|
--- |
|
task_categories: |
|
- audio-classification |
|
license: cc |
|
tags: |
|
- bird classification |
|
- passive acoustic monitoring |
|
--- |
|
## Dataset Description |
|
|
|
- **Repository:** [https://github.com/DBD-research-group/GADME](https://github.com/DBD-research-group/GADME) |
|
- **Paper:** [GADME](https://arxiv.org/) |
|
- **Point of Contact:** [Lukas Rauch](mailto:lukas.rauch@uni-kassel.de) |
|
|
|
### Datasets |
|
We present the BirdSet benchmark that covers a comprehensive range of classification datasets in avian bioacoustics. |
|
We offer a static set of evaluation datasets and a varied collection of training datasets, enabling the application of diverse methodologies. |
|
|
|
| | train | test | test_5s | size (GB) | #classes | |
|
|--------------------------------|--------:|-----------:|--------:|-----------:|-------------:| |
|
| [PER][1] (Amazon Basin) | 16,802 | 14,798 | 15,120 | 10.5 | 132 | |
|
| [NES][2] (Colombia Costa Rica) | 16,117 | 6,952 | 24,480 | 14.2 | 89 | |
|
| [UHH][3] (Hawaiian Islands) | 3,626 | 59,583 | 36,637 | 4.92 | 25 tr, 27 te | |
|
| [HSN][4] (high_sierras) | 5,460 | 10,296 | 12,000 | 5.92 | 21 | |
|
| [NBP][5] (NIPS4BPlus) | 24,327 | 5,493 | 563 | 29.9 | 51 | |
|
| [POW][6] (Powdermill Nature) | 14,911 | 16,052 | 4,560 | 15.7 | 48 | |
|
| [SSW][7] (Sapsucker Woods) | 28,403 | 50,760 | 205,200| 35.2 | 81 | |
|
| [SNE][8] (Sierra Nevada) | 19,390 | 20,147 | 23,756 | 20.8 | 56 | |
|
| [XCM][9] (Xenocanto Subset M) | 89,798 | x | x | 89.3 | 409 | |
|
| [XCL][10](Xenocanto Complete) | 528,434| x | x | 484 | 9,734 | |
|
|
|
[1]: https://zenodo.org/records/7079124 |
|
[2]: https://zenodo.org/records/7525349 |
|
[3]: https://zenodo.org/records/7078499 |
|
[4]: https://zenodo.org/records/7525805 |
|
[5]: https://github.com/fbravosanchez/NIPS4Bplus |
|
[6]: https://zenodo.org/records/4656848 |
|
[7]: https://zenodo.org/records/7018484 |
|
[8]: https://zenodo.org/records/7050014 |
|
[9]: https://xeno-canto.org/ |
|
[10]: https://xeno-canto.org |
|
|
|
- We assemble a training dataset for each test dataset that is a subset of a complete XC snapshot. We extract all recordings that have vocalizations of the bird species appearing in the test dataset. |
|
- We use the .ogg format for every recording and a sampling rate of 32 kHz. |
|
- Each sample in the training dataset is a recording may have more than one vocalization of the corresponding bird species. |
|
- Each recording in the training datasets has a unique recordist and the corresponding license from XC. We omit all recordings from XC that are CC-ND. |
|
- The bird species are translated to ebird_codes |
|
- Snapshot date of XC: 03/10/2024 |
|
|
|
##### Train |
|
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND. |
|
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files. |
|
- We transform the scientific names of the birds into the corresponding ebird_code label. |
|
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording. |
|
- We provide the full recordings from XC. These can generate multiple samples from a single instance. |
|
|
|
##### Test_5s |
|
- Task: Multilabel ("ebird_code_multilabel") |
|
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme. |
|
- Each recording is segmented into 5-second intervals where each ground truth bird vocalization is assigned to. |
|
- This contains segments without any labels which results in a [0] vector. |
|
|
|
##### Test |
|
- Task: Multiclass ("ebird_code") |
|
- Only soundscape data sourced from Zenodo. |
|
- We provide the full recording with the complete label set and specified bounding boxes. |
|
- This dataset excludes recordings that do not contain bird calls ("no_call"). |
|
|
|
### Quick Use |
|
- For multi-label evaluation with a segment-based evaluation use the test_5s column for testing. |
|
- You could only load the first 5 seconds or a given event per recording to quickly create a training dataset. |
|
- We recommend to start with HSN. It is a medium size dataset with a low number of overlaps within a segment |
