpcode::kOutfeed, {operand, token}); } XlaOp XlaBuilder::CreateToken() { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); return AddInstruction(std::move(instr), HloOpcode::kAfterAll); }); } XlaOp XlaBuilder::AfterAll(absl::Span<const XlaOp> tokens) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { for (int i = 0, end = tokens.size(); i < end; ++i) { XlaOp operand = tokens[i]; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (!operand_shape->IsToken()) { return InvalidArgument( "All operands to AfterAll must be tokens; operand %d has shape %s", i, ShapeUtil::HumanString(*operand_shape)); } } HloInstructionProto instr; *instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); return AddInstruction(std::move(instr), HloOpcode::kAfterAll, tokens); }); } XlaOp XlaBuilder::CustomCall( const std::string& call_target_name, absl::Span<const XlaOp> operands, const Shape& shape, const std::string& opaque, std::optional<absl::Span<const Shape>> operand_shapes_with_layout, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, std::optional<Window> window, std::optional<ConvolutionDimensionNumbers> dnums, CustomCallSchedule schedule, CustomCallApiVersion api_version) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (absl::StartsWith(call_target_name, "$")) { return InvalidArgument( "Invalid custom_call_target \"%s\": Call targets that start with '$' " "are reserved for internal use.", call_target_name); } if (operand_shapes_with_layout.has_value()) { if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument( "Result shape must have layout for custom call with constrained " "layout."); } if (operands.size() != operand_shapes_with_layout->size()) { return InvalidArgument( "Must specify a shape with layout for each operand for custom call " "with constrained layout; given %d shapes, expected %d", operand_shapes_with_layout->size(), operands.size()); } int64_t operand_num = 0; for (const Shape& operand_shape : *operand_shapes_with_layout) { if (!LayoutUtil::HasLayout(operand_shape)) { return InvalidArgument( "No layout specified for operand %d for custom call with " "constrained layout.", operand_num); } ++operand_num; } } return CustomCallInternal( call_target_name, operands, nullptr, shape, opaque, operand_shapes_with_layout, has_side_effect, output_operand_aliasing, literal, window, dnums, schedule, api_version); }); } absl::StatusOr<XlaOp> XlaBuilder::CustomCallInternal( const std::string& call_target_name, absl::Span<const XlaOp> operands, const XlaComputation* computation, const Shape& shape, const std::string& opaque, std::optional<absl::Span<const Shape>> operand_shapes_with_layout, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, std::optional<Window> window, std::optional<ConvolutionDimensionNumbers> dnums, CustomCallSchedule schedule, CustomCallApiVersion api_version) { HloInstructionProto instr; if (call_target_name == "__cudnn$convForward") { instr.set_name("cudnn-conv"); } else if (call_target_name == "__cudnn$convBackwardInput") { instr.set_name("cudnn-conv-bw-input"); } else if (call_target_name == "__cudnn$convBackwardFilter") { instr.set_name("cudnn-conv-bw-filter"); } else if (call_target_name == "__cudnn$convBiasActivationForward") { instr.set_name("cudnn-conv-bias-activation"); } *instr.mutable_shape() = shape.ToProto(); instr.set_custom_call_target(call_target_name); instr.set_backend_config(opaque); if (operand_shapes_with_layout.has_value()) { instr.set_constrain_layout(true); for (const Shape& operand_shape : *operand_shapes_with_layout) { *instr.add_operand_shapes_with_layout() = operand_shape.ToProto(); } } if (literal != nullptr) { *instr.mutable_literal() = literal->ToProto(); } instr.set_custom_call_has_side_effect(has_side_effect); if (computation != nullptr && !computation->IsNull()) { AddCalledComputation(*computation, &instr); } for (const auto& pair : output_operand_aliasing) { auto aliasing = instr.add_output_operand_aliasing(); aliasing->set_operand_index(pair.second.first); for (int64_t index : pair.second.second) { aliasing->add_operand_shape_index(index); } for (int64_t index : pair.first) { aliasing->add_output_shape_index(index); } } if (window.has_value()) { *instr.mutable_window() = *window; } if (dnums.has_value()) { *instr.mutable_convolution_dimension_numbers() = *dnums; } instr.set_custom_call_schedule(schedule); instr.set_custom_call_api_version(api_version); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, operands); } XlaOp XlaBuilder::CustomCall( const std::string& call_target_name, absl::Span<const XlaOp> operands, const XlaComputation& computation, const Shape& shape, const std::string& opaque, std::optional<absl::Span<const Shape>> operand_shapes_with_layout, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, CustomCallSchedule schedule, CustomCallApiVersion api_version) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (absl::StartsWith(call_target_name, "$")) { return InvalidArgument( "Invalid custom_call_target \"%s\": Call targets that start with '$' " "are reserved for internal use.", call_target_name); } if (operand_shapes_with_layout.has_value()) { if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument( "Result shape must have layout for custom call with constrained " "layout."); } if (operands.size() != operand_shapes_with_layout->size()) { return InvalidArgument( "Must specify a shape with layout for each operand for custom call " "with constrained layout; given %d shapes, expected %d", operand_shapes_with_layout->size(), operands.size()); } int64_t operand_num = 0; for (const Shape& operand_shape : *operand_shapes_with_layout) { if (!LayoutUtil::HasLayout(operand_shape)) { return InvalidArgument( "No layout specified for operand %d for custom call with " "constrained layout.", operand_num); } ++operand_num; } } return CustomCallInternal( call_target_name, operands, &computation, shape, opaque, operand_shapes_with_layout, has_side_effect, output_operand_aliasing, literal, {}, {}, schedule, api_version); }); } XlaOp XlaBuilder::OptimizationBarrier(XlaOp operand) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); Shape shape = *operand_shape; HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kOptimizationBarrier, {operand}); }); } XlaOp XlaBuilder::Transpose(XlaOp operand, absl::Span<const int64_t> permutation) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferTransposeShape( *operand_shape, permutation)); return TransposeInternal(shape, operand, permutation); }); } absl::StatusOr<XlaOp> XlaBuilder::TransposeInternal( const Shape& shape, XlaOp operand, absl::Span<const int64_t> permutation) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int64_t dim : permutation) { instr.add_dimensions(dim); } return AddInstruction(std::move(instr), HloOpcode::kTranspose, {operand}); } XlaOp XlaBuilder::Rev(XlaOp operand, absl::Span<const int64_t> dimensions) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferReverseShape( *operand_shape, dimensions)); return RevInternal(shape, operand, dimensions); }); } absl::StatusOr<XlaOp> XlaBuilder::RevInternal( const Shape& shape, XlaOp operand, absl::Span<const int64_t> dimensions) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int64_t dim : dimensions) { instr.add_dimensions(dim); } return AddInstruction(std::move(instr), HloOpcode::kReverse, {operand}); } XlaOp XlaBuilder::Sort(absl::Span<const XlaOp> operands, const XlaComputation& comparator, int64_t dimension, bool is_stable) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(std::vector<Shape> operand_shapes, GetOperandShapes(operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferVariadicOpShape( HloOpcode::kSort, operand_shape_ptrs)); return SortInternal(shape, operands, comparator, dimension, is_stable); }); } absl::StatusOr<XlaOp> XlaBuilder::SortInternal(const Shape& shape, absl::Span<const XlaOp> operands, const XlaComputation& comparator, int64_t dimension, bool is_stable) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_is_stable(is_stable); if (dimension == -1) { TF_ASSIGN_OR_RETURN(const Shape* keys_shape, GetShapePtr(operands[0])); dimension = keys_shape->rank() - 1; } instr.add_dimensions(dimension); AddCalledComputation(comparator, &instr); return AddInstruction(std::move(instr), HloOpcode::kSort, operands); } XlaOp XlaBuilder::TopK(XlaOp operand, int64_t k, bool largest) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferTopKShape(*operand_shape, k)); return TopKInternal(shape, operand, k, largest); }); } absl::StatusOr<XlaOp> XlaBuilder::TopKInternal(const Shape& shape, XlaOp operand, int64_t k, bool largest) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_k(k); instr.set_largest(largest); return AddInstruction(std::move(instr), HloOpcode::kTopK, {operand}); } XlaOp XlaBuilder::ConvertElementType(XlaOp operand, PrimitiveType new_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferConvertShape( *operand_shape, new_element_type)); if (primitive_util::IsComplexType(operand_shape->element_type()) && !primitive_util::IsComplexType(new_element_type)) { operand = Real(operand); } return AddOpWithShape(HloOpcode::kConvert, shape, {operand}); }); } XlaOp XlaBuilder::BitcastConvertType(XlaOp operand, PrimitiveType new_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferBitcastConvertShape( *operand_shape, new_element_type)); return BitcastConvertTypeInternal(shape, operand); }); } absl::StatusOr<XlaOp> XlaBuilder::BitcastConvertTypeInternal(const Shape& shape, XlaOp operand) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), HloOpcode::kBitcastConvert, {operand}); } XlaOp XlaBuilder::StochasticConvertType(XlaOp operand, XlaOp random, PrimitiveType new_element_type) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* random_shape, GetShapePtr(random)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferStochasticConvertShape( *operand_shape, *random_shape, new_element_type)); return AddOpWithShape(HloOpcode::kStochasticConvert, shape, {operand, random}); }); } XlaOp XlaBuilder::Clamp(XlaOp min, XlaOp operand, XlaOp max) { return TernaryOp(HloOpcode::kClamp, min, operand, max); } XlaOp XlaBuilder::Map(absl::Span<const XlaOp> operands, const XlaComputation& computation, absl::Span<const int64_t> dimensions, absl::Span<const XlaOp> static_operands) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!static_operands.empty()) { return Unimplemented("static_operands is not supported in Map"); } HloInstructionProto instr; std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(const ProgramShape& called_program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferMapShape( operand_shape_ptrs, called_program_shape, dimensions)); *instr.mutable_shape() = shape.ToProto(); Shape output_shape(instr.shape()); const int64_t output_rank = output_shape.rank(); AddCalledComputation(computation, &instr); std::vector<XlaOp> new_operands(operands.begin(), operands.end()); for (XlaOp& new_operand : new_operands) { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(new_operand)); const int64_t rank = shape->rank(); if (rank != output_rank) { TF_ASSIGN_OR_RETURN(new_operand, InDimBroadcast(output_shape, new_operand, {})); TF_ASSIGN_OR_RETURN(shape, GetShapePtr(new_operand)); } if (!ShapeUtil::SameDimensions(output_shape, *shape)) { TF_ASSIGN_OR_RETURN(new_operand, AddBroadcastSequence(output_shape, new_operand)); } } return AddInstruction(std::move(instr), HloOpcode::kMap, new_operands); }); } XlaOp XlaBuilder::RngOp(RandomDistribution distribution, absl::Span<const XlaOp> parameters, const Shape& shape) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { switch (distribution) { case RandomDistribution::RNG_NORMAL: case RandomDistribution::RNG_UNIFORM: if (parameters.size() != 2) { return InvalidArgument( "RNG distribution (%s) expects 2 parameters, but got %ld", RandomDistribution_Name(distribution), parameters.size()); } break; default: LOG(FATAL) << "unhandled distribution " << distribution; } TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); return RngOpInternal(distribution, parameters, shape); }); } absl::StatusOr<XlaOp> XlaBuilder::RngOpInternal( RandomDistribution distribution, absl::Span<const XlaOp> parameters, const Shape& shape) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_distribution(distribution); return AddInstruction(std::move(instr), HloOpcode::kRng, parameters); } XlaOp XlaBuilder::RngNormal(XlaOp mu, XlaOp sigma, const Shape& shape) { return RngOp(RandomDistribution::RNG_NORMAL, {mu, sigma}, shape); } XlaOp XlaBuilder::RngUniform(XlaOp a, XlaOp b, const Shape& shape) { return RngOp(RandomDistribution::RNG_UNIFORM, {a, b}, shape); } XlaOp XlaBuilder::RngBitGenerator(RandomAlgorithm algorithm, XlaOp initial_state, const Shape& shape) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); TF_ASSIGN_OR_RETURN(Shape state_shape, GetShape(initial_state)); Shape output_shape = shape; output_shape.set_element_type(PRIMITIVE_TYPE_INVALID); if (primitive_util::IsArrayType(shape.element_type())) { output_shape.set_element_type( primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(shape.element_type()))); } if (!primitive_util::IsUnsignedIntegralType(output_shape.element_type())) { return InvalidArgument("Unsupported shape for RngBitGenerator: %s", PrimitiveType_Name(shape.element_type())); } return RngBitGeneratorInternal( ShapeUtil::MakeTupleShapeWithPtrs({&state_shape, &output_shape}), algorithm, initial_state); }); } absl::StatusOr<XlaOp> XlaBuilder::RngBitGeneratorInternal( const Shape& full_result_shape, RandomAlgorithm algorithm, XlaOp initial_state) { HloInstructionProto instr; *instr.mutable_shape() = full_result_shape.ToProto(); instr.set_rng_algorithm(algorithm); return AddInstruction(std::move(instr), HloOpcode::kRngBitGenerator, {initial_state}); } XlaOp XlaBuilder::While(const XlaComputation& condition, const XlaComputation& body, XlaOp init) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const auto& body_program_shape, body.GetProgramShape()); TF_ASSIGN_OR_RETURN(const auto& condition_program_shape, condition.GetProgramShape()); TF_ASSIGN_OR_RETURN(const Shape* init_shape, GetShapePtr(init)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferWhileShape( condition_program_shape, body_program_shape, *init_shape)); return WhileInternal(shape, condition, body, init); }); } absl::StatusOr<XlaOp> XlaBuilder::WhileInternal(const Shape& shape, const XlaComputation& condition, const XlaComputation& body, XlaOp init) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); AddCalledComputation(body, &instr); AddCalledComputation(condition, &instr); return AddInstruction(std::move(instr), HloOpcode::kWhile, {init}); } XlaOp XlaBuilder::Gather(XlaOp input, XlaOp start_indices, const GatherDimensionNumbers& dimension_numbers, absl::Span<const int64_t> slice_sizes, bool indices_are_sorted) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* input_shape, GetShapePtr(input)); TF_ASSIGN_OR_RETURN(const Shape* start_indices_shape, GetShapePtr(start_indices)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferGatherShape( *input_shape, *start_indices_shape, dimension_numbers, slice_sizes)); return GatherInternal(shape, input, start_indices, dimension_numbers, slice_sizes, indices_are_sorted); }); } absl::StatusOr<XlaOp> XlaBuilder::GatherInternal( const Shape& shape, XlaOp input, XlaOp start_indices, const GatherDimensionNumbers& dimension_numbers, absl::Span<const int64_t> slice_sizes, bool indices_are_sorted) { HloInstructionProto instr; instr.set_indices_are_sorted(indices_are_sorted); *instr.mutable_shape() = shape.ToProto(); *instr.mutable_gather_dimension_numbers() = dimension_numbers; for (int64_t bound : slice_sizes) { instr.add_gather_slice_sizes(bound); } return AddInstruction(std::move(instr), HloOpcode::kGather, {input, start_indices}); } XlaOp XlaBuilder::Scatter(XlaOp input, XlaOp scatter_indices, XlaOp updates, const XlaComputation& update_computation, const ScatterDimensionNumbers& dimension_numbers, bool indices_are_sorted, bool unique_indices) { return Scatter(absl::MakeConstSpan(&input, 1), scatter_indices, absl::MakeConstSpan(&updates, 1), update_computation, dimension_numbers, indices_are_sorted, unique_indices); } XlaOp XlaBuilder::Scatter(absl::Span<const XlaOp> inputs, XlaOp scatter_indices, absl::Span<const XlaOp> updates, const XlaComputation& update_computation, const ScatterDimensionNumbers& dimension_numbers, bool indices_are_sorted, bool unique_indices) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (inputs.empty()) { return InvalidArgument("Scatter inputs cannot be empty."); } if (inputs.size() != updates.size()) { return InvalidArgument( "Scatter should have same number of inputs and updates: %d vs %d.", inputs.size(), updates.size()); } absl::InlinedVector<const Shape*, 3> operand_shapes; operand_shapes.reserve(inputs.size() + 1 + updates.size()); for (const XlaOp& input : inputs) { TF_ASSIGN_OR_RETURN(const Shape* input_shape, GetShapePtr(input)); operand_shapes.push_back(input_shape); } TF_ASSIGN_OR_RETURN(const Shape* scatter_indices_shape, GetShapePtr(scatter_indices)); operand_shapes.push_back(scatter_indices_shape); for (const XlaOp& update : updates) { TF_ASSIGN_OR_RETURN(const Shape* update_shape, GetShapePtr(update)); operand_shapes.push_back(update_shape); } TF_ASSIGN_OR_RETURN(const ProgramShape& to_apply_shape, update_computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferScatterShape( operand_shapes, to_apply_shape, dimension_numbers)); return ScatterInternal(shape, inputs, scatter_indices, updates, update_computation, dimension_numbers, indices_are_sorted, unique_indices); }); } absl::StatusOr<XlaOp> XlaBuilder::ScatterInternal( const Shape& shape, absl::Span<const XlaOp> inputs, XlaOp scatter_indices, absl::Span<const XlaOp> updates, const XlaComputation& update_computation, const ScatterDimensionNumbers& dimension_numbers, bool indices_are_sorted, bool unique_indices) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; instr.set_indices_are_sorted(indices_are_sorted); instr.set_unique_indices(unique_indices); *instr.mutable_shape() = shape.ToProto(); *instr.mutable_scatter_dimension_numbers() = dimension_numbers; AddCalledComputation(update_computation, &instr); absl::InlinedVector<XlaOp, 3> operands; operands.reserve(inputs.size() + 1 + updates.size()); absl::c_copy(inputs, std::back_inserter(operands)); operands.push_back(scatter_indices); absl::c_copy(updates, std::back_inserter(operands)); return AddInstruction(std::move(instr), HloOpcode::kScatter, operands); }); } XlaOp XlaBuilder::Conditional(XlaOp predicate, XlaOp true_operand, const XlaComputation& true_computation, XlaOp false_operand, const XlaComputation& false_computation) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(predicate)); if (!ShapeUtil::IsScalar(*shape) || shape->element_type() != PRED) { return InvalidArgument( "Argument to predicated-Conditional is not a scalar of PRED type " "(%s).", ShapeUtil::HumanString(*shape)); } return ConditionalImpl(predicate, {&true_computation, &false_computation}, {true_operand, false_operand}); }); } XlaOp XlaBuilder::Conditional( XlaOp branch_index, absl::Span<const XlaComputation* const> branch_computations, absl::Span<const XlaOp> branch_operands) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(branch_index)); if (!ShapeUtil::IsScalar(*shape) || shape->element_type() != S32) { return InvalidArgument( "Argument to indexed-Conditional is not a scalar of S32 type (%s).", ShapeUtil::HumanString(*shape)); } return ConditionalImpl(branch_index, branch_computations, branch_operands); }); } XlaOp XlaBuilder::AllReduceImpl(XlaOp operand, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Shape>& layout, const std::optional<bool> use_global_device_ids, bool async) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<const Shape*> operand_shapes; std::vector<XlaOp> operands; if (operand_shape->IsTuple()) { if (operand_shape->tuple_shapes_size() == 0) { return Unimplemented("0 element tuple AllReduce is not supported"); } for (int i = 0; i < operand_shape->tuple_shapes_size(); ++i) { if (operand_shape->tuple_shapes(i).element_type() != operand_shape->tuple_shapes(0).element_type()) { return Unimplemented( "All the shapes of a tuple input of AllReduce must have the same " "element type"); } operand_shapes.push_back(&operand_shape->tuple_shapes(i)); operands.push_back(GetTupleElement(operand, i)); } } else { operand_shapes.push_back(operand_shape); operands.push_back(operand); } TF_ASSIGN_OR_RETURN(Shape inferred_shape, ShapeInference::InferAllReduceShape(operand_shapes)); if (layout) { if (!LayoutUtil::HasLayout(*layout)) { return InvalidArgument("shape_with_layout must have the layout set: %s", ShapeUtil::HumanString(*layout)); } if (!ShapeUtil::Compatible(*layout, *operand_shape)) { return InvalidArgument( "Provided shape_with_layout must be compatible with the " "operand shape: %s vs %s", ShapeUtil::HumanString(*layout), ShapeUtil::HumanString(*operand_shape)); } instr.set_constrain_layout(true); if (operand_shape->IsTuple() && !inferred_shape.IsTuple()) { TF_RET_CHECK(layout->tuple_shapes_size() == 1); *instr.mutable_shape() = layout->tuple_shapes(0).ToProto(); } else { *instr.mutable_shape() = layout->ToProto(); } } else { *instr.mutable_shape() = inferred_shape.ToProto(); } for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } if (use_global_device_ids.has_value()) { instr.set_use_global_device_ids(*use_global_device_ids); } AddCalledComputation(computation, &instr); TF_ASSIGN_OR_RETURN(auto all_reduce, AddInstruction(std::move(instr), async ? HloOpcode::kAllReduceStart : HloOpcode::kAllReduce, operands)); if (operand_shape->IsTuple() && !inferred_shape.IsTuple()) { TF_RET_CHECK(operand_shapes.size() == 1); TF_RET_CHECK(ShapeUtil::Compatible(*operand_shapes[0], inferred_shape)); return Tuple({all_reduce}); } return all_reduce; }); } XlaOp XlaBuilder::AllGatherImpl(const XlaOp operand, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids, bool async) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<const Shape*> operand_shapes; std::vector<XlaOp> operands; if (operand_shape->IsTuple()) { if (operand_shape->tuple_shapes_size() == 0) { return Unimplemented("0 element tuple AllGather is not supported"); } for (int i = 0; i < operand_shape->tuple_shapes_size(); ++i) { operand_shapes.push_back(&operand_shape->tuple_shapes(i)); operands.push_back(GetTupleElement(operand, i)); } } else { operand_shapes.push_back(operand_shape); operands.push_back(operand); } TF_ASSIGN_OR_RETURN(Shape inferred_shape, ShapeInference::InferAllGatherShape( operand_shapes, all_gather_dimension, shard_count)); if (layout) { *inferred_shape.mutable_layout() = *layout; instr.set_constrain_layout(true); } *instr.mutable_shape() = inferred_shape.ToProto(); instr.add_dimensions(all_gather_dimension); for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } if (use_global_device_ids.has_value()) { instr.set_use_global_device_ids(use_global_device_ids.value()); } TF_ASSIGN_OR_RETURN(auto all_gather, AddInstruction(std::move(instr), async ? HloOpcode::kAllGatherStart : HloOpcode::kAllGather, operands)); return all_gather; }); } XlaOp XlaBuilder::ConditionalImpl( XlaOp branch_index, absl::Span<const XlaComputation* const> branch_computations, absl::Span<const XlaOp> branch_operands) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* branch_index_shape, GetShapePtr(branch_index)); std::vector<Shape> branch_operand_shapes(branch_operands.size()); std::vector<ProgramShape> branch_computation_shapes( branch_computations.size()); for (int j = 0, end = branch_operands.size(); j < end; ++j) { TF_ASSIGN_OR_RETURN(branch_operand_shapes[j], GetShape(branch_operands[j])); TF_ASSIGN_OR_RETURN(branch_computation_shapes[j], branch_computations[j]->GetProgramShape()); } TF_ASSIGN_OR_RETURN(const Shape shape, ShapeInference::InferConditionalShape( *branch_index_shape, branch_computation_shapes, branch_operand_shapes)); *instr.mutable_shape() = shape.ToProto(); for (const XlaComputation* branch_computation : branch_computations) { AddCalledComputation(*branch_computation, &instr); } std::vector<XlaOp> operands(1, branch_index); for (const XlaOp branch_operand : branch_operands) { operands.emplace_back(branch_operand); } return AddInstruction(std::move(instr), HloOpcode::kConditional, absl::MakeSpan(operands)); }); } absl::Status XlaBuilder::CheckOpBuilder(XlaOp op) const { if (this != op.builder()) { return InvalidArgument( "XlaOp with handle %d is built by builder '%s', but is trying to use " "it in builder '%s'", op.handle(), op.builder()->name(), name()); } return absl::OkStatus(); } XlaOp XlaBuilder::Reduce(XlaOp operand, XlaOp init_value, const XlaComputation& computation, absl::Span<const int64_t> dimensions_to_reduce) { return Reduce(absl::Span<const XlaOp>({operand}), absl::Span<const XlaOp>({init_value}), computation, dimensions_to_reduce); } XlaOp XlaBuilder::Reduce(absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> dimensions_to_reduce) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const ProgramShape& called_program_shape, computation.GetProgramShape()); std::vector<XlaOp> all_operands; all_operands.insert(all_operands.end(), operands.begin(), operands.end()); all_operands.insert(all_operands.end(), init_values.begin(), init_values.end()); std::vector<const Shape*> operand_shape_ptrs; TF_ASSIGN_OR_RETURN(const auto& operand_shapes, GetOperandShapes(all_operands)); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferReduceShape( operand_shape_ptrs, dimensions_to_reduce, called_program_shape)); return ReduceInternal(shape, all_operands, computation, dimensions_to_reduce); }); } absl::StatusOr<XlaOp> XlaBuilder::ReduceInternal( const Shape& shape, absl::Span<const XlaOp> all_operands, const XlaComputation& computation, absl::Span<const int64_t> dimensions_to_reduce) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); for (int64_t dim : dimensions_to_reduce) { instr.add_dimensions(dim); } AddCalledComputation(computation, &instr); return AddInstruction(std::move(instr), HloOpcode::kReduce, all_operands); }); } XlaOp XlaBuilder::ReduceAll(XlaOp operand, XlaOp init_value, const XlaComputation& computation) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<int64_t> all_dimnos(operand_shape->rank()); std::iota(all_dimnos.begin(), all_dimnos.end(), 0); return Reduce(operand, init_value, computation, all_dimnos); }); } XlaOp XlaBuilder::ReduceWindow(XlaOp operand, XlaOp init_value, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding) { return ReduceWindow(absl::MakeSpan(&operand, 1), absl::MakeSpan(&init_value, 1), computation, window_dimensions, window_strides, padding); } XlaOp XlaBuilder::ReduceWindow(absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { const Shape* operand_shape = nullptr; for (const auto& operand : operands) { TF_ASSIGN_OR_RETURN(operand_shape, GetShapePtr(operand)); TF_RETURN_IF_ERROR(ValidatePaddingValues( operand_shape->dimensions(), window_dimensions, window_strides)); } CHECK(operand_shape != nullptr); std::vector<std::pair<int64_t, int64_t>> padding_values = MakePadding(operand_shape->dimensions(), window_dimensions, window_strides, padding); TF_ASSIGN_OR_RETURN(auto window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding_values, {}, {})); PaddingType padding_type = PADDING_INVALID; for (int64_t i = 0; i < operand_shape->rank(); ++i) { if (operand_shape->is_dynamic_dimension(i) && !window_util::IsTrivialWindowDimension(window.dimensions(i)) && padding == Padding::kSame) { padding_type = PADDING_SAME; } } if (padding_type == PADDING_SAME) { TF_ASSIGN_OR_RETURN( HloInstructionProto instr, ReduceWindowInternal(operands, init_values, computation, window_dimensions, window_strides, {}, {}, padding_values)); instr.set_custom_call_target("DynamicReduceWindowSamePadding"); std::vector<XlaOp> args; args.insert(args.end(), operands.begin(), operands.end()); args.insert(args.end(), init_values.begin(), init_values.end()); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, args); } return ReduceWindowWithGeneralPadding( operands, init_values, computation, window_dimensions, window_strides, {}, {}, padding_values); }); } XlaOp XlaBuilder::ReduceWindowWithGeneralPadding( absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const int64_t> base_dilations, absl::Span<const int64_t> window_dilations, absl::Span<const std::pair<int64_t, int64_t>> padding) { std::vector<const Shape*> operand_shapes, init_shapes; return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (operands.size() == 1) { const auto& operand = operands[0]; const auto& init_value = init_values[0]; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); operand_shapes.push_back(operand_shape); TF_ASSIGN_OR_RETURN(const Shape* init_shape, GetShapePtr(init_value)); init_shapes.push_back(init_shape); TF_ASSIGN_OR_RETURN(const ProgramShape& to_apply_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(auto window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding, base_dilations, window_dilations)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferReduceWindowShape( absl::MakeSpan(operand_shapes), absl::MakeSpan(init_shapes), window, to_apply_shape)); return ReduceWindowInternal(shape, operands[0], init_values[0], computation, window); } TF_ASSIGN_OR_RETURN( HloInstructionProto instr, ReduceWindowInternal(operands, init_values, computation, window_dimensions, window_strides, base_dilations, window_dilations, padding)); std::vector<XlaOp> args; args.insert(args.end(), operands.begin(), operands.end()); args.insert(args.end(), init_values.begin(), init_values.end()); return AddInstruction(std::move(instr), HloOpcode::kReduceWindow, args); }); } absl::StatusOr<HloInstructionProto> XlaBuilder::ReduceWindowInternal( absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const int64_t> base_dilations, absl::Span<const int64_t> window_dilations, absl::Span<const std::pair<int64_t, int64_t>> padding) { std::vector<const Shape*> operand_shapes, init_shapes; for (int i = 0; i < operands.size(); ++i) { const auto& operand = operands[i]; const auto& init_value = init_values[i]; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); operand_shapes.push_back(operand_shape); TF_ASSIGN_OR_RETURN(const Shape* init_shape, GetShapePtr(init_value)); init_shapes.push_back(init_shape); } TF_ASSIGN_OR_RETURN(const ProgramShape& to_apply_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(auto window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding, base_dilations, window_dilations)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferReduceWindowShape( absl::MakeSpan(operand_shapes), absl::MakeSpan(init_shapes), window, to_apply_shape)); HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_window() = std::move(window); AddCalledComputation(computation, &instr); return instr; } absl::StatusOr<XlaOp> XlaBuilder::ReduceWindowInternal( const Shape& shape, XlaOp operand, XlaOp init_value, const XlaComputation& computation, Window window) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); *instr.mutable_window() = std::move(window); AddCalledComputation(computation, &instr); return AddInstruction(std::move(instr), HloOpcode::kReduceWindow, {operand, init_value}); } XlaOp XlaBuilder::BatchNormTraining(XlaOp operand, XlaOp scale, XlaOp offset, float epsilon, int64_t feature_index) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* scale_shape, GetShapePtr(scale)); TF_ASSIGN_OR_RETURN(const Shape* offset_shape, GetShapePtr(offset)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferBatchNormTrainingShape( *operand_shape, *scale_shape, *offset_shape, feature_index)); *instr.mutable_shape() = shape.ToProto(); instr.set_epsilon(epsilon); instr.set_feature_index(feature_index); return AddInstruction(std::move(instr), HloOpcode::kBatchNormTraining, {operand, scale, offset}); }); } XlaOp XlaBuilder::BatchNormInference(XlaOp operand, XlaOp scale, XlaOp offset, XlaOp mean, XlaOp variance, float epsilon, int64_t feature_index) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* scale_shape, GetShapePtr(scale)); TF_ASSIGN_OR_RETURN(const