|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer |
|
|
|
|
|
dataset = load_dataset('json', data_files='path_to_your/shell_commands_mock_data.json') |
|
|
|
|
|
model_name = "Repl.it/llama-2-13b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples['prompt'], padding="max_length", truncation=True) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=1, |
|
per_device_eval_batch_size=1, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
save_steps=100, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets['train'], |
|
eval_dataset=tokenized_datasets['test'] if 'test' in tokenized_datasets else None, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("./fine_tuned_model") |
|
|
|
|
|
trainer.evaluate() |