|
|
|
#### Metadata |
|
|
|
| | format datasets. | description | |
|
|------------------------|-------------------------------------------------------:|-------------------------:| |
|
| audio | Audio(sampling_rate=32_000, mono=True, decode=True) | xxxxxx | |
|
| filepath | Value("string") | xxxxxx | |
|
| start_time | Value("float64") | xxxxxx | |
|
| end_time | Value("float64") | xxxxxx | |
|
| low_freq | Value("int64") | xxxxxx | |
|
| high_freq | Value("int64") | xxxxxx | |
|
| ebird_code | ClassLabel(names=class_list) | xxxxxx | |
|
| ebird_code_multilabel | Sequence(datasets.ClassLabel(names=class_list)) | x | |
|
| call_type | Sequence(datasets.Value("string")) | x | |
|
| sex | Value("string") | x | |
|
| lat | Value("float64") | x | |
|
| long | Value("float64") | x | |
|
| length | Value("int64") | x | |
|
| microphone | Value("string") | x | |
|
| license | Value("string") | x | |
|
| source | Value("string") | x | |
|
| local_time | Value("string") | x | |
|
| detected_events | Sequence(datasets.Sequence(datasets.Value("float64")))| x | |
|
| event_cluster | Sequence(datasets.Value("int64")) | x | |
|
| peaks | Sequence(datasets.Value("float64")) | x | |
|
| quality | Value("string") | x | |
|
| recordist | Value("string") | x | |
|
|
|
##### Example Metadata Train |
|
|
|
```python |
|
EXAMPLE TRAIN |
|
{'audio': {'path': '.ogg', |
|
'array': array([ 0.0008485 , 0.00128899, -0.00317163, ..., 0.00228528, |
|
0.00270796, -0.00120562]), |
|
'sampling_rate': 32000}, |
|
'filepath': '.ogg', |
|
'start_time': None, |
|
'end_time': None, |
|
'low_freq': None, |
|
'high_freq': None, |
|
'ebird_code': 0, |
|
'ebird_code_multilabel': [0], |
|
'ebird_code_secondary': ['plaant1', 'blfnun1', 'butwoo1', 'whtdov', 'undtin1', 'gryhaw3'], |
|
'call_type': 'song', |
|
'sex': 'uncertain', |
|
'lat': -16.0538, |
|
'long': -49.604, |
|
'length': 46, |
|
'microphone': 'focal', |
|
'license': '//creativecommons.org/licenses/by-nc-sa/4.0/', |
|
'source': 'xenocanto', |
|
'local_time': '18:37', |
|
'detected_events': [[0.736, 1.824], |
|
[9.936, 10.944], |
|
[13.872, 15.552], |
|
[19.552, 20.752], |
|
[24.816, 25.968], |
|
[26.528, 32.16], |
|
[36.112, 37.808], |
|
[37.792, 38.88], |
|
[40.048, 40.8], |
|
[44.432, 45.616]], |
|
'event_cluster': [0, 0, 0, 0, 0, -1, 0, 0, -1, 0], |
|
'peaks': [14.76479119037789, 41.16993396760847], |
|
'quality': 'A', |
|
'recordist': '...'} |
|
``` |
|
|
|
##### Example Metadata Test5s |
|
```python |
|
{'audio': {'path': '.ogg', |
|
'array': array([-0.67190468, -0.9638235 , -0.99569213, ..., -0.01262935, |
|
-0.01533066, -0.0141047 ]), |
|
'sampling_rate': 32000}, |
|
'filepath': '.ogg', |
|
'start_time': 0.0, |
|
'end_time': 5.0, |
|
'low_freq': 0, |
|
'high_freq': 3098, |
|
'ebird_code': None, |
|
'ebird_code_multilabel': [1, 10], |
|
'ebird_code_secondary': None, |
|
'call_type': None, |
|
'sex': None, |
|
'lat': 5.59, |
|
'long': -75.85, |
|
'length': None, |
|
'microphone': 'Soundscape', |
|
'license': 'Creative Commons Attribution 4.0 International Public License', |
|
'source': 'https://zenodo.org/record/7525349', |
|
'local_time': '4:30:29', |
|
'detected_events': None, |
|
'event_cluster': None, |
|
'peaks': None, |
|
'quality': None, |
|
'recordist': None} |
|
``` |
|
|
|
### Citation Information |
|
|
|
``` |
|
@article{gadme, |
|
author = {Rauch, Lukas and |
|
Schwinger, Raphael and |
|
Wirth, Moritz and |
|
Heinrich, René and |
|
Lange, Jonas and |
|
Kahl, Stefan and |
|
Sick, Bernhard and |
|
Tomforde, Sven and |
|
Scholz, Christoph}, |
|
title = {GADME: A Benchmark Towards General Avian Diversity Monitoring Evaluation in Deep Bioacoustics, |
|
journal = {CoRR}, |
|
volume = {X}, |
|
year = {2024}, |
|
url = {X}, |
|
archivePrefix = {arXiv}, |
|
} |
|
|
|
Note that each test in GADME dataset has its own citation. Please see the source to see |
|
the correct citation for each contained dataset. Each file in the training dataset also has its own recordist. The licenses can be found in the metadata. |
|
``` |