Shape* offset_shape, GetShapePtr(offset)); TF_ASSIGN_OR_RETURN(const Shape* mean_shape, GetShapePtr(mean)); TF_ASSIGN_OR_RETURN(const Shape* variance_shape, GetShapePtr(variance)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferBatchNormInferenceShape( *operand_shape, *scale_shape, *offset_shape, *mean_shape, *variance_shape, feature_index)); *instr.mutable_shape() = shape.ToProto(); instr.set_epsilon(epsilon); instr.set_feature_index(feature_index); return AddInstruction(std::move(instr), HloOpcode::kBatchNormInference, {operand, scale, offset, mean, variance}); }); } XlaOp XlaBuilder::BatchNormGrad(XlaOp operand, XlaOp scale, XlaOp batch_mean, XlaOp batch_var, XlaOp grad_output, float epsilon, int64_t feature_index) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* scale_shape, GetShapePtr(scale)); TF_ASSIGN_OR_RETURN(const Shape* batch_mean_shape, GetShapePtr(batch_mean)); TF_ASSIGN_OR_RETURN(const Shape* batch_var_shape, GetShapePtr(batch_var)); TF_ASSIGN_OR_RETURN(const Shape* grad_output_shape, GetShapePtr(grad_output)); TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferBatchNormGradShape( *operand_shape, *scale_shape, *batch_mean_shape, *batch_var_shape, *grad_output_shape, feature_index)); *instr.mutable_shape() = shape.ToProto(); instr.set_epsilon(epsilon); instr.set_feature_index(feature_index); return AddInstruction(std::move(instr), HloOpcode::kBatchNormGrad, {operand, scale, batch_mean, batch_var, grad_output}); }); } XlaOp XlaBuilder::AllGather(XlaOp operand, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { return AllGatherImpl(operand, all_gather_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids, false); } XlaOp XlaBuilder::CrossReplicaSum( XlaOp operand, absl::Span<const ReplicaGroup> replica_groups) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* shape, GetShapePtr(operand)); const Shape* element_shape; if (shape->IsTuple()) { if (shape->tuple_shapes_size() == 0) { return Unimplemented( "0 element tuple CrossReplicaSum is not supported"); } element_shape = &shape->tuple_shapes(0); } else { element_shape = shape; } const Shape scalar_shape = ShapeUtil::MakeShape(element_shape->element_type(), {}); auto b = CreateSubBuilder("sum"); auto x = b->Parameter(0, scalar_shape, "x"); auto y = b->Parameter(1, scalar_shape, "y"); if (scalar_shape.element_type() == PRED) { Or(x, y); } else { Add(x, y); } TF_ASSIGN_OR_RETURN(auto computation, b->Build()); return AllReduce(operand, computation, replica_groups, std::nullopt); }); } XlaOp XlaBuilder::AllReduce(XlaOp operand, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Shape>& shape_with_layout, const std::optional<bool> use_global_device_ids) { return AllReduceImpl(operand, computation, replica_groups, channel_id, shape_with_layout, use_global_device_ids, false); } XlaOp XlaBuilder::ReduceScatter( XlaOp operand, const XlaComputation& computation, int64_t scatter_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<const Shape*> operand_shapes; std::vector<XlaOp> operands; if (operand_shape->IsTuple()) { if (operand_shape->tuple_shapes_size() == 0) { return Unimplemented("0 element tuple ReduceScatter is not supported"); } for (int i = 0; i < operand_shape->tuple_shapes_size(); ++i) { if (operand_shape->tuple_shapes(i).element_type() != operand_shape->tuple_shapes(0).element_type()) { return Unimplemented( "All the shapes of a tuple input of ReduceScatter must have " "the same element type"); } operand_shapes.push_back(&operand_shape->tuple_shapes(i)); operands.push_back(GetTupleElement(operand, i)); } } else { operand_shapes.push_back(operand_shape); operands.push_back(operand); } TF_ASSIGN_OR_RETURN(Shape inferred_shape, ShapeInference::InferReduceScatterShape( operand_shapes, scatter_dimension, shard_count)); if (layout) { *inferred_shape.mutable_layout() = *layout; instr.set_constrain_layout(true); } *instr.mutable_shape() = inferred_shape.ToProto(); AddCalledComputation(computation, &instr); instr.add_dimensions(scatter_dimension); for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } if (use_global_device_ids.has_value()) { instr.set_use_global_device_ids(use_global_device_ids.value()); } TF_ASSIGN_OR_RETURN( auto reduce_scatter, AddInstruction(std::move(instr), HloOpcode::kReduceScatter, operands)); return reduce_scatter; }); } XlaOp XlaBuilder::AllToAll(XlaOp operand, int64_t split_dimension, int64_t concat_dimension, int64_t split_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { if (layout.has_value()) { return AllToAllTuple(operand, split_dimension, concat_dimension, split_count, replica_groups, layout, channel_id); } return AllToAllArray(operand, split_dimension, concat_dimension, split_count, replica_groups, channel_id); } XlaOp XlaBuilder::AllToAllArray( XlaOp operand, int64_t split_dimension, int64_t concat_dimension, int64_t split_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN( const Shape all_to_all_shape, ShapeInference::InferAllToAllShape(*operand_shape, split_dimension, concat_dimension, split_count)); HloInstructionProto instr; *instr.mutable_shape() = operand_shape->ToProto(); if (replica_groups.empty()) { auto* group = instr.add_replica_groups(); for (int64_t i = 0; i < split_count; ++i) { group->add_replica_ids(i); } } else { for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } } instr.add_dimensions(split_dimension); if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } TF_ASSIGN_OR_RETURN( XlaOp all_to_all, AddInstruction(std::move(instr), HloOpcode::kAllToAll, {operand})); if (split_dimension == concat_dimension) { return all_to_all; } DimensionVector sizes; const bool is_unbounded = operand_shape->is_unbounded_dynamic(); std::vector<XlaOp> dynamic_sizes; auto GetR1DimensionSizeOrConstant = [&](XlaOp operand, int64_t dimension) -> XlaOp { if (operand_shape->is_unbounded_dynamic_dimension(dimension)) { return Reshape(GetDimensionSize(operand, dimension), {1}); } return ConstantR1<int32_t>( this, {static_cast<int32_t>(operand_shape->dimensions(dimension))}); }; XlaOp r1_split_count = ConstantR1<int32_t>(this, {static_cast<int32_t>(split_count)}); for (int64_t i = 0; i < operand_shape->rank(); ++i) { if (i != split_dimension) { sizes.push_back(operand_shape->dimensions(i)); if (is_unbounded) { dynamic_sizes.push_back(GetR1DimensionSizeOrConstant(operand, i)); } continue; } sizes.push_back(split_count); sizes.push_back(operand_shape->is_unbounded_dynamic_dimension(i) ? Shape::kUnboundedSize : operand_shape->dimensions(i) / split_count); if (is_unbounded) { dynamic_sizes.push_back(r1_split_count); dynamic_sizes.push_back( operand_shape->is_unbounded_dynamic_dimension(i) ? Div(GetR1DimensionSizeOrConstant(operand, i), r1_split_count) : ConstantR1<int32_t>(this, {static_cast<int32_t>(sizes.back())})); } } if (is_unbounded) { std::vector<bool> dynamic_dimensions; std::transform( sizes.begin(), sizes.end(), std::back_inserter(dynamic_dimensions), [](int64_t size) { return size == Shape::kUnboundedSize; }); TF_ASSIGN_OR_RETURN( const Shape shape, ShapeUtil::MakeValidatedShape(all_to_all_shape.element_type(), sizes, dynamic_dimensions)); all_to_all = MhloDynamicReshape(all_to_all, ConcatInDim(dynamic_sizes, 0), shape); } else { all_to_all = Reshape(all_to_all, sizes); } std::vector<int64_t> permutation; const auto rank = operand_shape->rank(); permutation.reserve(rank + 1); for (int64_t i = 0; i < rank; ++i) { int64_t dim_after_reshape = i >= split_dimension ? i + 1 : i; if (i == concat_dimension) { permutation.push_back(split_dimension); } permutation.push_back(dim_after_reshape); } all_to_all = Transpose(all_to_all, permutation); if (is_unbounded) { std::vector<XlaOp> new_dimensions; new_dimensions.reserve(operand_shape->rank()); for (int64_t i = 0; i < operand_shape->rank(); ++i) { new_dimensions.push_back(GetR1DimensionSizeOrConstant(operand, i)); } new_dimensions[split_dimension] = Div(new_dimensions[split_dimension], r1_split_count); new_dimensions[concat_dimension] = Mul(new_dimensions[concat_dimension], r1_split_count); return MhloDynamicReshape(all_to_all, ConcatInDim(new_dimensions, 0), all_to_all_shape); } return Reshape(all_to_all_shape, all_to_all); }); } XlaOp XlaBuilder::AllToAllTuple( absl::Span<const XlaOp> operands, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(auto operand_shapes, this->GetOperandShapes(operands)); std::vector<const Shape*> operand_shape_ptrs; operand_shape_ptrs.reserve(operand_shapes.size()); absl::c_transform(operand_shapes, std::back_inserter(operand_shape_ptrs), [](const Shape& shape) { return &shape; }); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferAllToAllTupleShape( operand_shape_ptrs)); if (layout) { TF_RET_CHECK(shape.IsTuple() && !ShapeUtil::IsNestedTuple(shape)); for (int64_t i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const int64_t layout_minor_to_major_size = layout->minor_to_major().size(); if (layout_minor_to_major_size != shape.tuple_shapes(i).rank()) { return InvalidArgument( "Provided layout must be compatible with the operands' shape. " "The layout is %s, but operand %d has shape %s.", layout->ToString(), i, ShapeUtil::HumanString(shape.tuple_shapes(i))); } *(shape.mutable_tuple_shapes(i)->mutable_layout()) = *layout; } instr.set_constrain_layout(true); } *instr.mutable_shape() = shape.ToProto(); for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } return AddInstruction(std::move(instr), HloOpcode::kAllToAll, operands); }); } XlaOp XlaBuilder::AllToAllTuple( XlaOp operand, int64_t split_dimension, int64_t concat_dimension, int64_t split_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (operand_shape->is_unbounded_dynamic() || split_dimension == Shape::kUnboundedSize || concat_dimension == Shape::kUnboundedSize || split_count == Shape::kUnboundedSize) { return InvalidArgument( "AllToAllTuple does not support unbounded dynamic shapes"); } TF_RETURN_IF_ERROR( ShapeInference::InferAllToAllShape(*operand_shape, split_dimension, concat_dimension, split_count) .status()); std::vector<XlaOp> slices; slices.reserve(split_count); const int64_t block_size = operand_shape->dimensions(split_dimension) / split_count; for (int i = 0; i < split_count; i++) { slices.push_back(SliceInDim(operand, i * block_size, (i + 1) * block_size, 1, split_dimension)); } XlaOp all_to_all = this->AllToAllTuple(slices, replica_groups, layout, channel_id); std::vector<XlaOp> received; received.reserve(split_count); for (int i = 0; i < split_count; i++) { received.push_back(this->GetTupleElement(all_to_all, i)); } return this->ConcatInDim(received, concat_dimension); }); } XlaOp XlaBuilder::CollectiveBroadcast( XlaOp operand, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id) { return CollectiveBroadcastImpl(operand, replica_groups, channel_id); } XlaOp XlaBuilder::CollectiveBroadcastImpl( XlaOp operand, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); HloInstructionProto instr; TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferCollectiveBroadcastShape({operand_shape})); *instr.mutable_shape() = shape.ToProto(); for (const ReplicaGroup& group : replica_groups) { *instr.add_replica_groups() = group; } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } return AddInstruction(std::move(instr), HloOpcode::kCollectiveBroadcast, {operand}); }); } XlaOp XlaBuilder::CollectivePermute( XlaOp operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<ChannelHandle>& channel_id) { return CollectivePermuteImpl(operand, source_target_pairs, channel_id, false); } XlaOp XlaBuilder::CollectivePermuteImpl( XlaOp operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<ChannelHandle>& channel_id, bool async) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); HloInstructionProto instr; TF_ASSIGN_OR_RETURN( Shape shape, ShapeInference::InferCollectivePermuteShape({operand_shape})); *instr.mutable_shape() = shape.ToProto(); for (const auto& pair : source_target_pairs) { auto* proto_pair = instr.add_source_target_pairs(); proto_pair->set_source(pair.first); proto_pair->set_target(pair.second); } if (channel_id.has_value()) { instr.set_channel_id(channel_id->handle()); } return AddInstruction(std::move(instr), async ? HloOpcode::kCollectivePermuteStart : HloOpcode::kCollectivePermute, {operand}); }); } XlaOp XlaBuilder::ReplicaId() { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; *instr.mutable_shape() = ShapeUtil::MakeShape(U32, {}).ToProto(); return AddInstruction(std::move(instr), HloOpcode::kReplicaId, {}); }); } XlaOp XlaBuilder::SelectAndScatter(XlaOp operand, const XlaComputation& select, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding, XlaOp source, XlaOp init_value, const XlaComputation& scatter) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); std::vector<std::pair<int64_t, int64_t>> padding_values = MakePadding(operand_shape->dimensions(), window_dimensions, window_strides, padding); TF_ASSIGN_OR_RETURN(auto window, ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding_values, {}, {})); PaddingType padding_type = PADDING_INVALID; for (int64_t i = 0; i < operand_shape->rank(); ++i) { if (operand_shape->is_dynamic_dimension(i) && !window_util::IsTrivialWindowDimension(window.dimensions(i)) && padding == Padding::kSame) { padding_type = PADDING_SAME; } } if (padding_type == PADDING_SAME) { TF_ASSIGN_OR_RETURN( HloInstructionProto instr, SelectAndScatterInternal(operand, select, window_dimensions, window_strides, padding_values, source, init_value, scatter)); instr.set_custom_call_target("DynamicSelectAndScatterSamePadding"); return AddInstruction(std::move(instr), HloOpcode::kCustomCall, {operand, source, init_value}); } return SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, padding_values, source, init_value, scatter); }); } absl::StatusOr<HloInstructionProto> XlaBuilder::SelectAndScatterInternal( XlaOp operand, const XlaComputation& select, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, XlaOp source, XlaOp init_value, const XlaComputation& scatter) { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* source_shape, GetShapePtr(source)); TF_ASSIGN_OR_RETURN(const Shape* init_shape, GetShapePtr(init_value)); TF_ASSIGN_OR_RETURN(const ProgramShape& select_shape, select.GetProgramShape()); TF_ASSIGN_OR_RETURN(const ProgramShape& scatter_shape, scatter.GetProgramShape()); TF_ASSIGN_OR_RETURN(*instr.mutable_window(), ShapeInference::InferWindowFromDimensions( window_dimensions, window_strides, padding, {}, {})); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferSelectAndScatterShape( *operand_shape, select_shape, instr.window(), *source_shape, *init_shape, scatter_shape)); *instr.mutable_shape() = shape.ToProto(); AddCalledComputation(select, &instr); AddCalledComputation(scatter, &instr); return instr; } XlaOp XlaBuilder::SelectAndScatterWithGeneralPadding( XlaOp operand, const XlaComputation& select, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, XlaOp source, XlaOp init_value, const XlaComputation& scatter) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(HloInstructionProto instr, SelectAndScatterInternal( operand, select, window_dimensions, window_strides, padding, source, init_value, scatter)); return AddInstruction(std::move(instr), HloOpcode::kSelectAndScatter, {operand, source, init_value}); }); } XlaOp XlaBuilder::ReducePrecision(XlaOp operand, const int exponent_bits, const int mantissa_bits) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferReducePrecisionShape( *operand_shape, exponent_bits, mantissa_bits)); return ReducePrecisionInternal(shape, operand, exponent_bits, mantissa_bits); }); } absl::StatusOr<XlaOp> XlaBuilder::ReducePrecisionInternal( const Shape& shape, XlaOp operand, const int exponent_bits, const int mantissa_bits) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.set_exponent_bits(exponent_bits); instr.set_mantissa_bits(mantissa_bits); return AddInstruction(std::move(instr), HloOpcode::kReducePrecision, {operand}); } void XlaBuilder::Send(XlaOp operand, const ChannelHandle& handle) { ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto token_instr; *token_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); TF_ASSIGN_OR_RETURN(XlaOp token, AddInstruction(std::move(token_instr), HloOpcode::kAfterAll, {})); return SendWithToken(operand, token, handle); }); } XlaOp XlaBuilder::SendWithToken(XlaOp operand, XlaOp token, const ChannelHandle& handle) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (handle.type() != ChannelHandle::DEVICE_TO_DEVICE) { return InvalidArgument("Send must use a device-to-device channel"); } XlaOp send_op = internal::XlaBuilderFriend::BuildSend(this, operand, token, handle, false); return internal::XlaBuilderFriend::BuildSendDone(this, send_op, handle, false); }); } XlaOp XlaBuilder::Recv(const Shape& shape, const ChannelHandle& handle) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto token_instr; *token_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); TF_ASSIGN_OR_RETURN(XlaOp token, AddInstruction(std::move(token_instr), HloOpcode::kAfterAll, {})); XlaOp recv = RecvWithToken(token, shape, handle); HloInstructionProto recv_data; *recv_data.mutable_shape() = shape.ToProto(); recv_data.set_tuple_index(0); return AddInstruction(std::move(recv_data), HloOpcode::kGetTupleElement, {recv}); }); } XlaOp XlaBuilder::RecvWithToken(XlaOp token, const Shape& shape, const ChannelHandle& handle) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (handle.type() != ChannelHandle::DEVICE_TO_DEVICE) { return InvalidArgument("Recv must use a device-to-device channel"); } XlaOp recv_op = internal::XlaBuilderFriend::BuildRecv(this, token, shape, handle, false); return internal::XlaBuilderFriend::BuildRecvDone(this, recv_op, shape, handle, false); }); } XlaOp XlaBuilder::SendToHost(XlaOp operand, XlaOp token, const Shape& shape_with_layout, const ChannelHandle& handle) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!LayoutUtil::HasLayout(shape_with_layout)) { return InvalidArgument("Shape passed to SendToHost must have a layout"); } TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); if (!ShapeUtil::Compatible(*operand_shape, shape_with_layout)) { return InvalidArgument( "SendToHost shape %s must be compatible with operand shape %s", ShapeUtil::HumanStringWithLayout(shape_with_layout), ShapeUtil::HumanStringWithLayout(*operand_shape)); } if (!operand_shape->IsArray()) { return InvalidArgument("SendToHost only supports array shapes, shape: %s", ShapeUtil::HumanString(*operand_shape)); } if (handle.type() != ChannelHandle::DEVICE_TO_HOST) { return InvalidArgument("SendToHost must use a device-to-host channel"); } HloInstructionProto send_instr; *send_instr.mutable_shape() = ShapeUtil::MakeTupleShape({shape_with_layout, ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeTokenShape()}) .ToProto(); send_instr.set_channel_id(handle.handle()); send_instr.set_is_host_transfer(true); TF_ASSIGN_OR_RETURN(XlaOp send, AddInstruction(std::move(send_instr), HloOpcode::kSend, {operand, token})); HloInstructionProto send_done_instr; *send_done_instr.mutable_shape() = ShapeUtil::MakeTokenShape().ToProto(); send_done_instr.set_channel_id(handle.handle()); send_done_instr.set_is_host_transfer(true); TF_ASSIGN_OR_RETURN(XlaOp send_done, AddInstruction(std::move(send_done_instr), HloOpcode::kSendDone, {send})); return send_done; }); } XlaOp XlaBuilder::RecvFromHost(XlaOp token, const Shape& shape, const ChannelHandle& handle) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument("Shape passed to RecvFromHost must have a layout"); } if (!shape.IsArray()) { return InvalidArgument( "RecvFromHost only supports array shapes, shape: %s", ShapeUtil::HumanString(shape)); } if (handle.type() != ChannelHandle::HOST_TO_DEVICE) { return InvalidArgument("RecvFromHost must use a host-to-device channel"); } HloInstructionProto recv_instr; *recv_instr.mutable_shape() = ShapeUtil::MakeTupleShape( {shape, ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeTokenShape()}) .ToProto(); recv_instr.set_channel_id(handle.handle()); recv_instr.set_is_host_transfer(true); TF_ASSIGN_OR_RETURN(XlaOp recv, AddInstruction(std::move(recv_instr), HloOpcode::kRecv, {token})); HloInstructionProto recv_done_instr; *recv_done_instr.mutable_shape() = ShapeUtil::MakeTupleShape({shape, ShapeUtil::MakeTokenShape()}) .ToProto(); recv_done_instr.set_channel_id(handle.handle()); recv_done_instr.set_is_host_transfer(true); return AddInstruction(std::move(recv_done_instr), HloOpcode::kRecvDone, {recv}); }); } XlaOp XlaBuilder::GetDimensionSize(XlaOp operand, int64_t dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { HloInstructionProto instr; TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferGetDimensionSizeShape( *operand_shape, dimension)); if (operand_shape->is_static_dimension(dimension)) { return ConstantR0<int32_t>(this, operand_shape->dimensions(dimension)); } *instr.mutable_shape() = shape.ToProto(); instr.add_dimensions(dimension); return AddInstruction(std::move(instr), HloOpcode::kGetDimensionSize, {operand}); }); } XlaOp XlaBuilder::RemoveDynamicDimension(XlaOp operand, int64_t dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); Shape shape = *operand_shape; shape.set_dynamic_dimension(dimension, false); XlaOp static_size = ConstantR0<int32_t>(this, operand_shape->dimensions(dimension)); return SetDimensionSizeInternal(shape, operand, static_size, dimension); }); } XlaOp XlaBuilder::SetDimensionSize(XlaOp operand, XlaOp val, int64_t dimension) { return ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* operand_shape, GetShapePtr(operand)); TF_ASSIGN_OR_RETURN(const Shape* val_shape, GetShapePtr(val)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferSetDimensionSizeShape( *operand_shape, *val_shape, dimension)); return SetDimensionSizeInternal(shape, operand, val, dimension); }); } absl::StatusOr<XlaOp> XlaBuilder::SetDimensionSizeInternal(const Shape& shape, XlaOp operand, XlaOp val, int64_t dimension) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); instr.add_dimensions(dimension); return AddInstruction(std::move(instr), HloOpcode::kSetDimensionSize, {operand, val}); } absl::StatusOr<bool> XlaBuilder::IsConstant(XlaOp operand) const { TF_RETURN_IF_ERROR(first_error_); TF_RETURN_IF_ERROR(LookUpInstruction(operand).status()); bool is_constant = true; absl::flat_hash_set<int64_t> visited; IsConstantVisitor(operand.handle(), 0, &visited, &is_constant); return is_constant; } absl::StatusOr<XlaComputation> XlaBuilder::BuildConstantSubGraph( XlaOp root_op, bool dynamic_dimension_is_minus_one) { TF_ASSIGN_OR_RETURN(bool is_constant, IsConstant(root_op)); if (!is_constant) { auto op_status = LookUpInstruction(root_op); std::string op_string = op_status.ok() ? op_status.value()->name() : "<unknown operation>"; return InvalidArgument( "Operand to BuildConstantSubGraph depends on a parameter.\n\n" " op requested for constant subgraph: %s\n\n" "This is an internal error that typically happens when the XLA user " "(e.g. TensorFlow) is attempting to determine a value that must be a " "compile-time constant (e.g. an array dimension) but it is not capable " "of being evaluated at XLA compile time.\n\n" "Please file a usability bug with the framework being used (e.g. " "TensorFlow).", op_string); } TF_ASSIGN_OR_RETURN(const HloInstructionProto* root, LookUpInstruction(root_op)); if (VLOG_IS_ON(4)) { VLOG(4) << "Build constant subgraph for:\n" << OpToString(root_op); } HloComputationProto entry; SetProtoIdAndName(&entry, StrCat(name_, "_compute_constant"), kNameSeparator, GetNextId()); ProgramShapeProto* program_shape = entry.mutable_program_shape(); *program_shape->mutable_result() = root->shape(); std::set<int64_t> related_ops; absl::flat_hash_map<int64_t, int64_t> substitutions; absl::flat_hash_set<int64_t> related_calls; std::queue<int64_t> worklist; worklist.push(root->id()); related_ops.insert(root->id()); while (!worklist.empty()) { int64_t handle = worklist.front(); worklist.pop(); TF_ASSIGN_OR_RETURN(const HloInstructionProto* instr_proto, LookUpInstructionByHandle(handle)); auto default_behavior = [&related_ops, &worklist, &related_calls, instr_proto]() { for (int64_t id : instr_proto->operand_ids()) { if (related_ops.insert(id).second) { worklist.push(id); } } for (int64_t called_id : instr_proto->called_computation_ids()) { related_calls.insert(called_id); } }; if (instr_proto->opcode() == HloOpcodeString(HloOpcode::kGetDimensionSize) || InstrIsSetBound(instr_proto)) { int32_t constant_value = -1; HloInstructionProto const_instr; if (instr_proto->opcode() == HloOpcodeString(HloOpcode::kGetDimensionSize)) { int64_t dimension = instr_proto->dimensions(0); int64_t operand_handle = instr_proto->operand_ids(0); TF_ASSIGN_OR_RETURN(const HloInstructionProto* operand_proto, LookUpInstructionByHandle(operand_handle)); if (!(operand_proto->shape().is_dynamic_dimension(dimension) && dynamic_dimension_is_minus_one)) { constant_value = static_cast<int32_t>( operand_proto->shape().dimensions(dimension)); } Literal literal = LiteralUtil::CreateR0(constant_value); *const_instr.mutable_literal() = literal.ToProto(); *const_instr.mutable_shape() = literal.shape().ToProto(); } else { if (instr_proto->literal().shape().element_type() == TUPLE) { *const_instr.mutable_literal() = instr_proto->literal().tuple_literals(0); } else { *const_instr.mutable_literal() = instr_proto->literal(); } *const_instr.mutable_shape() = instr_proto->shape(); } *const_instr.mutable_opcode() = std::string(HloOpcodeString(HloOpcode::kConstant)); const_instr.set_id(handle); *const_instr.mutable_name() = GetFullName(const_instr.opcode(), kNameSeparator, const_instr.id()); *entry.add_instructions() = const_instr; } else if (instr_proto->opcode() == HloOpcodeString(HloOpcode::kGetTupleElement)) { TF_ASSIGN_OR_RETURN( const HloInstructionProto* maybe_tuple_instr, LookUpInstructionByHandle(instr_proto->operand_ids(0))); if (maybe_tuple_instr->opcode() == HloOpcodeString(HloOpcode::kTuple)) { int64_t id = maybe_tuple_instr->operand_ids(instr_proto->tuple_index()); if (related_ops.insert(id).second) { worklist.push(id); } substitutions[handle] = id; } else { default_behavior(); } } else { default_behavior(); } } int64_t root_id = root->id(); auto it = substitutions.find(root_id); while (it != substitutions.end()) { root_id = it->second; it = substitutions.find(root_id); } entry.set_root_id(root_id); for (int64_t id : related_ops) { if (substitutions.find(id) != substitutions.end()) { continue; } TF_ASSIGN_OR_RETURN(const HloInstructionProto* instr_src, LookUpInstructionByHandle(id)); if (instr_src->opcode() == HloOpcodeString(HloOpcode::kGetDimensionSize) || InstrIsSetBound(instr_src)) { continue; } HloInstructionProto* instr = entry.add_instructions(); *instr = *instr_src; instr->clear_operand_ids(); for (int64_t operand_id : instr_src->operand_ids()) { auto it = substitutions.find(operand_id); while (it != substitutions.end()) { operand_id = it->second; it = substitutions.find(operand_id); } instr->add_operand_ids(operand_id); } const std::string& new_name = StrCat(instr->name(), ".", entry.id(), ".", instr->id()); instr->set_name(new_name); } XlaComputation computation(entry.id()); HloModuleProto* module = computation.mutable_proto(); module->set_name(entry.name()); module->set_id(entry.id()); module->set_entry_computation_name(entry.name()); module->set_entry_computation_id(entry.id()); *module->mutable_host_program_shape() = *program_shape; for (auto& e : embedded_) { if (related_calls.find(e.second.id()) != related_calls.end()) { *module->add_computations() = e.second; } } *module->add_computations() = std::move(entry); if (VLOG_IS_ON(4)) { VLOG(4) << "Constant computation:\n" << module->DebugString(); } return std::move(computation); } std::unique_ptr<XlaBuilder> XlaBuilder::CreateSubBuilder( const std::string& computation_name) { auto sub_builder = std::make_unique<XlaBuilder>(computation_name); sub_builder->parent_builder_ = this; sub_builder->die_immediately_on_error_ = this->die_immediately_on_error_; return sub_builder; } ConvolutionDimensionNumbers XlaBuilder::CreateDefaultConvDimensionNumbers(int num_spatial_dims) { ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(kConvBatchDimension); dimension_numbers.set_input_feature_dimension(kConvFeatureDimension); dimension_numbers.set_output_batch_dimension(kConvBatchDimension); dimension_numbers.set_output_feature_dimension(kConvFeatureDimension); dimension_numbers.set_kernel_output_feature_dimension( kConvKernelOutputDimension); dimension_numbers.set_kernel_input_feature_dimension( kConvKernelInputDimension); for (int i = 0; i < num_spatial_dims; ++i) { dimension_numbers.add_input_spatial_dimensions(i + 2); dimension_numbers.add_kernel_spatial_dimensions(i + 2); dimension_numbers.add_output_spatial_dimensions(i + 2); } return dimension_numbers; } absl::Status XlaBuilder::Validate( const ConvolutionDimensionNumbers& dnum) { if (dnum.input_spatial_dimensions_size() < 2) { return FailedPrecondition("input spacial dimension < 2: %d", dnum.input_spatial_dimensions_size()); } if (dnum.kernel_spatial_dimensions_size() < 2) { return FailedPrecondition("kernel spacial dimension < 2: %d", dnum.kernel_spatial_dimensions_size()); } if (dnum.output_spatial_dimensions_size() < 2) { return FailedPrecondition("output spacial dimension < 2: %d", dnum.output_spatial_dimensions_size()); } if (std::set<int64_t>( {dnum.input_batch_dimension(), dnum.input_feature_dimension(), dnum.input_spatial_dimensions(0), dnum.input_spatial_dimensions(1)}) .size() != 4) { return FailedPrecondition( "dimension numbers for the input are not unique: (%d, %d, %d, " "%d)", dnum.input_batch_dimension(), dnum.input_feature_dimension(), dnum.input_spatial_dimensions(0), dnum.input_spatial_dimensions(1)); } if (std::set<int64_t>({dnum.kernel_output_feature_dimension(), dnum.kernel_input_feature_dimension(), dnum.kernel_spatial_dimensions(0), dnum.kernel_spatial_dimensions(1)}) .size() != 4) { return FailedPrecondition( "dimension numbers for the weight are not unique: (%d, %d, %d, " "%d)", dnum.kernel_output_feature_dimension(), dnum.kernel_input_feature_dimension(), dnum.kernel_spatial_dimensions(0), dnum.kernel_spatial_dimensions(1)); } if (std::set<int64_t>({dnum.output_batch_dimension(), dnum.output_feature_dimension(), dnum.output_spatial_dimensions(0), dnum.output_spatial_dimensions(1)}) .size() != 4) { return FailedPrecondition( "dimension numbers for the output are not unique: (%d, %d, %d, " "%d)", dnum.output_batch_dimension(), dnum.output_feature_dimension(), dnum.output_spatial_dimensions(0), dnum.output_spatial_dimensions(1)); } return absl::OkStatus(); } absl::StatusOr<XlaOp> XlaBuilder::AddInstruction( HloInstructionProto&& instr, HloOpcode opcode, absl::Span<const XlaOp> operands) { TF_RETURN_IF_ERROR(first_error_); const int64_t handle = GetNextId(); instr.set_id(handle); *instr.mutable_opcode() = std::string(HloOpcodeString(opcode)); if (instr.name().empty()) { instr.set_name(instr.opcode()); } for (const auto& operand : operands) { if (operand.builder_ == nullptr) { return InvalidArgument("invalid XlaOp with handle %d", operand.handle()); } if (operand.builder_ != this) { return InvalidArgument("Do not add XlaOp from builder %s to builder %s", operand.builder_->name(), this->name()); } instr.add_operand_ids(operand.handle()); } if (one_shot_metadata_.has_value()) { *instr.mutable_metadata() = one_shot_metadata_.value(); one_shot_metadata_.reset(); } else { *instr.mutable_metadata() = metadata_; } if (sharding_) { TF_RETURN_IF_ERROR(NormalizeAndAssignSharing(&instr, *sharding_)); } *instr.mutable_frontend_attributes() = frontend_attributes_; handle_to_index_[handle] = instructions_.size(); instructions_.push_back(std::move(instr)); instruction_shapes_.push_back( std::make_unique<Shape>(instructions_.back().shape())); XlaOp op(handle, this); return op; } absl::StatusOr<XlaOp> XlaBuilder::AddOpWithShape( HloOpcode opcode, const Shape& shape, absl::Span<const XlaOp> operands) { HloInstructionProto instr; *instr.mutable_shape() = shape.ToProto(); return AddInstruction(std::move(instr), opcode, operands); } void XlaBuilder::AddCalledComputation(const XlaComputation& computation, HloInstructionProto* instr) { absl::flat_hash_map<int64_t, int64_t> remapped_ids; std::vector<HloComputationProto> imported_computations; imported_computations.reserve(computation.proto().computations_size()); for (const HloComputationProto& e : computation.proto().computations()) { HloComputationProto new_computation(e); int64_t computation_id = GetNextId(); remapped_ids[new_computation.id()] = computation_id; SetProtoIdAndName(&new_computation, GetBaseName(new_computation.name(), kNameSeparator), kNameSeparator, computation_id); for (auto& instruction : *new_computation.mutable_instructions()) { int64_t instruction_id = GetNextId(); remapped_ids[instruction.id()] = instruction_id; SetProtoIdAndName(&instruction, GetBaseName(instruction.name(), kNameSeparator), kNameSeparator, instruction_id); } new_computation.set_root_id(remapped_ids.at(new_computation.root_id())); imported_computations.push_back(std::move(new_computation)); } instr->add_called_computation_ids( remapped_ids.at(computation.proto().entry_computation_id())); for (auto& imported_computation : imported_computations) { for (auto& instruction : *imported_computation.mutable_instructions()) { for (auto& operand_id : *instruction.mutable_operand_ids()) { operand_id = remapped_ids.at(operand_id); } for (auto& control_predecessor_id : *instruction.mutable_control_predecessor_ids()) { control_predecessor_id = remapped_ids.at(control_predecessor_id); } for (auto& called_computation_id : *instruction.mutable_called_computation_ids()) { called_computation_id = remapped_ids.at(called_computation_id); } } int64_t computation_id = imported_computation.id(); for (int64_t i = 0; i < imported_computation.instructions_size(); ++i) { ImportedInstruction imported_instruction; imported_instruction.computation_id = computation_id; imported_instruction.instruction_index = i; handle_to_imported_index_.insert( {imported_computation.instructions(i).id(), imported_instruction}); } embedded_.insert({computation_id, std::move(imported_computation)}); } } absl::StatusOr<const HloInstructionProto*> XlaBuilder::LookUpInstruction( const XlaOp op) const { TF_RETURN_IF_ERROR(first_error_); return LookUpInstructionInternal<const HloInstructionProto*>(op); } absl::StatusOr<const HloInstructionProto*> XlaBuilder::LookUpInstructionByHandle(int64_t handle) const { return LookUpInstructionByHandleInternal<const HloInstructionProto*>(handle); } absl::StatusOr<HloInstructionProto*> XlaBuilder::LookUpMutableInstruction( const XlaOp op) { TF_RETURN_IF_ERROR(first_error_); return LookUpInstructionInternal<HloInstructionProto*>(op); } absl::StatusOr<HloInstructionProto*> XlaBuilder::LookUpMutableInstructionByHandle(int64_t handle) { return LookUpInstructionByHandleInternal<HloInstructionProto*>(handle); } XlaOp Parameter(XlaBuilder* builder, int64_t parameter_number, const Shape& shape, const std::string& name) { std::vector<bool> empty_bools; return Parameter(builder, parameter_number, shape, name, empty_bools); } XlaOp Parameter(XlaBuilder* builder, int64_t parameter_number, const Shape& shape, const std::string& name, const std::vector<bool>& replicated_at_leaf_buffers) { return builder->Parameter(parameter_number, shape, name, replicated_at_leaf_buffers); } XlaOp ConstantLiteral(XlaBuilder* builder, const LiteralSlice& literal) { return builder->ConstantLiteral(literal); } XlaOp Broadcast(const XlaOp operand, absl::Span<const int64_t> broadcast_sizes) { return operand.builder()->Broadcast(operand, broadcast_sizes); } XlaOp BroadcastInDim(const XlaOp operand, absl::Span<const int64_t> out_dim_size, absl::Span<const int64_t> broadcast_dimensions) { return operand.builder()->BroadcastInDim(operand, out_dim_size, broadcast_dimensions); } XlaOp MhloDynamicReshape(const XlaOp operand, const XlaOp output_shape, const Shape& shape) { return operand.builder()->MhloDynamicReshape(operand, output_shape, shape); } XlaOp MhloDynamicBroadcastInDim(const XlaOp operand, const XlaOp output_dimensions, absl::Span<const int64_t> broadcast_dimensions, const Shape& output_shape) { return operand.builder()->MhloDynamicBroadcastInDim( operand, output_dimensions, broadcast_dimensions, output_shape); } XlaOp Copy(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kCopy, operand); } XlaOp Pad(const XlaOp operand, const XlaOp padding_value, const PaddingConfig& padding_config) { return operand.builder()->Pad(operand, padding_value, padding_config); } XlaOp PadInDim(XlaOp operand, XlaOp padding_value, int64_t dimno, int64_t pad_lo, int64_t pad_hi) { return operand.builder()->PadInDim(operand, padding_value, dimno, pad_lo, pad_hi); } XlaOp Reshape(const XlaOp operand, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> new_sizes) { return operand.builder()->Reshape(operand, dimensions, new_sizes); } XlaOp Reshape(const XlaOp operand, absl::Span<const int64_t> new_sizes) { return operand.builder()->Reshape(operand, new_sizes); } XlaOp Reshape(const Shape& shape, XlaOp operand) { return operand.builder()->Reshape(shape, operand); } XlaOp DynamicReshape(XlaOp operand, absl::Span<const XlaOp> dim_sizes, absl::Span<const int64_t> new_size_bounds, const std::vector<bool>& dims_are_dynamic) { return operand.builder()->DynamicReshape(operand, dim_sizes, new_size_bounds, dims_are_dynamic); } XlaOp ReshapeWithInferredDimension(XlaOp operand, absl::Span<const int64_t> new_sizes, int64_t inferred_dimension) { return operand.builder()->Reshape(operand, new_sizes, inferred_dimension); } XlaOp Collapse(const XlaOp operand, absl::Span<const int64_t> dimensions) { return operand.builder()->Collapse(operand, dimensions); } XlaOp Slice(const XlaOp operand, absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices, absl::Span<const int64_t> strides) { return operand.builder()->Slice(operand, start_indices, limit_indices, strides); } XlaOp SliceInDim(const XlaOp operand, int64_t start_index, int64_t limit_index, int64_t stride, int64_t dimno) { return operand.builder()->SliceInDim(operand, start_index, limit_index, stride, dimno); } XlaOp DynamicSlice(const XlaOp operand, absl::Span<const XlaOp> start_indices, absl::Span<const int64_t> slice_sizes) { return operand.builder()->DynamicSlice(operand, start_indices, slice_sizes); } XlaOp DynamicUpdateSlice(const XlaOp operand, const XlaOp update, absl::Span<const XlaOp> start_indices) { return operand.builder()->DynamicUpdateSlice(operand, update, start_indices); } XlaOp ConcatInDim(XlaBuilder* builder, absl::Span<const XlaOp> operands, int64_t dimension) { return builder->ConcatInDim(operands, dimension); } XlaOp Select(const XlaOp pred, const XlaOp on_true, const XlaOp on_false) { return pred.builder()->Select(pred, on_true, on_false); } XlaOp Tuple(XlaBuilder* builder, absl::Span<const XlaOp> elements) { return builder->Tuple(elements); } XlaOp GetTupleElement(const XlaOp tuple_data, int64_t index) { return tuple_data.builder()->GetTupleElement(tuple_data, index); } XlaOp Eq(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kEq); } static XlaOp CompareTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions, ComparisonDirection comparison_direction) { auto b = lhs.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(auto operand_shape, b->GetShape(lhs)); auto operand_element_type = operand_shape.element_type(); auto compare_type = primitive_util::IsFloatingPointType(operand_element_type) ? Comparison::Type::kFloatTotalOrder : Comparison::DefaultComparisonType(operand_element_type); return Compare(lhs, rhs, broadcast_dimensions, comparison_direction, compare_type); }); } XlaOp EqTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kEq); } XlaOp Ne(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kNe); } XlaOp NeTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kNe); } XlaOp Ge(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kGe); } XlaOp GeTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kGe); } XlaOp Gt(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kGt); } XlaOp GtTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kGt); } XlaOp Le(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kLe); } XlaOp LeTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kLe); } XlaOp Lt(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return Compare(lhs, rhs, broadcast_dimensions, ComparisonDirection::kLt); } XlaOp LtTotalOrder(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return CompareTotalOrder(lhs, rhs, broadcast_dimensions, ComparisonDirection::kLt); } XlaOp Compare(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions, ComparisonDirection direction) { return lhs.builder()->BinaryOp(HloOpcode::kCompare, lhs, rhs, broadcast_dimensions, direction); } XlaOp Compare(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions, ComparisonDirection direction, Comparison::Type compare_type) { return lhs.builder()->BinaryOp(HloOpcode::kCompare, lhs, rhs, broadcast_dimensions, direction, compare_type); } XlaOp Compare(const XlaOp lhs, const XlaOp rhs, ComparisonDirection direction) { return Compare(lhs, rhs, {}, direction); } XlaOp Dot(const XlaOp lhs, const XlaOp rhs, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->Dot(lhs, rhs, precision_config, preferred_element_type); } XlaOp DotGeneral(const XlaOp lhs, const XlaOp rhs, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->DotGeneral(lhs, rhs, dimension_numbers, precision_config, preferred_element_type); } XlaOp SparseDot(const XlaOp lhs, const XlaOp rhs, absl::Span<const XlaOp> sparse_meta, absl::Span<const SparsityDescriptor> sparsity, const DotDimensionNumbers& dimension_numbers, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->SparseDot(lhs, rhs, sparse_meta, sparsity, dimension_numbers, precision_config, preferred_element_type); } XlaOp Conv(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->Conv(lhs, rhs, window_strides, padding, feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp ConvWithGeneralPadding( const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->ConvWithGeneralPadding( lhs, rhs, window_strides, padding, feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp ConvWithGeneralDimensions( const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, Padding padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->ConvWithGeneralDimensions( lhs, rhs, window_strides, padding, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp ConvGeneral(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->ConvGeneral( lhs, rhs, window_strides, padding, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type); } XlaOp ConvGeneralDilated(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, std::optional<PrimitiveType> preferred_element_type, std::optional<std::vector<bool>> window_reversal) { return lhs.builder()->ConvGeneralDilated( lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, preferred_element_type, window_reversal); } XlaOp DynamicConvInputGrad( XlaOp input_sizes, const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->DynamicConvInputGrad( input_sizes, lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type); } XlaOp DynamicConvKernelGrad( XlaOp activations, XlaOp gradients, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return activations.builder()->DynamicConvKernelGrad( activations, gradients, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type); } XlaOp DynamicConvForward(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, absl::Span<const int64_t> lhs_dilation, absl::Span<const int64_t> rhs_dilation, const ConvolutionDimensionNumbers& dimension_numbers, int64_t feature_group_count, int64_t batch_group_count, const PrecisionConfig* precision_config, PaddingType padding_type, std::optional<PrimitiveType> preferred_element_type) { return lhs.builder()->DynamicConvForward( lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config, padding_type, preferred_element_type); } XlaOp Fft(const XlaOp operand, FftType fft_type, absl::Span<const int64_t> fft_length) { return operand.builder()->Fft(operand, fft_type, fft_length); } XlaOp TriangularSolve(XlaOp a, XlaOp b, bool left_side, bool lower, bool unit_diagonal, TriangularSolveOptions::Transpose transpose_a) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* a_shape, builder->GetShapePtr(a)); TF_ASSIGN_OR_RETURN(const Shape* b_shape, builder->GetShapePtr(b)); TriangularSolveOptions options; options.set_left_side(left_side); options.set_lower(lower); options.set_unit_diagonal(unit_diagonal); options.set_transpose_a(transpose_a); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferTriangularSolveShape( *a_shape, *b_shape, options)); return builder->TriangularSolveInternal(shape, a, b, std::move(options)); }); } XlaOp Cholesky(XlaOp a, bool lower) { XlaBuilder* builder = a.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(const Shape* a_shape, builder->GetShapePtr(a)); TF_ASSIGN_OR_RETURN(Shape shape, ShapeInference::InferCholeskyShape(*a_shape)); return builder->CholeskyInternal(shape, a, lower); }); } XlaOp Infeed(XlaBuilder* builder, const Shape& shape, const std::string& config) { return builder->Infeed(shape, config); } void Outfeed(const XlaOp operand, const Shape& shape_with_layout, const std::string& outfeed_config) { return operand.builder()->Outfeed(operand, shape_with_layout, outfeed_config); } XlaOp Call(XlaBuilder* builder, const XlaComputation& computation, absl::Span<const XlaOp> operands) { return builder->Call(computation, operands); } XlaOp CompositeCall(XlaBuilder* builder, const XlaComputation& computation, absl::Span<const XlaOp> operands, const std::string& name, std::optional<absl::string_view> attributes, std::optional<int64_t> version) { return builder->CompositeCall(computation, operands, name, attributes, version); } XlaOp CustomCall( XlaBuilder* builder, const std::string& call_target_name, absl::Span<const XlaOp> operands, const Shape& shape, const std::string& opaque, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, CustomCallSchedule schedule, CustomCallApiVersion api_version) { return builder->CustomCall(call_target_name, operands, shape, opaque, std::nullopt, has_side_effect, output_operand_aliasing, literal, std::nullopt, std::nullopt, schedule, api_version); } XlaOp CustomCallWithComputation( XlaBuilder* builder, const std::string& call_target_name, absl::Span<const XlaOp> operands, const XlaComputation& computation, const Shape& shape, const std::string& opaque, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, CustomCallSchedule schedule, CustomCallApiVersion api_version) { return builder->CustomCall( call_target_name, operands, computation, shape, opaque, std::nullopt, has_side_effect, output_operand_aliasing, literal, schedule, api_version); } XlaOp CustomCallWithLayout( XlaBuilder* builder, const std::string& call_target_name, absl::Span<const XlaOp> operands, const Shape& shape, absl::Span<const Shape> operand_shapes_with_layout, const std::string& opaque, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, CustomCallSchedule schedule, CustomCallApiVersion api_version) { return builder->CustomCall( call_target_name, operands, shape, opaque, operand_shapes_with_layout, has_side_effect, output_operand_aliasing, literal, std::nullopt, std::nullopt, schedule, api_version); } XlaOp CustomCallWithConvDnums( XlaBuilder* builder, const std::string& call_target_name, absl::Span<const XlaOp> operands, const Shape& shape, absl::Span<const Shape> operand_shapes_with_layout, const std::string& opaque, bool has_side_effect, absl::Span<const std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>> output_operand_aliasing, const Literal* literal, Window window, ConvolutionDimensionNumbers dnums, CustomCallSchedule schedule, CustomCallApiVersion api_version) { std::optional<absl::Span<const Shape>> maybe_operand_shapes; if (!operand_shapes_with_layout.empty()) { maybe_operand_shapes = operand_shapes_with_layout; } return builder->CustomCall(call_target_name, operands, shape, opaque, maybe_operand_shapes, has_side_effect, output_operand_aliasing, literal, window, dnums, schedule, api_version); } XlaOp OptimizationBarrier(XlaOp operand) { return operand.builder()->OptimizationBarrier(operand); } XlaOp Complex(const XlaOp real, const XlaOp imag, absl::Span<const int64_t> broadcast_dimensions) { return real.builder()->BinaryOp(HloOpcode::kComplex, real, imag, broadcast_dimensions); } XlaOp Conj(const XlaOp operand) { return Complex(Real(operand), Neg(Imag(operand))); } XlaOp Add(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kAdd, lhs, rhs, broadcast_dimensions); } XlaOp Sub(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kSubtract, lhs, rhs, broadcast_dimensions); } XlaOp Mul(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kMultiply, lhs, rhs, broadcast_dimensions); } XlaOp Div(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kDivide, lhs, rhs, broadcast_dimensions); } XlaOp Rem(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kRemainder, lhs, rhs, broadcast_dimensions); } XlaOp Max(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kMaximum, lhs, rhs, broadcast_dimensions); } XlaOp Min(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kMinimum, lhs, rhs, broadcast_dimensions); } XlaOp And(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kAnd, lhs, rhs, broadcast_dimensions); } XlaOp Or(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kOr, lhs, rhs, broadcast_dimensions); } XlaOp Xor(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kXor, lhs, rhs, broadcast_dimensions); } XlaOp Not(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kNot, operand); } XlaOp PopulationCount(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kPopulationCount, operand); } XlaOp ShiftLeft(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kShiftLeft, lhs, rhs, broadcast_dimensions); } XlaOp ShiftRightArithmetic(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kShiftRightArithmetic, lhs, rhs, broadcast_dimensions); } XlaOp ShiftRightLogical(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kShiftRightLogical, lhs, rhs, broadcast_dimensions); } XlaOp Reduce(const XlaOp operand, const XlaOp init_value, const XlaComputation& computation, absl::Span<const int64_t> dimensions_to_reduce) { return operand.builder()->Reduce(operand, init_value, computation, dimensions_to_reduce); } XlaOp Reduce(XlaBuilder* builder, absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> dimensions_to_reduce) { return builder->Reduce(operands, init_values, computation, dimensions_to_reduce); } XlaOp ReduceAll(const XlaOp operand, const XlaOp init_value, const XlaComputation& computation) { return operand.builder()->ReduceAll(operand, init_value, computation); } XlaOp ReduceWindow(const XlaOp operand, const XlaOp init_value, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding) { return operand.builder()->ReduceWindow(operand, init_value, computation, window_dimensions, window_strides, padding); } XlaOp ReduceWindow(absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding) { CHECK(!operands.empty()); return operands[0].builder()->ReduceWindow(operands, init_values, computation, window_dimensions, window_strides, padding); } XlaOp ReduceWindowWithGeneralPadding( const XlaOp operand, const XlaOp init_value, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const int64_t> base_dilations, absl::Span<const int64_t> window_dilations, absl::Span<const std::pair<int64_t, int64_t>> padding) { return operand.builder()->ReduceWindowWithGeneralPadding( absl::MakeSpan(&operand, 1), absl::MakeSpan(&init_value, 1), computation, window_dimensions, window_strides, base_dilations, window_dilations, padding); } XlaOp ReduceWindowWithGeneralPadding( absl::Span<const XlaOp> operands, absl::Span<const XlaOp> init_values, const XlaComputation& computation, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const int64_t> base_dilations, absl::Span<const int64_t> window_dilations, absl::Span<const std::pair<int64_t, int64_t>> padding) { CHECK(!operands.empty()); return operands[0].builder()->ReduceWindowWithGeneralPadding( operands, init_values, computation, window_dimensions, window_strides, base_dilations, window_dilations, padding); } XlaOp AllGather(const XlaOp operand, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { return operand.builder()->AllGather(operand, all_gather_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids); } XlaOp AllGatherTuple(absl::Span<const XlaOp> operands, int64_t all_gather_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { CHECK(!operands.empty()); return operands[0].builder()->AllGather( operands[0].builder()->Tuple(operands), all_gather_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids); } XlaOp CrossReplicaSum(const XlaOp operand, absl::Span<const ReplicaGroup> replica_groups) { return operand.builder()->CrossReplicaSum(operand, replica_groups); } XlaOp AllReduce(const XlaOp operand, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Shape>& shape_with_layout, const std::optional<bool> use_global_device_ids) { return operand.builder()->AllReduce(operand, computation, replica_groups, channel_id, shape_with_layout, use_global_device_ids); } XlaOp AllReduceTuple(absl::Span<const XlaOp> operands, const XlaComputation& computation, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Shape>& shape_with_layout, const std::optional<bool> use_global_device_ids) { CHECK(!operands.empty()); return operands[0].builder()->AllReduce( operands[0].builder()->Tuple(operands), computation, replica_groups, channel_id, shape_with_layout, use_global_device_ids); } XlaOp ReduceScatter(const XlaOp operand, const XlaComputation& computation, int64_t scatter_dimension, int64_t shard_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id, const std::optional<Layout>& layout, const std::optional<bool> use_global_device_ids) { return operand.builder()->ReduceScatter( operand, computation, scatter_dimension, shard_count, replica_groups, channel_id, layout, use_global_device_ids); } XlaOp AllToAll(const XlaOp operand, int64_t split_dimension, int64_t concat_dimension, int64_t split_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { return operand.builder()->AllToAll(operand, split_dimension, concat_dimension, split_count, replica_groups, layout, channel_id); } XlaOp AllToAllTuple(absl::Span<const XlaOp> operands, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { CHECK(!operands.empty()); return operands[0].builder()->AllToAllTuple(operands, replica_groups, layout, channel_id); } XlaOp AllToAllTuple(const XlaOp operand, int64_t split_dimension, int64_t concat_dimension, int64_t split_count, absl::Span<const ReplicaGroup> replica_groups, const std::optional<Layout>& layout, const std::optional<ChannelHandle>& channel_id) { return operand.builder()->AllToAllTuple(operand, split_dimension, concat_dimension, split_count, replica_groups, layout, channel_id); } XlaOp CollectiveBroadcast(const XlaOp operand, absl::Span<const ReplicaGroup> replica_groups, const std::optional<ChannelHandle>& channel_id) { return operand.builder()->CollectiveBroadcast(operand, replica_groups, channel_id); } XlaOp CollectivePermute( const XlaOp operand, const std::vector<std::pair<int64_t, int64_t>>& source_target_pairs, const std::optional<ChannelHandle>& channel_id) { return operand.builder()->CollectivePermute(operand, source_target_pairs, channel_id); } XlaOp ReplicaId(XlaBuilder* builder) { return builder->ReplicaId(); } XlaOp SelectAndScatter(const XlaOp operand, const XlaComputation& select, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, Padding padding, const XlaOp source, const XlaOp init_value, const XlaComputation& scatter) { return operand.builder()->SelectAndScatter(operand, select, window_dimensions, window_strides, padding, source, init_value, scatter); } XlaOp SelectAndScatterWithGeneralPadding( const XlaOp operand, const XlaComputation& select, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, const XlaOp source, const XlaOp init_value, const XlaComputation& scatter) { return operand.builder()->SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, padding, source, init_value, scatter); } XlaOp Abs(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kAbs, operand); } XlaOp Atan2(const XlaOp y, const XlaOp x, absl::Span<const int64_t> broadcast_dimensions) { return y.builder()->BinaryOp(HloOpcode::kAtan2, y, x, broadcast_dimensions); } XlaOp Exp(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kExp, operand); } XlaOp Expm1(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kExpm1, operand); } XlaOp Floor(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kFloor, operand); } XlaOp Ceil(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kCeil, operand); } XlaOp Round(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kRoundNearestAfz, operand); } XlaOp RoundNearestEven(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kRoundNearestEven, operand); } XlaOp Log(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kLog, operand); } XlaOp Log1p(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kLog1p, operand); } XlaOp Erf(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kErf, operand); } XlaOp Logistic(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kLogistic, operand); } XlaOp Sign(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kSign, operand); } XlaOp Clz(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kClz, operand); } XlaOp Cos(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kCos, operand); } XlaOp Sin(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kSin, operand); } XlaOp Tan(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kTan, operand); } XlaOp Tanh(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kTanh, operand); } XlaOp Real(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kReal, operand); } XlaOp Imag(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kImag, operand); } XlaOp Sqrt(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kSqrt, operand); } XlaOp Cbrt(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kCbrt, operand); } XlaOp Rsqrt(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kRsqrt, operand); } XlaOp Pow(const XlaOp lhs, const XlaOp rhs, absl::Span<const int64_t> broadcast_dimensions) { return lhs.builder()->BinaryOp(HloOpcode::kPower, lhs, rhs, broadcast_dimensions); } XlaOp IsFinite(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kIsFinite, operand); } XlaOp ConvertElementType(const XlaOp operand, PrimitiveType new_element_type) { return operand.builder()->ConvertElementType(operand, new_element_type); } XlaOp BitcastConvertType(const XlaOp operand, PrimitiveType new_element_type) { return operand.builder()->BitcastConvertType(operand, new_element_type); } XlaOp StochasticConvertType(const XlaOp operand, const XlaOp random, PrimitiveType new_element_type) { return operand.builder()->StochasticConvertType(operand, random, new_element_type); } XlaOp Neg(const XlaOp operand) { return operand.builder()->UnaryOp(HloOpcode::kNegate, operand); } XlaOp Transpose(const XlaOp operand, absl::Span<const int64_t> permutation) { return operand.builder()->Transpose(operand, permutation); } XlaOp Rev(const XlaOp operand, absl::Span<const int64_t> dimensions) { return operand.builder()->Rev(operand, dimensions); } XlaOp Sort(absl::Span<const XlaOp> operands, const XlaComputation& comparator, int64_t dimension, bool is_stable) { return operands[0].builder()->Sort(operands, comparator, dimension, is_stable); } XlaOp TopK(XlaOp operand, int64_t k, bool largest) { return operand.builder()->TopK(operand, k, largest); } XlaOp Clamp(const XlaOp min, const XlaOp operand, const XlaOp max) { return min.builder()->Clamp(min, operand, max); } XlaOp Map(XlaBuilder* builder, absl::Span<const XlaOp> operands, const XlaComputation& computation, absl::Span<const int64_t> dimensions, absl::Span<const XlaOp> static_operands) { return builder->Map(operands, computation, dimensions, static_operands); } XlaOp RngNormal(const XlaOp mu, const XlaOp sigma, const Shape& shape) { return mu.builder()->RngNormal(mu, sigma, shape); } XlaOp RngUniform(const XlaOp a, const XlaOp b, const Shape& shape) { return a.builder()->RngUniform(a, b, shape); } XlaOp RngBitGenerator(RandomAlgorithm algorithm, const XlaOp initial_state, const Shape& shape) { return initial_state.builder()->RngBitGenerator(algorithm, initial_state, shape); } XlaOp While(const XlaComputation& condition, const XlaComputation& body, const XlaOp init) { return init.builder()->While(condition, body, init); } XlaOp Conditional(const XlaOp predicate, const XlaOp true_operand, const XlaComputation& true_computation, const XlaOp false_operand, const XlaComputation& false_computation) { return predicate.builder()->Conditional(predicate, true_operand, true_computation, false_operand, false_computation); } XlaOp Conditional(const XlaOp branch_index, absl::Span<const XlaComputation* const> branch_computations, absl::Span<const XlaOp> branch_operands) { return branch_index.builder()->Conditional(branch_index, branch_computations, branch_operands); } XlaOp ReducePrecision(const XlaOp operand, const int exponent_bits, const int mantissa_bits) { return operand.builder()->ReducePrecision(operand, exponent_bits, mantissa_bits); } XlaOp Gather(const XlaOp input, const XlaOp start_indices, const GatherDimensionNumbers& dimension_numbers, absl::Span<const int64_t> slice_sizes, bool indices_are_sorted) { return input.builder()->Gather(input, start_indices, dimension_numbers, slice_sizes, indices_are_sorted); } XlaOp Scatter(const XlaOp input, const XlaOp scatter_indices, const XlaOp updates, const XlaComputation& update_computation, const ScatterDimensionNumbers& dimension_numbers, bool indices_are_sorted, bool unique_indices) { return input.builder()->Scatter(input, scatter_indices, updates, update_computation, dimension_numbers, indices_are_sorted, unique_indices); } XlaOp Scatter(absl::Span<const XlaOp> inputs, XlaOp scatter_indices, absl::Span<const XlaOp> updates, const XlaComputation& update_computation, const ScatterDimensionNumbers& dimension_numbers, bool indices_are_sorted, bool unique_indices) { return scatter_indices.builder()->Scatter( inputs, scatter_indices, updates, update_computation, dimension_numbers, indices_are_sorted, unique_indices); } void Send(const XlaOp operand, const ChannelHandle& handle) { return operand.builder()->Send(operand, handle); } XlaOp Recv(XlaBuilder* builder, const Shape& shape, const ChannelHandle& handle) { return builder->Recv(shape, handle); } XlaOp SendWithToken(const XlaOp operand, const XlaOp token, const ChannelHandle& handle) { return operand.builder()->SendWithToken(operand, token, handle); } XlaOp RecvWithToken(const XlaOp token, const Shape& shape, const ChannelHandle& handle) { return token.builder()->RecvWithToken(token, shape, handle); } XlaOp SendToHost(const XlaOp operand, const XlaOp token, const Shape& shape_with_layout, const ChannelHandle& handle) { return operand.builder()->SendToHost(operand, token, shape_with_layout, handle); } XlaOp RecvFromHost(const XlaOp token, const Shape& shape, const ChannelHandle& handle) { return token.builder()->RecvFromHost(token, shape, handle); } XlaOp InfeedWithToken(const XlaOp token, const Shape& shape, const std::string& config) { return token.builder()->InfeedWithToken(token, shape, config); } XlaOp OutfeedWithToken(const XlaOp operand, const XlaOp token, const Shape& shape_with_layout, const std::string& outfeed_config) { return operand.builder()->OutfeedWithToken(operand, token, shape_with_layout, outfeed_config); } XlaOp CreateToken(XlaBuilder* builder) { return builder->CreateToken(); } XlaOp AfterAll(XlaBuilder* builder, absl::Span<const XlaOp> tokens) { return builder->AfterAll(tokens); } XlaOp BatchNormTraining(const XlaOp operand, const XlaOp scale, const XlaOp offset, float epsilon, int64_t feature_index) { return operand.builder()->BatchNormTraining(operand, scale, offset, epsilon, feature_index); } XlaOp BatchNormInference(const XlaOp operand, const XlaOp scale, const XlaOp offset, const XlaOp mean, const XlaOp variance, float epsilon, int64_t feature_index) { return operand.builder()->BatchNormInference( operand, scale, offset, mean, variance, epsilon, feature_index); } XlaOp BatchNormGrad(const XlaOp operand, const XlaOp scale, const XlaOp batch_mean, const XlaOp batch_var, const XlaOp grad_output, float epsilon, int64_t feature_index) { return operand.builder()->BatchNormGrad(operand, scale, batch_mean, batch_var, grad_output, epsilon, feature_index); } XlaOp Iota(XlaBuilder* builder, PrimitiveType type, int64_t size) { return builder->Iota(type, size); } XlaOp Iota(XlaBuilder* builder, const Shape& shape, int64_t iota_dimension) { return builder->Iota(shape, iota_dimension); } XlaOp GetDimensionSize(const XlaOp operand, int64_t dimension) { return operand.builder()->GetDimensionSize(operand, dimension); } XlaOp SetDimensionSize(const XlaOp operand, const XlaOp val, int64_t dimension) { return operand.builder()->SetDimensionSize(operand, val, dimension); } XlaOp RemoveDynamicDimension(const XlaOp operand, int64_t dimension) { return operand.builder()->RemoveDynamicDimension(operand, dimension); } OpSharding GetManualSharding(const OpSharding& original, int64_t single_dim) { OpSharding manual; if (single_dim < 0 || original.type() != OpSharding::OTHER) { manual.set_type(OpSharding::MANUAL); return manual; } manual.set_type(OpSharding::OTHER); std::vector<int64_t> new_tile_shape( original.tile_assignment_dimensions().begin(), original.tile_assignment_dimensions().end()); new_tile_shape.push_back(new_tile_shape[single_dim]); new_tile_shape[single_dim] = 1; Array<int64_t> new_tile(new_tile_shape); new_tile.Each([&](absl::Span<const int64_t> indices, int64_t* v) { int64_t src_index = 0; for (int64_t i = 0; i < indices.size() - 1; ++i) { if (i > 0) { src_index *= new_tile_shape[i]; } int64_t index = indices[i]; if (i == single_dim) { index = indices.back(); } src_index += index; } *v = original.tile_assignment_devices(src_index); }); for (int64_t dim : new_tile_shape) { manual.add_tile_assignment_dimensions(dim); } for (int64_t device : new_tile) { manual.add_tile_assignment_devices(device); } if (original.replicate_on_last_tile_dim()) { manual.add_last_tile_dims(OpSharding::REPLICATED); } for (int64_t type : original.last_tile_dims()) { manual.add_last_tile_dims(static_cast<OpSharding::Type>(type)); } manual.add_last_tile_dims(OpSharding::MANUAL); return manual; } absl::StatusOr<XlaOp> ConvertSpmdFullToShardShape( XlaBuilder* builder, XlaOp input, int single_dim, const OpSharding& manual_sharding, absl::Span<const int64_t> unspecified_dims) { TF_ASSIGN_OR_RETURN(const Shape input_shape, builder->GetShape(input)); Shape output_shape = input_shape; const int64_t rank = output_shape.rank(); if (manual_sharding.type() == OpSharding::OTHER) { for (int64_t i = 0; i < rank; ++i) { if (single_dim >= 0 && i != single_dim) { continue; } const int64_t partitions_i = manual_sharding.tile_assignment_dimensions(i); if (partitions_i == 1) continue; const int64_t dim_size = CeilOfRatio(output_shape.dimensions(i), partitions_i); output_shape.set_dimensions(i, dim_size); } } XlaOp input_annotation; { XlaScopedShardingAssignment assign_sharding(builder, manual_sharding); input_annotation = CustomCall( builder, "Sharding", {input}, input_shape, sharding_op_util::EncodeAttributes(unspecified_dims)); } { OpSharding manual = GetManualSharding(manual_sharding, single_dim); XlaScopedShardingAssignment assign_sharding(builder, manual); return CustomCall(builder, "SPMDFullToShardShape", {input_annotation}, output_shape, sharding_op_util::EncodeAttributes(unspecified_dims)); } } absl::StatusOr<XlaOp> ConvertSpmdShardToFullShape( XlaBuilder* builder, XlaOp input, const Shape& output_shape, int single_dim, const OpSharding& manual_sharding, absl::Span<const int64_t> unspecified_dims) { TF_ASSIGN_OR_RETURN(const Shape input_shape, builder->GetShape(input)); XlaOp input_annotation; { OpSharding manual = GetManualSharding(manual_sharding, single_dim); XlaScopedShardingAssignment assign_sharding(builder, manual); input_annotation = CustomCall( builder, "Sharding", {input}, input_shape, sharding_op_util::EncodeAttributes(unspecified_dims)); } { XlaScopedShardingAssignment assign_sharding(builder, manual_sharding); return CustomCall(builder, "SPMDShardToFullShape", {input_annotation}, output_shape, sharding_op_util::EncodeAttributes(unspecified_dims)); } } }
#include "xla/hlo/builder/xla_builder.h" #include <algorithm> #include <array> #include <complex> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/builder/padding.h" #include "xla/hlo/builder/sharding_builder.h" #include "xla/hlo/builder/value_inference.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout_util.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; using ::testing::_; using ::testing::HasSubstr; using ::testing::Test; using ::tsl::testing::StatusIs; HloInstruction* GetRoot(HloModule& module) { return module.entry_computation()->root_instruction(); } absl::StatusOr<std::unique_ptr<HloModule>> BuildHloModule(XlaBuilder& b) { TF_ASSIGN_OR_RETURN(XlaComputation computation, b.Build(false)); const HloModuleProto& proto = computation.proto(); TF_ASSIGN_OR_RETURN(const auto& config, HloModule::CreateModuleConfigFromProto( proto, GetDebugOptionsFromFlags())); return HloModule::CreateFromProto(proto, config); } absl::StatusOr<std::unique_ptr<HloModule>> BuildHloModule(XlaBuilder& b, XlaOp root) { TF_ASSIGN_OR_RETURN(XlaComputation computation, b.Build(root, false)); const HloModuleProto& proto = computation.proto(); TF_ASSIGN_OR_RETURN(const auto& config, HloModule::CreateModuleConfigFromProto( proto, GetDebugOptionsFromFlags())); return HloModule::CreateFromProto(proto, config); } std::string TestName() { return ::testing::UnitTest::GetInstance()->current_test_info()->name(); } TEST(XlaBuilderTest, OnePlusTwo) { XlaBuilder b(TestName()); Add(ConstantR0<float>(&b, 1.0), ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, UnaryOperatorsBuildExpectedHLO) { auto test_unary_operator = [&](std::function<XlaOp(XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<int32_t>(&b, 1)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), matches_pattern); }; test_unary_operator([](XlaOp x) { return -x; }, GmockMatch(m::Negate(m::Constant()))); test_unary_operator([](XlaOp x) { return ~x; }, GmockMatch(m::Not(m::Constant()))); } TEST(XlaBuilderTest, BinaryOperatorsBuildExpectedHLO) { auto test_binary_operator = [&](std::function<XlaOp(XlaOp, XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<int32_t>(&b, 1), ConstantR0<int32_t>(&b, 2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), matches_pattern); }; test_binary_operator([](XlaOp x, XlaOp y) { return x + y; }, GmockMatch(m::Add(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x - y; }, GmockMatch(m::Subtract(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x * y; }, GmockMatch(m::Multiply(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x / y; }, GmockMatch(m::Divide(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x & y; }, GmockMatch(m::And(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x | y; }, GmockMatch(m::Or(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x ^ y; }, GmockMatch(m::Xor(m::Constant(), m::Constant()))); test_binary_operator([](XlaOp x, XlaOp y) { return x << y; }, GmockMatch(m::ShiftLeft(m::Constant(), m::Constant()))); test_binary_operator( [](XlaOp x, XlaOp y) { return x >> y; }, GmockMatch(m::ShiftRightArithmetic(m::Constant(), m::Constant()))); auto test_unsigned_binary_operator = [&](std::function<XlaOp(XlaOp, XlaOp)> op, auto matches_pattern) { XlaBuilder b(TestName()); op(ConstantR0<uint32_t>(&b, 1), ConstantR0<uint32_t>(&b, 2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), matches_pattern); }; test_unsigned_binary_operator( [](XlaOp x, XlaOp y) { return x >> y; }, GmockMatch(m::ShiftRightLogical(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, VariadicAnd) { XlaBuilder b(TestName()); const Shape s = ShapeUtil::MakeShape(PRED, {}); And(Parameter(&b, 0, s, "p0"), Parameter(&b, 1, s, "p1"), Parameter(&b, 2, s, "p2")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), ::testing::AnyOf( GmockMatch(m::And(m::Parameter(0), m::And(m::Parameter(1), m::Parameter(2)))), GmockMatch(m::And(m::And(m::Parameter(0), m::Parameter(1)), m::Parameter(2))))); } TEST(XlaBuilderTest, VariadicOr) { XlaBuilder b(TestName()); const Shape s = ShapeUtil::MakeShape(PRED, {}); Or(Parameter(&b, 0, s, "p0"), Parameter(&b, 1, s, "p1"), Parameter(&b, 2, s, "p2")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), ::testing::AnyOf( GmockMatch(m::Or(m::Parameter(0), m::Or(m::Parameter(1), m::Parameter(2)))), GmockMatch(m::Or(m::Or(m::Parameter(0), m::Parameter(1)), m::Parameter(2))))); } TEST(XlaBuilderTest, ShiftRightOperatorOnNonIntegerProducesError) { XlaBuilder b(TestName()); ConstantR0<float>(&b, 1) >> ConstantR0<float>(&b, 2); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT( statusor.status().message(), HasSubstr("Argument to >> operator does not have an integral type")); } TEST(XlaBuilderTest, ParamPlusConstantHasScalarBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {3, 5}), "x"); Add(x, ConstantR0<float>(&b, 1.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Parameter(), m::Broadcast(m::Constant())))); } TEST(XlaBuilderTest, ParamPlusConstantHasScalarBroadcastReversed) { XlaBuilder b(TestName()); const XlaOp x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {3, 5}), "x"); Add(ConstantR0<float>(&b, 1.0), x); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Broadcast(m::Constant()), m::Parameter()))); } TEST(XlaBuilderTest, ParamPlusParamHasBroadcast) { XlaBuilder b(TestName()); const auto& x_shape = ShapeUtil::MakeShape(S32, {2, 4, 6}); const auto& y_shape = ShapeUtil::MakeShape(S32, {2, 4}); auto x = Parameter(&b, 0, x_shape, "x"); auto y = Parameter(&b, 1, y_shape, "y"); auto add = Add(x, y, {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto add_shape, b.GetShape(add)); EXPECT_TRUE(ShapeUtil::Equal(add_shape, x_shape)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT( GetRoot(*module), GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Parameter(1))))); } TEST(XlaBuilderTest, XPlusX) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(S32, {1, 3, 5, 7}), "x"); Add(x, x); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Parameter(0), m::Parameter(0)))); } TEST(XlaBuilderTest, TestBinaryOpImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[2, 2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2,2]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, TestBinaryOpImplicitBroadcastBounded) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[<=2, <=2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[<=2, <=2]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, ShapeInferenceError) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(U32, {2, 4, 6}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(U32, {2, 4}), "y"); Add(x, y); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("Shapes must be equal rank")); } TEST(XlaBuilderTest, DynamicDimensionReshapeToR0) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {1}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}), "dyn_dim"); auto dx = SetDimensionSize(x, y, 0); Reshape(dx, {}); auto statusor = BuildHloModule(b); ASSERT_TRUE(statusor.ok()); } TEST(XlaBuilderTest, ParameterAlreadyRegistered) { XlaBuilder b_call("add"); Parameter(&b_call, 0, ShapeUtil::MakeShape(PRED, {}), "x"); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "x"); auto y = Parameter(&b, 0, ShapeUtil::MakeShape(PRED, {}), "y"); Add(x, y); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("parameter 0 already registered")); } TEST(XlaBuilderTest, Call) { XlaBuilder b_call("the_only_to_apply"); auto p0 = Parameter(&b_call, 0, ShapeUtil::MakeShape(F32, {}), "p0"); auto p1 = Parameter(&b_call, 1, ShapeUtil::MakeShape(F32, {}), "p1"); Add(p0, p1); TF_ASSERT_OK_AND_ASSIGN(const auto call, b_call.Build()); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {}), "y"); auto one = ConstantR0<float>(&b, 1); auto two = ConstantR0<float>(&b, 2); Add(Call(&b, call, {x, y}), Call(&b, call, {one, two})); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Call(m::Parameter(), m::Parameter()), m::Call(m::Constant(), m::Constant())))); } TEST(XlaBuilderTest, CompositeCall) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar", "{n = 1 : i32, tensor = dense<1> : tensor<i32>}", 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Call(m::Parameter(), m::Parameter()))); } TEST(XlaBuilderTest, CompositeCallFrontendAttributesStayLocal) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar", "{n = 1 : i32, tensor = dense<1> : tensor<i32>}", 1); Add(operands[0], operands[1]); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_TRUE(GetRoot(*module)->frontend_attributes().map().empty()); } TEST(XlaBuilderTest, CompositeCallMissingName) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "", "{n = 1 : i32, tensor = dense<1> : tensor<i32>}", 1); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("A composite call op must have frontend attributes " "with key composite.name whose value is non-empty")); } TEST(XlaBuilderTest, CompositeCallMissingAttribute) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar", "", 1); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT( statusor.status().message(), HasSubstr( "A composite call op must have frontend attributes with key " "composite.attributes whose value is default: {} or non-empty")); } TEST(XlaBuilderTest, CompositeCallNonNegativeVersion) { XlaBuilder b(TestName()); FrontendAttributes frontend_attributes = b.frontend_attributes(); frontend_attributes.mutable_map()->insert({"foo", "bar"}); b.SetFrontendAttributes(frontend_attributes); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar", "{n = 1 : i32, tensor = dense<1> : tensor<i32>}", -1); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("A composite call op must have frontend attributes " "with a composite.version whose value is a " "non-negative integer but got: -1")); } TEST(XlaBuilderTest, CompositeCallOptionalVersionAndAttribute) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar"); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); ASSERT_THAT(GetRoot(*module), GmockMatch(m::Call(m::Parameter(), m::Parameter()))); ASSERT_TRUE(GetRoot(*module)->frontend_attributes().map().contains( "composite.attributes")); EXPECT_EQ( GetRoot(*module)->frontend_attributes().map().at("composite.attributes"), "{}"); EXPECT_EQ( GetRoot(*module)->frontend_attributes().map().at("composite.version"), "0"); } TEST(XlaBuilderTest, CompositeCallWithExtraFrontendAttributes) { XlaBuilder b(TestName()); FrontendAttributes frontend_attributes = b.frontend_attributes(); frontend_attributes.mutable_map()->insert({"foo", "bar"}); b.SetFrontendAttributes(frontend_attributes); const Shape shape = ShapeUtil::MakeShape(F32, {}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, shape, "arg0"), Parameter(&bsum, 1, shape, "arg1")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation computation, bsum.Build()); std::vector<XlaOp> operands = {Parameter(&b, 0, shape, "arg0"), Parameter(&b, 1, shape, "arg1")}; CompositeCall(&b, computation, absl::MakeSpan(operands), "foo.bar", "{n = 1 : i32, tensor = dense<1> : tensor<i32>}", 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Call(m::Parameter(), m::Parameter()))); ASSERT_TRUE(GetRoot(*module)->frontend_attributes().map().contains("foo")); EXPECT_EQ(GetRoot(*module)->frontend_attributes().map().at("foo"), "bar"); } TEST(XlaBuilderTest, BinopHasDegenerateBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {1, 2, 3}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {1, 2, 1}), "y"); Add(x, y); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Parameter(0), m::Broadcast(m::Reshape(m::Parameter(1)))))); } TEST(XlaBuilderTest, BinopHasInDimAndDegenerateBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {2, 1, 4}), "y"); Add(x, y, {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Broadcast(m::Parameter(0)), m::Broadcast(m::Reshape(m::Parameter(1)))))); } TEST(XlaBuilderTest, BroadcastInDim) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3}), "x"); BroadcastInDim(x, {2, 4, 3}, {0, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Broadcast())); } TEST(XlaBuilderTest, BroadcastInDimWithDegeneratedDim) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 1, 4}), "x"); BroadcastInDim(x, {2, 3, 4}, {0, 1, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Broadcast(m::Reshape(m::Broadcast())))); } TEST(XlaBuilderTest, BroadcastInDimWithNegativeSize) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 1, 4}), "x"); BroadcastInDim(x, {-3, 3, 4}, {0, 1, 2}); auto statusor = BuildHloModule(b); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("invalid shape")); } TEST(XlaBuilderTest, OperandFromWrongBuilder) { XlaBuilder b1("b1"); auto p0 = Parameter(&b1, 0, ShapeUtil::MakeShape(F32, {}), "p0"); XlaBuilder builder("main"); auto p = Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {}), "p"); Add(p, p0); auto statusor = builder.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT( statusor.status().message(), HasSubstr( "built by builder 'b1', but is trying to use it in builder 'main'")); } TEST(XlaBuilderTest, ReshapeDefaultOrder) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3, 5, 7}), "x"); Reshape(x, {6, 35}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Reshape(m::Parameter()))); } TEST(XlaBuilderTest, ReshapeHasTranspose) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 3, 5, 7}), "x"); Reshape(x, {3, 2, 1, 0}, {6, 35}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Reshape(m::Transpose(m::Parameter())))); } TEST(XlaBuilderTest, Transpose) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); Transpose(x, {1, 0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Transpose(m::Parameter()))); } TEST(XlaBuilderTest, AllGatherR1) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4}), "x"); AllGather(x, 0, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE(ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {16}))); } TEST(XlaBuilderTest, AllGatherR2) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); AllGather(x, 1, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 64}))); } TEST(XlaBuilderTest, AllGatherWithTuple) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4}), "x"); auto x2 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {16, 4}), "x2"); AllGather(Tuple(&b, {x, x2}), 0, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kAllGather); EXPECT_TRUE(ShapeUtil::Equal( root->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {16}), ShapeUtil::MakeShape(F32, {64, 4})}))); } TEST(XlaBuilderTest, AllGatherTuple) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {128, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {128, 8}), "p1"); AllGatherTuple({p0, p1}, 1, 4); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto tuple_shape = ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {128, 16}), ShapeUtil::MakeShape(F32, {128, 32})}); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllGather) .WithShapeEqualTo(&tuple_shape))); } TEST(XlaBuilderTest, ReduceScatter) { XlaBuilder b(TestName()); XlaComputation to_apply; { auto sub_builder = b.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); ReplicaGroup group; group.add_replica_ids(0); group.add_replica_ids(1); ReduceScatter(x, to_apply, 1, 2, {group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kReduceScatter); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 8}))); } TEST(XlaBuilderTest, ReduceScatterWithTuple) { XlaBuilder b(TestName()); XlaComputation to_apply; { auto sub_builder = b.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); auto x2 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {16, 4}), "x2"); ReplicaGroup group; group.add_replica_ids(0); group.add_replica_ids(1); ReduceScatter(Tuple(&b, {x, x2}), to_apply, 1, 2, {group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kReduceScatter); EXPECT_TRUE(ShapeUtil::Equal( root->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4, 8}), ShapeUtil::MakeShape(F32, {16, 2})}))); } TEST(XlaBuilderTest, AllToAll) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x"); AllToAll(x, 1, 0, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kReshape); EXPECT_EQ(root->operand(0)->operand(0)->operand(0)->opcode(), HloOpcode::kAllToAll); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {8, 8}))); } TEST(XlaBuilderTest, AllToAllSpecial) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16, 8}), "x"); AllToAll(x, 0, 0, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_EQ(root->opcode(), HloOpcode::kAllToAll); EXPECT_TRUE( ShapeUtil::Equal(root->shape(), ShapeUtil::MakeShape(F32, {4, 16, 8}))); } TEST(XlaBuilderTest, AllToAllTuple) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {2, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {2, 4}), "p1"); ReplicaGroup replica_group; replica_group.add_replica_ids(0); replica_group.add_replica_ids(1); AllToAllTuple({p0, p1}, {replica_group}, LayoutUtil::MakeAscendingLayout(2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto expected_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 4}, {0, 1}); auto tuple_shape = ShapeUtil::MakeTupleShape({expected_shape, expected_shape}); auto is_replica_group_pred = [](const HloInstruction* instr) { return instr->replica_groups().size() == 1 && absl::c_equal(instr->replica_groups()[0].replica_ids(), std::vector<int64_t>{0, 1}); }; EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllToAll) .WithShapeEqualTo(&tuple_shape) .WithPredicate(is_replica_group_pred))); } TEST(XlaBuilderTest, AllReduceTuple) { XlaBuilder b(TestName()); auto shape0 = ShapeUtil::MakeShape(F32, {}); auto shape1 = ShapeUtil::MakeShape(F32, {1, 2}); auto p0 = Parameter(&b, 0, shape0, "p0"); auto p1 = Parameter(&b, 1, shape1, "p1"); XlaBuilder bsum(TestName()); auto f32Scalar = ShapeUtil::MakeShape(F32, {}); Add(Parameter(&bsum, 0, f32Scalar, "x"), Parameter(&bsum, 1, f32Scalar, "y")); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); AllReduceTuple({p0, p1}, sum); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto tuple_shape = ShapeUtil::MakeTupleShape({shape0, shape1}); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAllReduce) .WithShapeEqualTo(&tuple_shape))); } TEST(XlaBuilderTest, CollectiveBroadcast) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); ReplicaGroup replica_group; replica_group.add_replica_ids(0); replica_group.add_replica_ids(1); CollectiveBroadcast(x, {replica_group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_EQ(GetRoot(*module)->opcode(), HloOpcode::kCollectiveBroadcast); } TEST(XlaBuilderTest, CollectivePermute) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); CollectivePermute(x, {{0, 1}, {1, 2}, {2, 3}}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_EQ(GetRoot(*module)->opcode(), HloOpcode::kCollectivePermute); } TEST(XlaBuilderTest, GetDimensionSize) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}, {false, true}), "x"); GetDimensionSize(x, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_EQ(GetRoot(*module)->opcode(), HloOpcode::kGetDimensionSize); } TEST(XlaBuilderTest, GetDimensionSizeConstant) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}, {false, true}), "x"); GetDimensionSize(x, 0); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_EQ(GetRoot(*module)->opcode(), HloOpcode::kConstant); } TEST(XlaBuilderTest, ReportError) { XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {5, 7}), "x"); Add(b.ReportError(InvalidArgument("a test error")), x); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("a test error")); } TEST(XlaBuilderTest, ReportErrorOrReturnHandlesNonErrors) { XlaBuilder b(TestName()); absl::StatusOr<XlaOp> op(ConstantR0<float>(&b, 1.0)); Add(b.ReportErrorOrReturn(op), ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Add(m::Constant(), m::Constant()))); } TEST(XlaBuilderTest, ReportErrorOrReturnHandlesErrors) { XlaBuilder b(TestName()); absl::StatusOr<XlaOp> op(InvalidArgument("a test error")); Add(b.ReportErrorOrReturn(op), ConstantR0<float>(&b, 2.0)); auto statusor = b.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("a test error")); } TEST(XlaBuilderTest, BuildWithSpecificRoot) { XlaBuilder b(TestName()); const XlaOp constant = ConstantR0<float>(&b, 1.0); Add(constant, ConstantR0<float>(&b, 2.0)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, constant)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Constant())); } TEST(XlaBuilderTest, BuildWithSpecificRootAndMultipleParameters) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {42, 123}); const XlaOp x = Parameter(&b, 0, shape, "x"); const XlaOp y = Parameter(&b, 1, shape, "y"); const XlaOp z = Parameter(&b, 2, shape, "z"); Add(x, Sub(y, z)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, x)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Parameter())); EXPECT_EQ(module->entry_computation()->num_parameters(), 3); EXPECT_EQ(module->entry_computation()->instruction_count(), 5); } TEST(XlaBuilderTest, BuildWithSpecificRootWithWrongBuilder) { XlaBuilder b(TestName()); XlaBuilder other_b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {42, 123}); Parameter(&b, 0, shape, "param"); const XlaOp other_param = Parameter(&other_b, 0, shape, "other_param"); absl::Status status = b.Build(other_param).status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT( status.message(), ::testing::HasSubstr("root operation is not in this computation")); } TEST(XlaBuilderTest, ProtoMatches) { std::vector<XlaComputation> computations; const int n = 2; computations.reserve(n); for (int i = 0; i < n; ++i) { XlaBuilder b_call("the_only_to_apply"); auto p0 = Parameter(&b_call, 0, ShapeUtil::MakeShape(F32, {}), "p0"); auto p1 = Parameter(&b_call, 1, ShapeUtil::MakeShape(F32, {}), "p1"); Add(p0, Add(p1, p0)); TF_ASSERT_OK_AND_ASSIGN(const auto call, b_call.Build()); XlaBuilder b(TestName()); auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {}), "x"); auto y = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {}), "y"); auto one = ConstantR0<float>(&b, 1); auto two = ConstantR0<float>(&b, 2); Add(Call(&b, call, {x, y}), Call(&b, call, {one, two})); computations.push_back(b.Build().value()); } auto c0_string = computations[0].proto().SerializeAsString(); auto c1_string = computations[1].proto().SerializeAsString(); EXPECT_EQ(c0_string, c1_string); } TEST(XlaBuilderTest, DynamicParameter) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {6}, {true})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); Parameter(&b, 1, ShapeUtil::MakeShape(U32, {}), "p1"); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, p0)); const Shape& param_shape = module->entry_computation() ->parameter_instruction(0) ->shape() .tuple_shapes(1); EXPECT_TRUE(param_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, SetDimensionSize) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {10}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}), "p1"); auto set_dim_size = SetDimensionSize(p0, p1, 0); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, set_dim_size)); const Shape& root_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(root_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, RemoveDynamicDimension) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {10}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}), "p1"); auto set_dim_size = SetDimensionSize(p0, p1, 0); auto remove_dim_size = RemoveDynamicDimension(set_dim_size, 0); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, remove_dim_size)); const Shape& root_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_FALSE(root_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, RemoveDynamicDimensionMultiDims) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {10, 10}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(S32, {}), "p1"); auto set_dim_size = SetDimensionSize(p0, p1, 0); set_dim_size = SetDimensionSize(set_dim_size, p1, 1); auto remove_dim_size = RemoveDynamicDimension(set_dim_size, 0); remove_dim_size = RemoveDynamicDimension(remove_dim_size, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, remove_dim_size)); const Shape& root_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_FALSE(root_shape.is_dynamic_dimension(0)); EXPECT_FALSE(root_shape.is_dynamic_dimension(1)); } TEST(XlaBuilderTest, DynamicUnary) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}, {true}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte = GetTupleElement(p0, 0); Neg(gte); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(result_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, DynamicBinary) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}, {true}), ShapeUtil::MakeShape(F32, {5}, {true}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Add(gte0, gte1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(result_shape.is_dynamic_dimension(0)); } TEST(XlaBuilderTest, DynamicBinaryHasBroadcast) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5, 4}, {true, false}), ShapeUtil::MakeShape(F32, {5}, {true}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Add(gte0, gte1, {0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicBroadcast) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5, 4}, {true, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte = GetTupleElement(p0, 0); BroadcastInDim(gte, {3, 5, 4}, {1, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE( ContainersEqual(result_shape.dynamic_dimensions(), {false, true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicBinaryHasDegenerateBroadcast) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {10}, {true}), ShapeUtil::MakeShape(F32, {1, 15}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Add(gte0, gte1, {0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicSelectOnlyPredDynamic) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {10}, {true}), ShapeUtil::MakeShape(F32, {10}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Select(gte0, gte1, gte1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true})) << result_shape; } TEST(XlaBuilderTest, SelectIntoConditional) { XlaBuilder b(TestName()); const Shape selector_shape = ShapeUtil::MakeShape(PRED, {}); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F32, {})}); const XlaOp p0 = Parameter(&b, 0, selector_shape, "p0"); const XlaOp p1 = Parameter(&b, 1, tuple_param_shape, "p1"); const XlaOp p2 = Parameter(&b, 2, tuple_param_shape, "p2"); Select(p0, p1, p2); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Conditional(m::Parameter(0), m::Parameter(1), m::Parameter(2)))); EXPECT_THAT(module->entry_computation() ->root_instruction() ->branch_computation(0) ->root_instruction(), GmockMatch(m::Parameter(0))); EXPECT_THAT(module->entry_computation() ->root_instruction() ->branch_computation(1) ->root_instruction(), GmockMatch(m::Parameter(0))); } TEST(XlaBuilderTest, DynamicPad) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5, 4}, {true, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto pad_val = ConstantR0<float>(&b, -1); auto gte = GetTupleElement(p0, 0); PaddingConfig padding_config; for (int i = 0; i < 2; i++) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(0); dimension->set_edge_padding_high(0); dimension->set_interior_padding(0); } Pad(gte, pad_val, padding_config); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicConvolution) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {1, 2, 2, 128}, {true, false, false, false}), ShapeUtil::MakeShape(F32, {2, 2, 128, 8}, {false, false, true, false}), ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto input = GetTupleElement(p0, 0); auto filter = GetTupleElement(p0, 1); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); ConvWithGeneralDimensions(input, filter, {1, 1}, Padding::kValid, dnums, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true, false, false, false})) << result_shape; } TEST(XlaBuilderTest, DynamicDot) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2, 3, 4}, {true, true, false}), ShapeUtil::MakeShape(F32, {2, 4, 5}, {true, false, false}), ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto lhs = GetTupleElement(p0, 0); auto rhs = GetTupleElement(p0, 1); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(2); dnums.add_rhs_contracting_dimensions(1); dnums.add_lhs_batch_dimensions(0); dnums.add_rhs_batch_dimensions(0); DotGeneral(lhs, rhs, dnums); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE( ContainersEqual(result_shape.dynamic_dimensions(), {true, true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicReduce) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5, 4, 3}, {false, true, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto init = ConstantR0<float>(&b, 0); auto gte = GetTupleElement(p0, 0); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, ShapeUtil::MakeShape(F32, {}), "x"), Parameter(&bsum, 1, ShapeUtil::MakeShape(F32, {}), "y")); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); Reduce(gte, init, sum, {0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicReduceWindow) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2, 4, 8}, {true, false, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto init = ConstantR0<float>(&b, 0.f); auto gte = GetTupleElement(p0, 0); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, ShapeUtil::MakeShape(F32, {}), "x"), Parameter(&bsum, 1, ShapeUtil::MakeShape(F32, {}), "y")); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); ReduceWindow(gte, init, sum, {1, 2, 4}, {1, 1, 1}, Padding::kValid); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); VLOG(2) << module->entry_computation()->root_instruction()->ToString() << "\n"; const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE( ContainersEqual(result_shape.dynamic_dimensions(), {true, false, false})) << result_shape; } TEST(XlaBuilderTest, VariadicDynamicReduceWindow) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2, 4, 8}, {true, false, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto p1 = Parameter(&b, 1, tuple_param_shape, "p1"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p1, 0); std::vector<XlaOp> input_operands = {gte0, gte1}; XlaBuilder bsum(TestName()); auto p2 = Parameter(&bsum, 0, ShapeUtil::MakeShape(F32, {}), "x0"); auto p3 = Parameter(&bsum, 1, ShapeUtil::MakeShape(F32, {}), "x1"); auto p4 = Parameter(&bsum, 2, ShapeUtil::MakeShape(F32, {}), "y0"); auto p5 = Parameter(&bsum, 3, ShapeUtil::MakeShape(F32, {}), "y1"); std::vector<XlaOp> output_operands = {Add(p2, p4), Add(p3, p5)}; Tuple(&bsum, absl::MakeSpan(output_operands)); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); auto init = ConstantR0<float>(&b, 0.f); ReduceWindow(input_operands, {init, init}, sum, {1, 2, 4}, {1, 1, 1}, Padding::kValid); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); VLOG(2) << module->entry_computation()->root_instruction()->ToString() << "\n"; const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.tuple_shapes(0).dynamic_dimensions(), {true, false, false})) << result_shape.tuple_shapes(0); EXPECT_TRUE(ContainersEqual(result_shape.tuple_shapes(1).dynamic_dimensions(), {true, false, false})) << result_shape.tuple_shapes(1); } TEST(XlaBuilderTest, DynamicSelectAndScatter) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2, 4, 8}, {true, false, false}), ShapeUtil::MakeShape(F32, {2, 2, 2}, {true, false, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto init = ConstantR0<float>(&b, 0.f); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, ShapeUtil::MakeShape(F32, {}), "x"), Parameter(&bsum, 1, ShapeUtil::MakeShape(F32, {}), "y")); TF_ASSERT_OK_AND_ASSIGN(const auto sum, bsum.Build()); XlaBuilder bge(TestName()); Ge(Parameter(&bge, 0, ShapeUtil::MakeShape(F32, {}), "x"), Parameter(&bge, 1, ShapeUtil::MakeShape(F32, {}), "y")); TF_ASSERT_OK_AND_ASSIGN(const auto ge, bge.Build()); auto gte0 = GetTupleElement(p0, 0); auto source = GetTupleElement(p0, 1); SelectAndScatter(gte0, ge, {1, 2, 4}, {1, 2, 4}, Padding::kValid, source, init, sum); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE( ContainersEqual(result_shape.dynamic_dimensions(), {true, false, false})) << result_shape; } TEST(XlaBuilderTest, DynamicReshape) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {2, 3, 4, 5, 6}, {false, false, true, true, false}), ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte = GetTupleElement(p0, 0); Reshape(gte, {6, 4, 5, 2, 3}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(result_shape.is_dynamic_dimension(1)); EXPECT_TRUE(result_shape.is_dynamic_dimension(2)); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {false, true, true, false, false})) << result_shape; } TEST(XlaBuilderTest, DynamicSelect) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {4, 5, 6}, {false, true, false}), ShapeUtil::MakeShape(F32, {4, 5, 6}, {false, true, false}), ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto pred = Parameter(&b, 1, ShapeUtil::MakeShape(PRED, {}), "pred"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Select(pred, gte0, gte1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(result_shape.is_dynamic_dimension(1)); EXPECT_FALSE(result_shape.is_dynamic_dimension(2)); EXPECT_TRUE( ContainersEqual(result_shape.dynamic_dimensions(), {false, true, false})) << result_shape; } TEST(XlaBuilderTest, DynamicSelectNotCompatible) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {4, 5, 6}, {false, true, false}), ShapeUtil::MakeShape(F32, {4, 5, 6}, {false, false, true}), ShapeUtil::MakeShape(U32, {}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto pred = Parameter(&b, 1, ShapeUtil::MakeShape(PRED, {}), "pred"); auto gte0 = GetTupleElement(p0, 0); auto gte1 = GetTupleElement(p0, 1); Select(pred, gte0, gte1); absl::Status status = BuildHloModule(b).status(); ASSERT_IS_OK(status); } TEST(XlaBuilderTest, DynamicTranspose) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {3, 5}, {true, false}), ShapeUtil::MakeShape(U32, {})}); auto p0 = Parameter(&b, 0, tuple_param_shape, "p0"); auto gte = GetTupleElement(p0, 0); Transpose(gte, {1, 0}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); EXPECT_TRUE(ContainersEqual(result_shape.dynamic_dimensions(), {false, true})) << result_shape; } TEST(XlaBuilderTest, DotWithPreferredElementType) { XlaBuilder b(TestName()); const Shape p0_shape = ShapeUtil::MakeShape(U8, {2, 3}); const Shape p1_shape = ShapeUtil::MakeShape(U16, {3, 2}); auto p0 = Parameter(&b, 0, p0_shape, "p0"); auto p1 = Parameter(&b, 1, p1_shape, "p1"); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(1); dnums.add_rhs_contracting_dimensions(0); DotGeneral(p0, p1, dnums, nullptr, U32); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); ASSERT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(U32, {2, 2}), result_shape)); } TEST(XlaBuilderTest, FftWithFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c64[5, <=10]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c64[5, <=10]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::FFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, FftWithIFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c64[5, <=10]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c64[5, <=10]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::IFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, FftWithRFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f64[10, <=5]")); const std::vector<int64_t> fft_length = {5}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c128[10, <=3]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::RFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, FftWithIRFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c128[10, <=3]")); const std::vector<int64_t> fft_length = {5}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f64[10, <=5]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::IRFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, SparseDot) { XlaBuilder b(TestName()); auto lhs = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {10, 16}), "lhs"); auto rhs = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {32, 20}), "rhs"); auto meta = Parameter(&b, 2, ShapeUtil::MakeShape(U16, {10, 2}), "meta"); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(1); dnums.add_rhs_contracting_dimensions(0); SparsityDescriptor sparsity_descriptor; sparsity_descriptor.set_type(SparsityType::SPARSITY_STRUCTURED_N_M); sparsity_descriptor.set_n(2); sparsity_descriptor.set_m(4); sparsity_descriptor.set_index(0); sparsity_descriptor.set_dimension(1); std::vector<SparsityDescriptor> sparsity = {sparsity_descriptor}; std::vector<XlaOp> sparse_meta = {meta}; SparseDot(lhs, rhs, sparse_meta, sparsity, dnums); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[10, 20]")); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, ConvolutionWithPreferredElementType) { XlaBuilder b(TestName()); const Shape p0_shape = ShapeUtil::MakeShape(S16, {1, 2, 2, 128}); const Shape p1_shape = ShapeUtil::MakeShape(S8, {2, 2, 128, 8}); auto p0 = Parameter(&b, 0, p0_shape, "p0"); auto p1 = Parameter(&b, 1, p1_shape, "p1"); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); ConvWithGeneralDimensions(p0, p1, {1, 1}, Padding::kValid, dnums, 1, 1, nullptr, S32); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const Shape& result_shape = module->entry_computation()->root_instruction()->shape(); ASSERT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(S32, {1, 1, 1, 8}), result_shape)); } TEST(XlaBuilderTest, AfterAllWithNonTokenOperands) { XlaBuilder b(TestName()); AfterAll(&b, {CreateToken(&b), ConstantR0<float>(&b, 1.0)}); absl::Status status = b.Build().status(); ASSERT_IS_NOT_OK(status); EXPECT_THAT(status.message(), ::testing::HasSubstr("All operands to AfterAll must be tokens")); } TEST(XlaBuilderTest, AfterAllWithNoInputs) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("token[]")); AfterAll(&b, {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, CheckInputOutputAlias) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {8, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {8, 4}), "p1"); auto add = Add(p0, p1); auto sub = Sub(p0, p1); auto root = Tuple(&b, {add, sub}); b.SetUpAlias({1}, 0, {}); b.SetUpAlias({0}, 1, {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, root)); const HloInputOutputAliasConfig& config = module->input_output_alias_config(); EXPECT_TRUE(config.ParameterHasAlias(0, {})); EXPECT_TRUE(config.ParameterHasAlias(1, {})); auto alias_p0 = config.GetAliasedOutput(0, {}); ASSERT_TRUE(alias_p0.has_value()); EXPECT_EQ(*alias_p0, ShapeIndex({1})); auto alias_p1 = config.GetAliasedOutput(1, {}); ASSERT_TRUE(alias_p1.has_value()); EXPECT_EQ(*alias_p1, ShapeIndex({0})); } TEST(XlaBuilderTest, CheckBufferDonor) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {8, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {8, 4}), "p1"); auto add = Add(p0, p1); auto sub = Sub(p0, p1); auto root = Tuple(&b, {add, sub}); b.AddBufferDonor(0, {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, root)); const HloBufferDonorConfig& config = module->buffer_donor_config(); EXPECT_TRUE(config.ParameterIsBufferDonor(0, {})); EXPECT_FALSE(config.ParameterIsBufferDonor(1, {})); } TEST(XlaBuilderTest, ConstantLiteral) { XlaBuilder b(TestName()); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) int old_csr = _mm_getcsr(); _mm_setcsr(old_csr | _MM_DENORMALS_ZERO_ON); #endif ConstantR1<float>(&b, {0.0f, 1.401298e-45f}); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) _mm_setcsr(old_csr); #endif TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); ASSERT_THAT(root, GmockMatch(m::Constant())); } TEST(XlaBuilderTest, InvalidInputOutputAliasBufferDonor) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {8, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {8, 4}), "p1"); auto add = Add(p0, p1); auto sub = Sub(p0, p1); auto root = Tuple(&b, {add, sub}); b.SetUpAlias({1}, 0, {}); b.AddBufferDonor(0, {}); auto statusor = BuildHloModule(b, root); EXPECT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("is already aliased with one output, thus it cannot be " "added as a buffer donor for any output.")); } TEST(XlaBuilderTest, ValidInputOutputAliasBufferDonor) { XlaBuilder b(TestName()); auto p0 = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {8, 4}), "p0"); auto p1 = Parameter(&b, 1, ShapeUtil::MakeShape(F32, {8, 4}), "p1"); auto add = Add(p0, p1); auto sub = Sub(p0, p1); auto root = Tuple(&b, {add, sub}); b.SetUpAlias({1}, 0, {}); b.AddBufferDonor(1, {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b, root)); const HloInputOutputAliasConfig& io_alias_config = module->input_output_alias_config(); const HloBufferDonorConfig& buffer_donor_config = module->buffer_donor_config(); EXPECT_TRUE(io_alias_config.ParameterHasAlias(0, {})); EXPECT_FALSE(io_alias_config.ParameterHasAlias(1, {})); EXPECT_FALSE(buffer_donor_config.ParameterIsBufferDonor(0, {})); EXPECT_TRUE(buffer_donor_config.ParameterIsBufferDonor(1, {})); auto alias_p0 = io_alias_config.GetAliasedOutput(0, {}); ASSERT_TRUE(alias_p0.has_value()); EXPECT_EQ(*alias_p0, ShapeIndex({1})); } void ExpectAttributesMatch(const FrontendAttributes& attr, const FrontendAttributes& ref) { EXPECT_EQ(ref.map_size(), attr.map_size()); for (auto reference : ref.map()) { auto other = attr.map().find(reference.first); EXPECT_NE(other, attr.map().end()); EXPECT_EQ(other->second, reference.second); } } void ExpectInstructionsAttributesMatch( const HloModule& module, const std::vector<FrontendAttributes>& expected) { ASSERT_EQ(module.computation_count(), 1); auto expected_it = expected.begin(); for (auto inst : module.entry_computation()->instructions()) { ASSERT_NE(expected_it, expected.end()); ExpectAttributesMatch(inst->frontend_attributes(), *expected_it); expected_it++; } EXPECT_EQ(expected_it, expected.end()); } TEST(XlaBuilderTest, SimpleSetFrontendAttributes) { XlaBuilder b(TestName()); FrontendAttributes attributes; ConstantR0(&b, 0); (*attributes.mutable_map())["attr_a"] = "a"; b.SetFrontendAttributes(attributes); ConstantR0(&b, 0); b.ClearFrontendAttributes(); ConstantR0(&b, 0); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); std::vector<FrontendAttributes> expected{FrontendAttributes(), attributes, FrontendAttributes()}; ExpectInstructionsAttributesMatch(*module, expected); } TEST(XlaBuilderTest, ComplexSetFrontendAttributes) { XlaBuilder b(TestName()); ConstantR0(&b, 0); std::vector<FrontendAttributes> expected{FrontendAttributes()}; { FrontendAttributes attributes; (*attributes.mutable_map())["attr_a"] = "a"; b.SetFrontendAttributes(attributes); ConstantR0(&b, 0); expected.push_back(attributes); } { FrontendAttributes attributes; (*attributes.mutable_map())["attr_b"] = "b"; b.SetFrontendAttributes(attributes); ConstantR0(&b, 0); expected.push_back(attributes); } { FrontendAttributes attributes; (*attributes.mutable_map())["attr_b"] = "b"; (*attributes.mutable_map())["attr_c"] = "c"; b.SetFrontendAttributes(attributes); ConstantR0(&b, 0); expected.push_back(attributes); } b.ClearFrontendAttributes(); ConstantR0(&b, 0); expected.push_back(FrontendAttributes()); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); ExpectInstructionsAttributesMatch(*module, expected); } TEST(XlaBuilderTest, AddFrontendAttribute) { XlaBuilder b(TestName()); ConstantR0(&b, 0); std::vector<FrontendAttributes> expected{FrontendAttributes()}; { FrontendAttributes attributes; (*attributes.mutable_map())["attr_a"] = "a"; b.SetFrontendAttributes(attributes); ConstantR0(&b, 0); expected.push_back(attributes); } { auto op = ConstantR0(&b, 0); EXPECT_IS_OK(b.SetInstructionFrontendAttribute(op, "attr_c", "c")); FrontendAttributes attributes; (*attributes.mutable_map())["attr_a"] = "a"; (*attributes.mutable_map())["attr_c"] = "c"; expected.push_back(attributes); } { auto op = ConstantR0(&b, 0); EXPECT_IS_OK(b.SetInstructionFrontendAttribute(op, "attr_a", "a2")); FrontendAttributes attributes; (*attributes.mutable_map())["attr_a"] = "a2"; expected.push_back(attributes); } { auto op = ConstantR0(&b, 0); (void)op; FrontendAttributes attributes; (*attributes.mutable_map())["attr_a"] = "a"; expected.push_back(attributes); } b.ClearFrontendAttributes(); ConstantR0(&b, 0); expected.push_back(FrontendAttributes()); { auto op = ConstantR0(&b, 0); EXPECT_IS_OK(b.SetInstructionFrontendAttribute(op, "attr_d", "d")); FrontendAttributes attributes; (*attributes.mutable_map())["attr_d"] = "d"; expected.push_back(attributes); } ConstantR0(&b, 0); expected.push_back(FrontendAttributes()); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); ExpectInstructionsAttributesMatch(*module, expected); } TEST(XlaBuilderTest, SetAndGetSharding) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {1024}); OpSharding op_sharding_1 = sharding_builder::Replicate(); OpSharding op_sharding_2 = sharding_builder::Tile1D(shape, 4); TF_ASSERT_OK_AND_ASSIGN(HloSharding hlo_sharding_1, HloSharding::FromProto(op_sharding_1)); TF_ASSERT_OK_AND_ASSIGN(HloSharding hlo_sharding_2, HloSharding::FromProto(op_sharding_2)); b.SetSharding(op_sharding_1); XlaOp p0 = Parameter(&b, 0, shape, "p0"); TF_ASSERT_OK_AND_ASSIGN(auto p0_sharding, b.GetOpSharding(p0)); EXPECT_TRUE(p0_sharding.has_value()); EXPECT_EQ(HloSharding::FromProto(p0_sharding.value()).value(), hlo_sharding_1); EXPECT_TRUE(b.SetInstructionSharding(p0, std::nullopt).ok()); TF_ASSERT_OK_AND_ASSIGN(p0_sharding, b.GetOpSharding(p0)); EXPECT_FALSE(p0_sharding.has_value()); EXPECT_TRUE(b.SetInstructionSharding(p0, op_sharding_2).ok()); TF_ASSERT_OK_AND_ASSIGN(p0_sharding, b.GetOpSharding(p0)); EXPECT_TRUE(p0_sharding.has_value()); EXPECT_EQ(HloSharding::FromProto(p0_sharding.value()).value(), hlo_sharding_2); EXPECT_EQ(HloSharding::FromProto(b.sharding().value()).value(), hlo_sharding_1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_TRUE( module->entry_computation()->parameter_instruction(0)->has_sharding()); EXPECT_EQ(module->entry_computation()->parameter_instruction(0)->sharding(), hlo_sharding_2); } TEST(XlaBuilderTest, ComparisonType) { XlaBuilder b(TestName()); (void)Le(ConstantR0<int32_t>(&b, 1), ConstantR0<int32_t>(&b, 2)); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); ASSERT_THAT(root, GmockMatch(m::Compare(m::Constant(), m::Constant()))); EXPECT_EQ(Comparison::Type::kSigned, DynCast<HloCompareInstruction>(root)->type()); } TEST(XlaBuilderTest, StableLookUpInstructionByHandle) { XlaBuilder b(TestName()); internal::XlaBuilderFriend builder_friend; const XlaOp le = Le(ConstantR0<int32_t>(&b, 1), ConstantR0<int32_t>(&b, 2)); HloInstructionProto* first_op = builder_friend.GetInstruction(le); for (int i = 0; i < 100; ++i) { (void)Le(ConstantR0<int32_t>(&b, 1), ConstantR0<int32_t>(&b, 2)); } HloInstructionProto* first_op_now = builder_friend.GetInstruction(le); EXPECT_EQ(first_op, first_op_now); } TEST(XlaBuilderTest, ComplexAbsConstant) { XlaBuilder b(TestName()); const XlaOp out = Abs(ConstantR0<std::complex<float>>(&b, std::complex<float>{-1, -1})); ValueInference value_inference(&b); absl::StatusOr<OptionalLiteral> analyzed = value_inference.AnalyzeConstant(out, kUpperBound); EXPECT_IS_OK(analyzed.status()); EXPECT_EQ(analyzed->GetValue().value().shape().element_type(), PrimitiveType::F32); } TEST(XlaBuilderTest, OutfeedDummyTupleSharding) { XlaBuilder b(TestName()); const XlaOp value = ConstantR1<int32_t>(&b, {0}); const Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {1}, {0}); Outfeed(value, shape, ""); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_FALSE(module->entry_computation()->root_instruction()->has_sharding()); } TEST(XlaBuilderTest, OutfeedTokenSharding) { XlaBuilder b(TestName()); const XlaOp value = ConstantR1<int32_t>(&b, {0}); const Shape shape = ShapeUtil::MakeShapeWithDenseLayout(S32, {1}, {0}); b.SetSharding(sharding_builder::Replicate()); Outfeed(value, shape, ""); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); auto it = std::find_if(module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end(), HloPredicateIsOp<HloOpcode::kOutfeed>); EXPECT_NE(it, module->entry_computation()->instructions().end()); auto* outfeed = *it; EXPECT_TRUE(outfeed->has_sharding()); EXPECT_TRUE(outfeed->sharding().IsTuple()); EXPECT_EQ(outfeed->sharding().tuple_elements().size(), 2); EXPECT_TRUE(outfeed->operand(1)->has_sharding()); EXPECT_EQ(outfeed->sharding().tuple_elements().back(), HloSharding::FromProto(sharding_builder::AssignDevice(0)).value()); EXPECT_EQ(outfeed->operand(1)->sharding(), HloSharding::FromProto(sharding_builder::AssignDevice(0)).value()); } TEST(XlaBuilderTest, NormalizeTupleSharding) { XlaBuilder b(TestName()); const Shape tuple_param_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {5}), ShapeUtil::MakeShape(F32, {6})}); b.SetSharding(sharding_builder::Replicate()); Parameter(&b, 0, tuple_param_shape, "p0"); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_TRUE(root->has_sharding()); EXPECT_TRUE(root->sharding().IsTuple()); EXPECT_EQ(GetRoot(*module)->sharding().tuple_elements().size(), 2); } TEST(XlaBuilderTest, InvalidSharding) { XlaBuilder b(TestName()); const Shape shape2d = ShapeUtil::MakeShape(F32, {6, 8}); const Shape shape1d = ShapeUtil::MakeShape(F32, {5}); b.SetSharding(sharding_builder::Tile1D(shape1d, 4)); Parameter(&b, 0, shape2d, "p0"); auto statusor = b.Build(); EXPECT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("Number of tile assignment dimensions (excluding " "subgroups) is different than the input rank")); } TEST(XlaBuilderTest, TopKDimensions) { XlaBuilder b(TestName()); int64_t k = 1; int64_t largest = true; TopK(Parameter(&b, 0, ShapeUtil::MakeShape(F32, {6, 8}), "p0"), k, largest); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); const HloInstruction* root = GetRoot(*module); EXPECT_TRUE(root->opcode() == HloOpcode::kTopK); EXPECT_TRUE(root->shape().IsTuple()); EXPECT_EQ(root->shape().tuple_shapes_size(), 2); EXPECT_EQ(root->shape().tuple_shapes(0).rank(), 2); EXPECT_EQ(root->shape().tuple_shapes(1).rank(), 2); EXPECT_EQ(root->shape().tuple_shapes(0).dimensions(0), 6); EXPECT_EQ(root->shape().tuple_shapes(0).dimensions(1), k); EXPECT_EQ(root->shape().tuple_shapes(1).dimensions(0), 6); EXPECT_EQ(root->shape().tuple_shapes(1).dimensions(1), k); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimExportSuccess) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[1, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("s32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[1, 2, 3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[1, 2, 3]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->ToString(), HasSubstr("mhlo.dynamic_broadcast_in_dim")); EXPECT_THAT(module->ToString(), HasSubstr("broadcast_dimensions=[1,2]")); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimNonBroadcastDimSizeGreaterThanOne) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("s32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[2, 2, 3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2, 2, 3]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->ToString(), HasSubstr("mhlo.dynamic_broadcast_in_dim")); EXPECT_THAT(module->ToString(), HasSubstr("broadcast_dimensions=[1,2]")); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimDynamicResultSize) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[1, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("s32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[1, 2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[1, 2, ?]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->ToString(), HasSubstr("mhlo.dynamic_broadcast_in_dim")); EXPECT_THAT(module->ToString(), HasSubstr("broadcast_dimensions=[1,2]")); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimInvalidOutputDimensionsElementType) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("f32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[2, 3, 3]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("output_dimensions must be an integer type f32[3]"))); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimInvalidOutputDimensionsRank) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("s32[2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[2, 3, 3]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("output_dimensions must be rank 1 but got rank 2"))); } TEST(XlaBuilderTest, MhloDynamicBroadcastInDimIncompatibleBroadcastSize) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_dimensions, ParseShape("s32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("f32[2, 3, 3]")); MhloDynamicBroadcastInDim( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_dimensions, "output_dimensions"), {1, 2}, output_shape); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("size of operand dimension 0 (2) is not compatible " "with size of result dimension 1 (3)"))); } TEST(XlaBuilderTest, MhloDynamicReshapeExportSuccess) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("s32[2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 15]")); MhloDynamicReshape( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_shape, "output_shape"), shape); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(module->ToString(), HasSubstr("mhlo.dynamic_reshape")); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, MhloDynamicReshapeIncompatibleElementType) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("s32[2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("s32[?, 15]")); MhloDynamicReshape( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_shape, "output_shape"), shape); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("Element type of operand f32[?,15] and " "output s32[?,15] must match"))); } TEST(XlaBuilderTest, MhloDynamicReshapeElementCountMismatch) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[3, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("s32[2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[4, 15]")); MhloDynamicReshape( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_shape, "output_shape"), shape); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("MhloDynamicReshape has mismatched " "element counts: from=45 (f32[3,15]) " "to=60 (f32[4,15])"))); } TEST(XlaBuilderTest, MhloDynamicReshapeRankMismatch) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output_shape, ParseShape("s32[3]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 15]")); MhloDynamicReshape( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, output_shape, "output_shape"), shape); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("output_shape dimension size=3 (s32[3]) and rank " "of shape=2 (f32[?,15]) must match"))); } struct UnaryOpTestCase { std::string operand; std::string expected; std::function<XlaOp(XlaOp)> unary_op; }; struct BinaryOpTestCase { std::string lhs; std::string rhs; absl::Span<const int64_t> broadcast_dimensions; std::string expected; std::function<XlaOp(XlaOp, XlaOp, absl::Span<const int64_t>)> binary_op; std::optional<std::string_view> error_message; }; constexpr absl::string_view kBroadcastDimensionMismatch = "Broadcast dimension 0 mismatch: 2 != -9223372036854775808; f32[2] and " "f32[?,10]."; std::array<const int64_t, 0> empty_array = {}; std::array<const int64_t, 1> zero_array = {0}; class XlaBuilderUnboundedUnaryOpTest : public ::testing::TestWithParam<UnaryOpTestCase> {}; class XlaBuilderUnboundedBinaryOpTest : public ::testing::TestWithParam<BinaryOpTestCase> {}; TEST_P(XlaBuilderUnboundedUnaryOpTest, UnboundedUnaryOpTest) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape(GetParam().operand)); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape(GetParam().expected)); GetParam().unary_op(Parameter(&b, 0, operand, "operand")); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<xla::HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST_P(XlaBuilderUnboundedBinaryOpTest, UnboundedBinaryOpTest) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape(GetParam().lhs)); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape(GetParam().rhs)); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape(GetParam().expected)); GetParam().binary_op(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), GetParam().broadcast_dimensions); if (const auto result = BuildHloModule(b); result.ok()) { ASSERT_NE(*result, nullptr); EXPECT_THAT(GetRoot(**result), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } else { ASSERT_TRUE(GetParam().error_message.has_value()); EXPECT_THAT(result, StatusIs(_, HasSubstr(*GetParam().error_message))); } } TEST(XlaBuilderTest, UnboundedAddScalarBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), empty_array); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAddDegenerateBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[1, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAddUnsupportedImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Add(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), zero_array); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr(kBroadcastDimensionMismatch))); } TEST(XlaBuilderTest, UnboundedAllGather) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); AllGather(Parameter(&b, 0, operand, "operand"), 0, 2, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllReduce) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); XlaComputation computation; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, operand, "arg0"), Parameter(sub_builder.get(), 1, operand, "arg1")); TF_ASSERT_OK_AND_ASSIGN(computation, sub_builder->Build()); } AllReduce(Parameter(&b, 0, operand, "operand"), computation, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllToAllDynamicSplitDimension) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 45]")); AllToAll(Parameter(&b, 0, operand, "operand"), 0, 1, 3, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllToAllDynamicConcatDimension) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 5]")); AllToAll(Parameter(&b, 0, operand, "operand"), 1, 0, 3, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllToAllDynamicSplitAndConcatDimensionEqual) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 15]")); AllToAll(Parameter(&b, 0, operand, "operand"), 0, 0, 3, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllToAllFullyDynamic) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, ?]")); AllToAll(Parameter(&b, 0, operand, "operand"), 0, 1, 3, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedAllToAllTupleVariadicUnsupported) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]{1,0}")); b.ReportErrorOrReturn( AllToAllTuple({Parameter(&b, 0, operand, "operand0"), Parameter(&b, 1, operand, "operand1")}, {})); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr( "AllToAllTuple does not support unbounded dynamic shapes"))); } TEST(XlaBuilderTest, UnboundedAllToAllTupleUnsupported) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 15]{1,0}")); b.ReportErrorOrReturn( AllToAllTuple(Parameter(&b, 0, operand, "operand"), 0, 1, 3, {})); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr( "AllToAllTuple does not support unbounded dynamic shapes"))); } TEST(XlaBuilderTest, BoundedAllToAllTupleUnsupported) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[3, <=15]{1,0}")); b.ReportErrorOrReturn( AllToAllTuple(Parameter(&b, 0, operand, "operand"), 0, 1, 3, {})); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("AllToAll does not support bounded dynamic shapes"))); } TEST(XlaBuilderTest, BoundedAllToAllUnsupported) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[3, <=15]{1,0}")); b.ReportErrorOrReturn( AllToAllTuple(Parameter(&b, 0, operand, "operand"), 0, 1, 3, {})); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("AllToAll does not support bounded dynamic shapes"))); } TEST(XlaBuilderTest, UnboundedAnd) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("s32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("s32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("s32[?, ?, 2, 2, <=2, <=2, ?]")); And(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), empty_array); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBatchNormGrad) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape grad_operand, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape scale, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape mean, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape variance, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape grad_scale, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape grad_offset, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape grad_output, ParseShape("f32[5, ?, 7]")); const Shape expected = ShapeUtil::MakeTupleShape({grad_operand, grad_scale, grad_offset}); BatchNormGrad( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, scale, "scale"), Parameter(&b, 2, mean, "mean"), Parameter(&b, 3, variance, "variance"), Parameter(&b, 4, grad_output, "grad_output"), 1.0, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBatchNormInference) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape scale, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape offset, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape mean, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape variance, ParseShape("f32[5]")); BatchNormInference( Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, scale, "scale"), Parameter(&b, 2, offset, "offset"), Parameter(&b, 3, mean, "mean"), Parameter(&b, 4, variance, "variance"), 1.0, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBatchNormTraining) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape output, ParseShape("f32[?, ?, 7]")); TF_ASSERT_OK_AND_ASSIGN(const Shape scale, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape offset, ParseShape("f32[5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape batch_mean, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape batch_var, ParseShape("f32[?]")); const Shape expected = ShapeUtil::MakeTupleShape({output, batch_mean, batch_var}); BatchNormTraining(Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, scale, "scale"), Parameter(&b, 2, offset, "offset"), 1.0, 1); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBitcastConvert) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f16[?, 10, 2]")); BitcastConvertType(Parameter(&b, 0, operand, "operand"), PrimitiveType::F16); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBroadcastUnsupportedOperand) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[<=3, ?]")); Broadcast(Parameter(&b, 0, operand, "operand"), {1}); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("is_unbounded_dynamic"))); } TEST(XlaBuilderTest, UnboundedBroadcastUnsupportedBroadcastSize) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[1]")); Broadcast(Parameter(&b, 0, operand, "operand"), {Shape::kUnboundedSize}); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr("Non-broadcast dimensions must not be dynamic."))); } TEST(XlaBuilderTest, UnboundedBroadcastInDim) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[<=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[<=2, 3, 4]")); BroadcastInDim(Parameter(&b, 0, operand, "operand"), {2, 3, 4}, {0, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedBroadcastInDimUnsupported) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[<=3, ?]")); BroadcastInDim(Parameter(&b, 0, operand, "operand"), {2, 3, Shape::kUnboundedSize}, {0, 2}); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("BroadcastInDim output must shape be " "static or bounded dynamic"))); } TEST(XlaBuilderTest, UnboundedCall) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); XlaComputation computation; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, operand, "arg0"), Parameter(sub_builder.get(), 1, operand, "arg1")); TF_ASSERT_OK_AND_ASSIGN(computation, sub_builder->Build()); } Call(&b, computation, {Parameter(&b, 0, operand, "arg0"), Parameter(&b, 1, operand, "arg1")}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedCholesky) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape a, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Cholesky(Parameter(&b, 0, a, "a"), true); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClamp) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 1, ?, 2, ?, <=2, ?]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClampScalarMinImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClampScalarMinMaxImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClampScalarOperandMaxImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClampScalarMinOperandImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedClampUnsupportedDegenerateOperandImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); Clamp(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("Unimplemented implicit broadcast."))); } TEST(XlaBuilderTest, UnboundedCollectiveBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); CollectiveBroadcast(Parameter(&b, 0, operand, "operand"), {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedCollectivePermute) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); CollectivePermute(Parameter(&b, 0, operand, "operand"), {std::make_pair(0, 1)}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedCompare) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("pred[?, ?, 2, 2, <=2, <=2, ?]")); Compare(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedConcatenate) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand1, ParseShape("f32[3, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape operand2, ParseShape("f32[?, 4, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape operand3, ParseShape("f32[?, ?, 2, 2, <=2, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[3, 4, ?, 2, <=2, <=2, ?]")); ConcatInDim(&b, {Parameter(&b, 0, operand1, "operand1"), Parameter(&b, 1, operand2, "operand2"), Parameter(&b, 2, operand3, "operand3")}, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedConvert) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("s32[?]")); ConvertElementType(Parameter(&b, 0, operand, "operand"), PrimitiveType::S32); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedConvolution) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 2, ?, 128]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[2, 2, <=128, 8]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 1, ?, 8]")); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); ConvWithGeneralDimensions(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), {1, 1}, Padding::kValid, dnums); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedDot) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Dot(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedDotGeneral) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("f32[?, <=3, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[2, 4, 5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, <=3, 5]")); DotDimensionNumbers dnums; dnums.add_lhs_contracting_dimensions(2); dnums.add_rhs_contracting_dimensions(1); dnums.add_lhs_batch_dimensions(0); dnums.add_rhs_batch_dimensions(0); DotGeneral(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), dnums); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedDynamicSlice) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape start_indices, ParseShape("s32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2, 2]")); DynamicSlice(Parameter(&b, 0, operand, "operand"), { Parameter(&b, 1, start_indices, "start_indices0"), Parameter(&b, 2, start_indices, "start_indices1"), }, {2, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedDynamicUpdateSlice) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape update, ParseShape("f32[?, 5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape start_indices, ParseShape("s32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); DynamicUpdateSlice(Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, update, "update"), {Parameter(&b, 2, start_indices, "start_indices0"), Parameter(&b, 3, start_indices, "start_indices1")}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedFftWithFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c64[2, <=5, ?]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c64[2, <=5, ?]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::FFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedFftWithIFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c64[2, <=5, ?]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c64[2, <=5, ?]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::IFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedFftWithRFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f64[2, <=5, ?]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("c128[2, <=5, 6]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::RFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedFftWithIRFFT) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("c128[2, <=5, ?]")); const std::vector<int64_t> fft_length = {5, 10}; TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f64[2, <=5, 10]")); Fft(Parameter(&b, 0, operand, "operand"), FftType::IRFFT, fft_length); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedGather) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[3, 4, 2]")); TF_ASSERT_OK_AND_ASSIGN(const Shape start_indices, ParseShape("s32[?, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, ?, 2, 2]")); GatherDimensionNumbers dimension_numbers; dimension_numbers.add_offset_dims(2); dimension_numbers.add_offset_dims(3); dimension_numbers.add_collapsed_slice_dims(0); dimension_numbers.add_start_index_map(1); dimension_numbers.add_start_index_map(0); dimension_numbers.set_index_vector_dim(2); Gather(Parameter(&b, 0, operand, "operand"), Parameter(&b, 1, start_indices, "start_indices"), dimension_numbers, {1, 2, 2}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedGetTupleElement) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); GetTupleElement(Tuple(&b, {Parameter(&b, 0, operand, "operand")}), 0); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<xla::HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedInfeed) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Infeed(&b, shape, ""); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<xla::HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedInfeedWithToken) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("(f32[?, 10], token[])")); InfeedWithToken(CreateToken(&b), shape, ""); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<xla::HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedMap) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand0, ParseShape("f32[2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape operand1, ParseShape("f32[?, 3, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2, ?, ?]")); XlaComputation computation; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1")); TF_ASSERT_OK_AND_ASSIGN(computation, sub_builder->Build()); } Map(&b, {Parameter(&b, 0, operand0, "operand0"), Parameter(&b, 1, operand1, "operand1")}, computation, {0, 1, 2}, {}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedOptimizationBarrier) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); OptimizationBarrier(Parameter(&b, 0, operand, "operand")); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedOr) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("s32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("s32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("s32[?, ?, 2, 2, <=2, <=2, ?]")); Or(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), empty_array); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedOutfeed) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape_with_layout, ParseShape("f32[?, 10]")); Outfeed(Parameter(&b, 0, operand, "operand"), shape_with_layout, ""); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedOutfeedWithToken) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape_with_layout, ParseShape("f32[?, 10]")); OutfeedWithToken(Parameter(&b, 0, operand, "operand"), CreateToken(&b), shape_with_layout, ""); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedPad) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 21]")); PaddingConfig padding_config; for (int i = 0; i < 2; i++) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(1); dimension->set_edge_padding_high(1); dimension->set_interior_padding(1); } Pad(Parameter(&b, 0, operand, "operand"), ConstantR0<float>(&b, 0), padding_config); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedRecv) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::DEVICE_TO_DEVICE); Recv(&b, shape, handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedRecvFromHost) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::HOST_TO_DEVICE); RecvFromHost(CreateToken(&b), shape, handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedRecvWithToken) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::DEVICE_TO_DEVICE); RecvWithToken(CreateToken(&b), shape, handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedReduce) { XlaBuilder b(TestName()); const Shape shape = ShapeUtil::MakeShape(F32, {7}, {false}); const Shape expected = ShapeUtil::MakeTupleShape({shape, shape, shape}); TF_ASSERT_OK_AND_ASSIGN(const Shape input0, ParseShape("f32[7, 5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape input1, ParseShape("f32[?, 5]")); TF_ASSERT_OK_AND_ASSIGN(const Shape input2, ParseShape("f32[7, ?]")); const Shape scalar_f32 = ShapeUtil::MakeShape(F32, {}); const XlaOp init = Parameter(&b, 3, scalar_f32, "init"); XlaBuilder bsum(TestName()); std::vector<XlaOp> output_operands = { Add(Parameter(&bsum, 0, scalar_f32, "arg0"), Parameter(&bsum, 1, scalar_f32, "arg1")), Add(Parameter(&bsum, 2, scalar_f32, "arg2"), Parameter(&bsum, 3, scalar_f32, "arg3")), Add(Parameter(&bsum, 4, scalar_f32, "arg4"), Parameter(&bsum, 5, scalar_f32, "arg5"))}; Tuple(&bsum, absl::MakeSpan(output_operands)); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation sum, bsum.Build()); Reduce( &b, {Parameter(&b, 0, input0, "input0"), Parameter(&b, 1, input1, "input1"), Parameter(&b, 2, input2, "input2")}, {init, init, init}, sum, {1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedReducePrecision) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); ReducePrecision(Parameter(&b, 0, operand, "operand"), 2, 2); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedReduceScatter) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); XlaComputation computation; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, operand, "arg0"), Parameter(sub_builder.get(), 1, operand, "arg1")); TF_ASSERT_OK_AND_ASSIGN(computation, sub_builder->Build()); } ReplicaGroup replica_group; replica_group.add_replica_ids(0); replica_group.add_replica_ids(1); ReduceScatter( Parameter(&b, 0, operand, "operand"), computation, 0, 2, {replica_group}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedReduceWindow) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape input, ParseShape("f32[?, 4, 8]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 3, 5]")); XlaBuilder bsum(TestName()); Add(Parameter(&bsum, 0, ShapeUtil::MakeShape(F32, {}), "x"), Parameter(&bsum, 1, ShapeUtil::MakeShape(F32, {}), "y")); TF_ASSERT_OK_AND_ASSIGN(const XlaComputation sum, bsum.Build()); ReduceWindow(Parameter(&b, 0, input, "input"), ConstantR0<float>(&b, 0.f), sum, {1, 2, 4}, {1, 1, 1}, Padding::kValid); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedReshape) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[2,3]")); Reshape(Parameter(&b, 0, operand, "operand"), {0}, {2, 3}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedReshapeUnsupportedOutputShape) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[6]")); Reshape(Parameter(&b, 0, operand, "operand"), {0}, {Shape::kUnboundedSize, Shape::kUnboundedSize}); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr( "Reshaping with unbounded result shape is not supported."))); } TEST(XlaBuilderTest, UnboundedReshapeUnsupportedInferredShape) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?]")); Reshape(operand, Parameter(&b, 0, operand, "operand")); EXPECT_THAT( BuildHloModule(b), StatusIs(_, HasSubstr( "Reshaping with unbounded result shape is not supported."))); } TEST(XlaBuilderTest, UnboundedReverse) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Rev(Parameter(&b, 0, operand, "operand"), {0, 1}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedRngBitGenerator) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape initial_state, ParseShape("u32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("u32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("(u32[?, 10], u32[?, 10])")); RngBitGenerator(RandomAlgorithm::RNG_DEFAULT, Parameter(&b, 0, initial_state, "initial_state"), shape); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedRngNormal) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); RngNormal(Parameter(&b, 0, ShapeUtil::MakeScalarShape(F32), "mu"), Parameter(&b, 1, ShapeUtil::MakeScalarShape(F32), "sigma"), shape); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedRngUniform) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape shape, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); RngUniform(Parameter(&b, 0, ShapeUtil::MakeScalarShape(F32), "a"), Parameter(&b, 1, ShapeUtil::MakeScalarShape(F32), "b"), shape); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedScatter) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape input, ParseShape("f32[?, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape scatter_indices, ParseShape("s32[?, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape updates, ParseShape("f32[?, ?, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, ?, ?]")); XlaComputation update_computation; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1")); TF_ASSERT_OK_AND_ASSIGN(update_computation, sub_builder->Build()); } ScatterDimensionNumbers dimension_numbers; dimension_numbers.add_update_window_dims(2); dimension_numbers.add_update_window_dims(3); dimension_numbers.add_inserted_window_dims(0); dimension_numbers.add_scatter_dims_to_operand_dims(1); dimension_numbers.add_scatter_dims_to_operand_dims(0); dimension_numbers.set_index_vector_dim(2); Scatter(Parameter(&b, 0, input, "input"), Parameter(&b, 1, scatter_indices, "scatter_indices"), Parameter(&b, 2, updates, "updates"), update_computation, dimension_numbers, false, false); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelect) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[1, 1, 2, 2, <=2, <=2, ?]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelectScalarPred) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelectScalarOnTrueOnFalseImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelectScalarPredOnFalseImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelectScalarPredOnTrueImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSelectUnsupportedDegenerateOperandImplicitBroadcast) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("pred[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("f32[1]")); TF_ASSERT_OK_AND_ASSIGN(const Shape ehs, ParseShape("f32[?, 10]")); Select(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), Parameter(&b, 2, ehs, "ehs")); EXPECT_THAT(BuildHloModule(b), StatusIs(_, HasSubstr("Unimplemented implicit broadcast."))); } TEST(XlaBuilderTest, UnboundedSelectAndScatter) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape source, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape init_value, ParseShape("f32[]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); XlaComputation select; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("compare"); Compare(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1"), ComparisonDirection::kGe); TF_ASSERT_OK_AND_ASSIGN(select, sub_builder->Build()); } XlaComputation scatter; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1")); TF_ASSERT_OK_AND_ASSIGN(scatter, sub_builder->Build()); } SelectAndScatter(Parameter(&b, 0, operand, "operand"), select, std::array<int64_t, 2>({3, 1}), std::array<int64_t, 2>({2, 1}), Padding::kValid, Parameter(&b, 1, source, "source"), Parameter(&b, 2, init_value, "init_value"), scatter); TF_ASSERT_OK_AND_ASSIGN(auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSend) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::DEVICE_TO_DEVICE); Send(Parameter(&b, 0, operand, "operand"), handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedSendToHost) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape shape_with_layout, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::DEVICE_TO_HOST); SendToHost(Parameter(&b, 0, operand, "operand"), CreateToken(&b), shape_with_layout, handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedSendWithToken) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); ChannelHandle handle; handle.set_handle(1); handle.set_type(ChannelHandle::DEVICE_TO_DEVICE); SendWithToken(Parameter(&b, 0, operand, "operand"), CreateToken(&b), handle); EXPECT_IS_OK(BuildHloModule(b)); } TEST(XlaBuilderTest, UnboundedSlice) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[1, <=3, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[1, <=2, 3]")); Slice(Parameter(&b, 0, operand, "operand"), {0, 1, 2}, {1, 3, 5}, {1, 1, 1}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedSort) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?, 10]")); XlaComputation comparator; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("compare"); Compare(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1"), ComparisonDirection::kLt); TF_ASSERT_OK_AND_ASSIGN(comparator, sub_builder->Build()); } Sort({Parameter(&b, 0, operand, "operand")}, comparator, 0, true); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedTranspose) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[1, ?, 2, ?, <=2]{4,3,2,1,0}")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[<=2, 1, ?, 2, ?]{0,2,3,4,1}")); Transpose(Parameter(&b, 0, operand, "operand"), {4, 0, 3, 2, 1}); TF_ASSERT_OK_AND_ASSIGN(const auto module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedTriangularSolve) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape a_shape, ParseShape("f32[?, 10]")); TF_ASSERT_OK_AND_ASSIGN(const Shape b_shape, ParseShape("f32[10, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[10, ?]")); TriangularSolveOptions options; TriangularSolve(Parameter(&b, 0, a_shape, "a"), Parameter(&b, 1, b_shape, "b"), true, true, false, TriangularSolveOptions::TRANSPOSE); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedTuple) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape operand, ParseShape("f32[?, 10]")); const Shape expected = ShapeUtil::MakeTupleShape({operand}); Tuple(&b, {Parameter(&b, 0, operand, "operand")}); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedWhile) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape init, ParseShape("f32[?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("f32[?]")); XlaComputation add; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(F32), "arg0"), Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(F32), "arg1")); TF_ASSERT_OK_AND_ASSIGN(add, sub_builder->Build()); } XlaComputation condition; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("compare"); Ge(ConstantR0<float>(sub_builder.get(), 10.0f), Reduce(Parameter(sub_builder.get(), 0, init, "prev"), ConstantR0<float>(sub_builder.get(), 0.0f), add, {0})); TF_ASSERT_OK_AND_ASSIGN(condition, sub_builder->Build()); } XlaComputation body; { const std::unique_ptr<XlaBuilder> sub_builder = b.CreateSubBuilder("add"); Add(ConstantR1<float>(sub_builder.get(), {1.0f}), Parameter(sub_builder.get(), 0, init, "prev"), {0}); TF_ASSERT_OK_AND_ASSIGN(body, sub_builder->Build()); } While(condition, body, Parameter(&b, 0, init, "init")); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } TEST(XlaBuilderTest, UnboundedXor) { XlaBuilder b(TestName()); TF_ASSERT_OK_AND_ASSIGN(const Shape lhs, ParseShape("s32[1, ?, 2, ?, <=2, ?, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape rhs, ParseShape("s32[?, 1, ?, 2, ?, <=2, ?]")); TF_ASSERT_OK_AND_ASSIGN(const Shape expected, ParseShape("s32[?, ?, 2, 2, <=2, <=2, ?]")); Xor(Parameter(&b, 0, lhs, "lhs"), Parameter(&b, 1, rhs, "rhs"), empty_array); TF_ASSERT_OK_AND_ASSIGN(const std::unique_ptr<HloModule> module, BuildHloModule(b)); EXPECT_THAT(GetRoot(*module), GmockMatch(m::Op().WithShapeEqualTo(&expected))); } INSTANTIATE_TEST_SUITE_P(UnboundedDynamism, XlaBuilderUnboundedUnaryOpTest, ::testing::ValuesIn<UnaryOpTestCase>( {{"f32[?]", "f32[?]", &Abs}, {"f32[?]", "f32[?]", &Cbrt}, {"f32[?]", "f32[?]", &Ceil}, {"u32[?]", "u32[?]", &Clz}, {"f32[?]", "f32[?]", &Cos}, {"f32[?]", "f32[?]", &Erf}, {"f32[?]", "f32[?]", &Exp}, {"f32[?]", "f32[?]", &Expm1}, {"f32[?]", "f32[?]", &Floor}, {"f32[?]", "f32[?]", &Imag}, {"f32[?]", "pred[?]", &IsFinite}, {"f32[?]", "f32[?]", &Log}, {"f32[?]", "f32[?]", &Log1p}, {"f32[?]", "f32[?]", &Logistic}, {"f32[?]", "f32[?]", &Neg}, {"s32[?]", "s32[?]", &Not}, {"u32[?]", "u32[?]", &PopulationCount}, {"f32[?]", "f32[?]", &Real}, {"f32[?]", "f32[?]", &Round}, {"f32[?]", "f32[?]", &RoundNearestEven}, {"f32[?]", "f32[?]", &Rsqrt}, {"f32[?]", "f32[?]", &Sign}, {"f32[?]", "f32[?]", &Sin}, {"f32[?]", "f32[?]", &Sqrt}, {"f32[?]", "f32[?]", &Tanh}})); INSTANTIATE_TEST_SUITE_P( UnboundedDynamism, XlaBuilderUnboundedBinaryOpTest, ::testing::ValuesIn<BinaryOpTestCase>({ {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Add}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Add}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Atan2}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "c64[?, ?, 2, 2, <=2, <=2, ?]", &Complex}, {"f32[?, 10]", "f32[1]", zero_array, "c64[?, 10]", &Complex}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Div}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Div}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Max}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Max}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Min}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Min}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Mul}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Mul}, {"f32[?, 10]", "f32[1]", zero_array, "pred[?, 10]", &Ne}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Pow}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Pow}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Rem}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Rem}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &ShiftLeft}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &ShiftLeft}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &ShiftRightArithmetic}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &ShiftRightArithmetic}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &ShiftRightLogical}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &ShiftRightLogical}, {"f32[1, ?, 2, ?, <=2, ?, ?]", "f32[?, 1, ?, 2, ?, <=2, ?]", empty_array, "f32[?, ?, 2, 2, <=2, <=2, ?]", &Sub}, {"f32[?, 10]", "f32[1]", zero_array, "f32[?, 10]", &Sub}, })); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/xla_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/xla_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
76cfe482-6e50-4a45-9dcc-84e407a2fbd2
cpp
tensorflow/tensorflow
costmodel
tensorflow/core/graph/costmodel.cc
tensorflow/core/graph/costmodel_test.cc
#include "tensorflow/core/graph/costmodel.h" #include <algorithm> #include <vector> #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { const Microseconds kDefaultTimeEstimate(1); const Microseconds kMinTimeEstimate(1); } void CostModel::SuppressInfrequent() { if (count_.empty()) return; std::vector<int32> non_zero; for (auto v : count_) { if (v > 0) non_zero.push_back(v); } const size_t sz = non_zero.size(); if (sz > 0) { std::nth_element(non_zero.begin(), non_zero.begin() + sz / 2, non_zero.end()); int32_t median_value = non_zero[sz / 2]; min_count_ = median_value / 2; VLOG(1) << "num non_zero vals: " << non_zero.size() << " median_value " << median_value; } else { min_count_ = 1; } } void CostModel::MergeFromLocal(const Graph& g, const CostModel& cm) { CHECK(is_global_); CHECK(!cm.is_global()); for (const Node* n : g.nodes()) { const int local_id = cm.Id(n); const int global_id = Id(n); if (local_id < 0 || global_id < 0) continue; int num_slots = cm.slot_bytes_[local_id].size(); Ensure(global_id, num_slots); count_[global_id] += cm.count_[local_id]; time_[global_id] += cm.time_[local_id]; if (num_slots > 0) { if (slot_bytes_[global_id].empty()) { slot_bytes_[global_id].resize(num_slots); } else { CHECK_EQ(num_slots, slot_bytes_[global_id].size()); } for (int s = 0; s < num_slots; ++s) { auto& current_v = slot_bytes_[global_id][s]; auto other_v = cm.slot_bytes_[local_id][s]; if (current_v < 0) { current_v = other_v; } else if (other_v > 0) { current_v += other_v; } } } } } void CostModel::MergeFromGlobal(const CostModel& cm) { CHECK(is_global_); CHECK_EQ(true, cm.is_global()); const int num_nodes = cm.count_.size(); for (int i = num_nodes - 1; i >= 0; --i) { int num_slots = cm.slot_bytes_[i].size(); Ensure(i, num_slots); count_[i] += cm.count_[i]; time_[i] += cm.time_[i]; if (num_slots > 0) { if (slot_bytes_[i].empty()) { slot_bytes_[i].resize(num_slots); } else { CHECK_EQ(num_slots, slot_bytes_[i].size()); } for (int s = 0; s < num_slots; ++s) { auto& current_v = slot_bytes_[i][s]; auto other_v = cm.slot_bytes_[i][s]; if (current_v < 0) { current_v = other_v; } else if (other_v > 0) { current_v += other_v; } } } } } void CostModel::MergeFromStats(const NodeNameToCostIdMap& map, const StepStats& ss) { CHECK(is_global_); for (auto& ds : ss.dev_stats()) { for (auto& ns : ds.node_stats()) { NodeNameToCostIdMap::const_iterator iter = map.find(ns.node_name()); if (iter == map.end()) continue; int32_t global_id = iter->second; Ensure(global_id, ns.output_size()); int64_t elapsed_micros = ns.op_end_rel_micros() - ns.op_start_rel_micros(); count_[global_id]++; time_[global_id] += elapsed_micros; for (auto& no : ns.output()) { int si = no.slot(); if (static_cast<size_t>(si) >= slot_bytes_[global_id].size()) { slot_bytes_[global_id].resize(1 + si); } auto& current_v = slot_bytes_[global_id][si]; auto other_v = no.tensor_description().allocation_description().requested_bytes(); if (current_v < 0) { current_v = other_v; } else if (other_v > 0) { current_v += other_v; } } } } } void CostModel::Ensure(int id, int num_outputs) { if (slot_bytes_.size() <= static_cast<size_t>(id)) { slot_bytes_.resize(id + 1); count_.resize(id + 1); time_.resize(id + 1); max_mem_usage_.resize(id + 1); max_exec_time_.resize(id + 1); output_port_alloc_ids_.resize(id + 1); } if (num_outputs > 0) { auto perslot = &slot_bytes_[id]; auto output_port_alloc_ids = &output_port_alloc_ids_[id]; auto max_mem_usage = &max_mem_usage_[id]; CHECK_LE(perslot->size(), num_outputs); DCHECK_EQ(output_port_alloc_ids->size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_mem.size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_shape.size(), perslot->size()); DCHECK_EQ(max_mem_usage->output_port_type.size(), perslot->size()); perslot->resize(num_outputs, Bytes(-1)); output_port_alloc_ids->resize(num_outputs, -1); max_mem_usage->output_port_mem.resize(num_outputs, Bytes(-1)); max_mem_usage->output_port_shape.resize(num_outputs, unknown_shape_); max_mem_usage->output_port_type.resize(num_outputs, DT_INVALID); } } void CostModel::SetNumOutputs(const Node* node, int num_outputs) { const int id = Id(node); if (id < 0) return; Ensure(id, 0); auto perslot = &slot_bytes_[id]; if (!perslot->empty()) { CHECK_EQ(num_outputs, perslot->size()) << "Cannot resize slot_bytes, node=" << node->name(); } Ensure(id, num_outputs); } void CostModel::RecordCount(const Node* node, int count) { const int id = Id(node); if (id < 0) return; CHECK_LT(id, slot_bytes_.size()); count_[id] += count; } int32 CostModel::TotalCount(const Node* node) const { const int id = Id(node); if (id < 0) return 0; return (static_cast<size_t>(id) < slot_bytes_.size()) ? count_[id] : 0; } void CostModel::RecordSize(const Node* node, int slot, Bytes bytes) { const int id = Id(node); if (id < 0) return; CHECK_LT(id, slot_bytes_.size()); auto perslot = &slot_bytes_[id]; CHECK_LT(slot, perslot->size()); auto v = &(*perslot)[slot]; if (*v >= 0) { *v += bytes; } else { *v = bytes; } } Bytes CostModel::TotalBytes(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= slot_bytes_.size() || slot_bytes_[id].size() <= static_cast<size_t>(slot)) { return Bytes(0); } return slot_bytes_[id][slot]; } Bytes CostModel::SizeEstimate(const Node* node, int slot) const { int32_t count = TotalCount(node); if (count < min_count_) return Bytes(0); return TotalBytes(node, slot) / std::max(1, TotalCount(node)); } void CostModel::RecordTime(const Node* node, Microseconds time) { const int id = Id(node); if (id < 0) return; DCHECK(node->IsOp()) << node->DebugString(); Ensure(id, node->num_outputs()); time_[id] += time; } Microseconds CostModel::TotalTime(const Node* node) const { DCHECK(node->IsOp()) << node->DebugString(); const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= time_.size() || time_[id] < Microseconds(0)) { return Microseconds(0); } return time_[id]; } Microseconds CostModel::TimeEstimate(const Node* node) const { int32_t count = TotalCount(node); if (count <= min_count_) return kMinTimeEstimate; return std::max(kMinTimeEstimate, TotalTime(node) / std::max(1, count)); } void CostModel::CheckInitialized(const Graph& graph) const { for (const Node* n : graph.op_nodes()) { CHECK(static_cast<size_t>(n->id()) < time_.size() && time_[n->id()] >= Microseconds(0)) << ": no time estimate for " << n->DebugString(); CHECK(static_cast<size_t>(n->id()) < slot_bytes_.size()) << ": no size estimate for " << n->DebugString(); const auto& perslot = slot_bytes_[n->id()]; for (size_t i = 0; i < perslot.size(); i++) { CHECK_GE(perslot[i], Bytes(0)) << ": no size estimate for output# " << i << " of " << n->DebugString(); } } } void CostModel::RecordMaxMemorySize(const Node* node, int output_slot, Bytes bytes, const TensorShapeProto& tensor_shape, const DataType& dtype) { const int id = Id(node); if (id < 0) return; if (output_slot >= node->num_outputs()) { LOG(ERROR) << "Unexpected output slot for node " << node->DebugString() << ". Got " << output_slot << " but its num_outputs is " << node->num_outputs(); return; } Ensure(id, node->num_outputs()); auto& current_max = max_mem_usage_[id].output_port_mem[output_slot]; if (bytes.value() < 0) { bytes = MinTensorMemoryUsage(tensor_shape, dtype); } if (bytes.value() > current_max.value()) { current_max = bytes.value(); max_mem_usage_[id].output_port_shape[output_slot] = tensor_shape; max_mem_usage_[id].output_port_type[output_slot] = dtype; } } Bytes CostModel::MaxMemorySize(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_mem.size() <= static_cast<size_t>(slot)) { return Bytes(0); } return max_mem_usage_[id].output_port_mem[slot]; } const TensorShapeProto& CostModel::MaxMemoryShape(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_shape.size() <= static_cast<size_t>(slot)) { return unknown_shape_; } return max_mem_usage_[id].output_port_shape[slot]; } DataType CostModel::MaxMemoryType(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_mem_usage_.size() || max_mem_usage_[id].output_port_type.size() <= static_cast<size_t>(slot)) { return DT_INVALID; } return max_mem_usage_[id].output_port_type[slot]; } Bytes CostModel::TempMemorySize(const Node* node) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_mem_usage_.size()) { return Bytes(0); } return max_mem_usage_[id].temp_memory_size; } Bytes CostModel::PersistentMemorySize(const Node* node) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_mem_usage_.size()) { return Bytes(0); } return max_mem_usage_[id].persistent_memory_size; } void CostModel::RecordMemoryStats(const Node* node, const MemoryStats& memory_stats) { const int id = Id(node); if (id < 0) return; Ensure(id, node->num_outputs()); max_mem_usage_[id].temp_memory_size = memory_stats.temp_memory_size(); max_mem_usage_[id].persistent_memory_size = memory_stats.persistent_memory_size(); for (int64_t alloc_id : memory_stats.persistent_tensor_alloc_ids()) { if (alloc_id > 0) { persistent_alloc_ids_.insert(alloc_id); } } } void CostModel::RecordMaxExecutionTime(const Node* node, Microseconds time) { const int id = Id(node); if (id < 0) return; Ensure(id, node->num_outputs()); max_exec_time_[id] = std::max(max_exec_time_[id], time); } Microseconds CostModel::MaxExecutionTime(const Node* node) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= max_exec_time_.size()) { return Microseconds(0); } return max_exec_time_[id]; } void CostModel::RecordAllocationId(const Node* node, int output_slot, int64_t alloc_id) { const int id = Id(node); if (id < 0) return; Ensure(id, node->num_outputs()); output_port_alloc_ids_[id][output_slot] = alloc_id; } int64_t CostModel::AllocationId(const Node* node, int slot) const { const int id = Id(node); if (id < 0 || static_cast<size_t>(id) >= output_port_alloc_ids_.size() || output_port_alloc_ids_[id].size() <= static_cast<size_t>(slot)) { return -1; } return output_port_alloc_ids_[id][slot]; } bool CostModel::IsPersistentTensor(const Node* node, int64_t alloc_id) const { if (persistent_alloc_ids_.count(alloc_id) > 0) { return true; } return false; } Microseconds CostModel::CopyTimeEstimate(Bytes b, double network_latency_millis, double estimated_gbps) { int64_t copy_bytes = b.value(); const double bytes_per_usec = estimated_gbps * 1000.0 / 8; const double min_micros = network_latency_millis * 1000.0; return Microseconds( static_cast<int64_t>(copy_bytes / bytes_per_usec + min_micros)); } Microseconds CostModel::ComputationTimeEstimate(int64_t math_ops) { return Microseconds(math_ops / 1000); } void CostModel::IncrementUpdateTimes() { update_times_++; } int32 CostModel::GetUpdateTimes() const { return update_times_; } namespace { static void AddNodesToCostModel(const Graph& g, CostModel* cost_model) { for (Node* n : g.nodes()) { const int num_outputs = n->num_outputs(); cost_model->SetNumOutputs(n, num_outputs); for (int output = 0; output < num_outputs; output++) { cost_model->RecordSize(n, output, Bytes(1)); } } } static void AssignSizes(const Graph& g, CostModel* cost_model) { for (const Edge* e : g.edges()) { if (e->IsControlEdge()) { continue; } const Node* src = e->src(); Bytes size(1); cost_model->RecordSize(src, e->src_output(), size); } } static Microseconds TimeEstimateForNode(CostModel* cost_model, Node* n) { CHECK(n->IsOp()); VLOG(2) << "Node " << n->id() << ": " << n->name() << " type_string: " << n->type_string(); if (IsConstant(n) || IsVariable(n)) { return Microseconds(0); } return kDefaultTimeEstimate; } static void EstimateComputationCosts(const Graph& g, CostModel* cost_model) { for (Node* n : g.nodes()) { if (!n->IsOp()) continue; cost_model->RecordTime(n, TimeEstimateForNode(cost_model, n)); } } } void CostModel::InitFromGraph(const Graph& g) { const int num_node_ids = g.num_node_ids(); slot_bytes_.reserve(num_node_ids); count_.reserve(num_node_ids); time_.reserve(num_node_ids); max_mem_usage_.reserve(num_node_ids); max_exec_time_.reserve(num_node_ids); output_port_alloc_ids_.reserve(num_node_ids); AddNodesToCostModel(g, this); AssignSizes(g, this); EstimateComputationCosts(g, this); CheckInitialized(g); } void CostModel::AddToCostGraphDef(const Graph* graph, CostGraphDef* cost_graph) const { std::vector<const Edge*> inputs; std::vector<const Edge*> control_inputs; int offset = cost_graph->node_size(); for (const Node* n : graph->nodes()) { CostGraphDef::Node* cnode = cost_graph->add_node(); cnode->set_name(n->name()); cnode->set_device(n->assigned_device_name()); cnode->set_id(GlobalId(n, offset)); inputs.clear(); inputs.resize(n->num_inputs(), nullptr); control_inputs.clear(); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { control_inputs.push_back(e); } else { inputs[e->dst_input()] = e; } } std::sort(control_inputs.begin(), control_inputs.end(), [this](Edge const* a, Edge const* b) { return Id(a->src()) < Id(b->src()); }); for (const Edge* e : inputs) { CostGraphDef::Node::InputInfo* input_info = cnode->add_input_info(); input_info->set_preceding_node(GlobalId(e->src(), offset)); input_info->set_preceding_port(e->src_output()); } for (int i = 0; i < n->num_outputs(); i++) { CostGraphDef::Node::OutputInfo* output_info = cnode->add_output_info(); int64_t alloc_id = AllocationId(n, i); int64_t alias_to_input = -1; for (const Edge* e : inputs) { int64_t input_alloc_id = AllocationId(e->src(), e->src_output()); if (input_alloc_id == alloc_id) { alias_to_input = e->dst_input(); break; } } output_info->set_alias_input_port(alias_to_input); output_info->set_dtype(MaxMemoryType(n, i)); *output_info->mutable_shape() = MaxMemoryShape(n, i); if (alias_to_input < 0 && IsPersistentTensor(n, alloc_id)) { output_info->set_size(0); } else { output_info->set_size(MaxMemorySize(n, i).value()); } } for (const Edge* e : control_inputs) { cnode->add_control_input(GlobalId(e->src(), offset)); } cnode->set_temporary_memory_size(TempMemorySize(n).value()); cnode->set_persistent_memory_size(PersistentMemorySize(n).value()); cnode->set_compute_cost(MaxExecutionTime(n).value()); cnode->set_is_final(n->IsSend()); } } void CostModel::WriteSummaryToLog() const { LOG(INFO) << " min_count_=" << min_count_; for (size_t i = 0; i < count_.size(); ++i) { LOG(INFO) << "Node " << i << " count " << count_[i] << " total time " << time_[i] << " avg time " << (time_[i] / (std::max(1, count_[i]))); } } Bytes CostModel::MinTensorMemoryUsage(const TensorShapeProto& tensor_shape, const DataType& dtype) { if (tensor_shape.unknown_rank()) { return Bytes(-1); } size_t num_coefficients = 1; for (const TensorShapeProto::Dim& dim : tensor_shape.dim()) { num_coefficients *= std::max<size_t>(dim.size(), 1); } return Bytes(num_coefficients * DataTypeSize(dtype)); } }
#include "tensorflow/core/graph/costmodel.h" #include <memory> #include <string> #include <unordered_map> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/common_runtime/costmodel_manager.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/step_stats_collector.h" #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { using ::testing::Not; MATCHER_P(ShapeProtoEquals, other, "") { if (arg.unknown_rank()) { return other.unknown_rank(); } if (arg.dim_size() != other.dim_size()) { return false; } for (int i = 0; i < arg.dim_size(); ++i) { if (arg.dim(i).size() != other.dim(i).size()) { return false; } } return true; } static void InitGraph(const string& s, Graph* graph) { GraphDef graph_def; auto parser = protobuf::TextFormat::Parser(); CHECK(parser.MergeFromString(s, &graph_def)) << s; GraphConstructorOptions opts; TF_CHECK_OK(ConvertGraphDefToGraph(opts, graph_def, graph)); } static void InitModelFromGraph(const Graph& graph, CostModel& cm) { for (const auto& node : graph.nodes()) { cm.SetNumOutputs(node, node->num_outputs()); } } static std::unique_ptr<Graph> CreateBasicTestGraph() { auto graph = std::make_unique<Graph>(OpRegistry::Global()); InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }", graph.get()); return graph; } Node* FindNode(const Graph& graph, std::string name) { for (const auto& node : graph.nodes()) { if (node->name() == name) { return node; } } return nullptr; } Node* AddNode(Graph& graph, const string& name, const string& node_type, int num_inputs) { auto builder = NodeDefBuilder(name, node_type); for (int i = 0; i < num_inputs; ++i) { builder = builder.Input(strings::StrCat("node_", i), i, DT_FLOAT); } NodeDef node_def; TF_CHECK_OK(builder.Finalize(&node_def)); Status s; Node* node = graph.AddNode(node_def, &s); TF_CHECK_OK(s); return node; } static void GenerateStepStats(Graph* graph, StepStats* step_stats, const string& device_name) { DeviceStepStats* device_stepstats = step_stats->add_dev_stats(); device_stepstats->set_device(device_name); for (const auto& node_def : graph->nodes()) { NodeExecStats* node_stats = device_stepstats->add_node_stats(); node_stats->set_node_name(node_def->name()); } } REGISTER_OP("Input").Output("o: float").SetIsStateful(); TEST(CostModelTest, WorksWithManager) { Scope scope = Scope::NewRootScope().ExitOnError(); auto graph1 = std::make_unique<Graph>(OpRegistry::Global()); auto graph2 = std::make_unique<Graph>(OpRegistry::Global()); InitGraph( "node { name: 'A1' op: 'Input'}" "node { name: 'B1' op: 'Input'}" "node { name: 'C1' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A1', 'B1'] }" "node { name: 'D1' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A1', 'B1'] }", graph1.get()); InitGraph( "node { name: 'A2' op: 'Input'}" "node { name: 'B2' op: 'Input'}" "node { name: 'C2' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A2', 'B2'] }" "node { name: 'D2' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A2', 'B2'] }", graph2.get()); StepStats step_stats; GenerateStepStats(graph1.get(), &step_stats, "DummyDevice1"); GenerateStepStats(graph2.get(), &step_stats, "DummyDevice2"); StepStatsCollector collector(&step_stats); std::unordered_map<string, const Graph*> device_map; device_map["DummyDevice1"] = graph1.get(); device_map["DummyDevice2"] = graph2.get(); CostModelManager cost_model_manager; collector.BuildCostModel(&cost_model_manager, device_map); CostGraphDef cost_graph_def; TF_ASSERT_OK( cost_model_manager.AddToCostGraphDef(graph1.get(), &cost_graph_def)); TF_ASSERT_OK( cost_model_manager.AddToCostGraphDef(graph2.get(), &cost_graph_def)); ASSERT_EQ(cost_graph_def.node_size(), 12); absl::flat_hash_map<int32, const CostGraphDef::Node> ids; for (auto node : cost_graph_def.node()) { int32_t index = node.id(); auto result = ids.insert({index, node}); EXPECT_TRUE(result.second); } } TEST(CostModelTest, GlobalId) { auto graph = CreateBasicTestGraph(); CostModel cm_local(false); CostModel cm_global(true); constexpr int kOffset = 7; for (const auto& node : graph->nodes()) { EXPECT_EQ(cm_local.GlobalId(node, kOffset), node->id() + kOffset); EXPECT_EQ(cm_global.GlobalId(node, kOffset), node->cost_id()); } } TEST(CostModelTest, RecordTime) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); constexpr int kIters = 100; constexpr int kMicrosPerIter = 1000; for (int i = 0; i < kIters; ++i) { for (const auto& node : graph->op_nodes()) { cm.RecordTime(node, node->id() * Microseconds(kMicrosPerIter)); } } for (const auto& node : graph->op_nodes()) { EXPECT_EQ(cm.TotalTime(node), Microseconds(node->id() * kIters * kMicrosPerIter)); } Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.TotalTime(E), Microseconds(0)); } TEST(CostModelTest, RecordCount) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); constexpr int kIters = 100; constexpr int kCountPerIter = 4; for (int i = 0; i < kIters; ++i) { for (const auto& node : graph->op_nodes()) { cm.RecordCount(node, node->id() * kCountPerIter); } } for (const auto& node : graph->op_nodes()) { EXPECT_EQ(cm.TotalCount(node), node->id() * kIters * kCountPerIter); } Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.TotalCount(E), 0); } TEST(CostModelTest, RecordSize) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); constexpr int kIters = 100; constexpr int kBytesPerIter = 4; for (int i = 0; i < kIters; ++i) { for (const auto& node : graph->op_nodes()) { for (int slot = 0; slot < node->num_outputs(); ++slot) { cm.RecordSize(node, slot, Bytes((node->id() + slot) * kBytesPerIter)); } } } for (const auto& node : graph->op_nodes()) { for (int slot = 0; slot < node->num_outputs(); ++slot) { EXPECT_EQ(cm.TotalBytes(node, slot), Bytes((node->id() + slot) * kIters * kBytesPerIter)); } } Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.TotalBytes(E, 0), Bytes(0)); } TEST(CostModelTest, SizeEstimate) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); constexpr int kBytesPerCount = 31; constexpr int kCount = 17; cm.RecordCount(C, kCount); cm.RecordSize(C, 0, Bytes(kCount * kBytesPerCount)); EXPECT_EQ(cm.SizeEstimate(C, 0), Bytes(kBytesPerCount)); } TEST(CostModelTest, TimeEstimate) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); constexpr int kMicrosPerCount = 31; constexpr int kCount = 17; cm.RecordCount(C, kCount); cm.RecordTime(C, Microseconds(kCount * kMicrosPerCount)); EXPECT_EQ(cm.TimeEstimate(C), Microseconds(kMicrosPerCount)); } TensorShapeProto CreateTensorShapeProto(absl::Span<const int64_t> dims) { TensorShapeProto shape; for (int i = 0; i < dims.size(); ++i) { shape.add_dim()->set_size(dims[i]); } return shape; } int64_t Count(const TensorShapeProto& shape) { int64_t count = 1; for (int i = 0; i < shape.dim_size(); ++i) { count *= shape.dim(i).size(); } return count; } TEST(CostModelTest, RecordMaxMemorySize) { auto graph = CreateBasicTestGraph(); CostModel cm(false); Node* C = FindNode(*graph, "C"); InitModelFromGraph(*graph, cm); EXPECT_EQ(cm.MaxMemorySize(C, 0), Bytes(-1)); { const TensorShapeProto shape = CreateTensorShapeProto({2, 5, 10}); const DataType dtype = DataType::DT_FLOAT; const Bytes bytes = Bytes(Count(shape) * sizeof(float)); cm.RecordMaxMemorySize(C, 0, bytes, shape, dtype); EXPECT_EQ(cm.MaxMemorySize(C, 0), bytes); EXPECT_EQ(cm.MaxMemoryType(C, 0), dtype); EXPECT_THAT(cm.MaxMemoryShape(C, 0), ShapeProtoEquals(shape)); } { const TensorShapeProto shape = CreateTensorShapeProto({3, 6, 11}); const DataType dtype = DataType::DT_DOUBLE; const Bytes bytes = Bytes(Count(shape) * sizeof(double)); cm.RecordMaxMemorySize(C, 0, bytes, shape, dtype); EXPECT_EQ(cm.MaxMemorySize(C, 0), bytes); EXPECT_EQ(cm.MaxMemoryType(C, 0), dtype); EXPECT_THAT(cm.MaxMemoryShape(C, 0), ShapeProtoEquals(shape)); } { const TensorShapeProto shape = CreateTensorShapeProto({1, 1, 1}); const DataType dtype = DataType::DT_BFLOAT16; const Bytes bytes = Bytes(Count(shape) * sizeof(double)); cm.RecordMaxMemorySize(C, 0, bytes, shape, dtype); EXPECT_GT(cm.MaxMemorySize(C, 0), bytes); EXPECT_NE(cm.MaxMemoryType(C, 0), dtype); EXPECT_THAT(cm.MaxMemoryShape(C, 0), Not(ShapeProtoEquals(shape))); } { const TensorShapeProto shape = CreateTensorShapeProto({100, 100, 100}); const DataType dtype = DataType::DT_BFLOAT16; cm.RecordMaxMemorySize(C, 0, Bytes(-1), shape, dtype); EXPECT_EQ(cm.MaxMemorySize(C, 0), Bytes(Count(shape) * sizeof(bfloat16))); EXPECT_EQ(cm.MaxMemoryType(C, 0), dtype); EXPECT_THAT(cm.MaxMemoryShape(C, 0), ShapeProtoEquals(shape)); } Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.MaxMemorySize(E, 0), Bytes(0)); EXPECT_THAT(cm.MaxMemoryType(E, 0), DataType::DT_INVALID); TensorShapeProto unknown; unknown.set_unknown_rank(true); EXPECT_THAT(cm.MaxMemoryShape(E, 0), ShapeProtoEquals(unknown)); } TEST(CostModelTest, RecordMaxExecutionTime) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); EXPECT_EQ(cm.MaxExecutionTime(C), Microseconds(0)); cm.RecordMaxExecutionTime(C, Microseconds(13)); EXPECT_EQ(cm.MaxExecutionTime(C), Microseconds(13)); cm.RecordMaxExecutionTime(C, Microseconds(27)); EXPECT_EQ(cm.MaxExecutionTime(C), Microseconds(27)); cm.RecordMaxExecutionTime(C, Microseconds(9)); EXPECT_EQ(cm.MaxExecutionTime(C), Microseconds(27)); Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.MaxExecutionTime(E), Microseconds(0)); } TEST(CostModelTest, RecordMemoryStats) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); MemoryStats stats; stats.set_temp_memory_size(256); stats.set_persistent_memory_size(16); stats.add_persistent_tensor_alloc_ids(1); stats.add_persistent_tensor_alloc_ids(3); stats.add_persistent_tensor_alloc_ids(5); stats.add_persistent_tensor_alloc_ids(5); cm.RecordMemoryStats(C, stats); EXPECT_EQ(cm.TempMemorySize(C), stats.temp_memory_size()); EXPECT_EQ(cm.PersistentMemorySize(C), stats.persistent_memory_size()); EXPECT_TRUE(cm.IsPersistentTensor(C, 1)); EXPECT_TRUE(cm.IsPersistentTensor(C, 3)); EXPECT_TRUE(cm.IsPersistentTensor(C, 5)); EXPECT_FALSE(cm.IsPersistentTensor(C, 31)); Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.TempMemorySize(E), Bytes(0)); EXPECT_EQ(cm.PersistentMemorySize(E), Bytes(0)); } TEST(CostModelTest, RecordAllocationId) { auto graph = CreateBasicTestGraph(); CostModel cm(false); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); cm.RecordAllocationId(C, 0, 13); EXPECT_EQ(cm.AllocationId(C, 0), 13); EXPECT_EQ(cm.AllocationId(C, 7), -1); Node* E = AddNode(*graph, "E", "Mul", 2); EXPECT_EQ(cm.AllocationId(E, 0), -1); } TEST(CostModelTest, CopyTimeEstimate) { int64_t bytes = 32568; double latency_ms = 10.2; double gbps = 2.2; double bytes_per_usec = gbps * 1000 / 8; double cost_usecs = (bytes / bytes_per_usec + latency_ms * 1000); EXPECT_EQ(CostModel::CopyTimeEstimate(Bytes(bytes), latency_ms, gbps), Microseconds(static_cast<uint64_t>(cost_usecs))); } TEST(CostModelTest, ComputationTimeEstimate) { constexpr int64_t kNumMathOps = 32150; EXPECT_EQ(CostModel::ComputationTimeEstimate(kNumMathOps), Microseconds(kNumMathOps / 1000)); } TEST(CostModel, UpdateTimes) { CostModel cm(false); EXPECT_EQ(cm.GetUpdateTimes(), 0); constexpr int kNumUpdates = 111; for (int i = 0; i < kNumUpdates; ++i) { cm.IncrementUpdateTimes(); } EXPECT_EQ(cm.GetUpdateTimes(), kNumUpdates); } TEST(CostModel, SuppressInfrequent) { CostModel cm(false); auto graph = std::make_unique<Graph>(OpRegistry::Global()); Node* A = AddNode(*graph, "A", "Mul", 2); Node* B = AddNode(*graph, "B", "Mul", 2); Node* C = AddNode(*graph, "B", "Mul", 2); InitModelFromGraph(*graph, cm); cm.RecordCount(A, 1000); cm.RecordSize(A, 0, Bytes(8 * 1000)); cm.RecordTime(A, Microseconds(8 * 1000)); cm.RecordCount(B, 2000); cm.RecordSize(B, 0, Bytes(2000 * 10)); cm.RecordTime(B, Microseconds(2000 * 10)); cm.RecordCount(C, 17); cm.RecordSize(C, 0, Bytes(32 * 17)); cm.RecordTime(C, Microseconds(32 * 17)); EXPECT_EQ(cm.SizeEstimate(A, 0), Bytes(8)); EXPECT_EQ(cm.TimeEstimate(A), Microseconds(8)); EXPECT_EQ(cm.SizeEstimate(B, 0), Bytes(10)); EXPECT_EQ(cm.TimeEstimate(B), Microseconds(10)); EXPECT_EQ(cm.SizeEstimate(C, 0), Bytes(32)); EXPECT_EQ(cm.TimeEstimate(C), Microseconds(32)); cm.SuppressInfrequent(); EXPECT_EQ(cm.SizeEstimate(A, 0), Bytes(8)); EXPECT_EQ(cm.TimeEstimate(A), Microseconds(8)); EXPECT_EQ(cm.SizeEstimate(B, 0), Bytes(10)); EXPECT_EQ(cm.TimeEstimate(B), Microseconds(10)); EXPECT_EQ(cm.SizeEstimate(C, 0), Bytes(0)); EXPECT_EQ(cm.TimeEstimate(C), Microseconds(1)); } TEST(CostModelTest, MergeFromLocal) { CostModel cm_global(true); CostModel cm_local(false); auto graph = CreateBasicTestGraph(); InitModelFromGraph(*graph, cm_global); Node* C = FindNode(*graph, "C"); Node* D = FindNode(*graph, "D"); cm_global.RecordCount(C, 23); cm_global.RecordSize(C, 0, Bytes(23)); cm_global.RecordTime(C, Microseconds(123)); cm_global.RecordCount(D, 17); cm_global.RecordSize(D, 0, Bytes(17)); cm_global.RecordTime(D, Microseconds(117)); Node* E = AddNode(*graph, "E", "Mul", 2); graph->AddEdge(C, 0, E, 0); graph->AddEdge(D, 0, E, 1); Node* F = AddNode(*graph, "F", "Mul", 2); graph->AddEdge(E, 0, F, 0); graph->AddEdge(D, 0, F, 1); InitModelFromGraph(*graph, cm_local); cm_local.RecordCount(E, 37); cm_local.RecordSize(E, 0, Bytes(37)); cm_local.RecordTime(E, Microseconds(137)); cm_local.RecordCount(F, 41); cm_local.RecordSize(F, 0, Bytes(41)); cm_local.RecordTime(F, Microseconds(141)); cm_local.RecordCount(C, 1); cm_local.RecordSize(C, 0, Bytes(1)); cm_local.RecordTime(C, Microseconds(100)); cm_global.MergeFromLocal(*graph, cm_local); EXPECT_EQ(cm_global.TotalCount(E), cm_local.TotalCount(E)); EXPECT_EQ(cm_global.TotalBytes(E, 0), cm_local.TotalBytes(E, 0)); EXPECT_EQ(cm_global.TotalTime(E), cm_local.TotalTime(E)); EXPECT_EQ(cm_global.TotalCount(F), cm_local.TotalCount(F)); EXPECT_EQ(cm_global.TotalBytes(F, 0), cm_local.TotalBytes(F, 0)); EXPECT_EQ(cm_global.TotalTime(F), cm_local.TotalTime(F)); EXPECT_EQ(cm_global.TotalCount(C), Microseconds(24)); EXPECT_EQ(cm_global.TotalBytes(C, 0), Bytes(24)); EXPECT_EQ(cm_global.TotalTime(C), Microseconds(223)); } TEST(CostModelTest, MergeFromGlobal) { CostModel cm1(true); CostModel cm2(true); auto graph = CreateBasicTestGraph(); InitModelFromGraph(*graph, cm1); Node* C = FindNode(*graph, "C"); Node* D = FindNode(*graph, "D"); cm1.RecordCount(C, 23); cm1.RecordSize(C, 0, Bytes(23)); cm1.RecordTime(C, Microseconds(123)); cm1.RecordCount(D, 17); cm1.RecordSize(D, 0, Bytes(17)); cm1.RecordTime(D, Microseconds(117)); Node* E = AddNode(*graph, "E", "Mul", 2); graph->AddEdge(C, 0, E, 0); graph->AddEdge(D, 0, E, 1); Node* F = AddNode(*graph, "F", "Mul", 2); graph->AddEdge(E, 0, F, 0); graph->AddEdge(D, 0, F, 1); InitModelFromGraph(*graph, cm2); cm2.RecordCount(E, 37); cm2.RecordSize(E, 0, Bytes(37)); cm2.RecordTime(E, Microseconds(137)); cm2.RecordCount(F, 41); cm2.RecordSize(F, 0, Bytes(41)); cm2.RecordTime(F, Microseconds(141)); cm2.RecordCount(C, 1); cm2.RecordSize(C, 0, Bytes(1)); cm2.RecordTime(C, Microseconds(100)); cm1.MergeFromGlobal(cm2); EXPECT_EQ(cm1.TotalCount(E), cm2.TotalCount(E)); EXPECT_EQ(cm1.TotalBytes(E, 0), cm2.TotalBytes(E, 0)); EXPECT_EQ(cm1.TotalTime(E), cm2.TotalTime(E)); EXPECT_EQ(cm1.TotalCount(F), cm2.TotalCount(F)); EXPECT_EQ(cm1.TotalBytes(F, 0), cm2.TotalBytes(F, 0)); EXPECT_EQ(cm1.TotalTime(F), cm2.TotalTime(F)); EXPECT_EQ(cm1.TotalCount(C), Microseconds(24)); EXPECT_EQ(cm1.TotalBytes(C, 0), Bytes(24)); EXPECT_EQ(cm1.TotalTime(C), Microseconds(223)); } NodeExecStats CreateNodeExecStats(const Node* node, int64_t time, int64_t bytes) { NodeExecStats stats; stats.set_node_name(node->name()); stats.set_op_start_rel_micros(10); stats.set_op_end_rel_micros(10 + time); for (int i = 0; i < node->num_outputs(); ++i) { NodeOutput* no = stats.add_output(); no->set_slot(i); no->mutable_tensor_description() ->mutable_allocation_description() ->set_requested_bytes(bytes); } return stats; } TEST(CostModelTest, MergeFromStats) { CostModel cm(true); auto graph = CreateBasicTestGraph(); InitModelFromGraph(*graph, cm); Node* C = FindNode(*graph, "C"); Node* D = FindNode(*graph, "D"); cm.RecordCount(C, 23); cm.RecordTime(C, Microseconds(123)); cm.RecordCount(D, 17); cm.RecordTime(D, Microseconds(117)); Node* E = AddNode(*graph, "E", "Mul", 2); graph->AddEdge(C, 0, E, 0); graph->AddEdge(D, 0, E, 1); Node* F = AddNode(*graph, "F", "Mul", 2); graph->AddEdge(E, 0, F, 0); graph->AddEdge(D, 0, F, 1); StepStats stats; DeviceStepStats* dstats = stats.add_dev_stats(); *(dstats->add_node_stats()) = CreateNodeExecStats(C, 10, 10); *(dstats->add_node_stats()) = CreateNodeExecStats(D, 10, 10); *(dstats->add_node_stats()) = CreateNodeExecStats(E, 20, 20); *(dstats->add_node_stats()) = CreateNodeExecStats(E, 20, 20); *(dstats->add_node_stats()) = CreateNodeExecStats(F, 30, 30); *(dstats->add_node_stats()) = CreateNodeExecStats(F, 30, 30); NodeNameToCostIdMap id_map; for (const auto& node : graph->nodes()) { id_map.emplace(node->name(), node->cost_id()); } cm.MergeFromStats(id_map, stats); EXPECT_EQ(cm.TotalCount(C), 24); EXPECT_EQ(cm.TotalTime(C), Microseconds(133)); EXPECT_EQ(cm.TotalBytes(C, 0), Bytes(10)); EXPECT_EQ(cm.TotalCount(D), 18); EXPECT_EQ(cm.TotalTime(D), Microseconds(127)); EXPECT_EQ(cm.TotalBytes(D, 0), Bytes(10)); EXPECT_EQ(cm.TotalCount(E), 2); EXPECT_EQ(cm.TotalTime(E), Microseconds(40)); EXPECT_EQ(cm.TotalBytes(E, 0), Bytes(40)); EXPECT_EQ(cm.TotalCount(F), 2); EXPECT_EQ(cm.TotalTime(F), Microseconds(60)); EXPECT_EQ(cm.TotalBytes(F, 0), Bytes(60)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/costmodel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/costmodel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f470b0a5-df2e-44f5-a4bb-da606c6ec291
cpp
tensorflow/tensorflow
dynamic_index_splitter
third_party/xla/xla/service/dynamic_index_splitter.cc
third_party/xla/xla/service/dynamic_index_splitter_test.cc
#include "xla/service/dynamic_index_splitter.h" #include <map> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> DynamicIndexSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> computations = module->MakeNonfusionComputations(execution_threads); for (HloComputation* computation : computations) { for (HloInstruction* dynamic_op : computation->MakeInstructionPostOrder()) { switch (dynamic_op->opcode()) { case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: break; default: continue; } auto parent = dynamic_op->parent(); bool is_update = dynamic_op->opcode() == HloOpcode::kDynamicUpdateSlice; int64_t num_indices = dynamic_op->operand(0)->shape().rank(); if (num_indices == 0) { if (is_update) { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(1))); } else { TF_CHECK_OK(parent->ReplaceInstruction( dynamic_op, dynamic_op->mutable_operand(0))); } changed = true; continue; } int64_t index_operand_number = Cast<HloDynamicIndexInstruction>(dynamic_op) ->first_index_operand_number(); auto index_operand = dynamic_op->mutable_operand(index_operand_number); if (ShapeUtil::IsScalar(index_operand->shape())) { continue; } TF_RET_CHECK(index_operand->shape().rank() == 1); auto index_element_type = index_operand->shape().element_type(); std::vector<HloInstruction*> index_array; index_array.reserve(num_indices); for (int64_t dim = 0; dim < num_indices; ++dim) { auto slice = parent->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(index_element_type, {1}), index_operand, {dim}, {dim + 1}, {1})); auto bitcast = parent->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(index_element_type, {}), slice)); index_array.push_back(bitcast); } auto new_dynamic_op = is_update ? HloInstruction::CreateDynamicUpdateSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), dynamic_op->mutable_operand(1), absl::MakeSpan(index_array)) : HloInstruction::CreateDynamicSlice( dynamic_op->shape(), dynamic_op->mutable_operand(0), absl::MakeSpan(index_array), dynamic_op->dynamic_slice_sizes()); TF_CHECK_OK(parent->ReplaceWithNewInstruction(dynamic_op, std::move(new_dynamic_op))); changed = true; } } return changed; } }
#include "xla/service/dynamic_index_splitter.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class DynamicIndexSplitterTest : public HloTestBase {}; TEST_F(DynamicIndexSplitterTest, DynamicSlice) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, indices), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 1) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, DynamicUpdateSlice) { const char* const kDynamicUpdateSlice = R"( HloModule DynamicUpdatedSlice_module ENTRY entry (operand: s32[4,5,6], indices: s32[3], update: s32[1,1,1]) -> s32[4,5,6] { operand = s32[4,5,6] parameter(0) indices = s32[3] parameter(1) update = s32[1,1,1] parameter(2) ROOT dynamic-update-slice = s32[4,5,6] dynamic-update-slice(operand, update, indices) } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule(kDynamicUpdateSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), op::DynamicUpdateSlice(op::Parameter(0), op::Parameter(2), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))), op::Reshape(op::Slice(op::Parameter(1))))); for (int i = 0; i < 3; ++i) { const HloInstruction* slice = module->entry_computation() ->root_instruction() ->operand(i + 2) ->operand(0); EXPECT_EQ(slice->slice_starts(0), i); EXPECT_EQ(slice->slice_limits(0), i + 1); } } TEST_F(DynamicIndexSplitterTest, AlreadyScalar) { const char* const kDynamicSlice = R"( HloModule DynamicSlice_module ENTRY entry (operand: s32[4,5,6], index.0: s32[], index.1: s32[], index.2: s32[]) -> s32[1,1,1] { operand = s32[4,5,6] parameter(0) index.0 = s32[] parameter(1) index.1 = s32[] parameter(2) index.2 = s32[] parameter(3) ROOT dynamic-slice = s32[1,1,1] dynamic-slice(operand, index.0, index.1, index.2), dynamic_slice_sizes={1,1,1} } )"; HloModuleConfig config; DebugOptions debug_options = config.debug_options(); debug_options.set_xla_allow_scalar_index_dynamic_ops(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kDynamicSlice, config)); TF_ASSERT_OK_AND_ASSIGN(bool changed, DynamicIndexSplitter().Run(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice(op::Parameter(0), op::Parameter(1), op::Parameter(2), op::Parameter(3))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_index_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_index_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8866eb13-7cf5-4174-912e-2006853b5606
cpp
tensorflow/tensorflow
function
tensorflow/compiler/mlir/tfrt/function/function.cc
tensorflow/core/tfrt/mlrt/bytecode/function_test.cc
#include "tensorflow/compiler/mlir/tfrt/function/function.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tfrt/transforms/passes.h" #include "tensorflow/compiler/mlir/tfrt/transforms/tfrt_pipeline_options.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tfrt/bef/bef_buffer.h" #include "tfrt/bef_converter/mlir_to_bef.h" namespace tensorflow { Status CompileTFMLIRToBEF(const TfrtFunctionCompileOptions& options, mlir::ModuleOp module, tfrt::BefBuffer* bef_buffer) { mlir::OpPrintingFlags print_flags; print_flags.elideLargeElementsAttrs(); if (VLOG_IS_ON(1)) { VLOG(1) << "Input TF Executor dialect:"; DumpMlirOpToFile("tf_to_tfrt_tf_executor_dialect", module); } mlir::StatusScopedDiagnosticHandler diag_handler(module.getContext()); mlir::PassManager pm(module.getContext()); tensorflow::applyTensorflowAndCLOptions(pm); tensorflow::TfrtPipelineOptions pass_options; if (!options.default_device.empty()) { pass_options.default_device = options.default_device; } if (!options.force_data_format.empty()) { pass_options.force_data_format = options.force_data_format; } if (absl::StrContains(pass_options.default_device, "CPU")) { pass_options.skip_fold_transpose_in_ops = true; } pass_options.enable_optimizer = options.enable_optimizer; pass_options.target_tpurt = false; pass_options.tpu_use_core_selector = options.tpu_use_core_selector; pass_options.tpu_use_bundled_transfer = options.tpu_use_bundled_transfer; pass_options.tpu_lower_to_fallback = options.tpu_lower_to_fallback; pass_options.tpu_fuse_ops = options.tpu_fuse_ops; pass_options.tpu_transfer_result_to_host = options.tpu_transfer_result_to_host; Status status = tensorflow::CreateTfExecutorToTfrtPipeline(pm, pass_options); if (!status.ok()) { return diag_handler.Combine(status); } if (mlir::failed(pm.run(module))) return diag_handler.Combine(tensorflow::errors::Internal( "failed to lower TF Dialect to CoreRT dialect.")); if (VLOG_IS_ON(1)) { VLOG(1) << "TFRT dialect: "; DumpMlirOpToFile("tf_to_tfrt_tfrt_dialect", module); } *bef_buffer = tfrt::ConvertMLIRToBEF(module, true); if (bef_buffer->empty()) return diag_handler.Combine( tensorflow::errors::Internal("failed to convert MLIR to BEF.")); return absl::OkStatus(); } }
#include "tensorflow/core/tfrt/mlrt/bytecode/function.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/kernel.h" namespace mlrt { namespace bc { namespace { TEST(FunctionTest, Function) { Buffer buffer; Allocator allocator(&buffer); Function::Constructor ctor = New<Function>(&allocator); ctor.construct_name("main"); ctor.set_num_regs(10); ctor.construct_input_regs(2).Assign({0, 1}); ctor.construct_output_regs(1).Assign({9}); ctor.construct_output_last_uses(1).Assign({true}); ctor.construct_kernels(3); Function function(buffer.Get(ctor.address())); EXPECT_EQ(function.name().Get(), "main"); EXPECT_EQ(function.num_regs(), 10); EXPECT_THAT(function.input_regs(), ::testing::ElementsAreArray({0, 1})); EXPECT_THAT(function.output_regs(), ::testing::ElementsAreArray({9})); EXPECT_THAT(function.output_last_uses(), ::testing::ElementsAreArray({true})); Vector<Kernel> kernels = function.kernels(); EXPECT_EQ(kernels.size(), 3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/function/function.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/bytecode/function_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b08dd595-724f-4f37-ad2d-7ae6ec6c1b89
cpp
tensorflow/tensorflow
name_uniquer
third_party/xla/xla/service/name_uniquer.cc
third_party/xla/xla/service/name_uniquer_test.cc
#include "xla/service/name_uniquer.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/primitive_util.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { namespace { bool IsAllowed(char character) { auto c = static_cast<unsigned char>(character); return (absl::ascii_isalnum(c) != 0) || c == '_' || c == '.' || c == '-'; } } NameUniquer::NameUniquer(const std::string& separator) { CHECK(absl::c_all_of(separator, IsAllowed)) << "separator should comprises allowed characters only"; separator_ = separator; } std::string NameUniquer::GetSanitizedName(absl::string_view name) { if (name.empty()) { return ""; } std::string result(name); char c = static_cast<unsigned char>(result[0]); if (!absl::ascii_isalpha(c) && c != '_') { result[0] = '_'; } for (int i = 1, iter_limit = result.length(); i < iter_limit; i++) { if (!IsAllowed(result[i])) { result[i] = '_'; } } if (primitive_util::IsPrimitiveTypeName(result) && result != "tuple") { result += "_"; } if (absl::StartsWith(result, "__") && !absl::StartsWith(result, "__xla_")) { result[0] = 'a'; } return result; } std::string NameUniquer::GetUniqueName(absl::string_view prefix) { std::string root = GetSanitizedName(prefix.empty() ? "name" : std::string(prefix)); bool has_numeric_suffix = false; int64_t numeric_suffix = 0; size_t separator_index = root.rfind(separator_); if (separator_index != std::string::npos && (separator_index > 0) && (separator_index < root.size() - separator_.size())) { std::string after_suffix = root.substr(separator_index + separator_.size()); if (absl::SimpleAtoi(after_suffix, &numeric_suffix)) { has_numeric_suffix = true; root = root.substr(0, separator_index); } else { numeric_suffix = 0; } } SequentialIdGenerator& id_generator = generated_names_[root]; numeric_suffix = id_generator.RegisterId(numeric_suffix); if (numeric_suffix == 0) { return has_numeric_suffix ? absl::StrCat(root, separator_, 0) : root; } absl::StrAppend(&root, separator_, numeric_suffix); return root; } }
#include "xla/service/name_uniquer.h" #include "tsl/platform/test.h" namespace xla { namespace { using NameUniquerTest = ::testing::Test; TEST_F(NameUniquerTest, SimpleUniquer) { NameUniquer uniquer; EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo__1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo__2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar", uniquer.GetUniqueName("bar")); EXPECT_EQ("foo__3", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar__1", uniquer.GetUniqueName("bar")); EXPECT_EQ("qux", uniquer.GetUniqueName("qux")); } TEST_F(NameUniquerTest, DifferentSeparator) { NameUniquer uniquer("."); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar", uniquer.GetUniqueName("bar")); EXPECT_EQ("foo.3", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar.1", uniquer.GetUniqueName("bar")); } TEST_F(NameUniquerTest, NumericSuffixes) { NameUniquer uniquer("."); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.54", uniquer.GetUniqueName("foo.54")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.55.1", uniquer.GetUniqueName("foo.55.1")); EXPECT_EQ("foo.55.0", uniquer.GetUniqueName("foo.55.1")); EXPECT_EQ("bar.1000", uniquer.GetUniqueName("bar.1000")); EXPECT_EQ("bar.2000", uniquer.GetUniqueName("bar.2000")); EXPECT_EQ("bar.-2000", uniquer.GetUniqueName("bar.-2000")); EXPECT_EQ("bar.1", uniquer.GetUniqueName("bar.1")); } TEST_F(NameUniquerTest, PrefixHasSuffix) { NameUniquer uniquer("."); EXPECT_EQ("foo.11.0", uniquer.GetUniqueName("foo.11.0")); EXPECT_EQ("foo.11", uniquer.GetUniqueName("foo.11")); } TEST_F(NameUniquerTest, Sanitize) { NameUniquer uniquer("_"); EXPECT_EQ("foo", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo_1", uniquer.GetUniqueName("foo")); EXPECT_EQ("foo.54", uniquer.GetUniqueName("foo.54")); EXPECT_EQ("foo_54", uniquer.GetUniqueName("foo_54")); EXPECT_EQ("foo_54.1", uniquer.GetUniqueName("foo_54.1")); EXPECT_EQ("foo_2", uniquer.GetUniqueName("foo")); EXPECT_EQ("bar_1000", uniquer.GetUniqueName("bar<1000")); EXPECT_EQ("bar_2000", uniquer.GetUniqueName("bar<2000")); EXPECT_EQ("bar_1", uniquer.GetUniqueName("bar_1")); EXPECT_EQ("_10", uniquer.GetUniqueName( ".10")); EXPECT_EQ("_10_1", uniquer.GetUniqueName(".10")); EXPECT_EQ("_10_2", uniquer.GetUniqueName("_10")); EXPECT_EQ("foobar_", uniquer.GetUniqueName("foobar_")); EXPECT_EQ("foobar__1", uniquer.GetUniqueName("foobar_")); } TEST_F(NameUniquerTest, KeepNamesInRandomOrder) { NameUniquer uniquer("."); EXPECT_EQ("foo.11", uniquer.GetUniqueName("foo.11")); EXPECT_EQ("foo.10", uniquer.GetUniqueName("foo.10")); EXPECT_EQ("foo.1", uniquer.GetUniqueName("foo.1")); EXPECT_EQ("foo.12", uniquer.GetUniqueName("foo.12")); EXPECT_EQ("foo.3", uniquer.GetUniqueName("foo.3")); } TEST_F(NameUniquerTest, AvoidKeywords) { NameUniquer uniquer("."); EXPECT_EQ("f32_", uniquer.GetUniqueName("f32")); EXPECT_EQ("s64_", uniquer.GetUniqueName("s64")); EXPECT_EQ("pred_", uniquer.GetUniqueName("pred")); EXPECT_NE(uniquer.GetUniqueName("__xla_").find("__xla_"), std::string::npos); EXPECT_EQ(uniquer.GetUniqueName("__abx").find("__"), std::string::npos); EXPECT_EQ("tuple", uniquer.GetUniqueName("tuple")); EXPECT_EQ("F32", uniquer.GetUniqueName("F32")); EXPECT_EQ("S32", uniquer.GetUniqueName("S32")); EXPECT_EQ("Pred", uniquer.GetUniqueName("Pred")); } TEST_F(NameUniquerTest, DetectSeparator) { NameUniquer uniquer; EXPECT_EQ(uniquer.GetUniqueName("a__1"), "a__1"); EXPECT_EQ(uniquer.GetUniqueName("a"), "a"); EXPECT_EQ(uniquer.GetUniqueName("a"), "a__2"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/name_uniquer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/name_uniquer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
526cb160-0996-4b79-93f6-c2dc2427d0a2
cpp
tensorflow/tensorflow
reduce_scatter_combiner
third_party/xla/xla/service/reduce_scatter_combiner.cc
third_party/xla/xla/service/reduce_scatter_combiner_test.cc
#include "xla/service/reduce_scatter_combiner.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_combiner_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_domain_map.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { int64_t FindMostFrequentScatterDim( absl::Span<HloInstruction* const> to_combine) { assert(!to_combine.empty()); int64_t min_rank = std::numeric_limits<int64_t>::max(); std::vector<int64_t> frequency; for (const HloInstruction* it : to_combine) { int64_t dim = Cast<HloReduceScatterInstruction>(it)->scatter_dimension(); frequency.resize(std::max(dim + 1, static_cast<int64_t>(frequency.size())), 0); frequency[dim]++; min_rank = std::min(min_rank, it->shape().rank()); } int64_t most_frequent_dim = std::distance( frequency.begin(), std::max_element(frequency.begin(), frequency.end())); return most_frequent_dim < min_rank ? most_frequent_dim : 0; } using ReduceScatterKey = std::tuple<AllReduceKey, int64_t>; absl::Status CombineReduceScatters( absl::Span<HloInstruction* const> to_combine) { if (to_combine.size() < 2) { return absl::OkStatus(); } VLOG(1) << "Combined " << to_combine.size() << " reduce-scatter ops"; HloComputation& computation = *to_combine.back()->parent(); HloComputation* reduction = to_combine[0]->to_apply(); std::optional<ReductionKind> first_reduction_kind = MatchReductionComputation(reduction); TF_RET_CHECK(first_reduction_kind); std::vector<HloInstruction*> operands; std::vector<std::optional<std::vector<int64_t>>> operand_permutations; std::vector<Shape> output_shapes; int64_t most_frequent_dim = FindMostFrequentScatterDim(to_combine); VLOG(1) << "Combining set"; for (HloInstruction* hlo : to_combine) { VLOG(1) << "Set element: " << hlo->ToString(); TF_RET_CHECK(hlo->opcode() == HloOpcode::kReduceScatter); const auto* rs = Cast<HloReduceScatterInstruction>(hlo); TF_RET_CHECK(hlo->operands().size() == 1); std::optional<ReductionKind> reduction_kind = MatchReductionComputation(hlo->to_apply()); TF_RET_CHECK(reduction_kind); TF_RET_CHECK(*reduction_kind == *first_reduction_kind); TF_RET_CHECK(hlo->shape().IsArray()); HloInstruction* operand = hlo->operands().front(); operands.push_back(operand); operand_permutations.emplace_back(); output_shapes.push_back(hlo->shape()); if (rs->scatter_dimension() != most_frequent_dim) { const Shape& operand_shape = operand->shape(); auto& perm = operand_permutations.back(); perm = std::vector<int64_t>(operand_shape.rank()); std::iota(perm->begin(), perm->end(), 0); std::swap((*perm)[most_frequent_dim], (*perm)[rs->scatter_dimension()]); operands.back() = computation.AddInstruction(HloInstruction::CreateBitcast( ShapeUtil::PermuteDimensions(*perm, operand_shape), operand)); output_shapes.back() = ShapeUtil::PermuteDimensions(*perm, hlo->shape()); } } HloInstruction* combined; TF_RET_CHECK(operands.size() >= 2); combined = computation.AddInstruction(HloInstruction::CreateReduceScatter( ShapeUtil::MakeTupleShape(output_shapes), operands, reduction, to_combine.front()->device_list(), false, to_combine.front()->channel_id(), Cast<HloReduceScatterInstruction>(to_combine.front()) ->use_global_device_ids(), most_frequent_dim)); if (to_combine.front()->has_sharding()) { combined->set_sharding(to_combine.front()->sharding()); } VLOG(1) << "Replacing with : " << combined->ToString(); for (int64_t i = 0; i < to_combine.size(); ++i) { HloInstruction* replacement = computation.AddInstruction( HloInstruction::CreateGetTupleElement(combined, i)); if (operand_permutations[i]) { replacement = computation.AddInstruction(HloInstruction::CreateBitcast( ShapeUtil::PermuteDimensions(*operand_permutations[i], replacement->shape()), replacement)); } TF_RETURN_IF_ERROR( computation.ReplaceInstruction(to_combine[i], replacement)); } return absl::OkStatus(); } } ReduceScatterCombiner::ReduceScatterCombiner(int64_t combine_threshold_in_bytes, int64_t combine_threshold_count, bool combine_by_dim) : combine_threshold_in_bytes_(combine_threshold_in_bytes), combine_threshold_count_(combine_threshold_count), combine_by_dim_(combine_by_dim) {} absl::StatusOr<bool> ReduceScatterCombiner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running ReduceScatterCombiner with threshold of " << combine_threshold_in_bytes_ << " bytes"; if (combine_threshold_in_bytes_ <= 0 || combine_threshold_count_ <= 0) { VLOG(1) << "Skip ReduceScatterCombiner because the threshold is zero"; return false; } if (hlo_query::ContainsLayoutConstrainedCollective( *module, HloOpcode::kReduceScatter)) { VLOG(1) << "Skip ReduceScatterCombiner because the module contains " "reduce-scatter with constrained layouts"; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(auto domain_map, HloDomainMap::Create(computation, "")); auto key_fn = [&domain_map, this](const HloInstruction* instruction) -> std::optional<ReduceScatterKey> { auto* rs = DynCast<HloReduceScatterInstruction>(instruction); std::optional<AllReduceKey> key = GetAllReduceKey(instruction, domain_map.get()); if (!rs || !key) { return std::nullopt; } if (!MatchReductionComputation(rs->to_apply())) { return std::nullopt; } int64_t rs_dim_key = this->combine_by_dim_ ? rs->scatter_dimension() : -1; return ReduceScatterKey{std::move(*key), rs_dim_key}; }; TF_ASSIGN_OR_RETURN( bool computation_changed, CombineInstructionsByKey<ReduceScatterKey>( computation, key_fn, &CombineReduceScatters, combine_threshold_in_bytes_, combine_threshold_count_)); changed |= computation_changed; } return changed; } }
#include "xla/service/reduce_scatter_combiner.h" #include <cstddef> #include <utility> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { constexpr int64_t kMaxCombineCount = 256; constexpr int64_t kMaxByteCount = 10 * 1024 * 1024; class ReduceScatterCombinerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, bool expect_change, int64_t byte_threshold = kMaxByteCount, int64_t count_threshold = kMaxCombineCount, bool combine_by_dim = true) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module)); VLOG(1) << "Before running ReduceScatterCombiner: " << ReduceScatterCount(module.get()) << " reduce-scatter ops"; auto changed = ReduceScatterCombiner(byte_threshold, count_threshold, combine_by_dim) .Run(module.get()); if (!changed.ok()) { return changed.status(); } VLOG(1) << "After running ReduceScatterCombiner: " << ReduceScatterCount(module.get()) << " reduce-scatter ops"; EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t ReduceScatterCount(HloModule *module) { int64_t sum = 0; for (auto comp : module->computations()) { sum += absl::c_count_if(comp->instructions(), HloPredicateIsOp<HloOpcode::kReduceScatter>); } return sum; } }; TEST_F(ReduceScatterCombinerTest, Simple) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={0}, to_apply=sum ROOT t = (f32[4], f32[4]) tuple(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_EQ(ReduceScatterCount(module.get()), 1); } TEST_F(ReduceScatterCombinerTest, SimpleMultipleGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8, 8] parameter(0) p1 = f32[8, 8] parameter(1) rs0 = f32[4, 8] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs1 = f32[4, 8] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs2 = f32[8, 4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={1}, to_apply=sum rs3 = f32[8, 4] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={1}, to_apply=sum ROOT t = (f32[4, 8], f32[4, 8], f32[8, 4], f32[8, 4]) tuple(rs0, rs1, rs2, rs3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_EQ(ReduceScatterCount(module.get()), 2); } TEST_F(ReduceScatterCombinerTest, DifferentDimensions) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8, 8] parameter(0) p1 = f32[8, 8] parameter(1) rs0 = f32[4, 8] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs1 = f32[4, 8] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs2 = f32[8, 4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={1}, to_apply=sum rs3 = f32[8, 4] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={1}, to_apply=sum ROOT t = (f32[4, 8], f32[4, 8], f32[8, 4], f32[8, 4]) tuple(rs0, rs1, rs2, rs3) } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, RunPass(hlo_string, true, kMaxByteCount, kMaxCombineCount, false)); EXPECT_EQ(ReduceScatterCount(module.get()), 1); } TEST_F(ReduceScatterCombinerTest, DifferentDimensionsAndRanks) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8, 8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[8, 4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={1}, to_apply=sum rs1 = f32[8, 4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={1}, to_apply=sum rs2 = f32[4] reduce-scatter(p1), replica_groups={{0,1}}, dimensions={0}, to_apply=sum ROOT t = (f32[8, 4], f32[8, 4], f32[4]) tuple(rs0, rs1, rs2) } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, RunPass(hlo_string, true, kMaxByteCount, kMaxCombineCount, false)); EXPECT_EQ(ReduceScatterCount(module.get()), 1); } TEST_F(ReduceScatterCombinerTest, DependentReduceScatter) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8, 8] parameter(0) rs0 = f32[4, 8] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs1 = f32[2, 8] reduce-scatter(rs0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum ROOT t = (f32[4, 8], f32[2, 8]) tuple(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterCombinerTest, DoNotCombineMismatched) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), replica_groups={{0,1}}, dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), replica_groups={{1,0}}, dimensions={0}, to_apply=sum ROOT t = (f32[4], f32[4]) tuple(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterCombinerTest, DoNotCombineWithoutReductionKind) { absl::string_view hlo_string = R"( HloModule TestModule region_0 { Arg_1 = bf16[] parameter(1) Arg_0 = bf16[] parameter(0) convert_1 = f32[] convert(Arg_1) convert_0 = f32[] convert(Arg_0) add0 = f32[] add(convert_1, convert_0) ROOT convert_2 = bf16[] convert(add0) } region_1 { Arg_1 = bf16[] parameter(1) Arg_0 = bf16[] parameter(0) convert_1 = f32[] convert(Arg_1) convert_0 = f32[] convert(Arg_0) add0 = f32[] add(convert_1, convert_0) ROOT convert_2 = bf16[] convert(add0) } ENTRY entry{ param0 = bf16[512,256]{1,0} parameter(0) param1 = bf16[512,256]{1,0} parameter(1) reduce-scatter.0 = bf16[512,256]{1,0} reduce-scatter(param0), replica_groups={{0}}, dimensions={0}, to_apply=region_0 reduce-scatter.1 = bf16[512,256]{1,0} reduce-scatter(param1), replica_groups={{0}}, dimensions={0}, to_apply=region_1 ROOT add.0 = tuple(reduce-scatter.0, reduce-scatter.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterCombinerTest, HighThreshold) { absl::string_view hlo_string = R"( HloModule m sum_reduce { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY main { param.0 = bf16[1024,32768]{1,0} parameter(0) param.1 = bf16[4096,8192]{1,0} parameter(1) param.2 = bf16[3,128,64,1024]{2,1,0,3}parameter(2) param.3 = bf16[1024,128,64]{2,1,0} parameter(3) reduce-scatter.19 = bf16[1024,32768]{1,0} reduce-scatter(param.0), channel_id=132, replica_groups={{0}}, dimensions={0}, to_apply=sum_reduce reduce-scatter.21 = bf16[4096,8192]{1,0} reduce-scatter(param.1), channel_id=134, replica_groups={{0}}, dimensions={0}, to_apply=sum_reduce reduce-scatter.23 = bf16[3,128,64,1024]{2,1,0,3} reduce-scatter(param.2), channel_id=136, replica_groups={{0}}, dimensions={3}, to_apply=sum_reduce reduce-scatter.25 = bf16[1024,128,64]{2,1,0} reduce-scatter(param.3), channel_id=138, replica_groups={{0}}, dimensions={0}, to_apply=sum_reduce ROOT tuple = tuple(reduce-scatter.19, reduce-scatter.21, reduce-scatter.23, reduce-scatter.25) })"; int64_t combined_bytes = 67108864 + 67108864 + 50331648 + 16777216; TF_ASSERT_OK_AND_ASSIGN( auto module, RunPass(hlo_string, true, combined_bytes, kMaxCombineCount, false)); EXPECT_EQ(ReduceScatterCount(module.get()), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_combiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_combiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7a51674b-4549-47f9-b5af-fc0064e0296e
cpp
tensorflow/tensorflow
lower_functional_ops
tensorflow/core/common_runtime/lower_functional_ops.cc
tensorflow/core/common_runtime/lower_functional_ops_test.cc
#include "tensorflow/core/common_runtime/lower_functional_ops.h" #include <string> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/device_propagation.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/common_runtime/lower_case_op.h" #include "tensorflow/core/common_runtime/lower_function_call_op.h" #include "tensorflow/core/common_runtime/lower_if_op.h" #include "tensorflow/core/common_runtime/lower_while_op.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { constexpr const char* const kLowerUsingSwitchMergeAttr = LowerFunctionalOpsConstants::kLowerUsingSwitchMergeAttr; constexpr const char* const kLowerAsMultiDeviceFunctionAttr = LowerFunctionalOpsConstants::kLowerAsMultiDeviceFunctionAttr; constexpr const char* const kTpuReplicateAttr = "_tpu_replicate"; constexpr const char* const kXlaClusterAttr = "_xla_compile_id"; constexpr const char* const kXlaMustCompileAttr = "_XlaMustCompile"; bool CheckBoolAttr(const Node* n, absl::string_view attr_name) { bool match; bool found = TryGetNodeAttr(n->attrs(), attr_name, &match); return found && match; } bool CheckStringAttr(const Node* n, absl::string_view attr_name) { string match; bool found = TryGetNodeAttr(n->attrs(), attr_name, &match); return found && !match.empty(); } bool LowerUsingSwitchMergeIsOn(const Node* n) { return CheckBoolAttr(n, kLowerUsingSwitchMergeAttr); } bool LowerAsMultiDeviceFunctionIsOn(const Node* n) { return CheckBoolAttr(n, kLowerAsMultiDeviceFunctionAttr); } bool MarkedForTpuCompilation(const Node* n) { return CheckStringAttr(n, kTpuReplicateAttr); } bool MarkedForXlaCompilation(const Node* n) { return CheckStringAttr(n, kXlaClusterAttr) || CheckBoolAttr(n, kXlaMustCompileAttr); } bool HasArgsOrRetvals(const Graph& g) { for (const Node* n : g.op_nodes()) { if (n->IsArg() || n->IsRetval()) return true; } return false; } const absl::flat_hash_set<std::string>& DevicePropagationOpList() { static const auto op_list = new absl::flat_hash_set<std::string>( {"Identity", "IdentityN", "Enter", "Exit", "Switch", "Merge", "NextIteration"}); return *op_list; } bool IsPropagatableDevice(StringPiece device_string) { DeviceNameUtils::ParsedName device; return DeviceNameUtils::ParseFullName(device_string, &device) && device.type == DEVICE_TPU; } } Status LowerFunctionalOpsPass::Run( const GraphOptimizationPassOptions& options) { if (options.partition_graphs != nullptr) { return errors::Internal( "Lowering If/While ops should happen before partitioning."); } if (options.graph == nullptr) { return absl::OkStatus(); } Graph* g = options.graph->get(); if (g == nullptr) { return errors::Internal( "Lowering While op requires a graph to be available."); } FunctionLibraryDefinition* flib_def = options.flib_def; if (flib_def == nullptr) { return errors::Internal( "Lowering If op requires a FunctionLibraryDefinition to be available."); } const bool lower_function_calls = options.session_options && options.session_options->config.graph_options() .optimizer_options() .do_function_inlining(); bool keep_lowered_nodes_fetchable = !HasArgsOrRetvals(*g); const bool functional_control_flow = options.session_options && (options.session_options->config.experimental().executor_type() == "SINGLE_THREADED_EXECUTOR" || options.session_options->config.experimental().use_tfrt() || options.session_options->config.experimental() .disable_functional_ops_lowering()); const auto used_by_xla = [](Node* node) -> bool { return MarkedForTpuCompilation(node) || MarkedForXlaCompilation(node); }; const auto lower_control_flow = [&](Node* node) -> bool { return LowerUsingSwitchMergeIsOn(node) && !used_by_xla(node); }; int num_node_ids_before_lowering = g->num_node_ids(); for (int i = 2; i < g->num_node_ids(); ++i) { Node* n = g->FindNodeId(i); if (n == nullptr) continue; if (IsFunctionCall(*flib_def, *n) && !used_by_xla(n) && (lower_function_calls || LowerAsMultiDeviceFunctionIsOn(n))) { TF_RETURN_IF_ERROR(RewriteFunctionCallNode(n, g, *flib_def, keep_lowered_nodes_fetchable)); continue; } if (functional_control_flow) continue; if (n->IsIfNode() && lower_control_flow(n)) { TF_RETURN_IF_ERROR(RewriteIfNode(n, g, keep_lowered_nodes_fetchable)); } else if (n->IsCaseNode() && lower_control_flow(n)) { TF_RETURN_IF_ERROR(RewriteCaseNode(n, g, keep_lowered_nodes_fetchable)); } else if (n->IsWhileNode() && lower_control_flow(n)) { TF_RETURN_IF_ERROR( RewriteWhileNode(n, g, flib_def, keep_lowered_nodes_fetchable)); } else { DCHECK(!lower_control_flow(n)) << "Node " << FormatNodeForError(*n) << " of type " << n->type_string() << " has '" << LowerFunctionalOpsConstants::kLowerUsingSwitchMergeAttr << "' attr set but it does not support lowering.\n"; } } PropagateDevices( [num_node_ids_before_lowering](const Node& n) { return DevicePropagationOpList().contains(n.type_string()) && n.id() >= num_node_ids_before_lowering; }, IsPropagatableDevice, g); return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 10, LowerFunctionalOpsPass); }
#include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { typedef FunctionDefHelper FDH; constexpr const char* const kLowerUsingSwitchMergeAttr = LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr; static void AssertHasSubstr(StringPiece s, StringPiece expected) { ASSERT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } SessionOptions SessionOptionsWithInlining() { SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); return session_options; } Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options = SessionOptionsWithInlining(); opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; return pass.Run(opt_options); } FunctionDef WhileWithIfCond(int32_t N) { const Tensor kN = test::AsScalar<int32>(N); return FDH::Define( "WhileWithIfCond", {"counter: int32", "pred: bool", "x: int32"}, {"z: bool"}, {}, { {{"N"}, "Const", {}, {{"value", kN}, {"dtype", DT_INT32}}}, {{"z"}, "Less", {"counter", "N"}, {{"T", DT_INT32}}}, }); } FunctionDef WhileWithIfBody() { NameAttrList then_func; then_func.set_name("XTimesTwo"); NameAttrList else_func; else_func.set_name("XTimesFour"); const Tensor kOne = test::AsScalar<int32>(1); std::vector<DataType> input_types = {DT_INT32}; std::vector<DataType> output_types = {DT_INT32}; return FDH::Define( "WhileWithIfBody", {"counter: int32", "pred: bool", "x: int32"}, {"updated_counter: int32", "pred: bool", "if: int32"}, {}, { {{"if"}, "If", {"pred", "x"}, {{"then_branch", then_func}, {"else_branch", else_func}, {"Tcond", DT_BOOL}, {"Tin", input_types}, {"Tout", output_types}, {kLowerUsingSwitchMergeAttr, true}}}, {{"one"}, "Const", {}, {{"value", kOne}, {"dtype", DT_INT32}}}, {{"updated_counter"}, "Add", {"counter", "one"}, {{"T", DT_INT32}}}, }); } TEST(LowerIfWhileTest, CondInWhile) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::XTimesFour(); *f_lib_proto.add_function() = WhileWithIfCond(3); *f_lib_proto.add_function() = WhileWithIfBody(); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto counter = ops::Placeholder(root.WithOpName("counter"), DT_INT32); auto pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> inputs( {NodeBuilder::NodeOut(counter.node()), NodeBuilder::NodeOut(pred.node()), NodeBuilder::NodeOut(a.node())}); Node* while_node; AttrValue cond_func; cond_func.mutable_func()->set_name("WhileWithIfCond"); AttrValue body_func; body_func.mutable_func()->set_name("WhileWithIfBody"); TF_ASSERT_OK(NodeBuilder("while", "While", &root.graph()->flib_def()) .Input(inputs) .Attr("T", {DT_INT32, DT_BOOL, DT_INT32}) .Attr("cond", cond_func) .Attr("body", body_func) .Attr(kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &while_node)); TF_ASSERT_OK(root.DoShapeInference(while_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto* op : graph->op_nodes()) { ASSERT_NE(op->type_string(), "While"); ASSERT_NE(op->type_string(), "If"); } ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(counter.node()), Input::Initializer(0)); feeds.emplace(Output(pred.node()), Input::Initializer(true)); feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node, 2)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 8); } { ClientSession::FeedType feeds; feeds.emplace(Output(counter.node()), Input::Initializer(0)); feeds.emplace(Output(pred.node()), Input::Initializer(false)); feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(while_node, 2)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 64); } } FunctionDef IfWithWhileThen() { NameAttrList cond_func; cond_func.set_name("LessThanOrEqualToN"); NameAttrList body_func; body_func.set_name("XTimesTwo"); std::vector<DataType> input_and_output_types = {DT_INT32}; std::vector<TensorShape> output_shapes = {TensorShape()}; return FDH::Define( "IfWithWhileThen", {"x: int32"}, {"while: int32"}, {}, { {{"while"}, "While", {"x"}, {{"cond", cond_func}, {"body", body_func}, {"T", input_and_output_types}, {"output_shapes", output_shapes}, {kLowerUsingSwitchMergeAttr, true}}}, }); } TEST(LowerIfWhileTest, WhileInCond) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *f_lib_proto.add_function() = test::function::XTimesTwo(); *f_lib_proto.add_function() = test::function::LessThanOrEqualToN(8); *f_lib_proto.add_function() = IfWithWhileThen(); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); AttrValue then_func; then_func.mutable_func()->set_name("IfWithWhileThen"); AttrValue else_func; else_func.mutable_func()->set_name("XTimesTwo"); Node* if_node; TF_ASSERT_OK(NodeBuilder("if", "If", &root.graph()->flib_def()) .Input(pred.node()) .Input(inputs) .Attr("then_branch", then_func) .Attr("else_branch", else_func) .Attr("Tout", {DT_INT32}) .Attr(kLowerUsingSwitchMergeAttr, true) .Finalize(root.graph(), &if_node)); TF_ASSERT_OK(root.DoShapeInference(if_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); int node_called_if_count = 0; for (const auto* op : graph->op_nodes()) { ASSERT_FALSE(op->IsEnter()); ASSERT_FALSE(op->IsExit()); ASSERT_FALSE(op->IsSwitch()); ASSERT_FALSE(op->IsMerge()); ASSERT_FALSE(op->IsNextIteration()); ASSERT_FALSE(op->IsLoopCond()); if (op->name() == "if") { node_called_if_count++; } } ASSERT_EQ(node_called_if_count, 1); TF_ASSERT_OK(Rewrite(&graph)); node_called_if_count = 0; for (const auto* op : graph->op_nodes()) { if (op->name() == "if") { node_called_if_count++; } ASSERT_NE(op->type_string(), "While"); ASSERT_NE(op->type_string(), "If"); } ASSERT_EQ(node_called_if_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(true)); feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(if_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 16); } { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(false)); feeds.emplace(Output(a.node()), Input::Initializer(1)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(if_node)}, &out_tensors)); ASSERT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_functional_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_functional_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea